1 //===------ IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the IslNodeBuilder, a class to translate an isl AST into 11 // a LLVM-IR AST. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslAst.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/LoopGenerators.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/CodeGen/Utils.h" 23 #include "polly/Config/config.h" 24 #include "polly/DependenceInfo.h" 25 #include "polly/LinkAllPasses.h" 26 #include "polly/Options.h" 27 #include "polly/ScopInfo.h" 28 #include "polly/Support/GICHelper.h" 29 #include "polly/Support/SCEVValidator.h" 30 #include "polly/Support/ScopHelper.h" 31 #include "llvm/ADT/PostOrderIterator.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "isl/aff.h" 41 #include "isl/ast.h" 42 #include "isl/ast_build.h" 43 #include "isl/list.h" 44 #include "isl/map.h" 45 #include "isl/set.h" 46 #include "isl/union_map.h" 47 #include "isl/union_set.h" 48 49 using namespace polly; 50 using namespace llvm; 51 52 #define DEBUG_TYPE "polly-codegen" 53 54 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 55 56 // The maximal number of dimensions we allow during invariant load construction. 57 // More complex access ranges will result in very high compile time and are also 58 // unlikely to result in good code. This value is very high and should only 59 // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006). 60 static int const MaxDimensionsInAccessRange = 9; 61 62 static cl::opt<bool> PollyGenerateRTCPrint( 63 "polly-codegen-emit-rtc-print", 64 cl::desc("Emit code that prints the runtime check result dynamically."), 65 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 66 67 // If this option is set we always use the isl AST generator to regenerate 68 // memory accesses. Without this option set we regenerate expressions using the 69 // original SCEV expressions and only generate new expressions in case the 70 // access relation has been changed and consequently must be regenerated. 71 static cl::opt<bool> PollyGenerateExpressions( 72 "polly-codegen-generate-expressions", 73 cl::desc("Generate AST expressions for unmodified and modified accesses"), 74 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 75 76 static cl::opt<int> PollyTargetFirstLevelCacheLineSize( 77 "polly-target-first-level-cache-line-size", 78 cl::desc("The size of the first level cache line size specified in bytes."), 79 cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); 80 81 __isl_give isl_ast_expr * 82 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For, 83 ICmpInst::Predicate &Predicate) { 84 isl_id *UBID, *IteratorID; 85 isl_ast_expr *Cond, *Iterator, *UB, *Arg0; 86 isl_ast_op_type Type; 87 88 Cond = isl_ast_node_for_get_cond(For); 89 Iterator = isl_ast_node_for_get_iterator(For); 90 isl_ast_expr_get_type(Cond); 91 assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op && 92 "conditional expression is not an atomic upper bound"); 93 94 Type = isl_ast_expr_get_op_type(Cond); 95 96 switch (Type) { 97 case isl_ast_op_le: 98 Predicate = ICmpInst::ICMP_SLE; 99 break; 100 case isl_ast_op_lt: 101 Predicate = ICmpInst::ICMP_SLT; 102 break; 103 default: 104 llvm_unreachable("Unexpected comparision type in loop conditon"); 105 } 106 107 Arg0 = isl_ast_expr_get_op_arg(Cond, 0); 108 109 assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id && 110 "conditional expression is not an atomic upper bound"); 111 112 UBID = isl_ast_expr_get_id(Arg0); 113 114 assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id && 115 "Could not get the iterator"); 116 117 IteratorID = isl_ast_expr_get_id(Iterator); 118 119 assert(UBID == IteratorID && 120 "conditional expression is not an atomic upper bound"); 121 122 UB = isl_ast_expr_get_op_arg(Cond, 1); 123 124 isl_ast_expr_free(Cond); 125 isl_ast_expr_free(Iterator); 126 isl_ast_expr_free(Arg0); 127 isl_id_free(IteratorID); 128 isl_id_free(UBID); 129 130 return UB; 131 } 132 133 /// Return true if a return value of Predicate is true for the value represented 134 /// by passed isl_ast_expr_int. 135 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 136 isl_bool (*Predicate)(__isl_keep isl_val *)) { 137 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 138 isl_ast_expr_free(Expr); 139 return false; 140 } 141 auto ExprVal = isl_ast_expr_get_val(Expr); 142 isl_ast_expr_free(Expr); 143 if (Predicate(ExprVal) != true) { 144 isl_val_free(ExprVal); 145 return false; 146 } 147 isl_val_free(ExprVal); 148 return true; 149 } 150 151 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) { 152 assert(isl_ast_node_get_type(For) == isl_ast_node_for); 153 auto Body = isl_ast_node_for_get_body(For); 154 155 // First, check if we can actually handle this code. 156 switch (isl_ast_node_get_type(Body)) { 157 case isl_ast_node_user: 158 break; 159 case isl_ast_node_block: { 160 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 161 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) { 162 isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i); 163 int Type = isl_ast_node_get_type(Node); 164 isl_ast_node_free(Node); 165 if (Type != isl_ast_node_user) { 166 isl_ast_node_list_free(List); 167 isl_ast_node_free(Body); 168 return -1; 169 } 170 } 171 isl_ast_node_list_free(List); 172 break; 173 } 174 default: 175 isl_ast_node_free(Body); 176 return -1; 177 } 178 isl_ast_node_free(Body); 179 180 auto Init = isl_ast_node_for_get_init(For); 181 if (!checkIslAstExprInt(Init, isl_val_is_zero)) 182 return -1; 183 auto Inc = isl_ast_node_for_get_inc(For); 184 if (!checkIslAstExprInt(Inc, isl_val_is_one)) 185 return -1; 186 CmpInst::Predicate Predicate; 187 auto UB = getUpperBound(For, Predicate); 188 if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) { 189 isl_ast_expr_free(UB); 190 return -1; 191 } 192 auto UpVal = isl_ast_expr_get_val(UB); 193 isl_ast_expr_free(UB); 194 int NumberIterations = isl_val_get_num_si(UpVal); 195 isl_val_free(UpVal); 196 if (NumberIterations < 0) 197 return -1; 198 if (Predicate == CmpInst::ICMP_SLT) 199 return NumberIterations; 200 else 201 return NumberIterations + 1; 202 } 203 204 /// Extract the values and SCEVs needed to generate code for a block. 205 static int findReferencesInBlock(struct SubtreeReferences &References, 206 const ScopStmt *Stmt, const BasicBlock *BB) { 207 for (const Instruction &Inst : *BB) 208 for (Value *SrcVal : Inst.operands()) { 209 auto *Scope = References.LI.getLoopFor(BB); 210 if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) { 211 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 212 continue; 213 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 214 References.Values.insert(NewVal); 215 } 216 return 0; 217 } 218 219 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 220 bool CreateScalarRefs) { 221 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 222 223 if (Stmt->isBlockStmt()) 224 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 225 else { 226 assert(Stmt->isRegionStmt() && 227 "Stmt was neither block nor region statement"); 228 for (const BasicBlock *BB : Stmt->getRegion()->blocks()) 229 findReferencesInBlock(References, Stmt, BB); 230 } 231 232 for (auto &Access : *Stmt) { 233 if (Access->isArrayKind()) { 234 auto *BasePtr = Access->getScopArrayInfo()->getBasePtr(); 235 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 236 if (Stmt->getParent()->contains(OpInst)) 237 continue; 238 239 References.Values.insert(BasePtr); 240 continue; 241 } 242 243 if (CreateScalarRefs) 244 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 245 } 246 247 return isl_stat_ok; 248 } 249 250 /// Extract the out-of-scop values and SCEVs referenced from a set describing 251 /// a ScopStmt. 252 /// 253 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 254 /// statement and the base pointers of the memory accesses. For scalar 255 /// statements we force the generation of alloca memory locations and list 256 /// these locations in the set of out-of-scop values as well. 257 /// 258 /// @param Set A set which references the ScopStmt we are interested in. 259 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 260 /// structure. 261 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set, 262 void *UserPtr) { 263 isl_id *Id = isl_set_get_tuple_id(Set); 264 auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id)); 265 isl_id_free(Id); 266 isl_set_free(Set); 267 return addReferencesFromStmt(Stmt, UserPtr); 268 } 269 270 /// Extract the out-of-scop values and SCEVs referenced from a union set 271 /// referencing multiple ScopStmts. 272 /// 273 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 274 /// statement and the base pointers of the memory accesses. For scalar 275 /// statements we force the generation of alloca memory locations and list 276 /// these locations in the set of out-of-scop values as well. 277 /// 278 /// @param USet A union set referencing the ScopStmts we are interested 279 /// in. 280 /// @param References The SubtreeReferences data structure through which 281 /// results are returned and further information is 282 /// provided. 283 static void 284 addReferencesFromStmtUnionSet(isl_union_set *USet, 285 struct SubtreeReferences &References) { 286 isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References); 287 isl_union_set_free(USet); 288 } 289 290 __isl_give isl_union_map * 291 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 292 return IslAstInfo::getSchedule(For); 293 } 294 295 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 296 SetVector<Value *> &Values, 297 SetVector<const Loop *> &Loops) { 298 299 SetVector<const SCEV *> SCEVs; 300 struct SubtreeReferences References = { 301 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator()}; 302 303 for (const auto &I : IDToValue) 304 Values.insert(I.second); 305 306 for (const auto &I : OutsideLoopIterations) 307 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 308 309 isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For)); 310 addReferencesFromStmtUnionSet(Schedule, References); 311 312 for (const SCEV *Expr : SCEVs) { 313 findValues(Expr, SE, Values); 314 findLoops(Expr, Loops); 315 } 316 317 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 318 319 /// Remove loops that contain the scop or that are part of the scop, as they 320 /// are considered local. This leaves only loops that are before the scop, but 321 /// do not contain the scop itself. 322 Loops.remove_if([this](const Loop *L) { 323 return S.contains(L) || L->contains(S.getEntry()); 324 }); 325 } 326 327 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 328 SmallPtrSet<Value *, 5> Inserted; 329 330 for (const auto &I : IDToValue) { 331 IDToValue[I.first] = NewValues[I.second]; 332 Inserted.insert(I.second); 333 } 334 335 for (const auto &I : NewValues) { 336 if (Inserted.count(I.first)) 337 continue; 338 339 ValueMap[I.first] = I.second; 340 } 341 } 342 343 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 344 std::vector<Value *> &IVS, 345 __isl_take isl_id *IteratorID, 346 __isl_take isl_union_map *Schedule) { 347 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 348 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 349 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 350 isl_ast_expr_free(StmtExpr); 351 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 352 std::vector<LoopToScevMapT> VLTS(IVS.size()); 353 354 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain()); 355 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 356 isl_map *S = isl_map_from_union_map(Schedule); 357 358 auto *NewAccesses = createNewAccesses(Stmt, User); 359 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 360 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 361 isl_id_to_ast_expr_free(NewAccesses); 362 isl_map_free(S); 363 isl_id_free(Id); 364 isl_ast_node_free(User); 365 } 366 367 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 368 auto *Id = isl_ast_node_mark_get_id(Node); 369 auto Child = isl_ast_node_mark_get_node(Node); 370 isl_ast_node_free(Node); 371 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 372 // it will be optimized away and we should skip it. 373 if (!strcmp(isl_id_get_name(Id), "SIMD") && 374 isl_ast_node_get_type(Child) == isl_ast_node_for) { 375 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 376 int VectorWidth = getNumberOfIterations(Child); 377 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 378 createForVector(Child, VectorWidth); 379 else 380 createForSequential(Child, true); 381 isl_id_free(Id); 382 return; 383 } 384 create(Child); 385 isl_id_free(Id); 386 } 387 388 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 389 int VectorWidth) { 390 isl_ast_node *Body = isl_ast_node_for_get_body(For); 391 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 392 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 393 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 394 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 395 396 Value *ValueLB = ExprBuilder.create(Init); 397 Value *ValueInc = ExprBuilder.create(Inc); 398 399 Type *MaxType = ExprBuilder.getType(Iterator); 400 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 401 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 402 403 if (MaxType != ValueLB->getType()) 404 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 405 if (MaxType != ValueInc->getType()) 406 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 407 408 std::vector<Value *> IVS(VectorWidth); 409 IVS[0] = ValueLB; 410 411 for (int i = 1; i < VectorWidth; i++) 412 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 413 414 isl_union_map *Schedule = getScheduleForAstNode(For); 415 assert(Schedule && "For statement annotation does not contain its schedule"); 416 417 IDToValue[IteratorID] = ValueLB; 418 419 switch (isl_ast_node_get_type(Body)) { 420 case isl_ast_node_user: 421 createUserVector(Body, IVS, isl_id_copy(IteratorID), 422 isl_union_map_copy(Schedule)); 423 break; 424 case isl_ast_node_block: { 425 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 426 427 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 428 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 429 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 430 431 isl_ast_node_free(Body); 432 isl_ast_node_list_free(List); 433 break; 434 } 435 default: 436 isl_ast_node_dump(Body); 437 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 438 } 439 440 IDToValue.erase(IDToValue.find(IteratorID)); 441 isl_id_free(IteratorID); 442 isl_union_map_free(Schedule); 443 444 isl_ast_node_free(For); 445 isl_ast_expr_free(Iterator); 446 } 447 448 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For, 449 bool KnownParallel) { 450 isl_ast_node *Body; 451 isl_ast_expr *Init, *Inc, *Iterator, *UB; 452 isl_id *IteratorID; 453 Value *ValueLB, *ValueUB, *ValueInc; 454 Type *MaxType; 455 BasicBlock *ExitBlock; 456 Value *IV; 457 CmpInst::Predicate Predicate; 458 bool Parallel; 459 460 Parallel = KnownParallel || (IslAstInfo::isParallel(For) && 461 !IslAstInfo::isReductionParallel(For)); 462 463 Body = isl_ast_node_for_get_body(For); 464 465 // isl_ast_node_for_is_degenerate(For) 466 // 467 // TODO: For degenerated loops we could generate a plain assignment. 468 // However, for now we just reuse the logic for normal loops, which will 469 // create a loop with a single iteration. 470 471 Init = isl_ast_node_for_get_init(For); 472 Inc = isl_ast_node_for_get_inc(For); 473 Iterator = isl_ast_node_for_get_iterator(For); 474 IteratorID = isl_ast_expr_get_id(Iterator); 475 UB = getUpperBound(For, Predicate); 476 477 ValueLB = ExprBuilder.create(Init); 478 ValueUB = ExprBuilder.create(UB); 479 ValueInc = ExprBuilder.create(Inc); 480 481 MaxType = ExprBuilder.getType(Iterator); 482 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 483 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 484 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 485 486 if (MaxType != ValueLB->getType()) 487 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 488 if (MaxType != ValueUB->getType()) 489 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 490 if (MaxType != ValueInc->getType()) 491 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 492 493 // If we can show that LB <Predicate> UB holds at least once, we can 494 // omit the GuardBB in front of the loop. 495 bool UseGuardBB = 496 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 497 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, P, LI, DT, ExitBlock, 498 Predicate, &Annotator, Parallel, UseGuardBB); 499 IDToValue[IteratorID] = IV; 500 501 create(Body); 502 503 Annotator.popLoop(Parallel); 504 505 IDToValue.erase(IDToValue.find(IteratorID)); 506 507 Builder.SetInsertPoint(&ExitBlock->front()); 508 509 isl_ast_node_free(For); 510 isl_ast_expr_free(Iterator); 511 isl_id_free(IteratorID); 512 } 513 514 /// Remove the BBs contained in a (sub)function from the dominator tree. 515 /// 516 /// This function removes the basic blocks that are part of a subfunction from 517 /// the dominator tree. Specifically, when generating code it may happen that at 518 /// some point the code generation continues in a new sub-function (e.g., when 519 /// generating OpenMP code). The basic blocks that are created in this 520 /// sub-function are then still part of the dominator tree of the original 521 /// function, such that the dominator tree reaches over function boundaries. 522 /// This is not only incorrect, but also causes crashes. This function now 523 /// removes from the dominator tree all basic blocks that are dominated (and 524 /// consequently reachable) from the entry block of this (sub)function. 525 /// 526 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 527 /// the function/region it runs on. Hence, the pure need for this function shows 528 /// that we do not comply to this rule. At the moment, this does not cause any 529 /// issues, but we should be aware that such issues may appear. Unfortunately 530 /// the current LLVM pass infrastructure does not allow to make Polly a module 531 /// or call-graph pass to solve this issue, as such a pass would not have access 532 /// to the per-function analyses passes needed by Polly. A future pass manager 533 /// infrastructure is supposed to enable such kind of access possibly allowing 534 /// us to create a cleaner solution here. 535 /// 536 /// FIXME: Instead of adding the dominance information and then dropping it 537 /// later on, we should try to just not add it in the first place. This requires 538 /// some careful testing to make sure this does not break in interaction with 539 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 540 /// which may try to update it. 541 /// 542 /// @param F The function which contains the BBs to removed. 543 /// @param DT The dominator tree from which to remove the BBs. 544 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 545 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 546 std::vector<BasicBlock *> Nodes; 547 548 // We can only remove an element from the dominator tree, if all its children 549 // have been removed. To ensure this we obtain the list of nodes to remove 550 // using a post-order tree traversal. 551 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 552 Nodes.push_back(I->getBlock()); 553 554 for (BasicBlock *BB : Nodes) 555 DT.eraseNode(BB); 556 } 557 558 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 559 isl_ast_node *Body; 560 isl_ast_expr *Init, *Inc, *Iterator, *UB; 561 isl_id *IteratorID; 562 Value *ValueLB, *ValueUB, *ValueInc; 563 Type *MaxType; 564 Value *IV; 565 CmpInst::Predicate Predicate; 566 567 // The preamble of parallel code interacts different than normal code with 568 // e.g., scalar initialization. Therefore, we ensure the parallel code is 569 // separated from the last basic block. 570 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 571 &*Builder.GetInsertPoint(), &DT, &LI); 572 ParBB->setName("polly.parallel.for"); 573 Builder.SetInsertPoint(&ParBB->front()); 574 575 Body = isl_ast_node_for_get_body(For); 576 Init = isl_ast_node_for_get_init(For); 577 Inc = isl_ast_node_for_get_inc(For); 578 Iterator = isl_ast_node_for_get_iterator(For); 579 IteratorID = isl_ast_expr_get_id(Iterator); 580 UB = getUpperBound(For, Predicate); 581 582 ValueLB = ExprBuilder.create(Init); 583 ValueUB = ExprBuilder.create(UB); 584 ValueInc = ExprBuilder.create(Inc); 585 586 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 587 // expression, we need to adjust the loop blound by one. 588 if (Predicate == CmpInst::ICMP_SLT) 589 ValueUB = Builder.CreateAdd( 590 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 591 592 MaxType = ExprBuilder.getType(Iterator); 593 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 594 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 595 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 596 597 if (MaxType != ValueLB->getType()) 598 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 599 if (MaxType != ValueUB->getType()) 600 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 601 if (MaxType != ValueInc->getType()) 602 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 603 604 BasicBlock::iterator LoopBody; 605 606 SetVector<Value *> SubtreeValues; 607 SetVector<const Loop *> Loops; 608 609 getReferencesInSubtree(For, SubtreeValues, Loops); 610 611 // Create for all loops we depend on values that contain the current loop 612 // iteration. These values are necessary to generate code for SCEVs that 613 // depend on such loops. As a result we need to pass them to the subfunction. 614 for (const Loop *L : Loops) { 615 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 616 SE.getUnknown(Builder.getInt64(1)), 617 L, SCEV::FlagAnyWrap); 618 Value *V = generateSCEV(OuterLIV); 619 OutsideLoopIterations[L] = SE.getUnknown(V); 620 SubtreeValues.insert(V); 621 } 622 623 ValueMapT NewValues; 624 ParallelLoopGenerator ParallelLoopGen(Builder, P, LI, DT, DL); 625 626 IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc, 627 SubtreeValues, NewValues, &LoopBody); 628 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 629 Builder.SetInsertPoint(&*LoopBody); 630 631 // Remember the parallel subfunction 632 ParallelSubfunctions.push_back(LoopBody->getFunction()); 633 634 // Save the current values. 635 auto ValueMapCopy = ValueMap; 636 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 637 638 updateValues(NewValues); 639 IDToValue[IteratorID] = IV; 640 641 ValueMapT NewValuesReverse; 642 643 for (auto P : NewValues) 644 NewValuesReverse[P.second] = P.first; 645 646 Annotator.addAlternativeAliasBases(NewValuesReverse); 647 648 create(Body); 649 650 Annotator.resetAlternativeAliasBases(); 651 // Restore the original values. 652 ValueMap = ValueMapCopy; 653 IDToValue = IDToValueCopy; 654 655 Builder.SetInsertPoint(&*AfterLoop); 656 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 657 658 for (const Loop *L : Loops) 659 OutsideLoopIterations.erase(L); 660 661 isl_ast_node_free(For); 662 isl_ast_expr_free(Iterator); 663 isl_id_free(IteratorID); 664 } 665 666 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 667 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 668 669 if (Vector && IslAstInfo::isInnermostParallel(For) && 670 !IslAstInfo::isReductionParallel(For)) { 671 int VectorWidth = getNumberOfIterations(For); 672 if (1 < VectorWidth && VectorWidth <= 16) { 673 createForVector(For, VectorWidth); 674 return; 675 } 676 } 677 678 if (IslAstInfo::isExecutedInParallel(For)) { 679 createForParallel(For); 680 return; 681 } 682 createForSequential(For, false); 683 } 684 685 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 686 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 687 688 Function *F = Builder.GetInsertBlock()->getParent(); 689 LLVMContext &Context = F->getContext(); 690 691 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 692 &*Builder.GetInsertPoint(), &DT, &LI); 693 CondBB->setName("polly.cond"); 694 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 695 MergeBB->setName("polly.merge"); 696 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 697 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 698 699 DT.addNewBlock(ThenBB, CondBB); 700 DT.addNewBlock(ElseBB, CondBB); 701 DT.changeImmediateDominator(MergeBB, CondBB); 702 703 Loop *L = LI.getLoopFor(CondBB); 704 if (L) { 705 L->addBasicBlockToLoop(ThenBB, LI); 706 L->addBasicBlockToLoop(ElseBB, LI); 707 } 708 709 CondBB->getTerminator()->eraseFromParent(); 710 711 Builder.SetInsertPoint(CondBB); 712 Value *Predicate = ExprBuilder.create(Cond); 713 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 714 Builder.SetInsertPoint(ThenBB); 715 Builder.CreateBr(MergeBB); 716 Builder.SetInsertPoint(ElseBB); 717 Builder.CreateBr(MergeBB); 718 Builder.SetInsertPoint(&ThenBB->front()); 719 720 create(isl_ast_node_if_get_then(If)); 721 722 Builder.SetInsertPoint(&ElseBB->front()); 723 724 if (isl_ast_node_if_has_else(If)) 725 create(isl_ast_node_if_get_else(If)); 726 727 Builder.SetInsertPoint(&MergeBB->front()); 728 729 isl_ast_node_free(If); 730 } 731 732 __isl_give isl_id_to_ast_expr * 733 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 734 __isl_keep isl_ast_node *Node) { 735 isl_id_to_ast_expr *NewAccesses = 736 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0); 737 738 auto *Build = IslAstInfo::getBuild(Node); 739 assert(Build && "Could not obtain isl_ast_build from user node"); 740 Stmt->setAstBuild(Build); 741 742 for (auto *MA : *Stmt) { 743 if (!MA->hasNewAccessRelation()) { 744 if (PollyGenerateExpressions) { 745 if (!MA->isAffine()) 746 continue; 747 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 748 continue; 749 750 auto *BasePtr = 751 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 752 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 753 continue; 754 } else { 755 continue; 756 } 757 } 758 assert(MA->isAffine() && 759 "Only affine memory accesses can be code generated"); 760 761 auto Schedule = isl_ast_build_get_schedule(Build); 762 763 #ifndef NDEBUG 764 auto Dom = Stmt->getDomain(); 765 auto SchedDom = isl_set_from_union_set( 766 isl_union_map_domain(isl_union_map_copy(Schedule))); 767 auto AccDom = isl_map_domain(MA->getAccessRelation()); 768 Dom = isl_set_intersect_params(Dom, Stmt->getParent()->getContext()); 769 SchedDom = 770 isl_set_intersect_params(SchedDom, Stmt->getParent()->getContext()); 771 assert(isl_set_is_subset(SchedDom, AccDom) && 772 "Access relation not defined on full schedule domain"); 773 assert(isl_set_is_subset(Dom, AccDom) && 774 "Access relation not defined on full domain"); 775 isl_set_free(AccDom); 776 isl_set_free(SchedDom); 777 isl_set_free(Dom); 778 #endif 779 780 auto PWAccRel = MA->applyScheduleToAccessRelation(Schedule); 781 782 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 783 NewAccesses = isl_id_to_ast_expr_set(NewAccesses, MA->getId(), AccessExpr); 784 } 785 786 return NewAccesses; 787 } 788 789 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 790 ScopStmt *Stmt, LoopToScevMapT <S) { 791 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 792 "Expression of type 'op' expected"); 793 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 794 "Opertation of type 'call' expected"); 795 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 796 isl_ast_expr *SubExpr; 797 Value *V; 798 799 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 800 V = ExprBuilder.create(SubExpr); 801 ScalarEvolution *SE = Stmt->getParent()->getSE(); 802 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 803 } 804 805 isl_ast_expr_free(Expr); 806 } 807 808 void IslNodeBuilder::createSubstitutionsVector( 809 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 810 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 811 __isl_take isl_id *IteratorID) { 812 int i = 0; 813 814 Value *OldValue = IDToValue[IteratorID]; 815 for (Value *IV : IVS) { 816 IDToValue[IteratorID] = IV; 817 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 818 i++; 819 } 820 821 IDToValue[IteratorID] = OldValue; 822 isl_id_free(IteratorID); 823 isl_ast_expr_free(Expr); 824 } 825 826 void IslNodeBuilder::generateCopyStmt( 827 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 828 assert(Stmt->size() == 2); 829 auto ReadAccess = Stmt->begin(); 830 auto WriteAccess = ReadAccess++; 831 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 832 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 833 "Accesses use the same data type"); 834 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 835 auto *AccessExpr = 836 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId()); 837 auto *LoadValue = ExprBuilder.create(AccessExpr); 838 AccessExpr = isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId()); 839 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr); 840 Builder.CreateStore(LoadValue, StoreAddr); 841 } 842 843 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 844 LoopToScevMapT LTS; 845 isl_id *Id; 846 ScopStmt *Stmt; 847 848 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 849 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 850 Id = isl_ast_expr_get_id(StmtExpr); 851 isl_ast_expr_free(StmtExpr); 852 853 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 854 855 Stmt = (ScopStmt *)isl_id_get_user(Id); 856 auto *NewAccesses = createNewAccesses(Stmt, User); 857 if (Stmt->isCopyStmt()) { 858 generateCopyStmt(Stmt, NewAccesses); 859 isl_ast_expr_free(Expr); 860 } else { 861 createSubstitutions(Expr, Stmt, LTS); 862 863 if (Stmt->isBlockStmt()) 864 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 865 else 866 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 867 } 868 869 isl_id_to_ast_expr_free(NewAccesses); 870 isl_ast_node_free(User); 871 isl_id_free(Id); 872 } 873 874 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 875 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 876 877 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 878 create(isl_ast_node_list_get_ast_node(List, i)); 879 880 isl_ast_node_free(Block); 881 isl_ast_node_list_free(List); 882 } 883 884 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 885 switch (isl_ast_node_get_type(Node)) { 886 case isl_ast_node_error: 887 llvm_unreachable("code generation error"); 888 case isl_ast_node_mark: 889 createMark(Node); 890 return; 891 case isl_ast_node_for: 892 createFor(Node); 893 return; 894 case isl_ast_node_if: 895 createIf(Node); 896 return; 897 case isl_ast_node_user: 898 createUser(Node); 899 return; 900 case isl_ast_node_block: 901 createBlock(Node); 902 return; 903 } 904 905 llvm_unreachable("Unknown isl_ast_node type"); 906 } 907 908 bool IslNodeBuilder::materializeValue(isl_id *Id) { 909 // If the Id is already mapped, skip it. 910 if (!IDToValue.count(Id)) { 911 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 912 Value *V = nullptr; 913 914 // Parameters could refere to invariant loads that need to be 915 // preloaded before we can generate code for the parameter. Thus, 916 // check if any value refered to in ParamSCEV is an invariant load 917 // and if so make sure its equivalence class is preloaded. 918 SetVector<Value *> Values; 919 findValues(ParamSCEV, SE, Values); 920 for (auto *Val : Values) { 921 922 // Check if the value is an instruction in a dead block within the SCoP 923 // and if so do not code generate it. 924 if (auto *Inst = dyn_cast<Instruction>(Val)) { 925 if (S.contains(Inst)) { 926 bool IsDead = true; 927 928 // Check for "undef" loads first, then if there is a statement for 929 // the parent of Inst and lastly if the parent of Inst has an empty 930 // domain. In the first and last case the instruction is dead but if 931 // there is a statement or the domain is not empty Inst is not dead. 932 auto MemInst = MemAccInst::dyn_cast(Inst); 933 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 934 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == 935 SE.getPointerBase(SE.getSCEV(Address))) { 936 } else if (S.getStmtFor(Inst)) { 937 IsDead = false; 938 } else { 939 auto *Domain = S.getDomainConditions(Inst->getParent()); 940 IsDead = isl_set_is_empty(Domain); 941 isl_set_free(Domain); 942 } 943 944 if (IsDead) { 945 V = UndefValue::get(ParamSCEV->getType()); 946 break; 947 } 948 } 949 } 950 951 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 952 953 // Check if this invariant access class is empty, hence if we never 954 // actually added a loads instruction to it. In that case it has no 955 // (meaningful) users and we should not try to code generate it. 956 if (IAClass->InvariantAccesses.empty()) 957 V = UndefValue::get(ParamSCEV->getType()); 958 959 if (!preloadInvariantEquivClass(*IAClass)) { 960 isl_id_free(Id); 961 return false; 962 } 963 } 964 } 965 966 V = V ? V : generateSCEV(ParamSCEV); 967 IDToValue[Id] = V; 968 } 969 970 isl_id_free(Id); 971 return true; 972 } 973 974 bool IslNodeBuilder::materializeParameters(isl_set *Set, bool All) { 975 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 976 if (!All && !isl_set_involves_dims(Set, isl_dim_param, i, 1)) 977 continue; 978 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 979 if (!materializeValue(Id)) 980 return false; 981 } 982 return true; 983 } 984 985 /// Add the number of dimensions in @p BS to @p U. 986 static isl_stat countTotalDims(__isl_take isl_basic_set *BS, void *U) { 987 unsigned *NumTotalDim = static_cast<unsigned *>(U); 988 *NumTotalDim += isl_basic_set_total_dim(BS); 989 isl_basic_set_free(BS); 990 return isl_stat_ok; 991 } 992 993 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 994 isl_ast_build *Build, 995 Instruction *AccInst) { 996 997 // TODO: This check could be performed in the ScopInfo already. 998 unsigned NumTotalDim = 0; 999 isl_set_foreach_basic_set(AccessRange, countTotalDims, &NumTotalDim); 1000 if (NumTotalDim > MaxDimensionsInAccessRange) { 1001 isl_set_free(AccessRange); 1002 return nullptr; 1003 } 1004 1005 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1006 isl_ast_expr *Access = 1007 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1008 auto *Address = isl_ast_expr_address_of(Access); 1009 auto *AddressValue = ExprBuilder.create(Address); 1010 Value *PreloadVal; 1011 1012 // Correct the type as the SAI might have a different type than the user 1013 // expects, especially if the base pointer is a struct. 1014 Type *Ty = AccInst->getType(); 1015 1016 auto *Ptr = AddressValue; 1017 auto Name = Ptr->getName(); 1018 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(), Name + ".cast"); 1019 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 1020 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1021 PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment()); 1022 1023 // TODO: This is only a hot fix for SCoP sequences that use the same load 1024 // instruction contained and hoisted by one of the SCoPs. 1025 if (SE.isSCEVable(Ty)) 1026 SE.forgetValue(AccInst); 1027 1028 return PreloadVal; 1029 } 1030 1031 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1032 isl_set *Domain) { 1033 1034 isl_set *AccessRange = isl_map_range(MA.getAddressFunction()); 1035 AccessRange = isl_set_gist_params(AccessRange, S.getContext()); 1036 1037 if (!materializeParameters(AccessRange, false)) { 1038 isl_set_free(AccessRange); 1039 isl_set_free(Domain); 1040 return nullptr; 1041 } 1042 1043 auto *Build = isl_ast_build_from_context(isl_set_universe(S.getParamSpace())); 1044 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1045 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1046 isl_set_free(Universe); 1047 1048 Instruction *AccInst = MA.getAccessInstruction(); 1049 Type *AccInstTy = AccInst->getType(); 1050 1051 Value *PreloadVal = nullptr; 1052 if (AlwaysExecuted) { 1053 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1054 isl_ast_build_free(Build); 1055 isl_set_free(Domain); 1056 return PreloadVal; 1057 } 1058 1059 if (!materializeParameters(Domain, false)) { 1060 isl_ast_build_free(Build); 1061 isl_set_free(AccessRange); 1062 isl_set_free(Domain); 1063 return nullptr; 1064 } 1065 1066 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1067 Domain = nullptr; 1068 1069 ExprBuilder.setTrackOverflow(true); 1070 Value *Cond = ExprBuilder.create(DomainCond); 1071 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1072 "polly.preload.cond.overflown"); 1073 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1074 ExprBuilder.setTrackOverflow(false); 1075 1076 if (!Cond->getType()->isIntegerTy(1)) 1077 Cond = Builder.CreateIsNotNull(Cond); 1078 1079 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1080 &*Builder.GetInsertPoint(), &DT, &LI); 1081 CondBB->setName("polly.preload.cond"); 1082 1083 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1084 MergeBB->setName("polly.preload.merge"); 1085 1086 Function *F = Builder.GetInsertBlock()->getParent(); 1087 LLVMContext &Context = F->getContext(); 1088 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1089 1090 DT.addNewBlock(ExecBB, CondBB); 1091 if (Loop *L = LI.getLoopFor(CondBB)) 1092 L->addBasicBlockToLoop(ExecBB, LI); 1093 1094 auto *CondBBTerminator = CondBB->getTerminator(); 1095 Builder.SetInsertPoint(CondBBTerminator); 1096 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1097 CondBBTerminator->eraseFromParent(); 1098 1099 Builder.SetInsertPoint(ExecBB); 1100 Builder.CreateBr(MergeBB); 1101 1102 Builder.SetInsertPoint(ExecBB->getTerminator()); 1103 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1104 Builder.SetInsertPoint(MergeBB->getTerminator()); 1105 auto *MergePHI = Builder.CreatePHI( 1106 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1107 PreloadVal = MergePHI; 1108 1109 if (!PreAccInst) { 1110 PreloadVal = nullptr; 1111 PreAccInst = UndefValue::get(AccInstTy); 1112 } 1113 1114 MergePHI->addIncoming(PreAccInst, ExecBB); 1115 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1116 1117 isl_ast_build_free(Build); 1118 return PreloadVal; 1119 } 1120 1121 bool IslNodeBuilder::preloadInvariantEquivClass( 1122 InvariantEquivClassTy &IAClass) { 1123 // For an equivalence class of invariant loads we pre-load the representing 1124 // element with the unified execution context. However, we have to map all 1125 // elements of the class to the one preloaded load as they are referenced 1126 // during the code generation and therefor need to be mapped. 1127 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1128 if (MAs.empty()) 1129 return true; 1130 1131 MemoryAccess *MA = MAs.front(); 1132 assert(MA->isArrayKind() && MA->isRead()); 1133 1134 // If the access function was already mapped, the preload of this equivalence 1135 // class was triggered earlier already and doesn't need to be done again. 1136 if (ValueMap.count(MA->getAccessInstruction())) 1137 return true; 1138 1139 // Check for recursion which can be caused by additional constraints, e.g., 1140 // non-finite loop constraints. In such a case we have to bail out and insert 1141 // a "false" runtime check that will cause the original code to be executed. 1142 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1143 if (!PreloadedPtrs.insert(PtrId).second) 1144 return false; 1145 1146 // The execution context of the IAClass. 1147 isl_set *&ExecutionCtx = IAClass.ExecutionContext; 1148 1149 // If the base pointer of this class is dependent on another one we have to 1150 // make sure it was preloaded already. 1151 auto *SAI = MA->getScopArrayInfo(); 1152 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1153 if (!preloadInvariantEquivClass(*BaseIAClass)) 1154 return false; 1155 1156 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1157 // we need to refine the ExecutionCtx. 1158 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1159 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1160 } 1161 1162 // If the size of a dimension is dependent on another class, make sure it is 1163 // preloaded. 1164 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1165 const SCEV *Dim = SAI->getDimensionSize(i); 1166 SetVector<Value *> Values; 1167 findValues(Dim, SE, Values); 1168 for (auto *Val : Values) { 1169 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1170 if (!preloadInvariantEquivClass(*BaseIAClass)) 1171 return false; 1172 1173 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1174 // and we need to refine the ExecutionCtx. 1175 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1176 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1177 } 1178 } 1179 } 1180 1181 Instruction *AccInst = MA->getAccessInstruction(); 1182 Type *AccInstTy = AccInst->getType(); 1183 1184 Value *PreloadVal = preloadInvariantLoad(*MA, isl_set_copy(ExecutionCtx)); 1185 if (!PreloadVal) 1186 return false; 1187 1188 for (const MemoryAccess *MA : MAs) { 1189 Instruction *MAAccInst = MA->getAccessInstruction(); 1190 assert(PreloadVal->getType() == MAAccInst->getType()); 1191 ValueMap[MAAccInst] = PreloadVal; 1192 } 1193 1194 if (SE.isSCEVable(AccInstTy)) { 1195 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)); 1196 if (ParamId) 1197 IDToValue[ParamId] = PreloadVal; 1198 isl_id_free(ParamId); 1199 } 1200 1201 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1202 auto *Alloca = new AllocaInst(AccInstTy, AccInst->getName() + ".preload.s2a"); 1203 Alloca->insertBefore(&*EntryBB->getFirstInsertionPt()); 1204 Builder.CreateStore(PreloadVal, Alloca); 1205 1206 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1207 Value *BasePtr = DerivedSAI->getBasePtr(); 1208 1209 for (const MemoryAccess *MA : MAs) { 1210 // As the derived SAI information is quite coarse, any load from the 1211 // current SAI could be the base pointer of the derived SAI, however we 1212 // should only change the base pointer of the derived SAI if we actually 1213 // preloaded it. 1214 if (BasePtr == MA->getBaseAddr()) { 1215 assert(BasePtr->getType() == PreloadVal->getType()); 1216 DerivedSAI->setBasePtr(PreloadVal); 1217 } 1218 1219 // For scalar derived SAIs we remap the alloca used for the derived value. 1220 if (BasePtr == MA->getAccessInstruction()) 1221 ScalarMap[DerivedSAI] = Alloca; 1222 } 1223 } 1224 1225 for (const MemoryAccess *MA : MAs) { 1226 1227 Instruction *MAAccInst = MA->getAccessInstruction(); 1228 // Use the escape system to get the correct value to users outside the SCoP. 1229 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1230 for (auto *U : MAAccInst->users()) 1231 if (Instruction *UI = dyn_cast<Instruction>(U)) 1232 if (!S.contains(UI)) 1233 EscapeUsers.push_back(UI); 1234 1235 if (EscapeUsers.empty()) 1236 continue; 1237 1238 EscapeMap[MA->getAccessInstruction()] = 1239 std::make_pair(Alloca, std::move(EscapeUsers)); 1240 } 1241 1242 return true; 1243 } 1244 1245 void IslNodeBuilder::allocateNewArrays() { 1246 for (auto &SAI : S.arrays()) { 1247 if (SAI->getBasePtr()) 1248 continue; 1249 1250 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1251 "The size of the outermost dimension is used to declare newly " 1252 "created arrays that require memory allocation."); 1253 1254 Type *NewArrayType = nullptr; 1255 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1256 auto *DimSize = SAI->getDimensionSize(i); 1257 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1258 ->getAPInt() 1259 .getLimitedValue(); 1260 1261 if (!NewArrayType) 1262 NewArrayType = SAI->getElementType(); 1263 1264 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1265 } 1266 1267 auto InstIt = 1268 Builder.GetInsertBlock()->getParent()->getEntryBlock().getTerminator(); 1269 auto *CreatedArray = new AllocaInst(NewArrayType, SAI->getName(), &*InstIt); 1270 CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize); 1271 SAI->setBasePtr(CreatedArray); 1272 } 1273 } 1274 1275 bool IslNodeBuilder::preloadInvariantLoads() { 1276 1277 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1278 if (InvariantEquivClasses.empty()) 1279 return true; 1280 1281 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1282 &*Builder.GetInsertPoint(), &DT, &LI); 1283 PreLoadBB->setName("polly.preload.begin"); 1284 Builder.SetInsertPoint(&PreLoadBB->front()); 1285 1286 for (auto &IAClass : InvariantEquivClasses) 1287 if (!preloadInvariantEquivClass(IAClass)) 1288 return false; 1289 1290 return true; 1291 } 1292 1293 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1294 1295 // Materialize values for the parameters of the SCoP. 1296 materializeParameters(Context, /* all */ true); 1297 1298 // Generate values for the current loop iteration for all surrounding loops. 1299 // 1300 // We may also reference loops outside of the scop which do not contain the 1301 // scop itself, but as the number of such scops may be arbitrarily large we do 1302 // not generate code for them here, but only at the point of code generation 1303 // where these values are needed. 1304 Loop *L = LI.getLoopFor(S.getEntry()); 1305 1306 while (L != nullptr && S.contains(L)) 1307 L = L->getParentLoop(); 1308 1309 while (L != nullptr) { 1310 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1311 SE.getUnknown(Builder.getInt64(1)), 1312 L, SCEV::FlagAnyWrap); 1313 Value *V = generateSCEV(OuterLIV); 1314 OutsideLoopIterations[L] = SE.getUnknown(V); 1315 L = L->getParentLoop(); 1316 } 1317 1318 isl_set_free(Context); 1319 } 1320 1321 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1322 /// We pass the insert location of our Builder, as Polly ensures during IR 1323 /// generation that there is always a valid CFG into which instructions are 1324 /// inserted. As a result, the insertpoint is known to be always followed by a 1325 /// terminator instruction. This means the insert point may be specified by a 1326 /// terminator instruction, but it can never point to an ->end() iterator 1327 /// which does not have a corresponding instruction. Hence, dereferencing 1328 /// the insertpoint to obtain an instruction is known to be save. 1329 /// 1330 /// We also do not need to update the Builder here, as new instructions are 1331 /// always inserted _before_ the given InsertLocation. As a result, the 1332 /// insert location remains valid. 1333 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1334 "Insert location points after last valid instruction"); 1335 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1336 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1337 InsertLocation, &ValueMap, 1338 StartBlock->getSinglePredecessor()); 1339 } 1340 1341 /// The AST expression we generate to perform the run-time check assumes 1342 /// computations on integer types of infinite size. As we only use 64-bit 1343 /// arithmetic we check for overflows, in case of which we set the result 1344 /// of this run-time check to false to be cosnservatively correct, 1345 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1346 auto ExprBuilder = getExprBuilder(); 1347 ExprBuilder.setTrackOverflow(true); 1348 Value *RTC = ExprBuilder.create(Condition); 1349 if (!RTC->getType()->isIntegerTy(1)) 1350 RTC = Builder.CreateIsNotNull(RTC); 1351 Value *OverflowHappened = 1352 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1353 1354 if (PollyGenerateRTCPrint) { 1355 auto *F = Builder.GetInsertBlock()->getParent(); 1356 RuntimeDebugBuilder::createCPUPrinter( 1357 Builder, 1358 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + 1359 " __RTC: ", 1360 RTC, " Overflow: ", OverflowHappened, "\n"); 1361 } 1362 1363 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1364 ExprBuilder.setTrackOverflow(false); 1365 1366 if (!isa<ConstantInt>(RTC)) 1367 VersionedScops++; 1368 1369 return RTC; 1370 } 1371