1 //===------ IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the IslNodeBuilder, a class to translate an isl AST into 11 // a LLVM-IR AST. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslAst.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/LoopGenerators.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/CodeGen/Utils.h" 23 #include "polly/Config/config.h" 24 #include "polly/DependenceInfo.h" 25 #include "polly/LinkAllPasses.h" 26 #include "polly/Options.h" 27 #include "polly/ScopInfo.h" 28 #include "polly/Support/GICHelper.h" 29 #include "polly/Support/SCEVValidator.h" 30 #include "polly/Support/ScopHelper.h" 31 #include "llvm/ADT/PostOrderIterator.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "isl/aff.h" 41 #include "isl/ast.h" 42 #include "isl/ast_build.h" 43 #include "isl/list.h" 44 #include "isl/map.h" 45 #include "isl/set.h" 46 #include "isl/union_map.h" 47 #include "isl/union_set.h" 48 49 using namespace polly; 50 using namespace llvm; 51 52 #define DEBUG_TYPE "polly-codegen" 53 54 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 55 56 static cl::opt<bool> PollyGenerateRTCPrint( 57 "polly-codegen-emit-rtc-print", 58 cl::desc("Emit code that prints the runtime check result dynamically."), 59 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 60 61 // If this option is set we always use the isl AST generator to regenerate 62 // memory accesses. Without this option set we regenerate expressions using the 63 // original SCEV expressions and only generate new expressions in case the 64 // access relation has been changed and consequently must be regenerated. 65 static cl::opt<bool> PollyGenerateExpressions( 66 "polly-codegen-generate-expressions", 67 cl::desc("Generate AST expressions for unmodified and modified accesses"), 68 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 69 70 static cl::opt<int> PollyTargetFirstLevelCacheLineSize( 71 "polly-target-first-level-cache-line-size", 72 cl::desc("The size of the first level cache line size specified in bytes."), 73 cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); 74 75 __isl_give isl_ast_expr * 76 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For, 77 ICmpInst::Predicate &Predicate) { 78 isl_id *UBID, *IteratorID; 79 isl_ast_expr *Cond, *Iterator, *UB, *Arg0; 80 isl_ast_op_type Type; 81 82 Cond = isl_ast_node_for_get_cond(For); 83 Iterator = isl_ast_node_for_get_iterator(For); 84 isl_ast_expr_get_type(Cond); 85 assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op && 86 "conditional expression is not an atomic upper bound"); 87 88 Type = isl_ast_expr_get_op_type(Cond); 89 90 switch (Type) { 91 case isl_ast_op_le: 92 Predicate = ICmpInst::ICMP_SLE; 93 break; 94 case isl_ast_op_lt: 95 Predicate = ICmpInst::ICMP_SLT; 96 break; 97 default: 98 llvm_unreachable("Unexpected comparison type in loop condition"); 99 } 100 101 Arg0 = isl_ast_expr_get_op_arg(Cond, 0); 102 103 assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id && 104 "conditional expression is not an atomic upper bound"); 105 106 UBID = isl_ast_expr_get_id(Arg0); 107 108 assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id && 109 "Could not get the iterator"); 110 111 IteratorID = isl_ast_expr_get_id(Iterator); 112 113 assert(UBID == IteratorID && 114 "conditional expression is not an atomic upper bound"); 115 116 UB = isl_ast_expr_get_op_arg(Cond, 1); 117 118 isl_ast_expr_free(Cond); 119 isl_ast_expr_free(Iterator); 120 isl_ast_expr_free(Arg0); 121 isl_id_free(IteratorID); 122 isl_id_free(UBID); 123 124 return UB; 125 } 126 127 /// Return true if a return value of Predicate is true for the value represented 128 /// by passed isl_ast_expr_int. 129 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 130 isl_bool (*Predicate)(__isl_keep isl_val *)) { 131 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 132 isl_ast_expr_free(Expr); 133 return false; 134 } 135 auto ExprVal = isl_ast_expr_get_val(Expr); 136 isl_ast_expr_free(Expr); 137 if (Predicate(ExprVal) != true) { 138 isl_val_free(ExprVal); 139 return false; 140 } 141 isl_val_free(ExprVal); 142 return true; 143 } 144 145 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) { 146 assert(isl_ast_node_get_type(For) == isl_ast_node_for); 147 auto Body = isl_ast_node_for_get_body(For); 148 149 // First, check if we can actually handle this code. 150 switch (isl_ast_node_get_type(Body)) { 151 case isl_ast_node_user: 152 break; 153 case isl_ast_node_block: { 154 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 155 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) { 156 isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i); 157 int Type = isl_ast_node_get_type(Node); 158 isl_ast_node_free(Node); 159 if (Type != isl_ast_node_user) { 160 isl_ast_node_list_free(List); 161 isl_ast_node_free(Body); 162 return -1; 163 } 164 } 165 isl_ast_node_list_free(List); 166 break; 167 } 168 default: 169 isl_ast_node_free(Body); 170 return -1; 171 } 172 isl_ast_node_free(Body); 173 174 auto Init = isl_ast_node_for_get_init(For); 175 if (!checkIslAstExprInt(Init, isl_val_is_zero)) 176 return -1; 177 auto Inc = isl_ast_node_for_get_inc(For); 178 if (!checkIslAstExprInt(Inc, isl_val_is_one)) 179 return -1; 180 CmpInst::Predicate Predicate; 181 auto UB = getUpperBound(For, Predicate); 182 if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) { 183 isl_ast_expr_free(UB); 184 return -1; 185 } 186 auto UpVal = isl_ast_expr_get_val(UB); 187 isl_ast_expr_free(UB); 188 int NumberIterations = isl_val_get_num_si(UpVal); 189 isl_val_free(UpVal); 190 if (NumberIterations < 0) 191 return -1; 192 if (Predicate == CmpInst::ICMP_SLT) 193 return NumberIterations; 194 else 195 return NumberIterations + 1; 196 } 197 198 /// Extract the values and SCEVs needed to generate code for a block. 199 static int findReferencesInBlock(struct SubtreeReferences &References, 200 const ScopStmt *Stmt, const BasicBlock *BB) { 201 for (const Instruction &Inst : *BB) 202 for (Value *SrcVal : Inst.operands()) { 203 auto *Scope = References.LI.getLoopFor(BB); 204 if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) { 205 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 206 continue; 207 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 208 References.Values.insert(NewVal); 209 } 210 return 0; 211 } 212 213 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 214 bool CreateScalarRefs) { 215 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 216 217 if (Stmt->isBlockStmt()) 218 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 219 else { 220 assert(Stmt->isRegionStmt() && 221 "Stmt was neither block nor region statement"); 222 for (const BasicBlock *BB : Stmt->getRegion()->blocks()) 223 findReferencesInBlock(References, Stmt, BB); 224 } 225 226 for (auto &Access : *Stmt) { 227 if (Access->isArrayKind()) { 228 auto *BasePtr = Access->getScopArrayInfo()->getBasePtr(); 229 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 230 if (Stmt->getParent()->contains(OpInst)) 231 continue; 232 233 References.Values.insert(BasePtr); 234 continue; 235 } 236 237 if (CreateScalarRefs) 238 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 239 } 240 241 return isl_stat_ok; 242 } 243 244 /// Extract the out-of-scop values and SCEVs referenced from a set describing 245 /// a ScopStmt. 246 /// 247 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 248 /// statement and the base pointers of the memory accesses. For scalar 249 /// statements we force the generation of alloca memory locations and list 250 /// these locations in the set of out-of-scop values as well. 251 /// 252 /// @param Set A set which references the ScopStmt we are interested in. 253 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 254 /// structure. 255 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set, 256 void *UserPtr) { 257 isl_id *Id = isl_set_get_tuple_id(Set); 258 auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id)); 259 isl_id_free(Id); 260 isl_set_free(Set); 261 return addReferencesFromStmt(Stmt, UserPtr); 262 } 263 264 /// Extract the out-of-scop values and SCEVs referenced from a union set 265 /// referencing multiple ScopStmts. 266 /// 267 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 268 /// statement and the base pointers of the memory accesses. For scalar 269 /// statements we force the generation of alloca memory locations and list 270 /// these locations in the set of out-of-scop values as well. 271 /// 272 /// @param USet A union set referencing the ScopStmts we are interested 273 /// in. 274 /// @param References The SubtreeReferences data structure through which 275 /// results are returned and further information is 276 /// provided. 277 static void 278 addReferencesFromStmtUnionSet(isl_union_set *USet, 279 struct SubtreeReferences &References) { 280 isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References); 281 isl_union_set_free(USet); 282 } 283 284 __isl_give isl_union_map * 285 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 286 return IslAstInfo::getSchedule(For); 287 } 288 289 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 290 SetVector<Value *> &Values, 291 SetVector<const Loop *> &Loops) { 292 293 SetVector<const SCEV *> SCEVs; 294 struct SubtreeReferences References = { 295 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator()}; 296 297 for (const auto &I : IDToValue) 298 Values.insert(I.second); 299 300 for (const auto &I : OutsideLoopIterations) 301 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 302 303 isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For)); 304 addReferencesFromStmtUnionSet(Schedule, References); 305 306 for (const SCEV *Expr : SCEVs) { 307 findValues(Expr, SE, Values); 308 findLoops(Expr, Loops); 309 } 310 311 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 312 313 /// Remove loops that contain the scop or that are part of the scop, as they 314 /// are considered local. This leaves only loops that are before the scop, but 315 /// do not contain the scop itself. 316 Loops.remove_if([this](const Loop *L) { 317 return S.contains(L) || L->contains(S.getEntry()); 318 }); 319 320 // Contains Values that may need to be replaced with other values 321 // due to replacements from the ValueMap. We should make sure 322 // that we return correctly remapped values. 323 // NOTE: this code path is tested by: 324 // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 325 // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 326 SetVector<Value *> ReplacedValues; 327 for (Value *V : Values) { 328 auto It = ValueMap.find(V); 329 if (It == ValueMap.end()) 330 ReplacedValues.insert(V); 331 else 332 ReplacedValues.insert(It->second); 333 } 334 Values = ReplacedValues; 335 } 336 337 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 338 SmallPtrSet<Value *, 5> Inserted; 339 340 for (const auto &I : IDToValue) { 341 IDToValue[I.first] = NewValues[I.second]; 342 Inserted.insert(I.second); 343 } 344 345 for (const auto &I : NewValues) { 346 if (Inserted.count(I.first)) 347 continue; 348 349 ValueMap[I.first] = I.second; 350 } 351 } 352 353 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 354 std::vector<Value *> &IVS, 355 __isl_take isl_id *IteratorID, 356 __isl_take isl_union_map *Schedule) { 357 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 358 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 359 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 360 isl_ast_expr_free(StmtExpr); 361 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 362 std::vector<LoopToScevMapT> VLTS(IVS.size()); 363 364 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain()); 365 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 366 isl_map *S = isl_map_from_union_map(Schedule); 367 368 auto *NewAccesses = createNewAccesses(Stmt, User); 369 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 370 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 371 isl_id_to_ast_expr_free(NewAccesses); 372 isl_map_free(S); 373 isl_id_free(Id); 374 isl_ast_node_free(User); 375 } 376 377 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 378 auto *Id = isl_ast_node_mark_get_id(Node); 379 auto Child = isl_ast_node_mark_get_node(Node); 380 isl_ast_node_free(Node); 381 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 382 // it will be optimized away and we should skip it. 383 if (!strcmp(isl_id_get_name(Id), "SIMD") && 384 isl_ast_node_get_type(Child) == isl_ast_node_for) { 385 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 386 int VectorWidth = getNumberOfIterations(Child); 387 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 388 createForVector(Child, VectorWidth); 389 else 390 createForSequential(Child, true); 391 isl_id_free(Id); 392 return; 393 } 394 if (!strcmp(isl_id_get_name(Id), "Inter iteration alias-free")) { 395 auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id)); 396 Annotator.addInterIterationAliasFreeBasePtr(BasePtr); 397 } 398 create(Child); 399 isl_id_free(Id); 400 } 401 402 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 403 int VectorWidth) { 404 isl_ast_node *Body = isl_ast_node_for_get_body(For); 405 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 406 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 407 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 408 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 409 410 Value *ValueLB = ExprBuilder.create(Init); 411 Value *ValueInc = ExprBuilder.create(Inc); 412 413 Type *MaxType = ExprBuilder.getType(Iterator); 414 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 415 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 416 417 if (MaxType != ValueLB->getType()) 418 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 419 if (MaxType != ValueInc->getType()) 420 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 421 422 std::vector<Value *> IVS(VectorWidth); 423 IVS[0] = ValueLB; 424 425 for (int i = 1; i < VectorWidth; i++) 426 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 427 428 isl_union_map *Schedule = getScheduleForAstNode(For); 429 assert(Schedule && "For statement annotation does not contain its schedule"); 430 431 IDToValue[IteratorID] = ValueLB; 432 433 switch (isl_ast_node_get_type(Body)) { 434 case isl_ast_node_user: 435 createUserVector(Body, IVS, isl_id_copy(IteratorID), 436 isl_union_map_copy(Schedule)); 437 break; 438 case isl_ast_node_block: { 439 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 440 441 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 442 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 443 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 444 445 isl_ast_node_free(Body); 446 isl_ast_node_list_free(List); 447 break; 448 } 449 default: 450 isl_ast_node_dump(Body); 451 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 452 } 453 454 IDToValue.erase(IDToValue.find(IteratorID)); 455 isl_id_free(IteratorID); 456 isl_union_map_free(Schedule); 457 458 isl_ast_node_free(For); 459 isl_ast_expr_free(Iterator); 460 } 461 462 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For, 463 bool KnownParallel) { 464 isl_ast_node *Body; 465 isl_ast_expr *Init, *Inc, *Iterator, *UB; 466 isl_id *IteratorID; 467 Value *ValueLB, *ValueUB, *ValueInc; 468 Type *MaxType; 469 BasicBlock *ExitBlock; 470 Value *IV; 471 CmpInst::Predicate Predicate; 472 bool Parallel; 473 474 Parallel = KnownParallel || (IslAstInfo::isParallel(For) && 475 !IslAstInfo::isReductionParallel(For)); 476 477 Body = isl_ast_node_for_get_body(For); 478 479 // isl_ast_node_for_is_degenerate(For) 480 // 481 // TODO: For degenerated loops we could generate a plain assignment. 482 // However, for now we just reuse the logic for normal loops, which will 483 // create a loop with a single iteration. 484 485 Init = isl_ast_node_for_get_init(For); 486 Inc = isl_ast_node_for_get_inc(For); 487 Iterator = isl_ast_node_for_get_iterator(For); 488 IteratorID = isl_ast_expr_get_id(Iterator); 489 UB = getUpperBound(For, Predicate); 490 491 ValueLB = ExprBuilder.create(Init); 492 ValueUB = ExprBuilder.create(UB); 493 ValueInc = ExprBuilder.create(Inc); 494 495 MaxType = ExprBuilder.getType(Iterator); 496 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 497 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 498 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 499 500 if (MaxType != ValueLB->getType()) 501 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 502 if (MaxType != ValueUB->getType()) 503 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 504 if (MaxType != ValueInc->getType()) 505 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 506 507 // If we can show that LB <Predicate> UB holds at least once, we can 508 // omit the GuardBB in front of the loop. 509 bool UseGuardBB = 510 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 511 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock, 512 Predicate, &Annotator, Parallel, UseGuardBB); 513 IDToValue[IteratorID] = IV; 514 515 create(Body); 516 517 Annotator.popLoop(Parallel); 518 519 IDToValue.erase(IDToValue.find(IteratorID)); 520 521 Builder.SetInsertPoint(&ExitBlock->front()); 522 523 isl_ast_node_free(For); 524 isl_ast_expr_free(Iterator); 525 isl_id_free(IteratorID); 526 } 527 528 /// Remove the BBs contained in a (sub)function from the dominator tree. 529 /// 530 /// This function removes the basic blocks that are part of a subfunction from 531 /// the dominator tree. Specifically, when generating code it may happen that at 532 /// some point the code generation continues in a new sub-function (e.g., when 533 /// generating OpenMP code). The basic blocks that are created in this 534 /// sub-function are then still part of the dominator tree of the original 535 /// function, such that the dominator tree reaches over function boundaries. 536 /// This is not only incorrect, but also causes crashes. This function now 537 /// removes from the dominator tree all basic blocks that are dominated (and 538 /// consequently reachable) from the entry block of this (sub)function. 539 /// 540 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 541 /// the function/region it runs on. Hence, the pure need for this function shows 542 /// that we do not comply to this rule. At the moment, this does not cause any 543 /// issues, but we should be aware that such issues may appear. Unfortunately 544 /// the current LLVM pass infrastructure does not allow to make Polly a module 545 /// or call-graph pass to solve this issue, as such a pass would not have access 546 /// to the per-function analyses passes needed by Polly. A future pass manager 547 /// infrastructure is supposed to enable such kind of access possibly allowing 548 /// us to create a cleaner solution here. 549 /// 550 /// FIXME: Instead of adding the dominance information and then dropping it 551 /// later on, we should try to just not add it in the first place. This requires 552 /// some careful testing to make sure this does not break in interaction with 553 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 554 /// which may try to update it. 555 /// 556 /// @param F The function which contains the BBs to removed. 557 /// @param DT The dominator tree from which to remove the BBs. 558 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 559 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 560 std::vector<BasicBlock *> Nodes; 561 562 // We can only remove an element from the dominator tree, if all its children 563 // have been removed. To ensure this we obtain the list of nodes to remove 564 // using a post-order tree traversal. 565 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 566 Nodes.push_back(I->getBlock()); 567 568 for (BasicBlock *BB : Nodes) 569 DT.eraseNode(BB); 570 } 571 572 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 573 isl_ast_node *Body; 574 isl_ast_expr *Init, *Inc, *Iterator, *UB; 575 isl_id *IteratorID; 576 Value *ValueLB, *ValueUB, *ValueInc; 577 Type *MaxType; 578 Value *IV; 579 CmpInst::Predicate Predicate; 580 581 // The preamble of parallel code interacts different than normal code with 582 // e.g., scalar initialization. Therefore, we ensure the parallel code is 583 // separated from the last basic block. 584 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 585 &*Builder.GetInsertPoint(), &DT, &LI); 586 ParBB->setName("polly.parallel.for"); 587 Builder.SetInsertPoint(&ParBB->front()); 588 589 Body = isl_ast_node_for_get_body(For); 590 Init = isl_ast_node_for_get_init(For); 591 Inc = isl_ast_node_for_get_inc(For); 592 Iterator = isl_ast_node_for_get_iterator(For); 593 IteratorID = isl_ast_expr_get_id(Iterator); 594 UB = getUpperBound(For, Predicate); 595 596 ValueLB = ExprBuilder.create(Init); 597 ValueUB = ExprBuilder.create(UB); 598 ValueInc = ExprBuilder.create(Inc); 599 600 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 601 // expression, we need to adjust the loop bound by one. 602 if (Predicate == CmpInst::ICMP_SLT) 603 ValueUB = Builder.CreateAdd( 604 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 605 606 MaxType = ExprBuilder.getType(Iterator); 607 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 608 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 609 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 610 611 if (MaxType != ValueLB->getType()) 612 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 613 if (MaxType != ValueUB->getType()) 614 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 615 if (MaxType != ValueInc->getType()) 616 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 617 618 BasicBlock::iterator LoopBody; 619 620 SetVector<Value *> SubtreeValues; 621 SetVector<const Loop *> Loops; 622 623 getReferencesInSubtree(For, SubtreeValues, Loops); 624 625 // Create for all loops we depend on values that contain the current loop 626 // iteration. These values are necessary to generate code for SCEVs that 627 // depend on such loops. As a result we need to pass them to the subfunction. 628 for (const Loop *L : Loops) { 629 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 630 SE.getUnknown(Builder.getInt64(1)), 631 L, SCEV::FlagAnyWrap); 632 Value *V = generateSCEV(OuterLIV); 633 OutsideLoopIterations[L] = SE.getUnknown(V); 634 SubtreeValues.insert(V); 635 } 636 637 ValueMapT NewValues; 638 ParallelLoopGenerator ParallelLoopGen(Builder, LI, DT, DL); 639 640 IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc, 641 SubtreeValues, NewValues, &LoopBody); 642 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 643 Builder.SetInsertPoint(&*LoopBody); 644 645 // Remember the parallel subfunction 646 ParallelSubfunctions.push_back(LoopBody->getFunction()); 647 648 // Save the current values. 649 auto ValueMapCopy = ValueMap; 650 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 651 652 updateValues(NewValues); 653 IDToValue[IteratorID] = IV; 654 655 ValueMapT NewValuesReverse; 656 657 for (auto P : NewValues) 658 NewValuesReverse[P.second] = P.first; 659 660 Annotator.addAlternativeAliasBases(NewValuesReverse); 661 662 create(Body); 663 664 Annotator.resetAlternativeAliasBases(); 665 // Restore the original values. 666 ValueMap = ValueMapCopy; 667 IDToValue = IDToValueCopy; 668 669 Builder.SetInsertPoint(&*AfterLoop); 670 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 671 672 for (const Loop *L : Loops) 673 OutsideLoopIterations.erase(L); 674 675 isl_ast_node_free(For); 676 isl_ast_expr_free(Iterator); 677 isl_id_free(IteratorID); 678 } 679 680 /// Return whether any of @p Node's statements contain partial accesses. 681 /// 682 /// Partial accesses are not supported by Polly's vector code generator. 683 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) { 684 return isl_ast_node_foreach_descendant_top_down( 685 Node, 686 [](isl_ast_node *Node, void *User) -> isl_bool { 687 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 688 return isl_bool_true; 689 690 isl::ast_expr Expr = give(isl_ast_node_user_get_expr(Node)); 691 isl::ast_expr StmtExpr = 692 give(isl_ast_expr_get_op_arg(Expr.keep(), 0)); 693 isl::id Id = give(isl_ast_expr_get_id(StmtExpr.keep())); 694 695 ScopStmt *Stmt = 696 static_cast<ScopStmt *>(isl_id_get_user(Id.keep())); 697 isl::set StmtDom = give(Stmt->getDomain()); 698 for (auto *MA : *Stmt) { 699 if (MA->isLatestPartialAccess()) 700 return isl_bool_error; 701 } 702 return isl_bool_true; 703 }, 704 nullptr) == isl_stat_error; 705 } 706 707 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 708 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 709 710 if (Vector && IslAstInfo::isInnermostParallel(For) && 711 !IslAstInfo::isReductionParallel(For)) { 712 int VectorWidth = getNumberOfIterations(For); 713 if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) { 714 createForVector(For, VectorWidth); 715 return; 716 } 717 } 718 719 if (IslAstInfo::isExecutedInParallel(For)) { 720 createForParallel(For); 721 return; 722 } 723 createForSequential(For, false); 724 } 725 726 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 727 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 728 729 Function *F = Builder.GetInsertBlock()->getParent(); 730 LLVMContext &Context = F->getContext(); 731 732 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 733 &*Builder.GetInsertPoint(), &DT, &LI); 734 CondBB->setName("polly.cond"); 735 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 736 MergeBB->setName("polly.merge"); 737 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 738 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 739 740 DT.addNewBlock(ThenBB, CondBB); 741 DT.addNewBlock(ElseBB, CondBB); 742 DT.changeImmediateDominator(MergeBB, CondBB); 743 744 Loop *L = LI.getLoopFor(CondBB); 745 if (L) { 746 L->addBasicBlockToLoop(ThenBB, LI); 747 L->addBasicBlockToLoop(ElseBB, LI); 748 } 749 750 CondBB->getTerminator()->eraseFromParent(); 751 752 Builder.SetInsertPoint(CondBB); 753 Value *Predicate = ExprBuilder.create(Cond); 754 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 755 Builder.SetInsertPoint(ThenBB); 756 Builder.CreateBr(MergeBB); 757 Builder.SetInsertPoint(ElseBB); 758 Builder.CreateBr(MergeBB); 759 Builder.SetInsertPoint(&ThenBB->front()); 760 761 create(isl_ast_node_if_get_then(If)); 762 763 Builder.SetInsertPoint(&ElseBB->front()); 764 765 if (isl_ast_node_if_has_else(If)) 766 create(isl_ast_node_if_get_else(If)); 767 768 Builder.SetInsertPoint(&MergeBB->front()); 769 770 isl_ast_node_free(If); 771 } 772 773 __isl_give isl_id_to_ast_expr * 774 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 775 __isl_keep isl_ast_node *Node) { 776 isl_id_to_ast_expr *NewAccesses = 777 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0); 778 779 auto *Build = IslAstInfo::getBuild(Node); 780 assert(Build && "Could not obtain isl_ast_build from user node"); 781 Stmt->setAstBuild(Build); 782 783 for (auto *MA : *Stmt) { 784 if (!MA->hasNewAccessRelation()) { 785 if (PollyGenerateExpressions) { 786 if (!MA->isAffine()) 787 continue; 788 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 789 continue; 790 791 auto *BasePtr = 792 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 793 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 794 continue; 795 } else { 796 continue; 797 } 798 } 799 assert(MA->isAffine() && 800 "Only affine memory accesses can be code generated"); 801 802 auto Schedule = isl_ast_build_get_schedule(Build); 803 804 #ifndef NDEBUG 805 if (MA->isRead()) { 806 auto Dom = Stmt->getDomain(); 807 auto SchedDom = isl_set_from_union_set( 808 isl_union_map_domain(isl_union_map_copy(Schedule))); 809 auto AccDom = isl_map_domain(MA->getAccessRelation().release()); 810 Dom = isl_set_intersect_params(Dom, Stmt->getParent()->getContext()); 811 SchedDom = 812 isl_set_intersect_params(SchedDom, Stmt->getParent()->getContext()); 813 assert(isl_set_is_subset(SchedDom, AccDom) && 814 "Access relation not defined on full schedule domain"); 815 assert(isl_set_is_subset(Dom, AccDom) && 816 "Access relation not defined on full domain"); 817 isl_set_free(AccDom); 818 isl_set_free(SchedDom); 819 isl_set_free(Dom); 820 } 821 #endif 822 823 auto PWAccRel = 824 MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release(); 825 826 // isl cannot generate an index expression for access-nothing accesses. 827 isl::set AccDomain = 828 give(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel))); 829 if (isl_set_is_empty(AccDomain.keep()) == isl_bool_true) { 830 isl_pw_multi_aff_free(PWAccRel); 831 continue; 832 } 833 834 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 835 NewAccesses = 836 isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr); 837 } 838 839 return NewAccesses; 840 } 841 842 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 843 ScopStmt *Stmt, LoopToScevMapT <S) { 844 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 845 "Expression of type 'op' expected"); 846 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 847 "Operation of type 'call' expected"); 848 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 849 isl_ast_expr *SubExpr; 850 Value *V; 851 852 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 853 V = ExprBuilder.create(SubExpr); 854 ScalarEvolution *SE = Stmt->getParent()->getSE(); 855 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 856 } 857 858 isl_ast_expr_free(Expr); 859 } 860 861 void IslNodeBuilder::createSubstitutionsVector( 862 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 863 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 864 __isl_take isl_id *IteratorID) { 865 int i = 0; 866 867 Value *OldValue = IDToValue[IteratorID]; 868 for (Value *IV : IVS) { 869 IDToValue[IteratorID] = IV; 870 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 871 i++; 872 } 873 874 IDToValue[IteratorID] = OldValue; 875 isl_id_free(IteratorID); 876 isl_ast_expr_free(Expr); 877 } 878 879 void IslNodeBuilder::generateCopyStmt( 880 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 881 assert(Stmt->size() == 2); 882 auto ReadAccess = Stmt->begin(); 883 auto WriteAccess = ReadAccess++; 884 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 885 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 886 "Accesses use the same data type"); 887 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 888 auto *AccessExpr = 889 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release()); 890 auto *LoadValue = ExprBuilder.create(AccessExpr); 891 AccessExpr = 892 isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release()); 893 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr); 894 Builder.CreateStore(LoadValue, StoreAddr); 895 } 896 897 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 898 LoopToScevMapT LTS; 899 isl_id *Id; 900 ScopStmt *Stmt; 901 902 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 903 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 904 Id = isl_ast_expr_get_id(StmtExpr); 905 isl_ast_expr_free(StmtExpr); 906 907 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 908 909 Stmt = (ScopStmt *)isl_id_get_user(Id); 910 auto *NewAccesses = createNewAccesses(Stmt, User); 911 if (Stmt->isCopyStmt()) { 912 generateCopyStmt(Stmt, NewAccesses); 913 isl_ast_expr_free(Expr); 914 } else { 915 createSubstitutions(Expr, Stmt, LTS); 916 917 if (Stmt->isBlockStmt()) 918 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 919 else 920 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 921 } 922 923 isl_id_to_ast_expr_free(NewAccesses); 924 isl_ast_node_free(User); 925 isl_id_free(Id); 926 } 927 928 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 929 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 930 931 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 932 create(isl_ast_node_list_get_ast_node(List, i)); 933 934 isl_ast_node_free(Block); 935 isl_ast_node_list_free(List); 936 } 937 938 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 939 switch (isl_ast_node_get_type(Node)) { 940 case isl_ast_node_error: 941 llvm_unreachable("code generation error"); 942 case isl_ast_node_mark: 943 createMark(Node); 944 return; 945 case isl_ast_node_for: 946 createFor(Node); 947 return; 948 case isl_ast_node_if: 949 createIf(Node); 950 return; 951 case isl_ast_node_user: 952 createUser(Node); 953 return; 954 case isl_ast_node_block: 955 createBlock(Node); 956 return; 957 } 958 959 llvm_unreachable("Unknown isl_ast_node type"); 960 } 961 962 bool IslNodeBuilder::materializeValue(isl_id *Id) { 963 // If the Id is already mapped, skip it. 964 if (!IDToValue.count(Id)) { 965 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 966 Value *V = nullptr; 967 968 // Parameters could refer to invariant loads that need to be 969 // preloaded before we can generate code for the parameter. Thus, 970 // check if any value referred to in ParamSCEV is an invariant load 971 // and if so make sure its equivalence class is preloaded. 972 SetVector<Value *> Values; 973 findValues(ParamSCEV, SE, Values); 974 for (auto *Val : Values) { 975 976 // Check if the value is an instruction in a dead block within the SCoP 977 // and if so do not code generate it. 978 if (auto *Inst = dyn_cast<Instruction>(Val)) { 979 if (S.contains(Inst)) { 980 bool IsDead = true; 981 982 // Check for "undef" loads first, then if there is a statement for 983 // the parent of Inst and lastly if the parent of Inst has an empty 984 // domain. In the first and last case the instruction is dead but if 985 // there is a statement or the domain is not empty Inst is not dead. 986 auto MemInst = MemAccInst::dyn_cast(Inst); 987 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 988 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == 989 SE.getPointerBase(SE.getSCEV(Address))) { 990 } else if (S.getStmtFor(Inst)) { 991 IsDead = false; 992 } else { 993 auto *Domain = S.getDomainConditions(Inst->getParent()); 994 IsDead = isl_set_is_empty(Domain); 995 isl_set_free(Domain); 996 } 997 998 if (IsDead) { 999 V = UndefValue::get(ParamSCEV->getType()); 1000 break; 1001 } 1002 } 1003 } 1004 1005 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 1006 1007 // Check if this invariant access class is empty, hence if we never 1008 // actually added a loads instruction to it. In that case it has no 1009 // (meaningful) users and we should not try to code generate it. 1010 if (IAClass->InvariantAccesses.empty()) 1011 V = UndefValue::get(ParamSCEV->getType()); 1012 1013 if (!preloadInvariantEquivClass(*IAClass)) { 1014 isl_id_free(Id); 1015 return false; 1016 } 1017 } 1018 } 1019 1020 V = V ? V : generateSCEV(ParamSCEV); 1021 IDToValue[Id] = V; 1022 } 1023 1024 isl_id_free(Id); 1025 return true; 1026 } 1027 1028 bool IslNodeBuilder::materializeParameters(isl_set *Set) { 1029 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 1030 if (!isl_set_involves_dims(Set, isl_dim_param, i, 1)) 1031 continue; 1032 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 1033 if (!materializeValue(Id)) 1034 return false; 1035 } 1036 return true; 1037 } 1038 1039 bool IslNodeBuilder::materializeParameters() { 1040 for (const SCEV *Param : S.parameters()) { 1041 isl_id *Id = S.getIdForParam(Param); 1042 if (!materializeValue(Id)) 1043 return false; 1044 } 1045 return true; 1046 } 1047 1048 /// Generate the computation of the size of the outermost dimension from the 1049 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size` 1050 /// contains the size of the array. 1051 /// 1052 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] } 1053 /// %desc.dimensionty = type { i64, i64, i64 } 1054 /// @g_arr = global %arrty zeroinitializer, align 32 1055 /// ... 1056 /// %0 = load i64, i64* getelementptr inbounds 1057 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2) 1058 /// %1 = load i64, i64* getelementptr inbounds 1059 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1) 1060 /// %2 = sub nsw i64 %0, %1 1061 /// %size = add nsw i64 %2, 1 1062 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor, 1063 PollyIRBuilder &Builder, 1064 std::string ArrayName) { 1065 assert(GlobalDescriptor && "invalid global descriptor given"); 1066 1067 Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1068 Builder.getInt64(0), Builder.getInt32(2)}; 1069 Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx, 1070 ArrayName + "_end_ptr"); 1071 Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end"); 1072 1073 Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1074 Builder.getInt64(0), Builder.getInt32(1)}; 1075 Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx, 1076 ArrayName + "_begin_ptr"); 1077 Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin"); 1078 1079 Value *size = 1080 Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta"); 1081 Type *endType = dyn_cast<IntegerType>(end->getType()); 1082 assert(endType && "expected type of end to be integral"); 1083 1084 size = Builder.CreateNSWAdd(end, 1085 ConstantInt::get(endType, 1, /* signed = */ true), 1086 ArrayName + "_size"); 1087 1088 return size; 1089 } 1090 1091 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() { 1092 for (const ScopStmt &Stmt : S) { 1093 for (const MemoryAccess *Access : Stmt) { 1094 if (!Access->isArrayKind()) 1095 continue; 1096 1097 const ScopArrayInfo *Array = Access->getScopArrayInfo(); 1098 if (!Array) 1099 continue; 1100 1101 if (Array->getNumberOfDimensions() == 0) 1102 continue; 1103 1104 Value *FAD = Access->getFortranArrayDescriptor(); 1105 if (!FAD) 1106 continue; 1107 1108 isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release(); 1109 assert(ParametricPwAff && "parametric pw_aff corresponding " 1110 "to outermost dimension does not " 1111 "exist"); 1112 1113 isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0); 1114 isl_pw_aff_free(ParametricPwAff); 1115 1116 assert(Id && "pw_aff is not parametric"); 1117 1118 if (IDToValue.count(Id)) { 1119 isl_id_free(Id); 1120 continue; 1121 } 1122 1123 Value *FinalValue = 1124 buildFADOutermostDimensionLoad(FAD, Builder, Array->getName()); 1125 assert(FinalValue && "unable to build Fortran array " 1126 "descriptor load of outermost dimension"); 1127 IDToValue[Id] = FinalValue; 1128 isl_id_free(Id); 1129 } 1130 } 1131 return true; 1132 } 1133 1134 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 1135 isl_ast_build *Build, 1136 Instruction *AccInst) { 1137 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1138 isl_ast_expr *Access = 1139 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1140 auto *Address = isl_ast_expr_address_of(Access); 1141 auto *AddressValue = ExprBuilder.create(Address); 1142 Value *PreloadVal; 1143 1144 // Correct the type as the SAI might have a different type than the user 1145 // expects, especially if the base pointer is a struct. 1146 Type *Ty = AccInst->getType(); 1147 1148 auto *Ptr = AddressValue; 1149 auto Name = Ptr->getName(); 1150 auto AS = Ptr->getType()->getPointerAddressSpace(); 1151 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast"); 1152 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 1153 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1154 PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment()); 1155 1156 // TODO: This is only a hot fix for SCoP sequences that use the same load 1157 // instruction contained and hoisted by one of the SCoPs. 1158 if (SE.isSCEVable(Ty)) 1159 SE.forgetValue(AccInst); 1160 1161 return PreloadVal; 1162 } 1163 1164 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1165 isl_set *Domain) { 1166 1167 isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release()); 1168 AccessRange = isl_set_gist_params(AccessRange, S.getContext()); 1169 1170 if (!materializeParameters(AccessRange)) { 1171 isl_set_free(AccessRange); 1172 isl_set_free(Domain); 1173 return nullptr; 1174 } 1175 1176 auto *Build = isl_ast_build_from_context(isl_set_universe(S.getParamSpace())); 1177 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1178 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1179 isl_set_free(Universe); 1180 1181 Instruction *AccInst = MA.getAccessInstruction(); 1182 Type *AccInstTy = AccInst->getType(); 1183 1184 Value *PreloadVal = nullptr; 1185 if (AlwaysExecuted) { 1186 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1187 isl_ast_build_free(Build); 1188 isl_set_free(Domain); 1189 return PreloadVal; 1190 } 1191 1192 if (!materializeParameters(Domain)) { 1193 isl_ast_build_free(Build); 1194 isl_set_free(AccessRange); 1195 isl_set_free(Domain); 1196 return nullptr; 1197 } 1198 1199 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1200 Domain = nullptr; 1201 1202 ExprBuilder.setTrackOverflow(true); 1203 Value *Cond = ExprBuilder.create(DomainCond); 1204 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1205 "polly.preload.cond.overflown"); 1206 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1207 ExprBuilder.setTrackOverflow(false); 1208 1209 if (!Cond->getType()->isIntegerTy(1)) 1210 Cond = Builder.CreateIsNotNull(Cond); 1211 1212 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1213 &*Builder.GetInsertPoint(), &DT, &LI); 1214 CondBB->setName("polly.preload.cond"); 1215 1216 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1217 MergeBB->setName("polly.preload.merge"); 1218 1219 Function *F = Builder.GetInsertBlock()->getParent(); 1220 LLVMContext &Context = F->getContext(); 1221 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1222 1223 DT.addNewBlock(ExecBB, CondBB); 1224 if (Loop *L = LI.getLoopFor(CondBB)) 1225 L->addBasicBlockToLoop(ExecBB, LI); 1226 1227 auto *CondBBTerminator = CondBB->getTerminator(); 1228 Builder.SetInsertPoint(CondBBTerminator); 1229 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1230 CondBBTerminator->eraseFromParent(); 1231 1232 Builder.SetInsertPoint(ExecBB); 1233 Builder.CreateBr(MergeBB); 1234 1235 Builder.SetInsertPoint(ExecBB->getTerminator()); 1236 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1237 Builder.SetInsertPoint(MergeBB->getTerminator()); 1238 auto *MergePHI = Builder.CreatePHI( 1239 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1240 PreloadVal = MergePHI; 1241 1242 if (!PreAccInst) { 1243 PreloadVal = nullptr; 1244 PreAccInst = UndefValue::get(AccInstTy); 1245 } 1246 1247 MergePHI->addIncoming(PreAccInst, ExecBB); 1248 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1249 1250 isl_ast_build_free(Build); 1251 return PreloadVal; 1252 } 1253 1254 bool IslNodeBuilder::preloadInvariantEquivClass( 1255 InvariantEquivClassTy &IAClass) { 1256 // For an equivalence class of invariant loads we pre-load the representing 1257 // element with the unified execution context. However, we have to map all 1258 // elements of the class to the one preloaded load as they are referenced 1259 // during the code generation and therefor need to be mapped. 1260 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1261 if (MAs.empty()) 1262 return true; 1263 1264 MemoryAccess *MA = MAs.front(); 1265 assert(MA->isArrayKind() && MA->isRead()); 1266 1267 // If the access function was already mapped, the preload of this equivalence 1268 // class was triggered earlier already and doesn't need to be done again. 1269 if (ValueMap.count(MA->getAccessInstruction())) 1270 return true; 1271 1272 // Check for recursion which can be caused by additional constraints, e.g., 1273 // non-finite loop constraints. In such a case we have to bail out and insert 1274 // a "false" runtime check that will cause the original code to be executed. 1275 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1276 if (!PreloadedPtrs.insert(PtrId).second) 1277 return false; 1278 1279 // The execution context of the IAClass. 1280 isl_set *&ExecutionCtx = IAClass.ExecutionContext; 1281 1282 // If the base pointer of this class is dependent on another one we have to 1283 // make sure it was preloaded already. 1284 auto *SAI = MA->getScopArrayInfo(); 1285 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1286 if (!preloadInvariantEquivClass(*BaseIAClass)) 1287 return false; 1288 1289 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1290 // we need to refine the ExecutionCtx. 1291 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1292 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1293 } 1294 1295 // If the size of a dimension is dependent on another class, make sure it is 1296 // preloaded. 1297 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1298 const SCEV *Dim = SAI->getDimensionSize(i); 1299 SetVector<Value *> Values; 1300 findValues(Dim, SE, Values); 1301 for (auto *Val : Values) { 1302 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1303 if (!preloadInvariantEquivClass(*BaseIAClass)) 1304 return false; 1305 1306 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1307 // and we need to refine the ExecutionCtx. 1308 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1309 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1310 } 1311 } 1312 } 1313 1314 Instruction *AccInst = MA->getAccessInstruction(); 1315 Type *AccInstTy = AccInst->getType(); 1316 1317 Value *PreloadVal = preloadInvariantLoad(*MA, isl_set_copy(ExecutionCtx)); 1318 if (!PreloadVal) 1319 return false; 1320 1321 for (const MemoryAccess *MA : MAs) { 1322 Instruction *MAAccInst = MA->getAccessInstruction(); 1323 assert(PreloadVal->getType() == MAAccInst->getType()); 1324 ValueMap[MAAccInst] = PreloadVal; 1325 } 1326 1327 if (SE.isSCEVable(AccInstTy)) { 1328 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)); 1329 if (ParamId) 1330 IDToValue[ParamId] = PreloadVal; 1331 isl_id_free(ParamId); 1332 } 1333 1334 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1335 auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), 1336 AccInst->getName() + ".preload.s2a"); 1337 Alloca->insertBefore(&*EntryBB->getFirstInsertionPt()); 1338 Builder.CreateStore(PreloadVal, Alloca); 1339 ValueMapT PreloadedPointer; 1340 PreloadedPointer[PreloadVal] = AccInst; 1341 Annotator.addAlternativeAliasBases(PreloadedPointer); 1342 1343 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1344 Value *BasePtr = DerivedSAI->getBasePtr(); 1345 1346 for (const MemoryAccess *MA : MAs) { 1347 // As the derived SAI information is quite coarse, any load from the 1348 // current SAI could be the base pointer of the derived SAI, however we 1349 // should only change the base pointer of the derived SAI if we actually 1350 // preloaded it. 1351 if (BasePtr == MA->getOriginalBaseAddr()) { 1352 assert(BasePtr->getType() == PreloadVal->getType()); 1353 DerivedSAI->setBasePtr(PreloadVal); 1354 } 1355 1356 // For scalar derived SAIs we remap the alloca used for the derived value. 1357 if (BasePtr == MA->getAccessInstruction()) 1358 ScalarMap[DerivedSAI] = Alloca; 1359 } 1360 } 1361 1362 for (const MemoryAccess *MA : MAs) { 1363 1364 Instruction *MAAccInst = MA->getAccessInstruction(); 1365 // Use the escape system to get the correct value to users outside the SCoP. 1366 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1367 for (auto *U : MAAccInst->users()) 1368 if (Instruction *UI = dyn_cast<Instruction>(U)) 1369 if (!S.contains(UI)) 1370 EscapeUsers.push_back(UI); 1371 1372 if (EscapeUsers.empty()) 1373 continue; 1374 1375 EscapeMap[MA->getAccessInstruction()] = 1376 std::make_pair(Alloca, std::move(EscapeUsers)); 1377 } 1378 1379 return true; 1380 } 1381 1382 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { 1383 for (auto &SAI : S.arrays()) { 1384 if (SAI->getBasePtr()) 1385 continue; 1386 1387 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1388 "The size of the outermost dimension is used to declare newly " 1389 "created arrays that require memory allocation."); 1390 1391 Type *NewArrayType = nullptr; 1392 1393 // Get the size of the array = size(dim_1)*...*size(dim_n) 1394 uint64_t ArraySizeInt = 1; 1395 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1396 auto *DimSize = SAI->getDimensionSize(i); 1397 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1398 ->getAPInt() 1399 .getLimitedValue(); 1400 1401 if (!NewArrayType) 1402 NewArrayType = SAI->getElementType(); 1403 1404 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1405 ArraySizeInt *= UnsignedDimSize; 1406 } 1407 1408 if (SAI->isOnHeap()) { 1409 LLVMContext &Ctx = NewArrayType->getContext(); 1410 1411 // Get the IntPtrTy from the Datalayout 1412 auto IntPtrTy = DL.getIntPtrType(Ctx); 1413 1414 // Get the size of the element type in bits 1415 unsigned Size = SAI->getElemSizeInBytes(); 1416 1417 // Insert the malloc call at polly.start 1418 auto InstIt = std::get<0>(StartExitBlocks)->getTerminator(); 1419 auto *CreatedArray = CallInst::CreateMalloc( 1420 &*InstIt, IntPtrTy, SAI->getElementType(), 1421 ConstantInt::get(Type::getInt64Ty(Ctx), Size), 1422 ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr, 1423 SAI->getName()); 1424 1425 SAI->setBasePtr(CreatedArray); 1426 1427 // Insert the free call at polly.exiting 1428 CallInst::CreateFree(CreatedArray, 1429 std::get<1>(StartExitBlocks)->getTerminator()); 1430 1431 } else { 1432 auto InstIt = Builder.GetInsertBlock() 1433 ->getParent() 1434 ->getEntryBlock() 1435 .getTerminator(); 1436 1437 auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), 1438 SAI->getName(), &*InstIt); 1439 CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize); 1440 SAI->setBasePtr(CreatedArray); 1441 } 1442 } 1443 } 1444 1445 bool IslNodeBuilder::preloadInvariantLoads() { 1446 1447 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1448 if (InvariantEquivClasses.empty()) 1449 return true; 1450 1451 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1452 &*Builder.GetInsertPoint(), &DT, &LI); 1453 PreLoadBB->setName("polly.preload.begin"); 1454 Builder.SetInsertPoint(&PreLoadBB->front()); 1455 1456 for (auto &IAClass : InvariantEquivClasses) 1457 if (!preloadInvariantEquivClass(IAClass)) 1458 return false; 1459 1460 return true; 1461 } 1462 1463 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1464 // Materialize values for the parameters of the SCoP. 1465 materializeParameters(); 1466 1467 // materialize the outermost dimension parameters for a Fortran array. 1468 // NOTE: materializeParameters() does not work since it looks through 1469 // the SCEVs. We don't have a corresponding SCEV for the array size 1470 // parameter 1471 materializeFortranArrayOutermostDimension(); 1472 1473 // Generate values for the current loop iteration for all surrounding loops. 1474 // 1475 // We may also reference loops outside of the scop which do not contain the 1476 // scop itself, but as the number of such scops may be arbitrarily large we do 1477 // not generate code for them here, but only at the point of code generation 1478 // where these values are needed. 1479 Loop *L = LI.getLoopFor(S.getEntry()); 1480 1481 while (L != nullptr && S.contains(L)) 1482 L = L->getParentLoop(); 1483 1484 while (L != nullptr) { 1485 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1486 SE.getUnknown(Builder.getInt64(1)), 1487 L, SCEV::FlagAnyWrap); 1488 Value *V = generateSCEV(OuterLIV); 1489 OutsideLoopIterations[L] = SE.getUnknown(V); 1490 L = L->getParentLoop(); 1491 } 1492 1493 isl_set_free(Context); 1494 } 1495 1496 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1497 /// We pass the insert location of our Builder, as Polly ensures during IR 1498 /// generation that there is always a valid CFG into which instructions are 1499 /// inserted. As a result, the insertpoint is known to be always followed by a 1500 /// terminator instruction. This means the insert point may be specified by a 1501 /// terminator instruction, but it can never point to an ->end() iterator 1502 /// which does not have a corresponding instruction. Hence, dereferencing 1503 /// the insertpoint to obtain an instruction is known to be save. 1504 /// 1505 /// We also do not need to update the Builder here, as new instructions are 1506 /// always inserted _before_ the given InsertLocation. As a result, the 1507 /// insert location remains valid. 1508 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1509 "Insert location points after last valid instruction"); 1510 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1511 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1512 InsertLocation, &ValueMap, 1513 StartBlock->getSinglePredecessor()); 1514 } 1515 1516 /// The AST expression we generate to perform the run-time check assumes 1517 /// computations on integer types of infinite size. As we only use 64-bit 1518 /// arithmetic we check for overflows, in case of which we set the result 1519 /// of this run-time check to false to be conservatively correct, 1520 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1521 auto ExprBuilder = getExprBuilder(); 1522 ExprBuilder.setTrackOverflow(true); 1523 Value *RTC = ExprBuilder.create(Condition); 1524 if (!RTC->getType()->isIntegerTy(1)) 1525 RTC = Builder.CreateIsNotNull(RTC); 1526 Value *OverflowHappened = 1527 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1528 1529 if (PollyGenerateRTCPrint) { 1530 auto *F = Builder.GetInsertBlock()->getParent(); 1531 RuntimeDebugBuilder::createCPUPrinter( 1532 Builder, 1533 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + 1534 " __RTC: ", 1535 RTC, " Overflow: ", OverflowHappened, "\n"); 1536 } 1537 1538 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1539 ExprBuilder.setTrackOverflow(false); 1540 1541 if (!isa<ConstantInt>(RTC)) 1542 VersionedScops++; 1543 1544 return RTC; 1545 } 1546