1 //===------ IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the IslNodeBuilder, a class to translate an isl AST into 11 // a LLVM-IR AST. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslAst.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/LoopGenerators.h" 21 #include "polly/CodeGen/RuntimeDebugBuilder.h" 22 #include "polly/CodeGen/Utils.h" 23 #include "polly/Config/config.h" 24 #include "polly/DependenceInfo.h" 25 #include "polly/LinkAllPasses.h" 26 #include "polly/Options.h" 27 #include "polly/ScopInfo.h" 28 #include "polly/Support/GICHelper.h" 29 #include "polly/Support/SCEVValidator.h" 30 #include "polly/Support/ScopHelper.h" 31 #include "llvm/ADT/PostOrderIterator.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "isl/aff.h" 41 #include "isl/ast.h" 42 #include "isl/ast_build.h" 43 #include "isl/list.h" 44 #include "isl/map.h" 45 #include "isl/set.h" 46 #include "isl/union_map.h" 47 #include "isl/union_set.h" 48 49 using namespace polly; 50 using namespace llvm; 51 52 #define DEBUG_TYPE "polly-codegen" 53 54 STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); 55 56 // The maximal number of dimensions we allow during invariant load construction. 57 // More complex access ranges will result in very high compile time and are also 58 // unlikely to result in good code. This value is very high and should only 59 // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006). 60 static int const MaxDimensionsInAccessRange = 9; 61 62 static cl::opt<bool> PollyGenerateRTCPrint( 63 "polly-codegen-emit-rtc-print", 64 cl::desc("Emit code that prints the runtime check result dynamically."), 65 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 66 67 // If this option is set we always use the isl AST generator to regenerate 68 // memory accesses. Without this option set we regenerate expressions using the 69 // original SCEV expressions and only generate new expressions in case the 70 // access relation has been changed and consequently must be regenerated. 71 static cl::opt<bool> PollyGenerateExpressions( 72 "polly-codegen-generate-expressions", 73 cl::desc("Generate AST expressions for unmodified and modified accesses"), 74 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 75 76 static cl::opt<int> PollyTargetFirstLevelCacheLineSize( 77 "polly-target-first-level-cache-line-size", 78 cl::desc("The size of the first level cache line size specified in bytes."), 79 cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); 80 81 __isl_give isl_ast_expr * 82 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For, 83 ICmpInst::Predicate &Predicate) { 84 isl_id *UBID, *IteratorID; 85 isl_ast_expr *Cond, *Iterator, *UB, *Arg0; 86 isl_ast_op_type Type; 87 88 Cond = isl_ast_node_for_get_cond(For); 89 Iterator = isl_ast_node_for_get_iterator(For); 90 isl_ast_expr_get_type(Cond); 91 assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op && 92 "conditional expression is not an atomic upper bound"); 93 94 Type = isl_ast_expr_get_op_type(Cond); 95 96 switch (Type) { 97 case isl_ast_op_le: 98 Predicate = ICmpInst::ICMP_SLE; 99 break; 100 case isl_ast_op_lt: 101 Predicate = ICmpInst::ICMP_SLT; 102 break; 103 default: 104 llvm_unreachable("Unexpected comparison type in loop condition"); 105 } 106 107 Arg0 = isl_ast_expr_get_op_arg(Cond, 0); 108 109 assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id && 110 "conditional expression is not an atomic upper bound"); 111 112 UBID = isl_ast_expr_get_id(Arg0); 113 114 assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id && 115 "Could not get the iterator"); 116 117 IteratorID = isl_ast_expr_get_id(Iterator); 118 119 assert(UBID == IteratorID && 120 "conditional expression is not an atomic upper bound"); 121 122 UB = isl_ast_expr_get_op_arg(Cond, 1); 123 124 isl_ast_expr_free(Cond); 125 isl_ast_expr_free(Iterator); 126 isl_ast_expr_free(Arg0); 127 isl_id_free(IteratorID); 128 isl_id_free(UBID); 129 130 return UB; 131 } 132 133 /// Return true if a return value of Predicate is true for the value represented 134 /// by passed isl_ast_expr_int. 135 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 136 isl_bool (*Predicate)(__isl_keep isl_val *)) { 137 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 138 isl_ast_expr_free(Expr); 139 return false; 140 } 141 auto ExprVal = isl_ast_expr_get_val(Expr); 142 isl_ast_expr_free(Expr); 143 if (Predicate(ExprVal) != true) { 144 isl_val_free(ExprVal); 145 return false; 146 } 147 isl_val_free(ExprVal); 148 return true; 149 } 150 151 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) { 152 assert(isl_ast_node_get_type(For) == isl_ast_node_for); 153 auto Body = isl_ast_node_for_get_body(For); 154 155 // First, check if we can actually handle this code. 156 switch (isl_ast_node_get_type(Body)) { 157 case isl_ast_node_user: 158 break; 159 case isl_ast_node_block: { 160 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 161 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) { 162 isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i); 163 int Type = isl_ast_node_get_type(Node); 164 isl_ast_node_free(Node); 165 if (Type != isl_ast_node_user) { 166 isl_ast_node_list_free(List); 167 isl_ast_node_free(Body); 168 return -1; 169 } 170 } 171 isl_ast_node_list_free(List); 172 break; 173 } 174 default: 175 isl_ast_node_free(Body); 176 return -1; 177 } 178 isl_ast_node_free(Body); 179 180 auto Init = isl_ast_node_for_get_init(For); 181 if (!checkIslAstExprInt(Init, isl_val_is_zero)) 182 return -1; 183 auto Inc = isl_ast_node_for_get_inc(For); 184 if (!checkIslAstExprInt(Inc, isl_val_is_one)) 185 return -1; 186 CmpInst::Predicate Predicate; 187 auto UB = getUpperBound(For, Predicate); 188 if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) { 189 isl_ast_expr_free(UB); 190 return -1; 191 } 192 auto UpVal = isl_ast_expr_get_val(UB); 193 isl_ast_expr_free(UB); 194 int NumberIterations = isl_val_get_num_si(UpVal); 195 isl_val_free(UpVal); 196 if (NumberIterations < 0) 197 return -1; 198 if (Predicate == CmpInst::ICMP_SLT) 199 return NumberIterations; 200 else 201 return NumberIterations + 1; 202 } 203 204 /// Extract the values and SCEVs needed to generate code for a block. 205 static int findReferencesInBlock(struct SubtreeReferences &References, 206 const ScopStmt *Stmt, const BasicBlock *BB) { 207 for (const Instruction &Inst : *BB) 208 for (Value *SrcVal : Inst.operands()) { 209 auto *Scope = References.LI.getLoopFor(BB); 210 if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) { 211 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 212 continue; 213 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 214 References.Values.insert(NewVal); 215 } 216 return 0; 217 } 218 219 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, 220 bool CreateScalarRefs) { 221 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 222 223 if (Stmt->isBlockStmt()) 224 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 225 else { 226 assert(Stmt->isRegionStmt() && 227 "Stmt was neither block nor region statement"); 228 for (const BasicBlock *BB : Stmt->getRegion()->blocks()) 229 findReferencesInBlock(References, Stmt, BB); 230 } 231 232 for (auto &Access : *Stmt) { 233 if (Access->isArrayKind()) { 234 auto *BasePtr = Access->getScopArrayInfo()->getBasePtr(); 235 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 236 if (Stmt->getParent()->contains(OpInst)) 237 continue; 238 239 References.Values.insert(BasePtr); 240 continue; 241 } 242 243 if (CreateScalarRefs) 244 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 245 } 246 247 return isl_stat_ok; 248 } 249 250 /// Extract the out-of-scop values and SCEVs referenced from a set describing 251 /// a ScopStmt. 252 /// 253 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 254 /// statement and the base pointers of the memory accesses. For scalar 255 /// statements we force the generation of alloca memory locations and list 256 /// these locations in the set of out-of-scop values as well. 257 /// 258 /// @param Set A set which references the ScopStmt we are interested in. 259 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 260 /// structure. 261 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set, 262 void *UserPtr) { 263 isl_id *Id = isl_set_get_tuple_id(Set); 264 auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id)); 265 isl_id_free(Id); 266 isl_set_free(Set); 267 return addReferencesFromStmt(Stmt, UserPtr); 268 } 269 270 /// Extract the out-of-scop values and SCEVs referenced from a union set 271 /// referencing multiple ScopStmts. 272 /// 273 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 274 /// statement and the base pointers of the memory accesses. For scalar 275 /// statements we force the generation of alloca memory locations and list 276 /// these locations in the set of out-of-scop values as well. 277 /// 278 /// @param USet A union set referencing the ScopStmts we are interested 279 /// in. 280 /// @param References The SubtreeReferences data structure through which 281 /// results are returned and further information is 282 /// provided. 283 static void 284 addReferencesFromStmtUnionSet(isl_union_set *USet, 285 struct SubtreeReferences &References) { 286 isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References); 287 isl_union_set_free(USet); 288 } 289 290 __isl_give isl_union_map * 291 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 292 return IslAstInfo::getSchedule(For); 293 } 294 295 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 296 SetVector<Value *> &Values, 297 SetVector<const Loop *> &Loops) { 298 299 SetVector<const SCEV *> SCEVs; 300 struct SubtreeReferences References = { 301 LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator()}; 302 303 for (const auto &I : IDToValue) 304 Values.insert(I.second); 305 306 for (const auto &I : OutsideLoopIterations) 307 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 308 309 isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For)); 310 addReferencesFromStmtUnionSet(Schedule, References); 311 312 for (const SCEV *Expr : SCEVs) { 313 findValues(Expr, SE, Values); 314 findLoops(Expr, Loops); 315 } 316 317 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 318 319 /// Remove loops that contain the scop or that are part of the scop, as they 320 /// are considered local. This leaves only loops that are before the scop, but 321 /// do not contain the scop itself. 322 Loops.remove_if([this](const Loop *L) { 323 return S.contains(L) || L->contains(S.getEntry()); 324 }); 325 } 326 327 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 328 SmallPtrSet<Value *, 5> Inserted; 329 330 for (const auto &I : IDToValue) { 331 IDToValue[I.first] = NewValues[I.second]; 332 Inserted.insert(I.second); 333 } 334 335 for (const auto &I : NewValues) { 336 if (Inserted.count(I.first)) 337 continue; 338 339 ValueMap[I.first] = I.second; 340 } 341 } 342 343 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 344 std::vector<Value *> &IVS, 345 __isl_take isl_id *IteratorID, 346 __isl_take isl_union_map *Schedule) { 347 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 348 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 349 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 350 isl_ast_expr_free(StmtExpr); 351 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 352 std::vector<LoopToScevMapT> VLTS(IVS.size()); 353 354 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain()); 355 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 356 isl_map *S = isl_map_from_union_map(Schedule); 357 358 auto *NewAccesses = createNewAccesses(Stmt, User); 359 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 360 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 361 isl_id_to_ast_expr_free(NewAccesses); 362 isl_map_free(S); 363 isl_id_free(Id); 364 isl_ast_node_free(User); 365 } 366 367 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 368 auto *Id = isl_ast_node_mark_get_id(Node); 369 auto Child = isl_ast_node_mark_get_node(Node); 370 isl_ast_node_free(Node); 371 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 372 // it will be optimized away and we should skip it. 373 if (!strcmp(isl_id_get_name(Id), "SIMD") && 374 isl_ast_node_get_type(Child) == isl_ast_node_for) { 375 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 376 int VectorWidth = getNumberOfIterations(Child); 377 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 378 createForVector(Child, VectorWidth); 379 else 380 createForSequential(Child, true); 381 isl_id_free(Id); 382 return; 383 } 384 if (!strcmp(isl_id_get_name(Id), "Inter iteration alias-free")) { 385 auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id)); 386 Annotator.addInterIterationAliasFreeBasePtr(BasePtr); 387 } 388 create(Child); 389 isl_id_free(Id); 390 } 391 392 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 393 int VectorWidth) { 394 isl_ast_node *Body = isl_ast_node_for_get_body(For); 395 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 396 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 397 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 398 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 399 400 Value *ValueLB = ExprBuilder.create(Init); 401 Value *ValueInc = ExprBuilder.create(Inc); 402 403 Type *MaxType = ExprBuilder.getType(Iterator); 404 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 405 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 406 407 if (MaxType != ValueLB->getType()) 408 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 409 if (MaxType != ValueInc->getType()) 410 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 411 412 std::vector<Value *> IVS(VectorWidth); 413 IVS[0] = ValueLB; 414 415 for (int i = 1; i < VectorWidth; i++) 416 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 417 418 isl_union_map *Schedule = getScheduleForAstNode(For); 419 assert(Schedule && "For statement annotation does not contain its schedule"); 420 421 IDToValue[IteratorID] = ValueLB; 422 423 switch (isl_ast_node_get_type(Body)) { 424 case isl_ast_node_user: 425 createUserVector(Body, IVS, isl_id_copy(IteratorID), 426 isl_union_map_copy(Schedule)); 427 break; 428 case isl_ast_node_block: { 429 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 430 431 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 432 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 433 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 434 435 isl_ast_node_free(Body); 436 isl_ast_node_list_free(List); 437 break; 438 } 439 default: 440 isl_ast_node_dump(Body); 441 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 442 } 443 444 IDToValue.erase(IDToValue.find(IteratorID)); 445 isl_id_free(IteratorID); 446 isl_union_map_free(Schedule); 447 448 isl_ast_node_free(For); 449 isl_ast_expr_free(Iterator); 450 } 451 452 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For, 453 bool KnownParallel) { 454 isl_ast_node *Body; 455 isl_ast_expr *Init, *Inc, *Iterator, *UB; 456 isl_id *IteratorID; 457 Value *ValueLB, *ValueUB, *ValueInc; 458 Type *MaxType; 459 BasicBlock *ExitBlock; 460 Value *IV; 461 CmpInst::Predicate Predicate; 462 bool Parallel; 463 464 Parallel = KnownParallel || (IslAstInfo::isParallel(For) && 465 !IslAstInfo::isReductionParallel(For)); 466 467 Body = isl_ast_node_for_get_body(For); 468 469 // isl_ast_node_for_is_degenerate(For) 470 // 471 // TODO: For degenerated loops we could generate a plain assignment. 472 // However, for now we just reuse the logic for normal loops, which will 473 // create a loop with a single iteration. 474 475 Init = isl_ast_node_for_get_init(For); 476 Inc = isl_ast_node_for_get_inc(For); 477 Iterator = isl_ast_node_for_get_iterator(For); 478 IteratorID = isl_ast_expr_get_id(Iterator); 479 UB = getUpperBound(For, Predicate); 480 481 ValueLB = ExprBuilder.create(Init); 482 ValueUB = ExprBuilder.create(UB); 483 ValueInc = ExprBuilder.create(Inc); 484 485 MaxType = ExprBuilder.getType(Iterator); 486 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 487 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 488 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 489 490 if (MaxType != ValueLB->getType()) 491 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 492 if (MaxType != ValueUB->getType()) 493 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 494 if (MaxType != ValueInc->getType()) 495 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 496 497 // If we can show that LB <Predicate> UB holds at least once, we can 498 // omit the GuardBB in front of the loop. 499 bool UseGuardBB = 500 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 501 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock, 502 Predicate, &Annotator, Parallel, UseGuardBB); 503 IDToValue[IteratorID] = IV; 504 505 create(Body); 506 507 Annotator.popLoop(Parallel); 508 509 IDToValue.erase(IDToValue.find(IteratorID)); 510 511 Builder.SetInsertPoint(&ExitBlock->front()); 512 513 isl_ast_node_free(For); 514 isl_ast_expr_free(Iterator); 515 isl_id_free(IteratorID); 516 } 517 518 /// Remove the BBs contained in a (sub)function from the dominator tree. 519 /// 520 /// This function removes the basic blocks that are part of a subfunction from 521 /// the dominator tree. Specifically, when generating code it may happen that at 522 /// some point the code generation continues in a new sub-function (e.g., when 523 /// generating OpenMP code). The basic blocks that are created in this 524 /// sub-function are then still part of the dominator tree of the original 525 /// function, such that the dominator tree reaches over function boundaries. 526 /// This is not only incorrect, but also causes crashes. This function now 527 /// removes from the dominator tree all basic blocks that are dominated (and 528 /// consequently reachable) from the entry block of this (sub)function. 529 /// 530 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 531 /// the function/region it runs on. Hence, the pure need for this function shows 532 /// that we do not comply to this rule. At the moment, this does not cause any 533 /// issues, but we should be aware that such issues may appear. Unfortunately 534 /// the current LLVM pass infrastructure does not allow to make Polly a module 535 /// or call-graph pass to solve this issue, as such a pass would not have access 536 /// to the per-function analyses passes needed by Polly. A future pass manager 537 /// infrastructure is supposed to enable such kind of access possibly allowing 538 /// us to create a cleaner solution here. 539 /// 540 /// FIXME: Instead of adding the dominance information and then dropping it 541 /// later on, we should try to just not add it in the first place. This requires 542 /// some careful testing to make sure this does not break in interaction with 543 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 544 /// which may try to update it. 545 /// 546 /// @param F The function which contains the BBs to removed. 547 /// @param DT The dominator tree from which to remove the BBs. 548 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 549 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 550 std::vector<BasicBlock *> Nodes; 551 552 // We can only remove an element from the dominator tree, if all its children 553 // have been removed. To ensure this we obtain the list of nodes to remove 554 // using a post-order tree traversal. 555 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 556 Nodes.push_back(I->getBlock()); 557 558 for (BasicBlock *BB : Nodes) 559 DT.eraseNode(BB); 560 } 561 562 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 563 isl_ast_node *Body; 564 isl_ast_expr *Init, *Inc, *Iterator, *UB; 565 isl_id *IteratorID; 566 Value *ValueLB, *ValueUB, *ValueInc; 567 Type *MaxType; 568 Value *IV; 569 CmpInst::Predicate Predicate; 570 571 // The preamble of parallel code interacts different than normal code with 572 // e.g., scalar initialization. Therefore, we ensure the parallel code is 573 // separated from the last basic block. 574 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 575 &*Builder.GetInsertPoint(), &DT, &LI); 576 ParBB->setName("polly.parallel.for"); 577 Builder.SetInsertPoint(&ParBB->front()); 578 579 Body = isl_ast_node_for_get_body(For); 580 Init = isl_ast_node_for_get_init(For); 581 Inc = isl_ast_node_for_get_inc(For); 582 Iterator = isl_ast_node_for_get_iterator(For); 583 IteratorID = isl_ast_expr_get_id(Iterator); 584 UB = getUpperBound(For, Predicate); 585 586 ValueLB = ExprBuilder.create(Init); 587 ValueUB = ExprBuilder.create(UB); 588 ValueInc = ExprBuilder.create(Inc); 589 590 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 591 // expression, we need to adjust the loop bound by one. 592 if (Predicate == CmpInst::ICMP_SLT) 593 ValueUB = Builder.CreateAdd( 594 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 595 596 MaxType = ExprBuilder.getType(Iterator); 597 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 598 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 599 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 600 601 if (MaxType != ValueLB->getType()) 602 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 603 if (MaxType != ValueUB->getType()) 604 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 605 if (MaxType != ValueInc->getType()) 606 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 607 608 BasicBlock::iterator LoopBody; 609 610 SetVector<Value *> SubtreeValues; 611 SetVector<const Loop *> Loops; 612 613 getReferencesInSubtree(For, SubtreeValues, Loops); 614 615 // Create for all loops we depend on values that contain the current loop 616 // iteration. These values are necessary to generate code for SCEVs that 617 // depend on such loops. As a result we need to pass them to the subfunction. 618 for (const Loop *L : Loops) { 619 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 620 SE.getUnknown(Builder.getInt64(1)), 621 L, SCEV::FlagAnyWrap); 622 Value *V = generateSCEV(OuterLIV); 623 OutsideLoopIterations[L] = SE.getUnknown(V); 624 SubtreeValues.insert(V); 625 } 626 627 ValueMapT NewValues; 628 ParallelLoopGenerator ParallelLoopGen(Builder, LI, DT, DL); 629 630 IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc, 631 SubtreeValues, NewValues, &LoopBody); 632 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 633 Builder.SetInsertPoint(&*LoopBody); 634 635 // Remember the parallel subfunction 636 ParallelSubfunctions.push_back(LoopBody->getFunction()); 637 638 // Save the current values. 639 auto ValueMapCopy = ValueMap; 640 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 641 642 updateValues(NewValues); 643 IDToValue[IteratorID] = IV; 644 645 ValueMapT NewValuesReverse; 646 647 for (auto P : NewValues) 648 NewValuesReverse[P.second] = P.first; 649 650 Annotator.addAlternativeAliasBases(NewValuesReverse); 651 652 create(Body); 653 654 Annotator.resetAlternativeAliasBases(); 655 // Restore the original values. 656 ValueMap = ValueMapCopy; 657 IDToValue = IDToValueCopy; 658 659 Builder.SetInsertPoint(&*AfterLoop); 660 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 661 662 for (const Loop *L : Loops) 663 OutsideLoopIterations.erase(L); 664 665 isl_ast_node_free(For); 666 isl_ast_expr_free(Iterator); 667 isl_id_free(IteratorID); 668 } 669 670 /// Return whether any of @p Node's statements contain partial accesses. 671 /// 672 /// Partial accesses are not supported by Polly's vector code generator. 673 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) { 674 return isl_ast_node_foreach_descendant_top_down( 675 Node, 676 [](isl_ast_node *Node, void *User) -> isl_bool { 677 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 678 return isl_bool_true; 679 680 isl::ast_expr Expr = give(isl_ast_node_user_get_expr(Node)); 681 isl::ast_expr StmtExpr = 682 give(isl_ast_expr_get_op_arg(Expr.keep(), 0)); 683 isl::id Id = give(isl_ast_expr_get_id(StmtExpr.keep())); 684 685 ScopStmt *Stmt = 686 static_cast<ScopStmt *>(isl_id_get_user(Id.keep())); 687 isl::set StmtDom = give(Stmt->getDomain()); 688 for (auto *MA : *Stmt) { 689 if (MA->isLatestPartialAccess()) 690 return isl_bool_error; 691 } 692 return isl_bool_true; 693 }, 694 nullptr) == isl_stat_error; 695 } 696 697 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 698 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 699 700 if (Vector && IslAstInfo::isInnermostParallel(For) && 701 !IslAstInfo::isReductionParallel(For)) { 702 int VectorWidth = getNumberOfIterations(For); 703 if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) { 704 createForVector(For, VectorWidth); 705 return; 706 } 707 } 708 709 if (IslAstInfo::isExecutedInParallel(For)) { 710 createForParallel(For); 711 return; 712 } 713 createForSequential(For, false); 714 } 715 716 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 717 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 718 719 Function *F = Builder.GetInsertBlock()->getParent(); 720 LLVMContext &Context = F->getContext(); 721 722 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 723 &*Builder.GetInsertPoint(), &DT, &LI); 724 CondBB->setName("polly.cond"); 725 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 726 MergeBB->setName("polly.merge"); 727 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 728 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 729 730 DT.addNewBlock(ThenBB, CondBB); 731 DT.addNewBlock(ElseBB, CondBB); 732 DT.changeImmediateDominator(MergeBB, CondBB); 733 734 Loop *L = LI.getLoopFor(CondBB); 735 if (L) { 736 L->addBasicBlockToLoop(ThenBB, LI); 737 L->addBasicBlockToLoop(ElseBB, LI); 738 } 739 740 CondBB->getTerminator()->eraseFromParent(); 741 742 Builder.SetInsertPoint(CondBB); 743 Value *Predicate = ExprBuilder.create(Cond); 744 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 745 Builder.SetInsertPoint(ThenBB); 746 Builder.CreateBr(MergeBB); 747 Builder.SetInsertPoint(ElseBB); 748 Builder.CreateBr(MergeBB); 749 Builder.SetInsertPoint(&ThenBB->front()); 750 751 create(isl_ast_node_if_get_then(If)); 752 753 Builder.SetInsertPoint(&ElseBB->front()); 754 755 if (isl_ast_node_if_has_else(If)) 756 create(isl_ast_node_if_get_else(If)); 757 758 Builder.SetInsertPoint(&MergeBB->front()); 759 760 isl_ast_node_free(If); 761 } 762 763 __isl_give isl_id_to_ast_expr * 764 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 765 __isl_keep isl_ast_node *Node) { 766 isl_id_to_ast_expr *NewAccesses = 767 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0); 768 769 auto *Build = IslAstInfo::getBuild(Node); 770 assert(Build && "Could not obtain isl_ast_build from user node"); 771 Stmt->setAstBuild(Build); 772 773 for (auto *MA : *Stmt) { 774 if (!MA->hasNewAccessRelation()) { 775 if (PollyGenerateExpressions) { 776 if (!MA->isAffine()) 777 continue; 778 if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) 779 continue; 780 781 auto *BasePtr = 782 dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr()); 783 if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) 784 continue; 785 } else { 786 continue; 787 } 788 } 789 assert(MA->isAffine() && 790 "Only affine memory accesses can be code generated"); 791 792 auto Schedule = isl_ast_build_get_schedule(Build); 793 794 #ifndef NDEBUG 795 if (MA->isRead()) { 796 auto Dom = Stmt->getDomain(); 797 auto SchedDom = isl_set_from_union_set( 798 isl_union_map_domain(isl_union_map_copy(Schedule))); 799 auto AccDom = isl_map_domain(MA->getAccessRelation()); 800 Dom = isl_set_intersect_params(Dom, Stmt->getParent()->getContext()); 801 SchedDom = 802 isl_set_intersect_params(SchedDom, Stmt->getParent()->getContext()); 803 assert(isl_set_is_subset(SchedDom, AccDom) && 804 "Access relation not defined on full schedule domain"); 805 assert(isl_set_is_subset(Dom, AccDom) && 806 "Access relation not defined on full domain"); 807 isl_set_free(AccDom); 808 isl_set_free(SchedDom); 809 isl_set_free(Dom); 810 } 811 #endif 812 813 auto PWAccRel = MA->applyScheduleToAccessRelation(Schedule); 814 815 // isl cannot generate an index expression for access-nothing accesses. 816 isl::set AccDomain = 817 give(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel))); 818 if (isl_set_is_empty(AccDomain.keep()) == isl_bool_true) { 819 isl_pw_multi_aff_free(PWAccRel); 820 continue; 821 } 822 823 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 824 NewAccesses = isl_id_to_ast_expr_set(NewAccesses, MA->getId(), AccessExpr); 825 } 826 827 return NewAccesses; 828 } 829 830 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, 831 ScopStmt *Stmt, LoopToScevMapT <S) { 832 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 833 "Expression of type 'op' expected"); 834 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 835 "Operation of type 'call' expected"); 836 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 837 isl_ast_expr *SubExpr; 838 Value *V; 839 840 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 841 V = ExprBuilder.create(SubExpr); 842 ScalarEvolution *SE = Stmt->getParent()->getSE(); 843 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 844 } 845 846 isl_ast_expr_free(Expr); 847 } 848 849 void IslNodeBuilder::createSubstitutionsVector( 850 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 851 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 852 __isl_take isl_id *IteratorID) { 853 int i = 0; 854 855 Value *OldValue = IDToValue[IteratorID]; 856 for (Value *IV : IVS) { 857 IDToValue[IteratorID] = IV; 858 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 859 i++; 860 } 861 862 IDToValue[IteratorID] = OldValue; 863 isl_id_free(IteratorID); 864 isl_ast_expr_free(Expr); 865 } 866 867 void IslNodeBuilder::generateCopyStmt( 868 ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 869 assert(Stmt->size() == 2); 870 auto ReadAccess = Stmt->begin(); 871 auto WriteAccess = ReadAccess++; 872 assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); 873 assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && 874 "Accesses use the same data type"); 875 assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); 876 auto *AccessExpr = 877 isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId()); 878 auto *LoadValue = ExprBuilder.create(AccessExpr); 879 AccessExpr = isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId()); 880 auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr); 881 Builder.CreateStore(LoadValue, StoreAddr); 882 } 883 884 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 885 LoopToScevMapT LTS; 886 isl_id *Id; 887 ScopStmt *Stmt; 888 889 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 890 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 891 Id = isl_ast_expr_get_id(StmtExpr); 892 isl_ast_expr_free(StmtExpr); 893 894 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 895 896 Stmt = (ScopStmt *)isl_id_get_user(Id); 897 auto *NewAccesses = createNewAccesses(Stmt, User); 898 if (Stmt->isCopyStmt()) { 899 generateCopyStmt(Stmt, NewAccesses); 900 isl_ast_expr_free(Expr); 901 } else { 902 createSubstitutions(Expr, Stmt, LTS); 903 904 if (Stmt->isBlockStmt()) 905 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 906 else 907 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 908 } 909 910 isl_id_to_ast_expr_free(NewAccesses); 911 isl_ast_node_free(User); 912 isl_id_free(Id); 913 } 914 915 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 916 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 917 918 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 919 create(isl_ast_node_list_get_ast_node(List, i)); 920 921 isl_ast_node_free(Block); 922 isl_ast_node_list_free(List); 923 } 924 925 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 926 switch (isl_ast_node_get_type(Node)) { 927 case isl_ast_node_error: 928 llvm_unreachable("code generation error"); 929 case isl_ast_node_mark: 930 createMark(Node); 931 return; 932 case isl_ast_node_for: 933 createFor(Node); 934 return; 935 case isl_ast_node_if: 936 createIf(Node); 937 return; 938 case isl_ast_node_user: 939 createUser(Node); 940 return; 941 case isl_ast_node_block: 942 createBlock(Node); 943 return; 944 } 945 946 llvm_unreachable("Unknown isl_ast_node type"); 947 } 948 949 bool IslNodeBuilder::materializeValue(isl_id *Id) { 950 // If the Id is already mapped, skip it. 951 if (!IDToValue.count(Id)) { 952 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 953 Value *V = nullptr; 954 955 // Parameters could refer to invariant loads that need to be 956 // preloaded before we can generate code for the parameter. Thus, 957 // check if any value referred to in ParamSCEV is an invariant load 958 // and if so make sure its equivalence class is preloaded. 959 SetVector<Value *> Values; 960 findValues(ParamSCEV, SE, Values); 961 for (auto *Val : Values) { 962 963 // Check if the value is an instruction in a dead block within the SCoP 964 // and if so do not code generate it. 965 if (auto *Inst = dyn_cast<Instruction>(Val)) { 966 if (S.contains(Inst)) { 967 bool IsDead = true; 968 969 // Check for "undef" loads first, then if there is a statement for 970 // the parent of Inst and lastly if the parent of Inst has an empty 971 // domain. In the first and last case the instruction is dead but if 972 // there is a statement or the domain is not empty Inst is not dead. 973 auto MemInst = MemAccInst::dyn_cast(Inst); 974 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 975 if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == 976 SE.getPointerBase(SE.getSCEV(Address))) { 977 } else if (S.getStmtFor(Inst)) { 978 IsDead = false; 979 } else { 980 auto *Domain = S.getDomainConditions(Inst->getParent()); 981 IsDead = isl_set_is_empty(Domain); 982 isl_set_free(Domain); 983 } 984 985 if (IsDead) { 986 V = UndefValue::get(ParamSCEV->getType()); 987 break; 988 } 989 } 990 } 991 992 if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { 993 994 // Check if this invariant access class is empty, hence if we never 995 // actually added a loads instruction to it. In that case it has no 996 // (meaningful) users and we should not try to code generate it. 997 if (IAClass->InvariantAccesses.empty()) 998 V = UndefValue::get(ParamSCEV->getType()); 999 1000 if (!preloadInvariantEquivClass(*IAClass)) { 1001 isl_id_free(Id); 1002 return false; 1003 } 1004 } 1005 } 1006 1007 V = V ? V : generateSCEV(ParamSCEV); 1008 IDToValue[Id] = V; 1009 } 1010 1011 isl_id_free(Id); 1012 return true; 1013 } 1014 1015 bool IslNodeBuilder::materializeParameters(isl_set *Set) { 1016 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 1017 if (!isl_set_involves_dims(Set, isl_dim_param, i, 1)) 1018 continue; 1019 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 1020 if (!materializeValue(Id)) 1021 return false; 1022 } 1023 return true; 1024 } 1025 1026 bool IslNodeBuilder::materializeParameters() { 1027 for (const SCEV *Param : S.parameters()) { 1028 isl_id *Id = S.getIdForParam(Param); 1029 if (!materializeValue(Id)) 1030 return false; 1031 } 1032 return true; 1033 } 1034 1035 /// Generate the computation of the size of the outermost dimension from the 1036 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size` 1037 /// contains the size of the array. 1038 /// 1039 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] } 1040 /// %desc.dimensionty = type { i64, i64, i64 } 1041 /// @g_arr = global %arrty zeroinitializer, align 32 1042 /// ... 1043 /// %0 = load i64, i64* getelementptr inbounds 1044 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2) 1045 /// %1 = load i64, i64* getelementptr inbounds 1046 /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1) 1047 /// %2 = sub nsw i64 %0, %1 1048 /// %size = add nsw i64 %2, 1 1049 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor, 1050 PollyIRBuilder &Builder, 1051 std::string ArrayName) { 1052 assert(GlobalDescriptor && "invalid global descriptor given"); 1053 1054 Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1055 Builder.getInt64(0), Builder.getInt32(2)}; 1056 Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx, 1057 ArrayName + "_end_ptr"); 1058 Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end"); 1059 1060 Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), 1061 Builder.getInt64(0), Builder.getInt32(1)}; 1062 Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx, 1063 ArrayName + "_begin_ptr"); 1064 Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin"); 1065 1066 Value *size = 1067 Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta"); 1068 Type *endType = dyn_cast<IntegerType>(end->getType()); 1069 assert(endType && "expected type of end to be integral"); 1070 1071 size = Builder.CreateNSWAdd(end, 1072 ConstantInt::get(endType, 1, /* signed = */ true), 1073 ArrayName + "_size"); 1074 1075 return size; 1076 } 1077 1078 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() { 1079 for (const ScopStmt &Stmt : S) { 1080 for (const MemoryAccess *Access : Stmt) { 1081 if (!Access->isArrayKind()) 1082 continue; 1083 1084 const ScopArrayInfo *Array = Access->getScopArrayInfo(); 1085 if (!Array) 1086 continue; 1087 1088 if (Array->getNumberOfDimensions() == 0) 1089 continue; 1090 1091 Value *FAD = Access->getFortranArrayDescriptor(); 1092 if (!FAD) 1093 continue; 1094 1095 isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0); 1096 assert(ParametricPwAff && "parametric pw_aff corresponding " 1097 "to outermost dimension does not " 1098 "exist"); 1099 1100 isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0); 1101 isl_pw_aff_free(ParametricPwAff); 1102 1103 assert(Id && "pw_aff is not parametric"); 1104 1105 if (IDToValue.count(Id)) { 1106 isl_id_free(Id); 1107 continue; 1108 } 1109 1110 Value *FinalValue = 1111 buildFADOutermostDimensionLoad(FAD, Builder, Array->getName()); 1112 assert(FinalValue && "unable to build Fortran array " 1113 "descriptor load of outermost dimension"); 1114 IDToValue[Id] = FinalValue; 1115 isl_id_free(Id); 1116 } 1117 } 1118 return true; 1119 } 1120 1121 /// Add the number of dimensions in @p BS to @p U. 1122 static isl_stat countTotalDims(__isl_take isl_basic_set *BS, void *U) { 1123 unsigned *NumTotalDim = static_cast<unsigned *>(U); 1124 *NumTotalDim += isl_basic_set_total_dim(BS); 1125 isl_basic_set_free(BS); 1126 return isl_stat_ok; 1127 } 1128 1129 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 1130 isl_ast_build *Build, 1131 Instruction *AccInst) { 1132 1133 // TODO: This check could be performed in the ScopInfo already. 1134 unsigned NumTotalDim = 0; 1135 isl_set_foreach_basic_set(AccessRange, countTotalDims, &NumTotalDim); 1136 if (NumTotalDim > MaxDimensionsInAccessRange) { 1137 isl_set_free(AccessRange); 1138 return nullptr; 1139 } 1140 1141 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 1142 isl_ast_expr *Access = 1143 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 1144 auto *Address = isl_ast_expr_address_of(Access); 1145 auto *AddressValue = ExprBuilder.create(Address); 1146 Value *PreloadVal; 1147 1148 // Correct the type as the SAI might have a different type than the user 1149 // expects, especially if the base pointer is a struct. 1150 Type *Ty = AccInst->getType(); 1151 1152 auto *Ptr = AddressValue; 1153 auto Name = Ptr->getName(); 1154 auto AS = Ptr->getType()->getPointerAddressSpace(); 1155 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast"); 1156 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 1157 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 1158 PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment()); 1159 1160 // TODO: This is only a hot fix for SCoP sequences that use the same load 1161 // instruction contained and hoisted by one of the SCoPs. 1162 if (SE.isSCEVable(Ty)) 1163 SE.forgetValue(AccInst); 1164 1165 return PreloadVal; 1166 } 1167 1168 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 1169 isl_set *Domain) { 1170 1171 isl_set *AccessRange = isl_map_range(MA.getAddressFunction()); 1172 AccessRange = isl_set_gist_params(AccessRange, S.getContext()); 1173 1174 if (!materializeParameters(AccessRange)) { 1175 isl_set_free(AccessRange); 1176 isl_set_free(Domain); 1177 return nullptr; 1178 } 1179 1180 auto *Build = isl_ast_build_from_context(isl_set_universe(S.getParamSpace())); 1181 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 1182 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 1183 isl_set_free(Universe); 1184 1185 Instruction *AccInst = MA.getAccessInstruction(); 1186 Type *AccInstTy = AccInst->getType(); 1187 1188 Value *PreloadVal = nullptr; 1189 if (AlwaysExecuted) { 1190 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 1191 isl_ast_build_free(Build); 1192 isl_set_free(Domain); 1193 return PreloadVal; 1194 } 1195 1196 if (!materializeParameters(Domain)) { 1197 isl_ast_build_free(Build); 1198 isl_set_free(AccessRange); 1199 isl_set_free(Domain); 1200 return nullptr; 1201 } 1202 1203 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 1204 Domain = nullptr; 1205 1206 ExprBuilder.setTrackOverflow(true); 1207 Value *Cond = ExprBuilder.create(DomainCond); 1208 Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), 1209 "polly.preload.cond.overflown"); 1210 Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); 1211 ExprBuilder.setTrackOverflow(false); 1212 1213 if (!Cond->getType()->isIntegerTy(1)) 1214 Cond = Builder.CreateIsNotNull(Cond); 1215 1216 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 1217 &*Builder.GetInsertPoint(), &DT, &LI); 1218 CondBB->setName("polly.preload.cond"); 1219 1220 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1221 MergeBB->setName("polly.preload.merge"); 1222 1223 Function *F = Builder.GetInsertBlock()->getParent(); 1224 LLVMContext &Context = F->getContext(); 1225 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1226 1227 DT.addNewBlock(ExecBB, CondBB); 1228 if (Loop *L = LI.getLoopFor(CondBB)) 1229 L->addBasicBlockToLoop(ExecBB, LI); 1230 1231 auto *CondBBTerminator = CondBB->getTerminator(); 1232 Builder.SetInsertPoint(CondBBTerminator); 1233 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1234 CondBBTerminator->eraseFromParent(); 1235 1236 Builder.SetInsertPoint(ExecBB); 1237 Builder.CreateBr(MergeBB); 1238 1239 Builder.SetInsertPoint(ExecBB->getTerminator()); 1240 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1241 Builder.SetInsertPoint(MergeBB->getTerminator()); 1242 auto *MergePHI = Builder.CreatePHI( 1243 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1244 PreloadVal = MergePHI; 1245 1246 if (!PreAccInst) { 1247 PreloadVal = nullptr; 1248 PreAccInst = UndefValue::get(AccInstTy); 1249 } 1250 1251 MergePHI->addIncoming(PreAccInst, ExecBB); 1252 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1253 1254 isl_ast_build_free(Build); 1255 return PreloadVal; 1256 } 1257 1258 bool IslNodeBuilder::preloadInvariantEquivClass( 1259 InvariantEquivClassTy &IAClass) { 1260 // For an equivalence class of invariant loads we pre-load the representing 1261 // element with the unified execution context. However, we have to map all 1262 // elements of the class to the one preloaded load as they are referenced 1263 // during the code generation and therefor need to be mapped. 1264 const MemoryAccessList &MAs = IAClass.InvariantAccesses; 1265 if (MAs.empty()) 1266 return true; 1267 1268 MemoryAccess *MA = MAs.front(); 1269 assert(MA->isArrayKind() && MA->isRead()); 1270 1271 // If the access function was already mapped, the preload of this equivalence 1272 // class was triggered earlier already and doesn't need to be done again. 1273 if (ValueMap.count(MA->getAccessInstruction())) 1274 return true; 1275 1276 // Check for recursion which can be caused by additional constraints, e.g., 1277 // non-finite loop constraints. In such a case we have to bail out and insert 1278 // a "false" runtime check that will cause the original code to be executed. 1279 auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); 1280 if (!PreloadedPtrs.insert(PtrId).second) 1281 return false; 1282 1283 // The execution context of the IAClass. 1284 isl_set *&ExecutionCtx = IAClass.ExecutionContext; 1285 1286 // If the base pointer of this class is dependent on another one we have to 1287 // make sure it was preloaded already. 1288 auto *SAI = MA->getScopArrayInfo(); 1289 if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { 1290 if (!preloadInvariantEquivClass(*BaseIAClass)) 1291 return false; 1292 1293 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and 1294 // we need to refine the ExecutionCtx. 1295 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1296 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1297 } 1298 1299 // If the size of a dimension is dependent on another class, make sure it is 1300 // preloaded. 1301 for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { 1302 const SCEV *Dim = SAI->getDimensionSize(i); 1303 SetVector<Value *> Values; 1304 findValues(Dim, SE, Values); 1305 for (auto *Val : Values) { 1306 if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { 1307 if (!preloadInvariantEquivClass(*BaseIAClass)) 1308 return false; 1309 1310 // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx 1311 // and we need to refine the ExecutionCtx. 1312 isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext); 1313 ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx); 1314 } 1315 } 1316 } 1317 1318 Instruction *AccInst = MA->getAccessInstruction(); 1319 Type *AccInstTy = AccInst->getType(); 1320 1321 Value *PreloadVal = preloadInvariantLoad(*MA, isl_set_copy(ExecutionCtx)); 1322 if (!PreloadVal) 1323 return false; 1324 1325 for (const MemoryAccess *MA : MAs) { 1326 Instruction *MAAccInst = MA->getAccessInstruction(); 1327 assert(PreloadVal->getType() == MAAccInst->getType()); 1328 ValueMap[MAAccInst] = PreloadVal; 1329 } 1330 1331 if (SE.isSCEVable(AccInstTy)) { 1332 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)); 1333 if (ParamId) 1334 IDToValue[ParamId] = PreloadVal; 1335 isl_id_free(ParamId); 1336 } 1337 1338 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1339 auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), 1340 AccInst->getName() + ".preload.s2a"); 1341 Alloca->insertBefore(&*EntryBB->getFirstInsertionPt()); 1342 Builder.CreateStore(PreloadVal, Alloca); 1343 ValueMapT PreloadedPointer; 1344 PreloadedPointer[PreloadVal] = AccInst; 1345 Annotator.addAlternativeAliasBases(PreloadedPointer); 1346 1347 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1348 Value *BasePtr = DerivedSAI->getBasePtr(); 1349 1350 for (const MemoryAccess *MA : MAs) { 1351 // As the derived SAI information is quite coarse, any load from the 1352 // current SAI could be the base pointer of the derived SAI, however we 1353 // should only change the base pointer of the derived SAI if we actually 1354 // preloaded it. 1355 if (BasePtr == MA->getOriginalBaseAddr()) { 1356 assert(BasePtr->getType() == PreloadVal->getType()); 1357 DerivedSAI->setBasePtr(PreloadVal); 1358 } 1359 1360 // For scalar derived SAIs we remap the alloca used for the derived value. 1361 if (BasePtr == MA->getAccessInstruction()) 1362 ScalarMap[DerivedSAI] = Alloca; 1363 } 1364 } 1365 1366 for (const MemoryAccess *MA : MAs) { 1367 1368 Instruction *MAAccInst = MA->getAccessInstruction(); 1369 // Use the escape system to get the correct value to users outside the SCoP. 1370 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1371 for (auto *U : MAAccInst->users()) 1372 if (Instruction *UI = dyn_cast<Instruction>(U)) 1373 if (!S.contains(UI)) 1374 EscapeUsers.push_back(UI); 1375 1376 if (EscapeUsers.empty()) 1377 continue; 1378 1379 EscapeMap[MA->getAccessInstruction()] = 1380 std::make_pair(Alloca, std::move(EscapeUsers)); 1381 } 1382 1383 return true; 1384 } 1385 1386 void IslNodeBuilder::allocateNewArrays() { 1387 for (auto &SAI : S.arrays()) { 1388 if (SAI->getBasePtr()) 1389 continue; 1390 1391 assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && 1392 "The size of the outermost dimension is used to declare newly " 1393 "created arrays that require memory allocation."); 1394 1395 Type *NewArrayType = nullptr; 1396 for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { 1397 auto *DimSize = SAI->getDimensionSize(i); 1398 unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) 1399 ->getAPInt() 1400 .getLimitedValue(); 1401 1402 if (!NewArrayType) 1403 NewArrayType = SAI->getElementType(); 1404 1405 NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); 1406 } 1407 1408 auto InstIt = 1409 Builder.GetInsertBlock()->getParent()->getEntryBlock().getTerminator(); 1410 auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), 1411 SAI->getName(), &*InstIt); 1412 CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize); 1413 SAI->setBasePtr(CreatedArray); 1414 } 1415 } 1416 1417 bool IslNodeBuilder::preloadInvariantLoads() { 1418 1419 auto &InvariantEquivClasses = S.getInvariantAccesses(); 1420 if (InvariantEquivClasses.empty()) 1421 return true; 1422 1423 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1424 &*Builder.GetInsertPoint(), &DT, &LI); 1425 PreLoadBB->setName("polly.preload.begin"); 1426 Builder.SetInsertPoint(&PreLoadBB->front()); 1427 1428 for (auto &IAClass : InvariantEquivClasses) 1429 if (!preloadInvariantEquivClass(IAClass)) 1430 return false; 1431 1432 return true; 1433 } 1434 1435 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1436 // Materialize values for the parameters of the SCoP. 1437 materializeParameters(); 1438 1439 // materialize the outermost dimension parameters for a Fortran array. 1440 // NOTE: materializeParameters() does not work since it looks through 1441 // the SCEVs. We don't have a corresponding SCEV for the array size 1442 // parameter 1443 materializeFortranArrayOutermostDimension(); 1444 1445 // Generate values for the current loop iteration for all surrounding loops. 1446 // 1447 // We may also reference loops outside of the scop which do not contain the 1448 // scop itself, but as the number of such scops may be arbitrarily large we do 1449 // not generate code for them here, but only at the point of code generation 1450 // where these values are needed. 1451 Loop *L = LI.getLoopFor(S.getEntry()); 1452 1453 while (L != nullptr && S.contains(L)) 1454 L = L->getParentLoop(); 1455 1456 while (L != nullptr) { 1457 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1458 SE.getUnknown(Builder.getInt64(1)), 1459 L, SCEV::FlagAnyWrap); 1460 Value *V = generateSCEV(OuterLIV); 1461 OutsideLoopIterations[L] = SE.getUnknown(V); 1462 L = L->getParentLoop(); 1463 } 1464 1465 isl_set_free(Context); 1466 } 1467 1468 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1469 /// We pass the insert location of our Builder, as Polly ensures during IR 1470 /// generation that there is always a valid CFG into which instructions are 1471 /// inserted. As a result, the insertpoint is known to be always followed by a 1472 /// terminator instruction. This means the insert point may be specified by a 1473 /// terminator instruction, but it can never point to an ->end() iterator 1474 /// which does not have a corresponding instruction. Hence, dereferencing 1475 /// the insertpoint to obtain an instruction is known to be save. 1476 /// 1477 /// We also do not need to update the Builder here, as new instructions are 1478 /// always inserted _before_ the given InsertLocation. As a result, the 1479 /// insert location remains valid. 1480 assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && 1481 "Insert location points after last valid instruction"); 1482 Instruction *InsertLocation = &*Builder.GetInsertPoint(); 1483 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1484 InsertLocation, &ValueMap, 1485 StartBlock->getSinglePredecessor()); 1486 } 1487 1488 /// The AST expression we generate to perform the run-time check assumes 1489 /// computations on integer types of infinite size. As we only use 64-bit 1490 /// arithmetic we check for overflows, in case of which we set the result 1491 /// of this run-time check to false to be conservatively correct, 1492 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { 1493 auto ExprBuilder = getExprBuilder(); 1494 ExprBuilder.setTrackOverflow(true); 1495 Value *RTC = ExprBuilder.create(Condition); 1496 if (!RTC->getType()->isIntegerTy(1)) 1497 RTC = Builder.CreateIsNotNull(RTC); 1498 Value *OverflowHappened = 1499 Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); 1500 1501 if (PollyGenerateRTCPrint) { 1502 auto *F = Builder.GetInsertBlock()->getParent(); 1503 RuntimeDebugBuilder::createCPUPrinter( 1504 Builder, 1505 "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + 1506 " __RTC: ", 1507 RTC, " Overflow: ", OverflowHappened, "\n"); 1508 } 1509 1510 RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); 1511 ExprBuilder.setTrackOverflow(false); 1512 1513 if (!isa<ConstantInt>(RTC)) 1514 VersionedScops++; 1515 1516 return RTC; 1517 } 1518