1 //===------ IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the IslNodeBuilder, a class to translate an isl AST into
11 // a LLVM-IR AST.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/IslNodeBuilder.h"
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslAst.h"
19 #include "polly/CodeGen/IslExprBuilder.h"
20 #include "polly/CodeGen/LoopGenerators.h"
21 #include "polly/CodeGen/RuntimeDebugBuilder.h"
22 #include "polly/CodeGen/Utils.h"
23 #include "polly/Config/config.h"
24 #include "polly/DependenceInfo.h"
25 #include "polly/LinkAllPasses.h"
26 #include "polly/Options.h"
27 #include "polly/ScopInfo.h"
28 #include "polly/Support/GICHelper.h"
29 #include "polly/Support/SCEVValidator.h"
30 #include "polly/Support/ScopHelper.h"
31 #include "llvm/ADT/PostOrderIterator.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/PostDominators.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include "isl/aff.h"
42 #include "isl/ast.h"
43 #include "isl/ast_build.h"
44 #include "isl/list.h"
45 #include "isl/map.h"
46 #include "isl/set.h"
47 #include "isl/union_map.h"
48 #include "isl/union_set.h"
49 
50 using namespace polly;
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "polly-codegen"
54 
55 STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");
56 
57 // The maximal number of dimensions we allow during invariant load construction.
58 // More complex access ranges will result in very high compile time and are also
59 // unlikely to result in good code. This value is very high and should only
60 // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006).
61 static int const MaxDimensionsInAccessRange = 9;
62 
63 static cl::opt<bool> PollyGenerateRTCPrint(
64     "polly-codegen-emit-rtc-print",
65     cl::desc("Emit code that prints the runtime check result dynamically."),
66     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
67 
68 // If this option is set we always use the isl AST generator to regenerate
69 // memory accesses. Without this option set we regenerate expressions using the
70 // original SCEV expressions and only generate new expressions in case the
71 // access relation has been changed and consequently must be regenerated.
72 static cl::opt<bool> PollyGenerateExpressions(
73     "polly-codegen-generate-expressions",
74     cl::desc("Generate AST expressions for unmodified and modified accesses"),
75     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
76 
77 __isl_give isl_ast_expr *
78 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For,
79                               ICmpInst::Predicate &Predicate) {
80   isl_id *UBID, *IteratorID;
81   isl_ast_expr *Cond, *Iterator, *UB, *Arg0;
82   isl_ast_op_type Type;
83 
84   Cond = isl_ast_node_for_get_cond(For);
85   Iterator = isl_ast_node_for_get_iterator(For);
86   isl_ast_expr_get_type(Cond);
87   assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op &&
88          "conditional expression is not an atomic upper bound");
89 
90   Type = isl_ast_expr_get_op_type(Cond);
91 
92   switch (Type) {
93   case isl_ast_op_le:
94     Predicate = ICmpInst::ICMP_SLE;
95     break;
96   case isl_ast_op_lt:
97     Predicate = ICmpInst::ICMP_SLT;
98     break;
99   default:
100     llvm_unreachable("Unexpected comparision type in loop conditon");
101   }
102 
103   Arg0 = isl_ast_expr_get_op_arg(Cond, 0);
104 
105   assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id &&
106          "conditional expression is not an atomic upper bound");
107 
108   UBID = isl_ast_expr_get_id(Arg0);
109 
110   assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id &&
111          "Could not get the iterator");
112 
113   IteratorID = isl_ast_expr_get_id(Iterator);
114 
115   assert(UBID == IteratorID &&
116          "conditional expression is not an atomic upper bound");
117 
118   UB = isl_ast_expr_get_op_arg(Cond, 1);
119 
120   isl_ast_expr_free(Cond);
121   isl_ast_expr_free(Iterator);
122   isl_ast_expr_free(Arg0);
123   isl_id_free(IteratorID);
124   isl_id_free(UBID);
125 
126   return UB;
127 }
128 
129 /// Return true if a return value of Predicate is true for the value represented
130 /// by passed isl_ast_expr_int.
131 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr,
132                                isl_bool (*Predicate)(__isl_keep isl_val *)) {
133   if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) {
134     isl_ast_expr_free(Expr);
135     return false;
136   }
137   auto ExprVal = isl_ast_expr_get_val(Expr);
138   isl_ast_expr_free(Expr);
139   if (Predicate(ExprVal) != true) {
140     isl_val_free(ExprVal);
141     return false;
142   }
143   isl_val_free(ExprVal);
144   return true;
145 }
146 
147 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) {
148   assert(isl_ast_node_get_type(For) == isl_ast_node_for);
149   auto Body = isl_ast_node_for_get_body(For);
150 
151   // First, check if we can actually handle this code.
152   switch (isl_ast_node_get_type(Body)) {
153   case isl_ast_node_user:
154     break;
155   case isl_ast_node_block: {
156     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
157     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) {
158       isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i);
159       int Type = isl_ast_node_get_type(Node);
160       isl_ast_node_free(Node);
161       if (Type != isl_ast_node_user) {
162         isl_ast_node_list_free(List);
163         isl_ast_node_free(Body);
164         return -1;
165       }
166     }
167     isl_ast_node_list_free(List);
168     break;
169   }
170   default:
171     isl_ast_node_free(Body);
172     return -1;
173   }
174   isl_ast_node_free(Body);
175 
176   auto Init = isl_ast_node_for_get_init(For);
177   if (!checkIslAstExprInt(Init, isl_val_is_zero))
178     return -1;
179   auto Inc = isl_ast_node_for_get_inc(For);
180   if (!checkIslAstExprInt(Inc, isl_val_is_one))
181     return -1;
182   CmpInst::Predicate Predicate;
183   auto UB = getUpperBound(For, Predicate);
184   if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) {
185     isl_ast_expr_free(UB);
186     return -1;
187   }
188   auto UpVal = isl_ast_expr_get_val(UB);
189   isl_ast_expr_free(UB);
190   int NumberIterations = isl_val_get_num_si(UpVal);
191   isl_val_free(UpVal);
192   if (NumberIterations < 0)
193     return -1;
194   if (Predicate == CmpInst::ICMP_SLT)
195     return NumberIterations;
196   else
197     return NumberIterations + 1;
198 }
199 
200 /// Extract the values and SCEVs needed to generate code for a block.
201 static int findReferencesInBlock(struct SubtreeReferences &References,
202                                  const ScopStmt *Stmt, const BasicBlock *BB) {
203   for (const Instruction &Inst : *BB)
204     for (Value *SrcVal : Inst.operands()) {
205       auto *Scope = References.LI.getLoopFor(BB);
206       if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) {
207         References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope));
208         continue;
209       } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal))
210         References.Values.insert(NewVal);
211     }
212   return 0;
213 }
214 
215 isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr,
216                                bool CreateScalarRefs) {
217   auto &References = *static_cast<struct SubtreeReferences *>(UserPtr);
218 
219   if (Stmt->isBlockStmt())
220     findReferencesInBlock(References, Stmt, Stmt->getBasicBlock());
221   else {
222     assert(Stmt->isRegionStmt() &&
223            "Stmt was neither block nor region statement");
224     for (const BasicBlock *BB : Stmt->getRegion()->blocks())
225       findReferencesInBlock(References, Stmt, BB);
226   }
227 
228   for (auto &Access : *Stmt) {
229     if (Access->isArrayKind()) {
230       auto *BasePtr = Access->getScopArrayInfo()->getBasePtr();
231       if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
232         if (Stmt->getParent()->contains(OpInst))
233           continue;
234 
235       References.Values.insert(BasePtr);
236       continue;
237     }
238 
239     if (CreateScalarRefs)
240       References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
241   }
242 
243   return isl_stat_ok;
244 }
245 
246 /// Extract the out-of-scop values and SCEVs referenced from a set describing
247 /// a ScopStmt.
248 ///
249 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
250 /// statement and the base pointers of the memory accesses. For scalar
251 /// statements we force the generation of alloca memory locations and list
252 /// these locations in the set of out-of-scop values as well.
253 ///
254 /// @param Set     A set which references the ScopStmt we are interested in.
255 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences
256 ///                structure.
257 static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set,
258                                          void *UserPtr) {
259   isl_id *Id = isl_set_get_tuple_id(Set);
260   auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id));
261   isl_id_free(Id);
262   isl_set_free(Set);
263   return addReferencesFromStmt(Stmt, UserPtr);
264 }
265 
266 /// Extract the out-of-scop values and SCEVs referenced from a union set
267 /// referencing multiple ScopStmts.
268 ///
269 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
270 /// statement and the base pointers of the memory accesses. For scalar
271 /// statements we force the generation of alloca memory locations and list
272 /// these locations in the set of out-of-scop values as well.
273 ///
274 /// @param USet       A union set referencing the ScopStmts we are interested
275 ///                   in.
276 /// @param References The SubtreeReferences data structure through which
277 ///                   results are returned and further information is
278 ///                   provided.
279 static void
280 addReferencesFromStmtUnionSet(isl_union_set *USet,
281                               struct SubtreeReferences &References) {
282   isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References);
283   isl_union_set_free(USet);
284 }
285 
286 __isl_give isl_union_map *
287 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) {
288   return IslAstInfo::getSchedule(For);
289 }
290 
291 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For,
292                                             SetVector<Value *> &Values,
293                                             SetVector<const Loop *> &Loops) {
294 
295   SetVector<const SCEV *> SCEVs;
296   struct SubtreeReferences References = {
297       LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator()};
298 
299   for (const auto &I : IDToValue)
300     Values.insert(I.second);
301 
302   for (const auto &I : OutsideLoopIterations)
303     Values.insert(cast<SCEVUnknown>(I.second)->getValue());
304 
305   isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For));
306   addReferencesFromStmtUnionSet(Schedule, References);
307 
308   for (const SCEV *Expr : SCEVs) {
309     findValues(Expr, SE, Values);
310     findLoops(Expr, Loops);
311   }
312 
313   Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });
314 
315   /// Remove loops that contain the scop or that are part of the scop, as they
316   /// are considered local. This leaves only loops that are before the scop, but
317   /// do not contain the scop itself.
318   Loops.remove_if([this](const Loop *L) {
319     return S.contains(L) || L->contains(S.getEntry());
320   });
321 }
322 
323 void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
324   SmallPtrSet<Value *, 5> Inserted;
325 
326   for (const auto &I : IDToValue) {
327     IDToValue[I.first] = NewValues[I.second];
328     Inserted.insert(I.second);
329   }
330 
331   for (const auto &I : NewValues) {
332     if (Inserted.count(I.first))
333       continue;
334 
335     ValueMap[I.first] = I.second;
336   }
337 }
338 
339 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
340                                       std::vector<Value *> &IVS,
341                                       __isl_take isl_id *IteratorID,
342                                       __isl_take isl_union_map *Schedule) {
343   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
344   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
345   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
346   isl_ast_expr_free(StmtExpr);
347   ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
348   std::vector<LoopToScevMapT> VLTS(IVS.size());
349 
350   isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain());
351   Schedule = isl_union_map_intersect_domain(Schedule, Domain);
352   isl_map *S = isl_map_from_union_map(Schedule);
353 
354   auto *NewAccesses = createNewAccesses(Stmt, User);
355   createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID);
356   VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses);
357   isl_id_to_ast_expr_free(NewAccesses);
358   isl_map_free(S);
359   isl_id_free(Id);
360   isl_ast_node_free(User);
361 }
362 
363 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
364   auto *Id = isl_ast_node_mark_get_id(Node);
365   auto Child = isl_ast_node_mark_get_node(Node);
366   isl_ast_node_free(Node);
367   // If a child node of a 'SIMD mark' is a loop that has a single iteration,
368   // it will be optimized away and we should skip it.
369   if (!strcmp(isl_id_get_name(Id), "SIMD") &&
370       isl_ast_node_get_type(Child) == isl_ast_node_for) {
371     bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
372     int VectorWidth = getNumberOfIterations(Child);
373     if (Vector && 1 < VectorWidth && VectorWidth <= 16)
374       createForVector(Child, VectorWidth);
375     else
376       createForSequential(Child, true);
377     isl_id_free(Id);
378     return;
379   }
380   create(Child);
381   isl_id_free(Id);
382 }
383 
384 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
385                                      int VectorWidth) {
386   isl_ast_node *Body = isl_ast_node_for_get_body(For);
387   isl_ast_expr *Init = isl_ast_node_for_get_init(For);
388   isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
389   isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
390   isl_id *IteratorID = isl_ast_expr_get_id(Iterator);
391 
392   Value *ValueLB = ExprBuilder.create(Init);
393   Value *ValueInc = ExprBuilder.create(Inc);
394 
395   Type *MaxType = ExprBuilder.getType(Iterator);
396   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
397   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
398 
399   if (MaxType != ValueLB->getType())
400     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
401   if (MaxType != ValueInc->getType())
402     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
403 
404   std::vector<Value *> IVS(VectorWidth);
405   IVS[0] = ValueLB;
406 
407   for (int i = 1; i < VectorWidth; i++)
408     IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");
409 
410   isl_union_map *Schedule = getScheduleForAstNode(For);
411   assert(Schedule && "For statement annotation does not contain its schedule");
412 
413   IDToValue[IteratorID] = ValueLB;
414 
415   switch (isl_ast_node_get_type(Body)) {
416   case isl_ast_node_user:
417     createUserVector(Body, IVS, isl_id_copy(IteratorID),
418                      isl_union_map_copy(Schedule));
419     break;
420   case isl_ast_node_block: {
421     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
422 
423     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
424       createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
425                        isl_id_copy(IteratorID), isl_union_map_copy(Schedule));
426 
427     isl_ast_node_free(Body);
428     isl_ast_node_list_free(List);
429     break;
430   }
431   default:
432     isl_ast_node_dump(Body);
433     llvm_unreachable("Unhandled isl_ast_node in vectorizer");
434   }
435 
436   IDToValue.erase(IDToValue.find(IteratorID));
437   isl_id_free(IteratorID);
438   isl_union_map_free(Schedule);
439 
440   isl_ast_node_free(For);
441   isl_ast_expr_free(Iterator);
442 }
443 
444 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For,
445                                          bool KnownParallel) {
446   isl_ast_node *Body;
447   isl_ast_expr *Init, *Inc, *Iterator, *UB;
448   isl_id *IteratorID;
449   Value *ValueLB, *ValueUB, *ValueInc;
450   Type *MaxType;
451   BasicBlock *ExitBlock;
452   Value *IV;
453   CmpInst::Predicate Predicate;
454   bool Parallel;
455 
456   Parallel = KnownParallel || (IslAstInfo::isParallel(For) &&
457                                !IslAstInfo::isReductionParallel(For));
458 
459   Body = isl_ast_node_for_get_body(For);
460 
461   // isl_ast_node_for_is_degenerate(For)
462   //
463   // TODO: For degenerated loops we could generate a plain assignment.
464   //       However, for now we just reuse the logic for normal loops, which will
465   //       create a loop with a single iteration.
466 
467   Init = isl_ast_node_for_get_init(For);
468   Inc = isl_ast_node_for_get_inc(For);
469   Iterator = isl_ast_node_for_get_iterator(For);
470   IteratorID = isl_ast_expr_get_id(Iterator);
471   UB = getUpperBound(For, Predicate);
472 
473   ValueLB = ExprBuilder.create(Init);
474   ValueUB = ExprBuilder.create(UB);
475   ValueInc = ExprBuilder.create(Inc);
476 
477   MaxType = ExprBuilder.getType(Iterator);
478   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
479   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
480   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
481 
482   if (MaxType != ValueLB->getType())
483     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
484   if (MaxType != ValueUB->getType())
485     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
486   if (MaxType != ValueInc->getType())
487     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
488 
489   // If we can show that LB <Predicate> UB holds at least once, we can
490   // omit the GuardBB in front of the loop.
491   bool UseGuardBB =
492       !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
493   IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, P, LI, DT, ExitBlock,
494                   Predicate, &Annotator, Parallel, UseGuardBB);
495   IDToValue[IteratorID] = IV;
496 
497   create(Body);
498 
499   Annotator.popLoop(Parallel);
500 
501   IDToValue.erase(IDToValue.find(IteratorID));
502 
503   Builder.SetInsertPoint(&ExitBlock->front());
504 
505   isl_ast_node_free(For);
506   isl_ast_expr_free(Iterator);
507   isl_id_free(IteratorID);
508 }
509 
510 /// Remove the BBs contained in a (sub)function from the dominator tree.
511 ///
512 /// This function removes the basic blocks that are part of a subfunction from
513 /// the dominator tree. Specifically, when generating code it may happen that at
514 /// some point the code generation continues in a new sub-function (e.g., when
515 /// generating OpenMP code). The basic blocks that are created in this
516 /// sub-function are then still part of the dominator tree of the original
517 /// function, such that the dominator tree reaches over function boundaries.
518 /// This is not only incorrect, but also causes crashes. This function now
519 /// removes from the dominator tree all basic blocks that are dominated (and
520 /// consequently reachable) from the entry block of this (sub)function.
521 ///
522 /// FIXME: A LLVM (function or region) pass should not touch anything outside of
523 /// the function/region it runs on. Hence, the pure need for this function shows
524 /// that we do not comply to this rule. At the moment, this does not cause any
525 /// issues, but we should be aware that such issues may appear. Unfortunately
526 /// the current LLVM pass infrastructure does not allow to make Polly a module
527 /// or call-graph pass to solve this issue, as such a pass would not have access
528 /// to the per-function analyses passes needed by Polly. A future pass manager
529 /// infrastructure is supposed to enable such kind of access possibly allowing
530 /// us to create a cleaner solution here.
531 ///
532 /// FIXME: Instead of adding the dominance information and then dropping it
533 /// later on, we should try to just not add it in the first place. This requires
534 /// some careful testing to make sure this does not break in interaction with
535 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
536 /// which may try to update it.
537 ///
538 /// @param F The function which contains the BBs to removed.
539 /// @param DT The dominator tree from which to remove the BBs.
540 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
541   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
542   std::vector<BasicBlock *> Nodes;
543 
544   // We can only remove an element from the dominator tree, if all its children
545   // have been removed. To ensure this we obtain the list of nodes to remove
546   // using a post-order tree traversal.
547   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
548     Nodes.push_back(I->getBlock());
549 
550   for (BasicBlock *BB : Nodes)
551     DT.eraseNode(BB);
552 }
553 
554 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
555   isl_ast_node *Body;
556   isl_ast_expr *Init, *Inc, *Iterator, *UB;
557   isl_id *IteratorID;
558   Value *ValueLB, *ValueUB, *ValueInc;
559   Type *MaxType;
560   Value *IV;
561   CmpInst::Predicate Predicate;
562 
563   // The preamble of parallel code interacts different than normal code with
564   // e.g., scalar initialization. Therefore, we ensure the parallel code is
565   // separated from the last basic block.
566   BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
567                                  &*Builder.GetInsertPoint(), &DT, &LI);
568   ParBB->setName("polly.parallel.for");
569   Builder.SetInsertPoint(&ParBB->front());
570 
571   Body = isl_ast_node_for_get_body(For);
572   Init = isl_ast_node_for_get_init(For);
573   Inc = isl_ast_node_for_get_inc(For);
574   Iterator = isl_ast_node_for_get_iterator(For);
575   IteratorID = isl_ast_expr_get_id(Iterator);
576   UB = getUpperBound(For, Predicate);
577 
578   ValueLB = ExprBuilder.create(Init);
579   ValueUB = ExprBuilder.create(UB);
580   ValueInc = ExprBuilder.create(Inc);
581 
582   // OpenMP always uses SLE. In case the isl generated AST uses a SLT
583   // expression, we need to adjust the loop blound by one.
584   if (Predicate == CmpInst::ICMP_SLT)
585     ValueUB = Builder.CreateAdd(
586         ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));
587 
588   MaxType = ExprBuilder.getType(Iterator);
589   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
590   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
591   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
592 
593   if (MaxType != ValueLB->getType())
594     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
595   if (MaxType != ValueUB->getType())
596     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
597   if (MaxType != ValueInc->getType())
598     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
599 
600   BasicBlock::iterator LoopBody;
601 
602   SetVector<Value *> SubtreeValues;
603   SetVector<const Loop *> Loops;
604 
605   getReferencesInSubtree(For, SubtreeValues, Loops);
606 
607   // Create for all loops we depend on values that contain the current loop
608   // iteration. These values are necessary to generate code for SCEVs that
609   // depend on such loops. As a result we need to pass them to the subfunction.
610   for (const Loop *L : Loops) {
611     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
612                                             SE.getUnknown(Builder.getInt64(1)),
613                                             L, SCEV::FlagAnyWrap);
614     Value *V = generateSCEV(OuterLIV);
615     OutsideLoopIterations[L] = SE.getUnknown(V);
616     SubtreeValues.insert(V);
617   }
618 
619   ValueMapT NewValues;
620   ParallelLoopGenerator ParallelLoopGen(Builder, P, LI, DT, DL);
621 
622   IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc,
623                                           SubtreeValues, NewValues, &LoopBody);
624   BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
625   Builder.SetInsertPoint(&*LoopBody);
626 
627   // Remember the parallel subfunction
628   ParallelSubfunctions.push_back(LoopBody->getFunction());
629 
630   // Save the current values.
631   auto ValueMapCopy = ValueMap;
632   IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;
633 
634   updateValues(NewValues);
635   IDToValue[IteratorID] = IV;
636 
637   ValueMapT NewValuesReverse;
638 
639   for (auto P : NewValues)
640     NewValuesReverse[P.second] = P.first;
641 
642   Annotator.addAlternativeAliasBases(NewValuesReverse);
643 
644   create(Body);
645 
646   Annotator.resetAlternativeAliasBases();
647   // Restore the original values.
648   ValueMap = ValueMapCopy;
649   IDToValue = IDToValueCopy;
650 
651   Builder.SetInsertPoint(&*AfterLoop);
652   removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);
653 
654   for (const Loop *L : Loops)
655     OutsideLoopIterations.erase(L);
656 
657   isl_ast_node_free(For);
658   isl_ast_expr_free(Iterator);
659   isl_id_free(IteratorID);
660 }
661 
662 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
663   bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
664 
665   if (Vector && IslAstInfo::isInnermostParallel(For) &&
666       !IslAstInfo::isReductionParallel(For)) {
667     int VectorWidth = getNumberOfIterations(For);
668     if (1 < VectorWidth && VectorWidth <= 16) {
669       createForVector(For, VectorWidth);
670       return;
671     }
672   }
673 
674   if (IslAstInfo::isExecutedInParallel(For)) {
675     createForParallel(For);
676     return;
677   }
678   createForSequential(For, false);
679 }
680 
681 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
682   isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
683 
684   Function *F = Builder.GetInsertBlock()->getParent();
685   LLVMContext &Context = F->getContext();
686 
687   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
688                                   &*Builder.GetInsertPoint(), &DT, &LI);
689   CondBB->setName("polly.cond");
690   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
691   MergeBB->setName("polly.merge");
692   BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
693   BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
694 
695   DT.addNewBlock(ThenBB, CondBB);
696   DT.addNewBlock(ElseBB, CondBB);
697   DT.changeImmediateDominator(MergeBB, CondBB);
698 
699   Loop *L = LI.getLoopFor(CondBB);
700   if (L) {
701     L->addBasicBlockToLoop(ThenBB, LI);
702     L->addBasicBlockToLoop(ElseBB, LI);
703   }
704 
705   CondBB->getTerminator()->eraseFromParent();
706 
707   Builder.SetInsertPoint(CondBB);
708   Value *Predicate = ExprBuilder.create(Cond);
709   Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
710   Builder.SetInsertPoint(ThenBB);
711   Builder.CreateBr(MergeBB);
712   Builder.SetInsertPoint(ElseBB);
713   Builder.CreateBr(MergeBB);
714   Builder.SetInsertPoint(&ThenBB->front());
715 
716   create(isl_ast_node_if_get_then(If));
717 
718   Builder.SetInsertPoint(&ElseBB->front());
719 
720   if (isl_ast_node_if_has_else(If))
721     create(isl_ast_node_if_get_else(If));
722 
723   Builder.SetInsertPoint(&MergeBB->front());
724 
725   isl_ast_node_free(If);
726 }
727 
728 __isl_give isl_id_to_ast_expr *
729 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
730                                   __isl_keep isl_ast_node *Node) {
731   isl_id_to_ast_expr *NewAccesses =
732       isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0);
733 
734   auto *Build = IslAstInfo::getBuild(Node);
735   assert(Build && "Could not obtain isl_ast_build from user node");
736   Stmt->setAstBuild(Build);
737 
738   for (auto *MA : *Stmt) {
739     if (!MA->hasNewAccessRelation()) {
740       if (PollyGenerateExpressions) {
741         if (!MA->isAffine())
742           continue;
743         if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
744           continue;
745 
746         auto *BasePtr =
747             dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
748         if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
749           continue;
750       } else {
751         continue;
752       }
753     }
754     assert(MA->isAffine() &&
755            "Only affine memory accesses can be code generated");
756     assert(!MA->getLatestScopArrayInfo()->getBasePtrOriginSAI() &&
757            "Generating new index expressions to indirect arrays not working");
758 
759     auto Schedule = isl_ast_build_get_schedule(Build);
760 
761 #ifndef NDEBUG
762     auto Dom = Stmt->getDomain();
763     auto SchedDom = isl_set_from_union_set(
764         isl_union_map_domain(isl_union_map_copy(Schedule)));
765     auto AccDom = isl_map_domain(MA->getAccessRelation());
766     Dom = isl_set_intersect_params(Dom, Stmt->getParent()->getContext());
767     SchedDom =
768         isl_set_intersect_params(SchedDom, Stmt->getParent()->getContext());
769     assert(isl_set_is_subset(SchedDom, AccDom) &&
770            "Access relation not defined on full schedule domain");
771     assert(isl_set_is_subset(Dom, AccDom) &&
772            "Access relation not defined on full domain");
773     isl_set_free(AccDom);
774     isl_set_free(SchedDom);
775     isl_set_free(Dom);
776 #endif
777 
778     auto PWAccRel = MA->applyScheduleToAccessRelation(Schedule);
779 
780     auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
781     NewAccesses = isl_id_to_ast_expr_set(NewAccesses, MA->getId(), AccessExpr);
782   }
783 
784   return NewAccesses;
785 }
786 
787 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
788                                          ScopStmt *Stmt, LoopToScevMapT &LTS) {
789   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
790          "Expression of type 'op' expected");
791   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
792          "Opertation of type 'call' expected");
793   for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
794     isl_ast_expr *SubExpr;
795     Value *V;
796 
797     SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
798     V = ExprBuilder.create(SubExpr);
799     ScalarEvolution *SE = Stmt->getParent()->getSE();
800     LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
801   }
802 
803   isl_ast_expr_free(Expr);
804 }
805 
806 void IslNodeBuilder::createSubstitutionsVector(
807     __isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
808     std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
809     __isl_take isl_id *IteratorID) {
810   int i = 0;
811 
812   Value *OldValue = IDToValue[IteratorID];
813   for (Value *IV : IVS) {
814     IDToValue[IteratorID] = IV;
815     createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
816     i++;
817   }
818 
819   IDToValue[IteratorID] = OldValue;
820   isl_id_free(IteratorID);
821   isl_ast_expr_free(Expr);
822 }
823 
824 void IslNodeBuilder::generateCopyStmt(
825     ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
826   assert(Stmt->size() == 2);
827   auto ReadAccess = Stmt->begin();
828   auto WriteAccess = ReadAccess++;
829   assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
830   assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
831          "Accesses use the same data type");
832   assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
833   auto *AccessExpr =
834       isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId());
835   auto *LoadValue = ExprBuilder.create(AccessExpr);
836   AccessExpr = isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId());
837   auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr);
838   Builder.CreateStore(LoadValue, StoreAddr);
839 }
840 
841 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
842   LoopToScevMapT LTS;
843   isl_id *Id;
844   ScopStmt *Stmt;
845 
846   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
847   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
848   Id = isl_ast_expr_get_id(StmtExpr);
849   isl_ast_expr_free(StmtExpr);
850 
851   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
852 
853   Stmt = (ScopStmt *)isl_id_get_user(Id);
854   auto *NewAccesses = createNewAccesses(Stmt, User);
855   if (Stmt->isCopyStmt()) {
856     generateCopyStmt(Stmt, NewAccesses);
857     isl_ast_expr_free(Expr);
858   } else {
859     createSubstitutions(Expr, Stmt, LTS);
860 
861     if (Stmt->isBlockStmt())
862       BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
863     else
864       RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
865   }
866 
867   isl_id_to_ast_expr_free(NewAccesses);
868   isl_ast_node_free(User);
869   isl_id_free(Id);
870 }
871 
872 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
873   isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
874 
875   for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
876     create(isl_ast_node_list_get_ast_node(List, i));
877 
878   isl_ast_node_free(Block);
879   isl_ast_node_list_free(List);
880 }
881 
882 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
883   switch (isl_ast_node_get_type(Node)) {
884   case isl_ast_node_error:
885     llvm_unreachable("code generation error");
886   case isl_ast_node_mark:
887     createMark(Node);
888     return;
889   case isl_ast_node_for:
890     createFor(Node);
891     return;
892   case isl_ast_node_if:
893     createIf(Node);
894     return;
895   case isl_ast_node_user:
896     createUser(Node);
897     return;
898   case isl_ast_node_block:
899     createBlock(Node);
900     return;
901   }
902 
903   llvm_unreachable("Unknown isl_ast_node type");
904 }
905 
906 bool IslNodeBuilder::materializeValue(isl_id *Id) {
907   // If the Id is already mapped, skip it.
908   if (!IDToValue.count(Id)) {
909     auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
910     Value *V = nullptr;
911 
912     // Parameters could refere to invariant loads that need to be
913     // preloaded before we can generate code for the parameter. Thus,
914     // check if any value refered to in ParamSCEV is an invariant load
915     // and if so make sure its equivalence class is preloaded.
916     SetVector<Value *> Values;
917     findValues(ParamSCEV, SE, Values);
918     for (auto *Val : Values) {
919 
920       // Check if the value is an instruction in a dead block within the SCoP
921       // and if so do not code generate it.
922       if (auto *Inst = dyn_cast<Instruction>(Val)) {
923         if (S.contains(Inst)) {
924           bool IsDead = true;
925 
926           // Check for "undef" loads first, then if there is a statement for
927           // the parent of Inst and lastly if the parent of Inst has an empty
928           // domain. In the first and last case the instruction is dead but if
929           // there is a statement or the domain is not empty Inst is not dead.
930           auto MemInst = MemAccInst::dyn_cast(Inst);
931           auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
932           if (Address &&
933               SE.getUnknown(UndefValue::get(Address->getType())) ==
934                   SE.getPointerBase(SE.getSCEV(Address))) {
935           } else if (S.getStmtFor(Inst)) {
936             IsDead = false;
937           } else {
938             auto *Domain = S.getDomainConditions(Inst->getParent());
939             IsDead = isl_set_is_empty(Domain);
940             isl_set_free(Domain);
941           }
942 
943           if (IsDead) {
944             V = UndefValue::get(ParamSCEV->getType());
945             break;
946           }
947         }
948       }
949 
950       if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
951 
952         // Check if this invariant access class is empty, hence if we never
953         // actually added a loads instruction to it. In that case it has no
954         // (meaningful) users and we should not try to code generate it.
955         if (IAClass->InvariantAccesses.empty())
956           V = UndefValue::get(ParamSCEV->getType());
957 
958         if (!preloadInvariantEquivClass(*IAClass)) {
959           isl_id_free(Id);
960           return false;
961         }
962       }
963     }
964 
965     V = V ? V : generateSCEV(ParamSCEV);
966     IDToValue[Id] = V;
967   }
968 
969   isl_id_free(Id);
970   return true;
971 }
972 
973 bool IslNodeBuilder::materializeParameters(isl_set *Set, bool All) {
974   for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
975     if (!All && !isl_set_involves_dims(Set, isl_dim_param, i, 1))
976       continue;
977     isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
978     if (!materializeValue(Id))
979       return false;
980   }
981   return true;
982 }
983 
984 /// Add the number of dimensions in @p BS to @p U.
985 static isl_stat countTotalDims(__isl_take isl_basic_set *BS, void *U) {
986   unsigned *NumTotalDim = static_cast<unsigned *>(U);
987   *NumTotalDim += isl_basic_set_total_dim(BS);
988   isl_basic_set_free(BS);
989   return isl_stat_ok;
990 }
991 
992 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange,
993                                               isl_ast_build *Build,
994                                               Instruction *AccInst) {
995 
996   // TODO: This check could be performed in the ScopInfo already.
997   unsigned NumTotalDim = 0;
998   isl_set_foreach_basic_set(AccessRange, countTotalDims, &NumTotalDim);
999   if (NumTotalDim > MaxDimensionsInAccessRange) {
1000     isl_set_free(AccessRange);
1001     return nullptr;
1002   }
1003 
1004   isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
1005   isl_ast_expr *Access =
1006       isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
1007   auto *Address = isl_ast_expr_address_of(Access);
1008   auto *AddressValue = ExprBuilder.create(Address);
1009   Value *PreloadVal;
1010 
1011   // Correct the type as the SAI might have a different type than the user
1012   // expects, especially if the base pointer is a struct.
1013   Type *Ty = AccInst->getType();
1014 
1015   auto *Ptr = AddressValue;
1016   auto Name = Ptr->getName();
1017   Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(), Name + ".cast");
1018   PreloadVal = Builder.CreateLoad(Ptr, Name + ".load");
1019   if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
1020     PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment());
1021 
1022   // TODO: This is only a hot fix for SCoP sequences that use the same load
1023   //       instruction contained and hoisted by one of the SCoPs.
1024   if (SE.isSCEVable(Ty))
1025     SE.forgetValue(AccInst);
1026 
1027   return PreloadVal;
1028 }
1029 
1030 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
1031                                             isl_set *Domain) {
1032 
1033   isl_set *AccessRange = isl_map_range(MA.getAddressFunction());
1034   AccessRange = isl_set_gist_params(AccessRange, S.getContext());
1035 
1036   if (!materializeParameters(AccessRange, false)) {
1037     isl_set_free(AccessRange);
1038     isl_set_free(Domain);
1039     return nullptr;
1040   }
1041 
1042   auto *Build = isl_ast_build_from_context(isl_set_universe(S.getParamSpace()));
1043   isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
1044   bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
1045   isl_set_free(Universe);
1046 
1047   Instruction *AccInst = MA.getAccessInstruction();
1048   Type *AccInstTy = AccInst->getType();
1049 
1050   Value *PreloadVal = nullptr;
1051   if (AlwaysExecuted) {
1052     PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
1053     isl_ast_build_free(Build);
1054     isl_set_free(Domain);
1055     return PreloadVal;
1056   }
1057 
1058   if (!materializeParameters(Domain, false)) {
1059     isl_ast_build_free(Build);
1060     isl_set_free(AccessRange);
1061     isl_set_free(Domain);
1062     return nullptr;
1063   }
1064 
1065   isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
1066   Domain = nullptr;
1067 
1068   ExprBuilder.setTrackOverflow(true);
1069   Value *Cond = ExprBuilder.create(DomainCond);
1070   Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
1071                                               "polly.preload.cond.overflown");
1072   Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
1073   ExprBuilder.setTrackOverflow(false);
1074 
1075   if (!Cond->getType()->isIntegerTy(1))
1076     Cond = Builder.CreateIsNotNull(Cond);
1077 
1078   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
1079                                   &*Builder.GetInsertPoint(), &DT, &LI);
1080   CondBB->setName("polly.preload.cond");
1081 
1082   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
1083   MergeBB->setName("polly.preload.merge");
1084 
1085   Function *F = Builder.GetInsertBlock()->getParent();
1086   LLVMContext &Context = F->getContext();
1087   BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);
1088 
1089   DT.addNewBlock(ExecBB, CondBB);
1090   if (Loop *L = LI.getLoopFor(CondBB))
1091     L->addBasicBlockToLoop(ExecBB, LI);
1092 
1093   auto *CondBBTerminator = CondBB->getTerminator();
1094   Builder.SetInsertPoint(CondBBTerminator);
1095   Builder.CreateCondBr(Cond, ExecBB, MergeBB);
1096   CondBBTerminator->eraseFromParent();
1097 
1098   Builder.SetInsertPoint(ExecBB);
1099   Builder.CreateBr(MergeBB);
1100 
1101   Builder.SetInsertPoint(ExecBB->getTerminator());
1102   Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
1103   Builder.SetInsertPoint(MergeBB->getTerminator());
1104   auto *MergePHI = Builder.CreatePHI(
1105       AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
1106   PreloadVal = MergePHI;
1107 
1108   if (!PreAccInst) {
1109     PreloadVal = nullptr;
1110     PreAccInst = UndefValue::get(AccInstTy);
1111   }
1112 
1113   MergePHI->addIncoming(PreAccInst, ExecBB);
1114   MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);
1115 
1116   isl_ast_build_free(Build);
1117   return PreloadVal;
1118 }
1119 
1120 bool IslNodeBuilder::preloadInvariantEquivClass(
1121     InvariantEquivClassTy &IAClass) {
1122   // For an equivalence class of invariant loads we pre-load the representing
1123   // element with the unified execution context. However, we have to map all
1124   // elements of the class to the one preloaded load as they are referenced
1125   // during the code generation and therefor need to be mapped.
1126   const MemoryAccessList &MAs = IAClass.InvariantAccesses;
1127   if (MAs.empty())
1128     return true;
1129 
1130   MemoryAccess *MA = MAs.front();
1131   assert(MA->isArrayKind() && MA->isRead());
1132 
1133   // If the access function was already mapped, the preload of this equivalence
1134   // class was triggered earlier already and doesn't need to be done again.
1135   if (ValueMap.count(MA->getAccessInstruction()))
1136     return true;
1137 
1138   // Check for recursion which can be caused by additional constraints, e.g.,
1139   // non-finite loop constraints. In such a case we have to bail out and insert
1140   // a "false" runtime check that will cause the original code to be executed.
1141   auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
1142   if (!PreloadedPtrs.insert(PtrId).second)
1143     return false;
1144 
1145   // The execution context of the IAClass.
1146   isl_set *&ExecutionCtx = IAClass.ExecutionContext;
1147 
1148   // If the base pointer of this class is dependent on another one we have to
1149   // make sure it was preloaded already.
1150   auto *SAI = MA->getScopArrayInfo();
1151   if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
1152     if (!preloadInvariantEquivClass(*BaseIAClass))
1153       return false;
1154 
1155     // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
1156     // we need to refine the ExecutionCtx.
1157     isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext);
1158     ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx);
1159   }
1160 
1161   // If the size of a dimension is dependent on another class, make sure it is
1162   // preloaded.
1163   for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
1164     const SCEV *Dim = SAI->getDimensionSize(i);
1165     SetVector<Value *> Values;
1166     findValues(Dim, SE, Values);
1167     for (auto *Val : Values) {
1168       if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
1169         if (!preloadInvariantEquivClass(*BaseIAClass))
1170           return false;
1171 
1172         // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
1173         // and we need to refine the ExecutionCtx.
1174         isl_set *BaseExecutionCtx = isl_set_copy(BaseIAClass->ExecutionContext);
1175         ExecutionCtx = isl_set_intersect(ExecutionCtx, BaseExecutionCtx);
1176       }
1177     }
1178   }
1179 
1180   Instruction *AccInst = MA->getAccessInstruction();
1181   Type *AccInstTy = AccInst->getType();
1182 
1183   Value *PreloadVal = preloadInvariantLoad(*MA, isl_set_copy(ExecutionCtx));
1184   if (!PreloadVal)
1185     return false;
1186 
1187   for (const MemoryAccess *MA : MAs) {
1188     Instruction *MAAccInst = MA->getAccessInstruction();
1189     assert(PreloadVal->getType() == MAAccInst->getType());
1190     ValueMap[MAAccInst] = PreloadVal;
1191   }
1192 
1193   if (SE.isSCEVable(AccInstTy)) {
1194     isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst));
1195     if (ParamId)
1196       IDToValue[ParamId] = PreloadVal;
1197     isl_id_free(ParamId);
1198   }
1199 
1200   BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1201   auto *Alloca = new AllocaInst(AccInstTy, AccInst->getName() + ".preload.s2a");
1202   Alloca->insertBefore(&*EntryBB->getFirstInsertionPt());
1203   Builder.CreateStore(PreloadVal, Alloca);
1204 
1205   for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
1206     Value *BasePtr = DerivedSAI->getBasePtr();
1207 
1208     for (const MemoryAccess *MA : MAs) {
1209       // As the derived SAI information is quite coarse, any load from the
1210       // current SAI could be the base pointer of the derived SAI, however we
1211       // should only change the base pointer of the derived SAI if we actually
1212       // preloaded it.
1213       if (BasePtr == MA->getBaseAddr()) {
1214         assert(BasePtr->getType() == PreloadVal->getType());
1215         DerivedSAI->setBasePtr(PreloadVal);
1216       }
1217 
1218       // For scalar derived SAIs we remap the alloca used for the derived value.
1219       if (BasePtr == MA->getAccessInstruction()) {
1220         if (DerivedSAI->isPHIKind())
1221           PHIOpMap[BasePtr] = Alloca;
1222         else
1223           ScalarMap[BasePtr] = Alloca;
1224       }
1225     }
1226   }
1227 
1228   for (const MemoryAccess *MA : MAs) {
1229 
1230     Instruction *MAAccInst = MA->getAccessInstruction();
1231     // Use the escape system to get the correct value to users outside the SCoP.
1232     BlockGenerator::EscapeUserVectorTy EscapeUsers;
1233     for (auto *U : MAAccInst->users())
1234       if (Instruction *UI = dyn_cast<Instruction>(U))
1235         if (!S.contains(UI))
1236           EscapeUsers.push_back(UI);
1237 
1238     if (EscapeUsers.empty())
1239       continue;
1240 
1241     EscapeMap[MA->getAccessInstruction()] =
1242         std::make_pair(Alloca, std::move(EscapeUsers));
1243   }
1244 
1245   return true;
1246 }
1247 
1248 void IslNodeBuilder::allocateNewArrays() {
1249   for (auto &SAI : S.arrays()) {
1250     if (SAI->getBasePtr())
1251       continue;
1252 
1253     assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
1254            "The size of the outermost dimension is used to declare newly "
1255            "created arrays that require memory allocation.");
1256 
1257     Type *NewArrayType = nullptr;
1258     for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
1259       auto *DimSize = SAI->getDimensionSize(i);
1260       unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
1261                                      ->getAPInt()
1262                                      .getLimitedValue();
1263 
1264       if (!NewArrayType)
1265         NewArrayType = SAI->getElementType();
1266 
1267       NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
1268     }
1269 
1270     auto InstIt =
1271         Builder.GetInsertBlock()->getParent()->getEntryBlock().getTerminator();
1272     Value *CreatedArray =
1273         new AllocaInst(NewArrayType, SAI->getName(), &*InstIt);
1274     SAI->setBasePtr(CreatedArray);
1275   }
1276 }
1277 
1278 bool IslNodeBuilder::preloadInvariantLoads() {
1279 
1280   auto &InvariantEquivClasses = S.getInvariantAccesses();
1281   if (InvariantEquivClasses.empty())
1282     return true;
1283 
1284   BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
1285                                      &*Builder.GetInsertPoint(), &DT, &LI);
1286   PreLoadBB->setName("polly.preload.begin");
1287   Builder.SetInsertPoint(&PreLoadBB->front());
1288 
1289   for (auto &IAClass : InvariantEquivClasses)
1290     if (!preloadInvariantEquivClass(IAClass))
1291       return false;
1292 
1293   return true;
1294 }
1295 
1296 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
1297 
1298   // Materialize values for the parameters of the SCoP.
1299   materializeParameters(Context, /* all */ true);
1300 
1301   // Generate values for the current loop iteration for all surrounding loops.
1302   //
1303   // We may also reference loops outside of the scop which do not contain the
1304   // scop itself, but as the number of such scops may be arbitrarily large we do
1305   // not generate code for them here, but only at the point of code generation
1306   // where these values are needed.
1307   Loop *L = LI.getLoopFor(S.getEntry());
1308 
1309   while (L != nullptr && S.contains(L))
1310     L = L->getParentLoop();
1311 
1312   while (L != nullptr) {
1313     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1314                                             SE.getUnknown(Builder.getInt64(1)),
1315                                             L, SCEV::FlagAnyWrap);
1316     Value *V = generateSCEV(OuterLIV);
1317     OutsideLoopIterations[L] = SE.getUnknown(V);
1318     L = L->getParentLoop();
1319   }
1320 
1321   isl_set_free(Context);
1322 }
1323 
1324 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
1325   /// We pass the insert location of our Builder, as Polly ensures during IR
1326   /// generation that there is always a valid CFG into which instructions are
1327   /// inserted. As a result, the insertpoint is known to be always followed by a
1328   /// terminator instruction. This means the insert point may be specified by a
1329   /// terminator instruction, but it can never point to an ->end() iterator
1330   /// which does not have a corresponding instruction. Hence, dereferencing
1331   /// the insertpoint to obtain an instruction is known to be save.
1332   ///
1333   /// We also do not need to update the Builder here, as new instructions are
1334   /// always inserted _before_ the given InsertLocation. As a result, the
1335   /// insert location remains valid.
1336   assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
1337          "Insert location points after last valid instruction");
1338   Instruction *InsertLocation = &*Builder.GetInsertPoint();
1339   return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
1340                        InsertLocation, &ValueMap,
1341                        StartBlock->getSinglePredecessor());
1342 }
1343 
1344 /// The AST expression we generate to perform the run-time check assumes
1345 /// computations on integer types of infinite size. As we only use 64-bit
1346 /// arithmetic we check for overflows, in case of which we set the result
1347 /// of this run-time check to false to be cosnservatively correct,
1348 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
1349   auto ExprBuilder = getExprBuilder();
1350   ExprBuilder.setTrackOverflow(true);
1351   Value *RTC = ExprBuilder.create(Condition);
1352   if (!RTC->getType()->isIntegerTy(1))
1353     RTC = Builder.CreateIsNotNull(RTC);
1354   Value *OverflowHappened =
1355       Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");
1356 
1357   if (PollyGenerateRTCPrint) {
1358     auto *F = Builder.GetInsertBlock()->getParent();
1359     RuntimeDebugBuilder::createCPUPrinter(
1360         Builder,
1361         "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
1362             " __RTC: ",
1363         RTC, " Overflow: ", OverflowHappened, "\n");
1364   }
1365 
1366   RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
1367   ExprBuilder.setTrackOverflow(false);
1368 
1369   if (!isa<ConstantInt>(RTC))
1370     VersionedScops++;
1371 
1372   return RTC;
1373 }
1374