1 //===------ IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the IslNodeBuilder, a class to translate an isl AST into 11 // a LLVM-IR AST. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslAst.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/LoopGenerators.h" 21 #include "polly/CodeGen/Utils.h" 22 #include "polly/Config/config.h" 23 #include "polly/DependenceInfo.h" 24 #include "polly/LinkAllPasses.h" 25 #include "polly/ScopInfo.h" 26 #include "polly/Support/GICHelper.h" 27 #include "polly/Support/SCEVValidator.h" 28 #include "polly/Support/ScopHelper.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "isl/aff.h" 40 #include "isl/ast.h" 41 #include "isl/ast_build.h" 42 #include "isl/list.h" 43 #include "isl/map.h" 44 #include "isl/set.h" 45 #include "isl/union_map.h" 46 #include "isl/union_set.h" 47 48 using namespace polly; 49 using namespace llvm; 50 51 // The maximal number of basic sets we allow during invariant load construction. 52 // More complex access ranges will result in very high compile time and are also 53 // unlikely to result in good code. This value is very high and should only 54 // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006). 55 static int const MaxConjunctsInAccessRange = 80; 56 57 __isl_give isl_ast_expr * 58 IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For, 59 ICmpInst::Predicate &Predicate) { 60 isl_id *UBID, *IteratorID; 61 isl_ast_expr *Cond, *Iterator, *UB, *Arg0; 62 isl_ast_op_type Type; 63 64 Cond = isl_ast_node_for_get_cond(For); 65 Iterator = isl_ast_node_for_get_iterator(For); 66 isl_ast_expr_get_type(Cond); 67 assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op && 68 "conditional expression is not an atomic upper bound"); 69 70 Type = isl_ast_expr_get_op_type(Cond); 71 72 switch (Type) { 73 case isl_ast_op_le: 74 Predicate = ICmpInst::ICMP_SLE; 75 break; 76 case isl_ast_op_lt: 77 Predicate = ICmpInst::ICMP_SLT; 78 break; 79 default: 80 llvm_unreachable("Unexpected comparision type in loop conditon"); 81 } 82 83 Arg0 = isl_ast_expr_get_op_arg(Cond, 0); 84 85 assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id && 86 "conditional expression is not an atomic upper bound"); 87 88 UBID = isl_ast_expr_get_id(Arg0); 89 90 assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id && 91 "Could not get the iterator"); 92 93 IteratorID = isl_ast_expr_get_id(Iterator); 94 95 assert(UBID == IteratorID && 96 "conditional expression is not an atomic upper bound"); 97 98 UB = isl_ast_expr_get_op_arg(Cond, 1); 99 100 isl_ast_expr_free(Cond); 101 isl_ast_expr_free(Iterator); 102 isl_ast_expr_free(Arg0); 103 isl_id_free(IteratorID); 104 isl_id_free(UBID); 105 106 return UB; 107 } 108 109 /// @brief Return true if a return value of Predicate is true for the value 110 /// represented by passed isl_ast_expr_int. 111 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, 112 isl_bool (*Predicate)(__isl_keep isl_val *)) { 113 if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { 114 isl_ast_expr_free(Expr); 115 return false; 116 } 117 auto ExprVal = isl_ast_expr_get_val(Expr); 118 isl_ast_expr_free(Expr); 119 if (Predicate(ExprVal) != true) { 120 isl_val_free(ExprVal); 121 return false; 122 } 123 isl_val_free(ExprVal); 124 return true; 125 } 126 127 int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) { 128 assert(isl_ast_node_get_type(For) == isl_ast_node_for); 129 auto Body = isl_ast_node_for_get_body(For); 130 131 // First, check if we can actually handle this code 132 switch (isl_ast_node_get_type(Body)) { 133 case isl_ast_node_user: 134 break; 135 case isl_ast_node_block: { 136 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 137 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) { 138 isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i); 139 int Type = isl_ast_node_get_type(Node); 140 isl_ast_node_free(Node); 141 if (Type != isl_ast_node_user) { 142 isl_ast_node_list_free(List); 143 isl_ast_node_free(Body); 144 return -1; 145 } 146 } 147 isl_ast_node_list_free(List); 148 break; 149 } 150 default: 151 isl_ast_node_free(Body); 152 return -1; 153 } 154 isl_ast_node_free(Body); 155 156 auto Init = isl_ast_node_for_get_init(For); 157 if (!checkIslAstExprInt(Init, isl_val_is_zero)) 158 return -1; 159 auto Inc = isl_ast_node_for_get_inc(For); 160 if (!checkIslAstExprInt(Inc, isl_val_is_one)) 161 return -1; 162 CmpInst::Predicate Predicate; 163 auto UB = getUpperBound(For, Predicate); 164 if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) { 165 isl_ast_expr_free(UB); 166 return -1; 167 } 168 auto UpVal = isl_ast_expr_get_val(UB); 169 isl_ast_expr_free(UB); 170 int NumberIterations = isl_val_get_num_si(UpVal); 171 isl_val_free(UpVal); 172 if (NumberIterations < 0) 173 return -1; 174 if (Predicate == CmpInst::ICMP_SLT) 175 return NumberIterations; 176 else 177 return NumberIterations + 1; 178 } 179 180 struct SubtreeReferences { 181 LoopInfo &LI; 182 ScalarEvolution &SE; 183 Region &R; 184 ValueMapT &GlobalMap; 185 SetVector<Value *> &Values; 186 SetVector<const SCEV *> &SCEVs; 187 BlockGenerator &BlockGen; 188 }; 189 190 /// @brief Extract the values and SCEVs needed to generate code for a block. 191 static int findReferencesInBlock(struct SubtreeReferences &References, 192 const ScopStmt *Stmt, const BasicBlock *BB) { 193 for (const Instruction &Inst : *BB) 194 for (Value *SrcVal : Inst.operands()) { 195 auto *Scope = References.LI.getLoopFor(BB); 196 if (canSynthesize(SrcVal, &References.LI, &References.SE, &References.R, 197 Scope)) { 198 References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); 199 continue; 200 } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) 201 References.Values.insert(NewVal); 202 } 203 return 0; 204 } 205 206 /// Extract the out-of-scop values and SCEVs referenced from a ScopStmt. 207 /// 208 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 209 /// statement and the base pointers of the memory accesses. For scalar 210 /// statements we force the generation of alloca memory locations and list 211 /// these locations in the set of out-of-scop values as well. 212 /// 213 /// @param Stmt The statement for which to extract the information. 214 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 215 /// structure. 216 static isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr) { 217 auto &References = *static_cast<struct SubtreeReferences *>(UserPtr); 218 219 if (Stmt->isBlockStmt()) 220 findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); 221 else { 222 assert(Stmt->isRegionStmt() && 223 "Stmt was neither block nor region statement"); 224 for (const BasicBlock *BB : Stmt->getRegion()->blocks()) 225 findReferencesInBlock(References, Stmt, BB); 226 } 227 228 for (auto &Access : *Stmt) { 229 if (Access->isArrayKind()) { 230 auto *BasePtr = Access->getScopArrayInfo()->getBasePtr(); 231 if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr)) 232 if (Stmt->getParent()->getRegion().contains(OpInst)) 233 continue; 234 235 References.Values.insert(BasePtr); 236 continue; 237 } 238 239 References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); 240 } 241 242 return isl_stat_ok; 243 } 244 245 /// Extract the out-of-scop values and SCEVs referenced from a set describing 246 /// a ScopStmt. 247 /// 248 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 249 /// statement and the base pointers of the memory accesses. For scalar 250 /// statements we force the generation of alloca memory locations and list 251 /// these locations in the set of out-of-scop values as well. 252 /// 253 /// @param Set A set which references the ScopStmt we are interested in. 254 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences 255 /// structure. 256 static isl_stat addReferencesFromStmtSet(isl_set *Set, void *UserPtr) { 257 isl_id *Id = isl_set_get_tuple_id(Set); 258 auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id)); 259 isl_id_free(Id); 260 isl_set_free(Set); 261 return addReferencesFromStmt(Stmt, UserPtr); 262 } 263 264 /// Extract the out-of-scop values and SCEVs referenced from a union set 265 /// referencing multiple ScopStmts. 266 /// 267 /// This includes the SCEVUnknowns referenced by the SCEVs used in the 268 /// statement and the base pointers of the memory accesses. For scalar 269 /// statements we force the generation of alloca memory locations and list 270 /// these locations in the set of out-of-scop values as well. 271 /// 272 /// @param USet A union set referencing the ScopStmts we are interested 273 /// in. 274 /// @param References The SubtreeReferences data structure through which 275 /// results are returned and further information is 276 /// provided. 277 static void 278 addReferencesFromStmtUnionSet(isl_union_set *USet, 279 struct SubtreeReferences &References) { 280 isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References); 281 isl_union_set_free(USet); 282 } 283 284 __isl_give isl_union_map * 285 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) { 286 return IslAstInfo::getSchedule(For); 287 } 288 289 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For, 290 SetVector<Value *> &Values, 291 SetVector<const Loop *> &Loops) { 292 293 SetVector<const SCEV *> SCEVs; 294 struct SubtreeReferences References = { 295 LI, SE, S.getRegion(), ValueMap, Values, SCEVs, getBlockGenerator()}; 296 297 for (const auto &I : IDToValue) 298 Values.insert(I.second); 299 300 for (const auto &I : OutsideLoopIterations) 301 Values.insert(cast<SCEVUnknown>(I.second)->getValue()); 302 303 isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For)); 304 addReferencesFromStmtUnionSet(Schedule, References); 305 306 for (const SCEV *Expr : SCEVs) { 307 findValues(Expr, SE, Values); 308 findLoops(Expr, Loops); 309 } 310 311 Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); }); 312 313 /// Remove loops that contain the scop or that are part of the scop, as they 314 /// are considered local. This leaves only loops that are before the scop, but 315 /// do not contain the scop itself. 316 Loops.remove_if([this](const Loop *L) { 317 return S.getRegion().contains(L) || L->contains(S.getRegion().getEntry()); 318 }); 319 } 320 321 void IslNodeBuilder::updateValues(ValueMapT &NewValues) { 322 SmallPtrSet<Value *, 5> Inserted; 323 324 for (const auto &I : IDToValue) { 325 IDToValue[I.first] = NewValues[I.second]; 326 Inserted.insert(I.second); 327 } 328 329 for (const auto &I : NewValues) { 330 if (Inserted.count(I.first)) 331 continue; 332 333 ValueMap[I.first] = I.second; 334 } 335 } 336 337 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, 338 std::vector<Value *> &IVS, 339 __isl_take isl_id *IteratorID, 340 __isl_take isl_union_map *Schedule) { 341 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 342 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 343 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 344 isl_ast_expr_free(StmtExpr); 345 ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); 346 std::vector<LoopToScevMapT> VLTS(IVS.size()); 347 348 isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain()); 349 Schedule = isl_union_map_intersect_domain(Schedule, Domain); 350 isl_map *S = isl_map_from_union_map(Schedule); 351 352 auto *NewAccesses = createNewAccesses(Stmt, User); 353 createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); 354 VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); 355 isl_id_to_ast_expr_free(NewAccesses); 356 isl_map_free(S); 357 isl_id_free(Id); 358 isl_ast_node_free(User); 359 } 360 361 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { 362 auto *Id = isl_ast_node_mark_get_id(Node); 363 auto Child = isl_ast_node_mark_get_node(Node); 364 isl_ast_node_free(Node); 365 // If a child node of a 'SIMD mark' is a loop that has a single iteration, 366 // it will be optimized away and we should skip it. 367 if (!strcmp(isl_id_get_name(Id), "SIMD") && 368 isl_ast_node_get_type(Child) == isl_ast_node_for) { 369 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 370 int VectorWidth = getNumberOfIterations(Child); 371 if (Vector && 1 < VectorWidth && VectorWidth <= 16) 372 createForVector(Child, VectorWidth); 373 else 374 createForSequential(Child, true); 375 isl_id_free(Id); 376 return; 377 } 378 create(Child); 379 isl_id_free(Id); 380 } 381 382 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, 383 int VectorWidth) { 384 isl_ast_node *Body = isl_ast_node_for_get_body(For); 385 isl_ast_expr *Init = isl_ast_node_for_get_init(For); 386 isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); 387 isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); 388 isl_id *IteratorID = isl_ast_expr_get_id(Iterator); 389 390 Value *ValueLB = ExprBuilder.create(Init); 391 Value *ValueInc = ExprBuilder.create(Inc); 392 393 Type *MaxType = ExprBuilder.getType(Iterator); 394 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 395 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 396 397 if (MaxType != ValueLB->getType()) 398 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 399 if (MaxType != ValueInc->getType()) 400 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 401 402 std::vector<Value *> IVS(VectorWidth); 403 IVS[0] = ValueLB; 404 405 for (int i = 1; i < VectorWidth; i++) 406 IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); 407 408 isl_union_map *Schedule = getScheduleForAstNode(For); 409 assert(Schedule && "For statement annotation does not contain its schedule"); 410 411 IDToValue[IteratorID] = ValueLB; 412 413 switch (isl_ast_node_get_type(Body)) { 414 case isl_ast_node_user: 415 createUserVector(Body, IVS, isl_id_copy(IteratorID), 416 isl_union_map_copy(Schedule)); 417 break; 418 case isl_ast_node_block: { 419 isl_ast_node_list *List = isl_ast_node_block_get_children(Body); 420 421 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 422 createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, 423 isl_id_copy(IteratorID), isl_union_map_copy(Schedule)); 424 425 isl_ast_node_free(Body); 426 isl_ast_node_list_free(List); 427 break; 428 } 429 default: 430 isl_ast_node_dump(Body); 431 llvm_unreachable("Unhandled isl_ast_node in vectorizer"); 432 } 433 434 IDToValue.erase(IDToValue.find(IteratorID)); 435 isl_id_free(IteratorID); 436 isl_union_map_free(Schedule); 437 438 isl_ast_node_free(For); 439 isl_ast_expr_free(Iterator); 440 } 441 442 void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For, 443 bool KnownParallel) { 444 isl_ast_node *Body; 445 isl_ast_expr *Init, *Inc, *Iterator, *UB; 446 isl_id *IteratorID; 447 Value *ValueLB, *ValueUB, *ValueInc; 448 Type *MaxType; 449 BasicBlock *ExitBlock; 450 Value *IV; 451 CmpInst::Predicate Predicate; 452 bool Parallel; 453 454 Parallel = KnownParallel || (IslAstInfo::isParallel(For) && 455 !IslAstInfo::isReductionParallel(For)); 456 457 Body = isl_ast_node_for_get_body(For); 458 459 // isl_ast_node_for_is_degenerate(For) 460 // 461 // TODO: For degenerated loops we could generate a plain assignment. 462 // However, for now we just reuse the logic for normal loops, which will 463 // create a loop with a single iteration. 464 465 Init = isl_ast_node_for_get_init(For); 466 Inc = isl_ast_node_for_get_inc(For); 467 Iterator = isl_ast_node_for_get_iterator(For); 468 IteratorID = isl_ast_expr_get_id(Iterator); 469 UB = getUpperBound(For, Predicate); 470 471 ValueLB = ExprBuilder.create(Init); 472 ValueUB = ExprBuilder.create(UB); 473 ValueInc = ExprBuilder.create(Inc); 474 475 MaxType = ExprBuilder.getType(Iterator); 476 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 477 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 478 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 479 480 if (MaxType != ValueLB->getType()) 481 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 482 if (MaxType != ValueUB->getType()) 483 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 484 if (MaxType != ValueInc->getType()) 485 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 486 487 // If we can show that LB <Predicate> UB holds at least once, we can 488 // omit the GuardBB in front of the loop. 489 bool UseGuardBB = 490 !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); 491 IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, P, LI, DT, ExitBlock, 492 Predicate, &Annotator, Parallel, UseGuardBB); 493 IDToValue[IteratorID] = IV; 494 495 create(Body); 496 497 Annotator.popLoop(Parallel); 498 499 IDToValue.erase(IDToValue.find(IteratorID)); 500 501 Builder.SetInsertPoint(&ExitBlock->front()); 502 503 isl_ast_node_free(For); 504 isl_ast_expr_free(Iterator); 505 isl_id_free(IteratorID); 506 } 507 508 /// @brief Remove the BBs contained in a (sub)function from the dominator tree. 509 /// 510 /// This function removes the basic blocks that are part of a subfunction from 511 /// the dominator tree. Specifically, when generating code it may happen that at 512 /// some point the code generation continues in a new sub-function (e.g., when 513 /// generating OpenMP code). The basic blocks that are created in this 514 /// sub-function are then still part of the dominator tree of the original 515 /// function, such that the dominator tree reaches over function boundaries. 516 /// This is not only incorrect, but also causes crashes. This function now 517 /// removes from the dominator tree all basic blocks that are dominated (and 518 /// consequently reachable) from the entry block of this (sub)function. 519 /// 520 /// FIXME: A LLVM (function or region) pass should not touch anything outside of 521 /// the function/region it runs on. Hence, the pure need for this function shows 522 /// that we do not comply to this rule. At the moment, this does not cause any 523 /// issues, but we should be aware that such issues may appear. Unfortunately 524 /// the current LLVM pass infrastructure does not allow to make Polly a module 525 /// or call-graph pass to solve this issue, as such a pass would not have access 526 /// to the per-function analyses passes needed by Polly. A future pass manager 527 /// infrastructure is supposed to enable such kind of access possibly allowing 528 /// us to create a cleaner solution here. 529 /// 530 /// FIXME: Instead of adding the dominance information and then dropping it 531 /// later on, we should try to just not add it in the first place. This requires 532 /// some careful testing to make sure this does not break in interaction with 533 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or 534 /// which may try to update it. 535 /// 536 /// @param F The function which contains the BBs to removed. 537 /// @param DT The dominator tree from which to remove the BBs. 538 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { 539 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 540 std::vector<BasicBlock *> Nodes; 541 542 // We can only remove an element from the dominator tree, if all its children 543 // have been removed. To ensure this we obtain the list of nodes to remove 544 // using a post-order tree traversal. 545 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 546 Nodes.push_back(I->getBlock()); 547 548 for (BasicBlock *BB : Nodes) 549 DT.eraseNode(BB); 550 } 551 552 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { 553 isl_ast_node *Body; 554 isl_ast_expr *Init, *Inc, *Iterator, *UB; 555 isl_id *IteratorID; 556 Value *ValueLB, *ValueUB, *ValueInc; 557 Type *MaxType; 558 Value *IV; 559 CmpInst::Predicate Predicate; 560 561 // The preamble of parallel code interacts different than normal code with 562 // e.g., scalar initialization. Therefore, we ensure the parallel code is 563 // separated from the last basic block. 564 BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), 565 &*Builder.GetInsertPoint(), &DT, &LI); 566 ParBB->setName("polly.parallel.for"); 567 Builder.SetInsertPoint(&ParBB->front()); 568 569 Body = isl_ast_node_for_get_body(For); 570 Init = isl_ast_node_for_get_init(For); 571 Inc = isl_ast_node_for_get_inc(For); 572 Iterator = isl_ast_node_for_get_iterator(For); 573 IteratorID = isl_ast_expr_get_id(Iterator); 574 UB = getUpperBound(For, Predicate); 575 576 ValueLB = ExprBuilder.create(Init); 577 ValueUB = ExprBuilder.create(UB); 578 ValueInc = ExprBuilder.create(Inc); 579 580 // OpenMP always uses SLE. In case the isl generated AST uses a SLT 581 // expression, we need to adjust the loop blound by one. 582 if (Predicate == CmpInst::ICMP_SLT) 583 ValueUB = Builder.CreateAdd( 584 ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); 585 586 MaxType = ExprBuilder.getType(Iterator); 587 MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); 588 MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); 589 MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); 590 591 if (MaxType != ValueLB->getType()) 592 ValueLB = Builder.CreateSExt(ValueLB, MaxType); 593 if (MaxType != ValueUB->getType()) 594 ValueUB = Builder.CreateSExt(ValueUB, MaxType); 595 if (MaxType != ValueInc->getType()) 596 ValueInc = Builder.CreateSExt(ValueInc, MaxType); 597 598 BasicBlock::iterator LoopBody; 599 600 SetVector<Value *> SubtreeValues; 601 SetVector<const Loop *> Loops; 602 603 getReferencesInSubtree(For, SubtreeValues, Loops); 604 605 // Create for all loops we depend on values that contain the current loop 606 // iteration. These values are necessary to generate code for SCEVs that 607 // depend on such loops. As a result we need to pass them to the subfunction. 608 for (const Loop *L : Loops) { 609 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 610 SE.getUnknown(Builder.getInt64(1)), 611 L, SCEV::FlagAnyWrap); 612 Value *V = generateSCEV(OuterLIV); 613 OutsideLoopIterations[L] = SE.getUnknown(V); 614 SubtreeValues.insert(V); 615 } 616 617 ValueMapT NewValues; 618 ParallelLoopGenerator ParallelLoopGen(Builder, P, LI, DT, DL); 619 620 IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc, 621 SubtreeValues, NewValues, &LoopBody); 622 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 623 Builder.SetInsertPoint(&*LoopBody); 624 625 // Remember the parallel subfunction 626 ParallelSubfunctions.push_back(LoopBody->getFunction()); 627 628 // Save the current values. 629 auto ValueMapCopy = ValueMap; 630 IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; 631 632 updateValues(NewValues); 633 IDToValue[IteratorID] = IV; 634 635 ValueMapT NewValuesReverse; 636 637 for (auto P : NewValues) 638 NewValuesReverse[P.second] = P.first; 639 640 Annotator.addAlternativeAliasBases(NewValuesReverse); 641 642 create(Body); 643 644 Annotator.resetAlternativeAliasBases(); 645 // Restore the original values. 646 ValueMap = ValueMapCopy; 647 IDToValue = IDToValueCopy; 648 649 Builder.SetInsertPoint(&*AfterLoop); 650 removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); 651 652 for (const Loop *L : Loops) 653 OutsideLoopIterations.erase(L); 654 655 isl_ast_node_free(For); 656 isl_ast_expr_free(Iterator); 657 isl_id_free(IteratorID); 658 } 659 660 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { 661 bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; 662 663 if (Vector && IslAstInfo::isInnermostParallel(For) && 664 !IslAstInfo::isReductionParallel(For)) { 665 int VectorWidth = getNumberOfIterations(For); 666 if (1 < VectorWidth && VectorWidth <= 16) { 667 createForVector(For, VectorWidth); 668 return; 669 } 670 } 671 672 if (IslAstInfo::isExecutedInParallel(For)) { 673 createForParallel(For); 674 return; 675 } 676 createForSequential(For, false); 677 } 678 679 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { 680 isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); 681 682 Function *F = Builder.GetInsertBlock()->getParent(); 683 LLVMContext &Context = F->getContext(); 684 685 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 686 &*Builder.GetInsertPoint(), &DT, &LI); 687 CondBB->setName("polly.cond"); 688 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 689 MergeBB->setName("polly.merge"); 690 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 691 BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); 692 693 DT.addNewBlock(ThenBB, CondBB); 694 DT.addNewBlock(ElseBB, CondBB); 695 DT.changeImmediateDominator(MergeBB, CondBB); 696 697 Loop *L = LI.getLoopFor(CondBB); 698 if (L) { 699 L->addBasicBlockToLoop(ThenBB, LI); 700 L->addBasicBlockToLoop(ElseBB, LI); 701 } 702 703 CondBB->getTerminator()->eraseFromParent(); 704 705 Builder.SetInsertPoint(CondBB); 706 Value *Predicate = ExprBuilder.create(Cond); 707 Builder.CreateCondBr(Predicate, ThenBB, ElseBB); 708 Builder.SetInsertPoint(ThenBB); 709 Builder.CreateBr(MergeBB); 710 Builder.SetInsertPoint(ElseBB); 711 Builder.CreateBr(MergeBB); 712 Builder.SetInsertPoint(&ThenBB->front()); 713 714 create(isl_ast_node_if_get_then(If)); 715 716 Builder.SetInsertPoint(&ElseBB->front()); 717 718 if (isl_ast_node_if_has_else(If)) 719 create(isl_ast_node_if_get_else(If)); 720 721 Builder.SetInsertPoint(&MergeBB->front()); 722 723 isl_ast_node_free(If); 724 } 725 726 __isl_give isl_id_to_ast_expr * 727 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, 728 __isl_keep isl_ast_node *Node) { 729 isl_id_to_ast_expr *NewAccesses = 730 isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx(), 0); 731 732 auto *Build = IslAstInfo::getBuild(Node); 733 assert(Build && "Could not obtain isl_ast_build from user node"); 734 Stmt->setAstBuild(Build); 735 736 for (auto *MA : *Stmt) { 737 if (!MA->hasNewAccessRelation()) 738 continue; 739 740 auto Schedule = isl_ast_build_get_schedule(Build); 741 auto PWAccRel = MA->applyScheduleToAccessRelation(Schedule); 742 743 auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 744 NewAccesses = isl_id_to_ast_expr_set(NewAccesses, MA->getId(), AccessExpr); 745 } 746 747 return NewAccesses; 748 } 749 750 void IslNodeBuilder::createSubstitutions(isl_ast_expr *Expr, ScopStmt *Stmt, 751 LoopToScevMapT <S) { 752 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 753 "Expression of type 'op' expected"); 754 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && 755 "Opertation of type 'call' expected"); 756 for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { 757 isl_ast_expr *SubExpr; 758 Value *V; 759 760 SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); 761 V = ExprBuilder.create(SubExpr); 762 ScalarEvolution *SE = Stmt->getParent()->getSE(); 763 LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); 764 } 765 766 isl_ast_expr_free(Expr); 767 } 768 769 void IslNodeBuilder::createSubstitutionsVector( 770 __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, 771 std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, 772 __isl_take isl_id *IteratorID) { 773 int i = 0; 774 775 Value *OldValue = IDToValue[IteratorID]; 776 for (Value *IV : IVS) { 777 IDToValue[IteratorID] = IV; 778 createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); 779 i++; 780 } 781 782 IDToValue[IteratorID] = OldValue; 783 isl_id_free(IteratorID); 784 isl_ast_expr_free(Expr); 785 } 786 787 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { 788 LoopToScevMapT LTS; 789 isl_id *Id; 790 ScopStmt *Stmt; 791 792 isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); 793 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 794 Id = isl_ast_expr_get_id(StmtExpr); 795 isl_ast_expr_free(StmtExpr); 796 797 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 798 799 Stmt = (ScopStmt *)isl_id_get_user(Id); 800 auto *NewAccesses = createNewAccesses(Stmt, User); 801 createSubstitutions(Expr, Stmt, LTS); 802 803 if (Stmt->isBlockStmt()) 804 BlockGen.copyStmt(*Stmt, LTS, NewAccesses); 805 else 806 RegionGen.copyStmt(*Stmt, LTS, NewAccesses); 807 808 isl_id_to_ast_expr_free(NewAccesses); 809 isl_ast_node_free(User); 810 isl_id_free(Id); 811 } 812 813 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { 814 isl_ast_node_list *List = isl_ast_node_block_get_children(Block); 815 816 for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) 817 create(isl_ast_node_list_get_ast_node(List, i)); 818 819 isl_ast_node_free(Block); 820 isl_ast_node_list_free(List); 821 } 822 823 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { 824 switch (isl_ast_node_get_type(Node)) { 825 case isl_ast_node_error: 826 llvm_unreachable("code generation error"); 827 case isl_ast_node_mark: 828 createMark(Node); 829 return; 830 case isl_ast_node_for: 831 createFor(Node); 832 return; 833 case isl_ast_node_if: 834 createIf(Node); 835 return; 836 case isl_ast_node_user: 837 createUser(Node); 838 return; 839 case isl_ast_node_block: 840 createBlock(Node); 841 return; 842 } 843 844 llvm_unreachable("Unknown isl_ast_node type"); 845 } 846 847 bool IslNodeBuilder::materializeValue(isl_id *Id) { 848 // If the Id is already mapped, skip it. 849 if (!IDToValue.count(Id)) { 850 auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); 851 Value *V = nullptr; 852 853 // Parameters could refere to invariant loads that need to be 854 // preloaded before we can generate code for the parameter. Thus, 855 // check if any value refered to in ParamSCEV is an invariant load 856 // and if so make sure its equivalence class is preloaded. 857 SetVector<Value *> Values; 858 findValues(ParamSCEV, SE, Values); 859 for (auto *Val : Values) { 860 861 // Check if the value is an instruction in a dead block within the SCoP 862 // and if so do not code generate it. 863 if (auto *Inst = dyn_cast<Instruction>(Val)) { 864 if (S.getRegion().contains(Inst)) { 865 bool IsDead = true; 866 867 // Check for "undef" loads first, then if there is a statement for 868 // the parent of Inst and lastly if the parent of Inst has an empty 869 // domain. In the first and last case the instruction is dead but if 870 // there is a statement or the domain is not empty Inst is not dead. 871 auto MemInst = MemAccInst::dyn_cast(Inst); 872 auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; 873 if (Address && 874 SE.getUnknown(UndefValue::get(Address->getType())) == 875 SE.getPointerBase(SE.getSCEV(Address))) { 876 } else if (S.getStmtFor(Inst)) { 877 IsDead = false; 878 } else { 879 auto *Domain = S.getDomainConditions(Inst->getParent()); 880 IsDead = isl_set_is_empty(Domain); 881 isl_set_free(Domain); 882 } 883 884 if (IsDead) { 885 V = UndefValue::get(ParamSCEV->getType()); 886 break; 887 } 888 } 889 } 890 891 if (const auto *IAClass = S.lookupInvariantEquivClass(Val)) { 892 893 // Check if this invariant access class is empty, hence if we never 894 // actually added a loads instruction to it. In that case it has no 895 // (meaningful) users and we should not try to code generate it. 896 if (std::get<1>(*IAClass).empty()) 897 V = UndefValue::get(ParamSCEV->getType()); 898 899 if (!preloadInvariantEquivClass(*IAClass)) { 900 isl_id_free(Id); 901 return false; 902 } 903 } 904 } 905 906 V = V ? V : generateSCEV(ParamSCEV); 907 IDToValue[Id] = V; 908 } 909 910 isl_id_free(Id); 911 return true; 912 } 913 914 bool IslNodeBuilder::materializeParameters(isl_set *Set, bool All) { 915 for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { 916 if (!All && !isl_set_involves_dims(Set, isl_dim_param, i, 1)) 917 continue; 918 isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); 919 if (!materializeValue(Id)) 920 return false; 921 } 922 return true; 923 } 924 925 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, 926 isl_ast_build *Build, 927 Instruction *AccInst) { 928 if (isl_set_n_basic_set(AccessRange) > MaxConjunctsInAccessRange) { 929 isl_set_free(AccessRange); 930 return nullptr; 931 } 932 933 isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); 934 PWAccRel = isl_pw_multi_aff_gist_params(PWAccRel, S.getContext()); 935 isl_ast_expr *Access = 936 isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); 937 auto *Address = isl_ast_expr_address_of(Access); 938 auto *AddressValue = ExprBuilder.create(Address); 939 Value *PreloadVal; 940 941 // Correct the type as the SAI might have a different type than the user 942 // expects, especially if the base pointer is a struct. 943 Type *Ty = AccInst->getType(); 944 945 auto *Ptr = AddressValue; 946 auto Name = Ptr->getName(); 947 Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(), Name + ".cast"); 948 PreloadVal = Builder.CreateLoad(Ptr, Name + ".load"); 949 if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal)) 950 PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment()); 951 952 return PreloadVal; 953 } 954 955 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, 956 isl_set *Domain) { 957 958 isl_set *AccessRange = isl_map_range(MA.getAddressFunction()); 959 if (!materializeParameters(AccessRange, false)) { 960 isl_set_free(AccessRange); 961 isl_set_free(Domain); 962 return nullptr; 963 } 964 965 auto *Build = isl_ast_build_from_context(isl_set_universe(S.getParamSpace())); 966 isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); 967 bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); 968 isl_set_free(Universe); 969 970 Instruction *AccInst = MA.getAccessInstruction(); 971 Type *AccInstTy = AccInst->getType(); 972 973 Value *PreloadVal = nullptr; 974 if (AlwaysExecuted) { 975 PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); 976 isl_ast_build_free(Build); 977 isl_set_free(Domain); 978 return PreloadVal; 979 } 980 981 if (!materializeParameters(Domain, false)) { 982 isl_ast_build_free(Build); 983 isl_set_free(AccessRange); 984 isl_set_free(Domain); 985 return nullptr; 986 } 987 988 isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); 989 Domain = nullptr; 990 991 Value *Cond = ExprBuilder.create(DomainCond); 992 if (!Cond->getType()->isIntegerTy(1)) 993 Cond = Builder.CreateIsNotNull(Cond); 994 995 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 996 &*Builder.GetInsertPoint(), &DT, &LI); 997 CondBB->setName("polly.preload.cond"); 998 999 BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); 1000 MergeBB->setName("polly.preload.merge"); 1001 1002 Function *F = Builder.GetInsertBlock()->getParent(); 1003 LLVMContext &Context = F->getContext(); 1004 BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); 1005 1006 DT.addNewBlock(ExecBB, CondBB); 1007 if (Loop *L = LI.getLoopFor(CondBB)) 1008 L->addBasicBlockToLoop(ExecBB, LI); 1009 1010 auto *CondBBTerminator = CondBB->getTerminator(); 1011 Builder.SetInsertPoint(CondBBTerminator); 1012 Builder.CreateCondBr(Cond, ExecBB, MergeBB); 1013 CondBBTerminator->eraseFromParent(); 1014 1015 Builder.SetInsertPoint(ExecBB); 1016 Builder.CreateBr(MergeBB); 1017 1018 Builder.SetInsertPoint(ExecBB->getTerminator()); 1019 Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); 1020 Builder.SetInsertPoint(MergeBB->getTerminator()); 1021 auto *MergePHI = Builder.CreatePHI( 1022 AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); 1023 PreloadVal = MergePHI; 1024 1025 if (!PreAccInst) { 1026 PreloadVal = nullptr; 1027 PreAccInst = UndefValue::get(AccInstTy); 1028 } 1029 1030 MergePHI->addIncoming(PreAccInst, ExecBB); 1031 MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); 1032 1033 isl_ast_build_free(Build); 1034 return PreloadVal; 1035 } 1036 1037 bool IslNodeBuilder::preloadInvariantEquivClass( 1038 const InvariantEquivClassTy &IAClass) { 1039 // For an equivalence class of invariant loads we pre-load the representing 1040 // element with the unified execution context. However, we have to map all 1041 // elements of the class to the one preloaded load as they are referenced 1042 // during the code generation and therefor need to be mapped. 1043 const MemoryAccessList &MAs = std::get<1>(IAClass); 1044 if (MAs.empty()) 1045 return true; 1046 1047 MemoryAccess *MA = MAs.front(); 1048 assert(MA->isArrayKind() && MA->isRead()); 1049 1050 // If the access function was already mapped, the preload of this equivalence 1051 // class was triggered earlier already and doesn't need to be done again. 1052 if (ValueMap.count(MA->getAccessInstruction())) 1053 return true; 1054 1055 // Check for recurrsion which can be caused by additional constraints, e.g., 1056 // non-finitie loop contraints. In such a case we have to bail out and insert 1057 // a "false" runtime check that will cause the original code to be executed. 1058 auto PtrId = std::make_pair(std::get<0>(IAClass), std::get<3>(IAClass)); 1059 if (!PreloadedPtrs.insert(PtrId).second) 1060 return false; 1061 1062 // If the base pointer of this class is dependent on another one we have to 1063 // make sure it was preloaded already. 1064 auto *SAI = MA->getScopArrayInfo(); 1065 if (const auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) 1066 if (!preloadInvariantEquivClass(*BaseIAClass)) 1067 return false; 1068 1069 Instruction *AccInst = MA->getAccessInstruction(); 1070 Type *AccInstTy = AccInst->getType(); 1071 1072 isl_set *Domain = isl_set_copy(std::get<2>(IAClass)); 1073 Value *PreloadVal = preloadInvariantLoad(*MA, Domain); 1074 if (!PreloadVal) 1075 return false; 1076 1077 for (const MemoryAccess *MA : MAs) { 1078 Instruction *MAAccInst = MA->getAccessInstruction(); 1079 assert(PreloadVal->getType() == MAAccInst->getType()); 1080 ValueMap[MAAccInst] = PreloadVal; 1081 } 1082 1083 if (SE.isSCEVable(AccInstTy)) { 1084 isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)); 1085 if (ParamId) 1086 IDToValue[ParamId] = PreloadVal; 1087 isl_id_free(ParamId); 1088 } 1089 1090 BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1091 auto *Alloca = new AllocaInst(AccInstTy, AccInst->getName() + ".preload.s2a"); 1092 Alloca->insertBefore(&*EntryBB->getFirstInsertionPt()); 1093 Builder.CreateStore(PreloadVal, Alloca); 1094 1095 for (auto *DerivedSAI : SAI->getDerivedSAIs()) { 1096 Value *BasePtr = DerivedSAI->getBasePtr(); 1097 1098 for (const MemoryAccess *MA : MAs) { 1099 // As the derived SAI information is quite coarse, any load from the 1100 // current SAI could be the base pointer of the derived SAI, however we 1101 // should only change the base pointer of the derived SAI if we actually 1102 // preloaded it. 1103 if (BasePtr == MA->getBaseAddr()) { 1104 assert(BasePtr->getType() == PreloadVal->getType()); 1105 DerivedSAI->setBasePtr(PreloadVal); 1106 } 1107 1108 // For scalar derived SAIs we remap the alloca used for the derived value. 1109 if (BasePtr == MA->getAccessInstruction()) { 1110 if (DerivedSAI->isPHIKind()) 1111 PHIOpMap[BasePtr] = Alloca; 1112 else 1113 ScalarMap[BasePtr] = Alloca; 1114 } 1115 } 1116 } 1117 1118 const Region &R = S.getRegion(); 1119 for (const MemoryAccess *MA : MAs) { 1120 1121 Instruction *MAAccInst = MA->getAccessInstruction(); 1122 // Use the escape system to get the correct value to users outside the SCoP. 1123 BlockGenerator::EscapeUserVectorTy EscapeUsers; 1124 for (auto *U : MAAccInst->users()) 1125 if (Instruction *UI = dyn_cast<Instruction>(U)) 1126 if (!R.contains(UI)) 1127 EscapeUsers.push_back(UI); 1128 1129 if (EscapeUsers.empty()) 1130 continue; 1131 1132 EscapeMap[MA->getAccessInstruction()] = 1133 std::make_pair(Alloca, std::move(EscapeUsers)); 1134 } 1135 1136 return true; 1137 } 1138 1139 bool IslNodeBuilder::preloadInvariantLoads() { 1140 1141 const auto &InvariantEquivClasses = S.getInvariantAccesses(); 1142 if (InvariantEquivClasses.empty()) 1143 return true; 1144 1145 BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), 1146 &*Builder.GetInsertPoint(), &DT, &LI); 1147 PreLoadBB->setName("polly.preload.begin"); 1148 Builder.SetInsertPoint(&PreLoadBB->front()); 1149 1150 for (const auto &IAClass : InvariantEquivClasses) 1151 if (!preloadInvariantEquivClass(IAClass)) 1152 return false; 1153 1154 return true; 1155 } 1156 1157 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { 1158 1159 // Materialize values for the parameters of the SCoP. 1160 materializeParameters(Context, /* all */ true); 1161 1162 // Generate values for the current loop iteration for all surrounding loops. 1163 // 1164 // We may also reference loops outside of the scop which do not contain the 1165 // scop itself, but as the number of such scops may be arbitrarily large we do 1166 // not generate code for them here, but only at the point of code generation 1167 // where these values are needed. 1168 Region &R = S.getRegion(); 1169 Loop *L = LI.getLoopFor(R.getEntry()); 1170 1171 while (L != nullptr && R.contains(L)) 1172 L = L->getParentLoop(); 1173 1174 while (L != nullptr) { 1175 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1176 SE.getUnknown(Builder.getInt64(1)), 1177 L, SCEV::FlagAnyWrap); 1178 Value *V = generateSCEV(OuterLIV); 1179 OutsideLoopIterations[L] = SE.getUnknown(V); 1180 L = L->getParentLoop(); 1181 } 1182 1183 isl_set_free(Context); 1184 } 1185 1186 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { 1187 Instruction *InsertLocation = &*--(Builder.GetInsertBlock()->end()); 1188 return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), 1189 InsertLocation, &ValueMap); 1190 } 1191