1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //===----------------------------------------------------------------------===//
11 
12 #include "polly/CodeGen/IslExprBuilder.h"
13 #include "polly/Options.h"
14 #include "polly/ScopInfo.h"
15 #include "polly/Support/GICHelper.h"
16 #include "polly/Support/ScopHelper.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
19 
20 using namespace llvm;
21 using namespace polly;
22 
23 /// Different overflow tracking modes.
24 enum OverflowTrackingChoice {
25   OT_NEVER,   ///< Never tack potential overflows.
26   OT_REQUEST, ///< Track potential overflows if requested.
27   OT_ALWAYS   ///< Always track potential overflows.
28 };
29 
30 static cl::opt<OverflowTrackingChoice> OTMode(
31     "polly-overflow-tracking",
32     cl::desc("Define where potential integer overflows in generated "
33              "expressions should be tracked."),
34     cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."),
35                clEnumValN(OT_REQUEST, "request",
36                           "Track the overflow bit if requested."),
37                clEnumValN(OT_ALWAYS, "always",
38                           "Always track the overflow bit.")),
39     cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory));
40 
41 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder,
42                                IDToValueTy &IDToValue, ValueMapT &GlobalMap,
43                                const DataLayout &DL, ScalarEvolution &SE,
44                                DominatorTree &DT, LoopInfo &LI,
45                                BasicBlock *StartBlock)
46     : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap),
47       DL(DL), SE(SE), DT(DT), LI(LI), StartBlock(StartBlock) {
48   OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr;
49 }
50 
51 void IslExprBuilder::setTrackOverflow(bool Enable) {
52   // If potential overflows are tracked always or never we ignore requests
53   // to change the behaviour.
54   if (OTMode != OT_REQUEST)
55     return;
56 
57   if (Enable) {
58     // If tracking should be enabled initialize the OverflowState.
59     OverflowState = Builder.getFalse();
60   } else {
61     // If tracking should be disabled just unset the OverflowState.
62     OverflowState = nullptr;
63   }
64 }
65 
66 Value *IslExprBuilder::getOverflowState() const {
67   // If the overflow tracking was requested but it is disabled we avoid the
68   // additional nullptr checks at the call sides but instead provide a
69   // meaningful result.
70   if (OTMode == OT_NEVER)
71     return Builder.getFalse();
72   return OverflowState;
73 }
74 
75 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS,
76                                    Value *RHS, const Twine &Name) {
77   // Handle the plain operation (without overflow tracking) first.
78   if (!OverflowState) {
79     switch (Opc) {
80     case Instruction::Add:
81       return Builder.CreateNSWAdd(LHS, RHS, Name);
82     case Instruction::Sub:
83       return Builder.CreateNSWSub(LHS, RHS, Name);
84     case Instruction::Mul:
85       return Builder.CreateNSWMul(LHS, RHS, Name);
86     default:
87       llvm_unreachable("Unknown binary operator!");
88     }
89   }
90 
91   Function *F = nullptr;
92   Module *M = Builder.GetInsertBlock()->getModule();
93   switch (Opc) {
94   case Instruction::Add:
95     F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
96                                   {LHS->getType()});
97     break;
98   case Instruction::Sub:
99     F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow,
100                                   {LHS->getType()});
101     break;
102   case Instruction::Mul:
103     F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow,
104                                   {LHS->getType()});
105     break;
106   default:
107     llvm_unreachable("No overflow intrinsic for binary operator found!");
108   }
109 
110   auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name);
111   assert(ResultStruct->getType()->isStructTy());
112 
113   auto *OverflowFlag =
114       Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit");
115 
116   // If all overflows are tracked we do not combine the results as this could
117   // cause dominance problems. Instead we will always keep the last overflow
118   // flag as current state.
119   if (OTMode == OT_ALWAYS)
120     OverflowState = OverflowFlag;
121   else
122     OverflowState =
123         Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state");
124 
125   return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res");
126 }
127 
128 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) {
129   return createBinOp(Instruction::Add, LHS, RHS, Name);
130 }
131 
132 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) {
133   return createBinOp(Instruction::Sub, LHS, RHS, Name);
134 }
135 
136 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) {
137   return createBinOp(Instruction::Mul, LHS, RHS, Name);
138 }
139 
140 Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) {
141   assert(isa<IntegerType>(T1) && isa<IntegerType>(T2));
142 
143   if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits())
144     return T2;
145   else
146     return T1;
147 }
148 
149 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) {
150   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus &&
151          "Unsupported unary operation");
152 
153   Value *V;
154   Type *MaxType = getType(Expr);
155   assert(MaxType->isIntegerTy() &&
156          "Unary expressions can only be created for integer types");
157 
158   V = create(isl_ast_expr_get_op_arg(Expr, 0));
159   MaxType = getWidestType(MaxType, V->getType());
160 
161   if (MaxType != V->getType())
162     V = Builder.CreateSExt(V, MaxType);
163 
164   isl_ast_expr_free(Expr);
165   return createSub(ConstantInt::getNullValue(MaxType), V);
166 }
167 
168 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) {
169   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
170          "isl ast expression not of type isl_ast_op");
171   assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
172          "We need at least two operands in an n-ary operation");
173 
174   CmpInst::Predicate Pred;
175   switch (isl_ast_expr_get_op_type(Expr)) {
176   default:
177     llvm_unreachable("This is not a an n-ary isl ast expression");
178   case isl_ast_op_max:
179     Pred = CmpInst::ICMP_SGT;
180     break;
181   case isl_ast_op_min:
182     Pred = CmpInst::ICMP_SLT;
183     break;
184   }
185 
186   Value *V = create(isl_ast_expr_get_op_arg(Expr, 0));
187 
188   for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) {
189     Value *OpV = create(isl_ast_expr_get_op_arg(Expr, i));
190     Type *Ty = getWidestType(V->getType(), OpV->getType());
191 
192     if (Ty != OpV->getType())
193       OpV = Builder.CreateSExt(OpV, Ty);
194 
195     if (Ty != V->getType())
196       V = Builder.CreateSExt(V, Ty);
197 
198     Value *Cmp = Builder.CreateICmp(Pred, V, OpV);
199     V = Builder.CreateSelect(Cmp, V, OpV);
200   }
201 
202   // TODO: We can truncate the result, if it fits into a smaller type. This can
203   // help in cases where we have larger operands (e.g. i67) but the result is
204   // known to fit into i64. Without the truncation, the larger i67 type may
205   // force all subsequent operations to be performed on a non-native type.
206   isl_ast_expr_free(Expr);
207   return V;
208 }
209 
210 Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) {
211   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
212          "isl ast expression not of type isl_ast_op");
213   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access &&
214          "not an access isl ast expression");
215   assert(isl_ast_expr_get_op_n_arg(Expr) >= 1 &&
216          "We need at least two operands to create a member access.");
217 
218   Value *Base, *IndexOp, *Access;
219   isl_ast_expr *BaseExpr;
220   isl_id *BaseId;
221 
222   BaseExpr = isl_ast_expr_get_op_arg(Expr, 0);
223   BaseId = isl_ast_expr_get_id(BaseExpr);
224   isl_ast_expr_free(BaseExpr);
225 
226   const ScopArrayInfo *SAI = nullptr;
227 
228   if (IDToSAI)
229     SAI = (*IDToSAI)[BaseId];
230 
231   if (!SAI)
232     SAI = ScopArrayInfo::getFromId(BaseId);
233   else
234     isl_id_free(BaseId);
235 
236   assert(SAI && "No ScopArrayInfo found for this isl_id.");
237 
238   Base = SAI->getBasePtr();
239 
240   if (auto NewBase = GlobalMap.lookup(Base))
241     Base = NewBase;
242 
243   assert(Base->getType()->isPointerTy() && "Access base should be a pointer");
244   StringRef BaseName = Base->getName();
245 
246   auto PointerTy = PointerType::get(SAI->getElementType(),
247                                     Base->getType()->getPointerAddressSpace());
248   if (Base->getType() != PointerTy) {
249     Base =
250         Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName);
251   }
252 
253   if (isl_ast_expr_get_op_n_arg(Expr) == 1) {
254     isl_ast_expr_free(Expr);
255     return Base;
256   }
257 
258   IndexOp = nullptr;
259   for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) {
260     Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u));
261     assert(NextIndex->getType()->isIntegerTy() &&
262            "Access index should be an integer");
263 
264     if (!IndexOp) {
265       IndexOp = NextIndex;
266     } else {
267       Type *Ty = getWidestType(NextIndex->getType(), IndexOp->getType());
268 
269       if (Ty != NextIndex->getType())
270         NextIndex = Builder.CreateIntCast(NextIndex, Ty, true);
271       if (Ty != IndexOp->getType())
272         IndexOp = Builder.CreateIntCast(IndexOp, Ty, true);
273 
274       IndexOp = createAdd(IndexOp, NextIndex, "polly.access.add." + BaseName);
275     }
276 
277     // For every but the last dimension multiply the size, for the last
278     // dimension we can exit the loop.
279     if (u + 1 >= e)
280       break;
281 
282     const SCEV *DimSCEV = SAI->getDimensionSize(u);
283 
284     llvm::ValueToValueMap Map(GlobalMap.begin(), GlobalMap.end());
285     DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map);
286     Value *DimSize =
287         expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(),
288                       &*Builder.GetInsertPoint(), nullptr,
289                       StartBlock->getSinglePredecessor());
290 
291     Type *Ty = getWidestType(DimSize->getType(), IndexOp->getType());
292 
293     if (Ty != IndexOp->getType())
294       IndexOp = Builder.CreateSExtOrTrunc(IndexOp, Ty,
295                                           "polly.access.sext." + BaseName);
296     if (Ty != DimSize->getType())
297       DimSize = Builder.CreateSExtOrTrunc(DimSize, Ty,
298                                           "polly.access.sext." + BaseName);
299     IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName);
300   }
301 
302   Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName);
303 
304   isl_ast_expr_free(Expr);
305   return Access;
306 }
307 
308 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) {
309   Value *Addr = createAccessAddress(Expr);
310   assert(Addr && "Could not create op access address");
311   return Builder.CreateLoad(Addr, Addr->getName() + ".load");
312 }
313 
314 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) {
315   Value *LHS, *RHS, *Res;
316   Type *MaxType;
317   isl_ast_op_type OpType;
318 
319   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
320          "isl ast expression not of type isl_ast_op");
321   assert(isl_ast_expr_get_op_n_arg(Expr) == 2 &&
322          "not a binary isl ast expression");
323 
324   OpType = isl_ast_expr_get_op_type(Expr);
325 
326   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
327   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
328 
329   Type *LHSType = LHS->getType();
330   Type *RHSType = RHS->getType();
331 
332   MaxType = getWidestType(LHSType, RHSType);
333 
334   // Take the result into account when calculating the widest type.
335   //
336   // For operations such as '+' the result may require a type larger than
337   // the type of the individual operands. For other operations such as '/', the
338   // result type cannot be larger than the type of the individual operand. isl
339   // does not calculate correct types for these operations and we consequently
340   // exclude those operations here.
341   switch (OpType) {
342   case isl_ast_op_pdiv_q:
343   case isl_ast_op_pdiv_r:
344   case isl_ast_op_div:
345   case isl_ast_op_fdiv_q:
346   case isl_ast_op_zdiv_r:
347     // Do nothing
348     break;
349   case isl_ast_op_add:
350   case isl_ast_op_sub:
351   case isl_ast_op_mul:
352     MaxType = getWidestType(MaxType, getType(Expr));
353     break;
354   default:
355     llvm_unreachable("This is no binary isl ast expression");
356   }
357 
358   if (MaxType != RHS->getType())
359     RHS = Builder.CreateSExt(RHS, MaxType);
360 
361   if (MaxType != LHS->getType())
362     LHS = Builder.CreateSExt(LHS, MaxType);
363 
364   switch (OpType) {
365   default:
366     llvm_unreachable("This is no binary isl ast expression");
367   case isl_ast_op_add:
368     Res = createAdd(LHS, RHS);
369     break;
370   case isl_ast_op_sub:
371     Res = createSub(LHS, RHS);
372     break;
373   case isl_ast_op_mul:
374     Res = createMul(LHS, RHS);
375     break;
376   case isl_ast_op_div:
377     Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true);
378     break;
379   case isl_ast_op_pdiv_q: // Dividend is non-negative
380     Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q");
381     break;
382   case isl_ast_op_fdiv_q: { // Round towards -infty
383     if (auto *Const = dyn_cast<ConstantInt>(RHS)) {
384       auto &Val = Const->getValue();
385       if (Val.isPowerOf2() && Val.isNonNegative()) {
386         Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr");
387         break;
388       }
389     }
390     // TODO: Review code and check that this calculation does not yield
391     //       incorrect overflow in some bordercases.
392     //
393     // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
394     Value *One = ConstantInt::get(MaxType, 1);
395     Value *Zero = ConstantInt::get(MaxType, 0);
396     Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0");
397     Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1");
398     Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2");
399     Value *Dividend =
400         Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3");
401     Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4");
402     break;
403   }
404   case isl_ast_op_pdiv_r: // Dividend is non-negative
405     Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r");
406     break;
407 
408   case isl_ast_op_zdiv_r: // Result only compared against zero
409     Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r");
410     break;
411   }
412 
413   // TODO: We can truncate the result, if it fits into a smaller type. This can
414   // help in cases where we have larger operands (e.g. i67) but the result is
415   // known to fit into i64. Without the truncation, the larger i67 type may
416   // force all subsequent operations to be performed on a non-native type.
417   isl_ast_expr_free(Expr);
418   return Res;
419 }
420 
421 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) {
422   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select &&
423          "Unsupported unary isl ast expression");
424   Value *LHS, *RHS, *Cond;
425   Type *MaxType = getType(Expr);
426 
427   Cond = create(isl_ast_expr_get_op_arg(Expr, 0));
428   if (!Cond->getType()->isIntegerTy(1))
429     Cond = Builder.CreateIsNotNull(Cond);
430 
431   LHS = create(isl_ast_expr_get_op_arg(Expr, 1));
432   RHS = create(isl_ast_expr_get_op_arg(Expr, 2));
433 
434   MaxType = getWidestType(MaxType, LHS->getType());
435   MaxType = getWidestType(MaxType, RHS->getType());
436 
437   if (MaxType != RHS->getType())
438     RHS = Builder.CreateSExt(RHS, MaxType);
439 
440   if (MaxType != LHS->getType())
441     LHS = Builder.CreateSExt(LHS, MaxType);
442 
443   // TODO: Do we want to truncate the result?
444   isl_ast_expr_free(Expr);
445   return Builder.CreateSelect(Cond, LHS, RHS);
446 }
447 
448 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) {
449   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
450          "Expected an isl_ast_expr_op expression");
451 
452   Value *LHS, *RHS, *Res;
453 
454   auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0);
455   auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1);
456   bool HasNonAddressOfOperand =
457       isl_ast_expr_get_type(Op0) != isl_ast_expr_op ||
458       isl_ast_expr_get_type(Op1) != isl_ast_expr_op ||
459       isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of ||
460       isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of;
461 
462   LHS = create(Op0);
463   RHS = create(Op1);
464 
465   auto *LHSTy = LHS->getType();
466   auto *RHSTy = RHS->getType();
467   bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy();
468   bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand;
469 
470   auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits());
471   if (LHSTy->isPointerTy())
472     LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy);
473   if (RHSTy->isPointerTy())
474     RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy);
475 
476   if (LHS->getType() != RHS->getType()) {
477     Type *MaxType = LHS->getType();
478     MaxType = getWidestType(MaxType, RHS->getType());
479 
480     if (MaxType != RHS->getType())
481       RHS = Builder.CreateSExt(RHS, MaxType);
482 
483     if (MaxType != LHS->getType())
484       LHS = Builder.CreateSExt(LHS, MaxType);
485   }
486 
487   isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr);
488   assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt &&
489          "Unsupported ICmp isl ast expression");
490   assert(isl_ast_op_eq + 4 == isl_ast_op_gt &&
491          "Isl ast op type interface changed");
492 
493   CmpInst::Predicate Predicates[5][2] = {
494       {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ},
495       {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE},
496       {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT},
497       {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE},
498       {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT},
499   };
500 
501   Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp],
502                            LHS, RHS);
503 
504   isl_ast_expr_free(Expr);
505   return Res;
506 }
507 
508 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) {
509   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
510          "Expected an isl_ast_expr_op expression");
511 
512   Value *LHS, *RHS, *Res;
513   isl_ast_op_type OpType;
514 
515   OpType = isl_ast_expr_get_op_type(Expr);
516 
517   assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) &&
518          "Unsupported isl_ast_op_type");
519 
520   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
521   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
522 
523   // Even though the isl pretty printer prints the expressions as 'exp && exp'
524   // or 'exp || exp', we actually code generate the bitwise expressions
525   // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches,
526   // but it is, due to the use of i1 types, otherwise equivalent. The reason
527   // to go for bitwise operations is, that we assume the reduced control flow
528   // will outweight the overhead introduced by evaluating unneeded expressions.
529   // The isl code generation currently does not take advantage of the fact that
530   // the expression after an '||' or '&&' is in some cases not evaluated.
531   // Evaluating it anyways does not cause any undefined behaviour.
532   //
533   // TODO: Document in isl itself, that the unconditionally evaluating the
534   // second part of '||' or '&&' expressions is safe.
535   if (!LHS->getType()->isIntegerTy(1))
536     LHS = Builder.CreateIsNotNull(LHS);
537   if (!RHS->getType()->isIntegerTy(1))
538     RHS = Builder.CreateIsNotNull(RHS);
539 
540   switch (OpType) {
541   default:
542     llvm_unreachable("Unsupported boolean expression");
543   case isl_ast_op_and:
544     Res = Builder.CreateAnd(LHS, RHS);
545     break;
546   case isl_ast_op_or:
547     Res = Builder.CreateOr(LHS, RHS);
548     break;
549   }
550 
551   isl_ast_expr_free(Expr);
552   return Res;
553 }
554 
555 Value *
556 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) {
557   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
558          "Expected an isl_ast_expr_op expression");
559 
560   Value *LHS, *RHS;
561   isl_ast_op_type OpType;
562 
563   Function *F = Builder.GetInsertBlock()->getParent();
564   LLVMContext &Context = F->getContext();
565 
566   OpType = isl_ast_expr_get_op_type(Expr);
567 
568   assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) &&
569          "Unsupported isl_ast_op_type");
570 
571   auto InsertBB = Builder.GetInsertBlock();
572   auto InsertPoint = Builder.GetInsertPoint();
573   auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI);
574   BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F);
575   LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB));
576   DT.addNewBlock(CondBB, InsertBB);
577 
578   InsertBB->getTerminator()->eraseFromParent();
579   Builder.SetInsertPoint(InsertBB);
580   auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB);
581 
582   Builder.SetInsertPoint(CondBB);
583   Builder.CreateBr(NextBB);
584 
585   Builder.SetInsertPoint(InsertBB->getTerminator());
586 
587   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
588   if (!LHS->getType()->isIntegerTy(1))
589     LHS = Builder.CreateIsNotNull(LHS);
590   auto LeftBB = Builder.GetInsertBlock();
591 
592   if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then)
593     BR->setCondition(Builder.CreateNeg(LHS));
594   else
595     BR->setCondition(LHS);
596 
597   Builder.SetInsertPoint(CondBB->getTerminator());
598   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
599   if (!RHS->getType()->isIntegerTy(1))
600     RHS = Builder.CreateIsNotNull(RHS);
601   auto RightBB = Builder.GetInsertBlock();
602 
603   Builder.SetInsertPoint(NextBB->getTerminator());
604   auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2);
605   PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse()
606                                                  : Builder.getTrue(),
607                    LeftBB);
608   PHI->addIncoming(RHS, RightBB);
609 
610   isl_ast_expr_free(Expr);
611   return PHI;
612 }
613 
614 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) {
615   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
616          "Expression not of type isl_ast_expr_op");
617   switch (isl_ast_expr_get_op_type(Expr)) {
618   case isl_ast_op_error:
619   case isl_ast_op_cond:
620   case isl_ast_op_call:
621   case isl_ast_op_member:
622     llvm_unreachable("Unsupported isl ast expression");
623   case isl_ast_op_access:
624     return createOpAccess(Expr);
625   case isl_ast_op_max:
626   case isl_ast_op_min:
627     return createOpNAry(Expr);
628   case isl_ast_op_add:
629   case isl_ast_op_sub:
630   case isl_ast_op_mul:
631   case isl_ast_op_div:
632   case isl_ast_op_fdiv_q: // Round towards -infty
633   case isl_ast_op_pdiv_q: // Dividend is non-negative
634   case isl_ast_op_pdiv_r: // Dividend is non-negative
635   case isl_ast_op_zdiv_r: // Result only compared against zero
636     return createOpBin(Expr);
637   case isl_ast_op_minus:
638     return createOpUnary(Expr);
639   case isl_ast_op_select:
640     return createOpSelect(Expr);
641   case isl_ast_op_and:
642   case isl_ast_op_or:
643     return createOpBoolean(Expr);
644   case isl_ast_op_and_then:
645   case isl_ast_op_or_else:
646     return createOpBooleanConditional(Expr);
647   case isl_ast_op_eq:
648   case isl_ast_op_le:
649   case isl_ast_op_lt:
650   case isl_ast_op_ge:
651   case isl_ast_op_gt:
652     return createOpICmp(Expr);
653   case isl_ast_op_address_of:
654     return createOpAddressOf(Expr);
655   }
656 
657   llvm_unreachable("Unsupported isl_ast_expr_op kind.");
658 }
659 
660 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) {
661   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
662          "Expected an isl_ast_expr_op expression.");
663   assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary.");
664 
665   isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0);
666   assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op &&
667          "Expected address of operator to be an isl_ast_expr_op expression.");
668   assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access &&
669          "Expected address of operator to be an access expression.");
670 
671   Value *V = createAccessAddress(Op);
672 
673   isl_ast_expr_free(Expr);
674 
675   return V;
676 }
677 
678 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) {
679   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id &&
680          "Expression not of type isl_ast_expr_ident");
681 
682   isl_id *Id;
683   Value *V;
684 
685   Id = isl_ast_expr_get_id(Expr);
686 
687   assert(IDToValue.count(Id) && "Identifier not found");
688 
689   V = IDToValue[Id];
690   if (!V)
691     V = UndefValue::get(getType(Expr));
692 
693   if (V->getType()->isPointerTy())
694     V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits()));
695 
696   assert(V && "Unknown parameter id found");
697 
698   isl_id_free(Id);
699   isl_ast_expr_free(Expr);
700 
701   return V;
702 }
703 
704 IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) {
705   // XXX: We assume i64 is large enough. This is often true, but in general
706   //      incorrect. Also, on 32bit architectures, it would be beneficial to
707   //      use a smaller type. We can and should directly derive this information
708   //      during code generation.
709   return IntegerType::get(Builder.getContext(), 64);
710 }
711 
712 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) {
713   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int &&
714          "Expression not of type isl_ast_expr_int");
715   isl_val *Val;
716   Value *V;
717   APInt APValue;
718   IntegerType *T;
719 
720   Val = isl_ast_expr_get_val(Expr);
721   APValue = APIntFromVal(Val);
722 
723   auto BitWidth = APValue.getBitWidth();
724   if (BitWidth <= 64)
725     T = getType(Expr);
726   else
727     T = Builder.getIntNTy(BitWidth);
728 
729   APValue = APValue.sextOrSelf(T->getBitWidth());
730   V = ConstantInt::get(T, APValue);
731 
732   isl_ast_expr_free(Expr);
733   return V;
734 }
735 
736 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) {
737   switch (isl_ast_expr_get_type(Expr)) {
738   case isl_ast_expr_error:
739     llvm_unreachable("Code generation error");
740   case isl_ast_expr_op:
741     return createOp(Expr);
742   case isl_ast_expr_id:
743     return createId(Expr);
744   case isl_ast_expr_int:
745     return createInt(Expr);
746   }
747 
748   llvm_unreachable("Unexpected enum value");
749 }
750