1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //===----------------------------------------------------------------------===//
11 
12 #include "polly/CodeGen/IslExprBuilder.h"
13 #include "polly/CodeGen/RuntimeDebugBuilder.h"
14 #include "polly/Options.h"
15 #include "polly/ScopInfo.h"
16 #include "polly/Support/GICHelper.h"
17 #include "polly/Support/ScopHelper.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
20 
21 using namespace llvm;
22 using namespace polly;
23 
24 /// Different overflow tracking modes.
25 enum OverflowTrackingChoice {
26   OT_NEVER,   ///< Never tack potential overflows.
27   OT_REQUEST, ///< Track potential overflows if requested.
28   OT_ALWAYS   ///< Always track potential overflows.
29 };
30 
31 static cl::opt<OverflowTrackingChoice> OTMode(
32     "polly-overflow-tracking",
33     cl::desc("Define where potential integer overflows in generated "
34              "expressions should be tracked."),
35     cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."),
36                clEnumValN(OT_REQUEST, "request",
37                           "Track the overflow bit if requested."),
38                clEnumValN(OT_ALWAYS, "always",
39                           "Always track the overflow bit.")),
40     cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory));
41 
42 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder,
43                                IDToValueTy &IDToValue, ValueMapT &GlobalMap,
44                                const DataLayout &DL, ScalarEvolution &SE,
45                                DominatorTree &DT, LoopInfo &LI,
46                                BasicBlock *StartBlock)
47     : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap),
48       DL(DL), SE(SE), DT(DT), LI(LI), StartBlock(StartBlock) {
49   OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr;
50 }
51 
52 void IslExprBuilder::setTrackOverflow(bool Enable) {
53   // If potential overflows are tracked always or never we ignore requests
54   // to change the behavior.
55   if (OTMode != OT_REQUEST)
56     return;
57 
58   if (Enable) {
59     // If tracking should be enabled initialize the OverflowState.
60     OverflowState = Builder.getFalse();
61   } else {
62     // If tracking should be disabled just unset the OverflowState.
63     OverflowState = nullptr;
64   }
65 }
66 
67 Value *IslExprBuilder::getOverflowState() const {
68   // If the overflow tracking was requested but it is disabled we avoid the
69   // additional nullptr checks at the call sides but instead provide a
70   // meaningful result.
71   if (OTMode == OT_NEVER)
72     return Builder.getFalse();
73   return OverflowState;
74 }
75 
76 bool IslExprBuilder::hasLargeInts(isl::ast_expr Expr) {
77   enum isl_ast_expr_type Type = isl_ast_expr_get_type(Expr.get());
78 
79   if (Type == isl_ast_expr_id)
80     return false;
81 
82   if (Type == isl_ast_expr_int) {
83     isl::val Val = Expr.get_val();
84     APInt APValue = APIntFromVal(Val);
85     auto BitWidth = APValue.getBitWidth();
86     return BitWidth >= 64;
87   }
88 
89   assert(Type == isl_ast_expr_op && "Expected isl_ast_expr of type operation");
90 
91   int NumArgs = isl_ast_expr_get_op_n_arg(Expr.get());
92 
93   for (int i = 0; i < NumArgs; i++) {
94     isl::ast_expr Operand = Expr.get_op_arg(i);
95     if (hasLargeInts(Operand))
96       return true;
97   }
98 
99   return false;
100 }
101 
102 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS,
103                                    Value *RHS, const Twine &Name) {
104   // Handle the plain operation (without overflow tracking) first.
105   if (!OverflowState) {
106     switch (Opc) {
107     case Instruction::Add:
108       return Builder.CreateNSWAdd(LHS, RHS, Name);
109     case Instruction::Sub:
110       return Builder.CreateNSWSub(LHS, RHS, Name);
111     case Instruction::Mul:
112       return Builder.CreateNSWMul(LHS, RHS, Name);
113     default:
114       llvm_unreachable("Unknown binary operator!");
115     }
116   }
117 
118   Function *F = nullptr;
119   Module *M = Builder.GetInsertBlock()->getModule();
120   switch (Opc) {
121   case Instruction::Add:
122     F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
123                                   {LHS->getType()});
124     break;
125   case Instruction::Sub:
126     F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow,
127                                   {LHS->getType()});
128     break;
129   case Instruction::Mul:
130     F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow,
131                                   {LHS->getType()});
132     break;
133   default:
134     llvm_unreachable("No overflow intrinsic for binary operator found!");
135   }
136 
137   auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name);
138   assert(ResultStruct->getType()->isStructTy());
139 
140   auto *OverflowFlag =
141       Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit");
142 
143   // If all overflows are tracked we do not combine the results as this could
144   // cause dominance problems. Instead we will always keep the last overflow
145   // flag as current state.
146   if (OTMode == OT_ALWAYS)
147     OverflowState = OverflowFlag;
148   else
149     OverflowState =
150         Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state");
151 
152   return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res");
153 }
154 
155 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) {
156   return createBinOp(Instruction::Add, LHS, RHS, Name);
157 }
158 
159 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) {
160   return createBinOp(Instruction::Sub, LHS, RHS, Name);
161 }
162 
163 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) {
164   return createBinOp(Instruction::Mul, LHS, RHS, Name);
165 }
166 
167 Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) {
168   assert(isa<IntegerType>(T1) && isa<IntegerType>(T2));
169 
170   if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits())
171     return T2;
172   else
173     return T1;
174 }
175 
176 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) {
177   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus &&
178          "Unsupported unary operation");
179 
180   Value *V;
181   Type *MaxType = getType(Expr);
182   assert(MaxType->isIntegerTy() &&
183          "Unary expressions can only be created for integer types");
184 
185   V = create(isl_ast_expr_get_op_arg(Expr, 0));
186   MaxType = getWidestType(MaxType, V->getType());
187 
188   if (MaxType != V->getType())
189     V = Builder.CreateSExt(V, MaxType);
190 
191   isl_ast_expr_free(Expr);
192   return createSub(ConstantInt::getNullValue(MaxType), V);
193 }
194 
195 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) {
196   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
197          "isl ast expression not of type isl_ast_op");
198   assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
199          "We need at least two operands in an n-ary operation");
200 
201   CmpInst::Predicate Pred;
202   switch (isl_ast_expr_get_op_type(Expr)) {
203   default:
204     llvm_unreachable("This is not a an n-ary isl ast expression");
205   case isl_ast_op_max:
206     Pred = CmpInst::ICMP_SGT;
207     break;
208   case isl_ast_op_min:
209     Pred = CmpInst::ICMP_SLT;
210     break;
211   }
212 
213   Value *V = create(isl_ast_expr_get_op_arg(Expr, 0));
214 
215   for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) {
216     Value *OpV = create(isl_ast_expr_get_op_arg(Expr, i));
217     Type *Ty = getWidestType(V->getType(), OpV->getType());
218 
219     if (Ty != OpV->getType())
220       OpV = Builder.CreateSExt(OpV, Ty);
221 
222     if (Ty != V->getType())
223       V = Builder.CreateSExt(V, Ty);
224 
225     Value *Cmp = Builder.CreateICmp(Pred, V, OpV);
226     V = Builder.CreateSelect(Cmp, V, OpV);
227   }
228 
229   // TODO: We can truncate the result, if it fits into a smaller type. This can
230   // help in cases where we have larger operands (e.g. i67) but the result is
231   // known to fit into i64. Without the truncation, the larger i67 type may
232   // force all subsequent operations to be performed on a non-native type.
233   isl_ast_expr_free(Expr);
234   return V;
235 }
236 
237 Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) {
238   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
239          "isl ast expression not of type isl_ast_op");
240   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access &&
241          "not an access isl ast expression");
242   assert(isl_ast_expr_get_op_n_arg(Expr) >= 1 &&
243          "We need at least two operands to create a member access.");
244 
245   Value *Base, *IndexOp, *Access;
246   isl_ast_expr *BaseExpr;
247   isl_id *BaseId;
248 
249   BaseExpr = isl_ast_expr_get_op_arg(Expr, 0);
250   BaseId = isl_ast_expr_get_id(BaseExpr);
251   isl_ast_expr_free(BaseExpr);
252 
253   const ScopArrayInfo *SAI = nullptr;
254 
255   if (PollyDebugPrinting)
256     RuntimeDebugBuilder::createCPUPrinter(Builder, isl_id_get_name(BaseId));
257 
258   if (IDToSAI)
259     SAI = (*IDToSAI)[BaseId];
260 
261   if (!SAI)
262     SAI = ScopArrayInfo::getFromId(isl::manage(BaseId));
263   else
264     isl_id_free(BaseId);
265 
266   assert(SAI && "No ScopArrayInfo found for this isl_id.");
267 
268   Base = SAI->getBasePtr();
269 
270   if (auto NewBase = GlobalMap.lookup(Base))
271     Base = NewBase;
272 
273   assert(Base->getType()->isPointerTy() && "Access base should be a pointer");
274   StringRef BaseName = Base->getName();
275 
276   auto PointerTy = PointerType::get(SAI->getElementType(),
277                                     Base->getType()->getPointerAddressSpace());
278   if (Base->getType() != PointerTy) {
279     Base =
280         Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName);
281   }
282 
283   if (isl_ast_expr_get_op_n_arg(Expr) == 1) {
284     isl_ast_expr_free(Expr);
285     if (PollyDebugPrinting)
286       RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
287     return Base;
288   }
289 
290   IndexOp = nullptr;
291   for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) {
292     Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u));
293     assert(NextIndex->getType()->isIntegerTy() &&
294            "Access index should be an integer");
295 
296     if (PollyDebugPrinting)
297       RuntimeDebugBuilder::createCPUPrinter(Builder, "[", NextIndex, "]");
298 
299     if (!IndexOp) {
300       IndexOp = NextIndex;
301     } else {
302       Type *Ty = getWidestType(NextIndex->getType(), IndexOp->getType());
303 
304       if (Ty != NextIndex->getType())
305         NextIndex = Builder.CreateIntCast(NextIndex, Ty, true);
306       if (Ty != IndexOp->getType())
307         IndexOp = Builder.CreateIntCast(IndexOp, Ty, true);
308 
309       IndexOp = createAdd(IndexOp, NextIndex, "polly.access.add." + BaseName);
310     }
311 
312     // For every but the last dimension multiply the size, for the last
313     // dimension we can exit the loop.
314     if (u + 1 >= e)
315       break;
316 
317     const SCEV *DimSCEV = SAI->getDimensionSize(u);
318 
319     llvm::ValueToValueMap Map(GlobalMap.begin(), GlobalMap.end());
320     DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map);
321     Value *DimSize =
322         expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(),
323                       &*Builder.GetInsertPoint(), nullptr,
324                       StartBlock->getSinglePredecessor());
325 
326     Type *Ty = getWidestType(DimSize->getType(), IndexOp->getType());
327 
328     if (Ty != IndexOp->getType())
329       IndexOp = Builder.CreateSExtOrTrunc(IndexOp, Ty,
330                                           "polly.access.sext." + BaseName);
331     if (Ty != DimSize->getType())
332       DimSize = Builder.CreateSExtOrTrunc(DimSize, Ty,
333                                           "polly.access.sext." + BaseName);
334     IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName);
335   }
336 
337   Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName);
338 
339   if (PollyDebugPrinting)
340     RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
341   isl_ast_expr_free(Expr);
342   return Access;
343 }
344 
345 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) {
346   Value *Addr = createAccessAddress(Expr);
347   assert(Addr && "Could not create op access address");
348   return Builder.CreateLoad(Addr, Addr->getName() + ".load");
349 }
350 
351 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) {
352   Value *LHS, *RHS, *Res;
353   Type *MaxType;
354   isl_ast_op_type OpType;
355 
356   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
357          "isl ast expression not of type isl_ast_op");
358   assert(isl_ast_expr_get_op_n_arg(Expr) == 2 &&
359          "not a binary isl ast expression");
360 
361   OpType = isl_ast_expr_get_op_type(Expr);
362 
363   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
364   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
365 
366   Type *LHSType = LHS->getType();
367   Type *RHSType = RHS->getType();
368 
369   MaxType = getWidestType(LHSType, RHSType);
370 
371   // Take the result into account when calculating the widest type.
372   //
373   // For operations such as '+' the result may require a type larger than
374   // the type of the individual operands. For other operations such as '/', the
375   // result type cannot be larger than the type of the individual operand. isl
376   // does not calculate correct types for these operations and we consequently
377   // exclude those operations here.
378   switch (OpType) {
379   case isl_ast_op_pdiv_q:
380   case isl_ast_op_pdiv_r:
381   case isl_ast_op_div:
382   case isl_ast_op_fdiv_q:
383   case isl_ast_op_zdiv_r:
384     // Do nothing
385     break;
386   case isl_ast_op_add:
387   case isl_ast_op_sub:
388   case isl_ast_op_mul:
389     MaxType = getWidestType(MaxType, getType(Expr));
390     break;
391   default:
392     llvm_unreachable("This is no binary isl ast expression");
393   }
394 
395   if (MaxType != RHS->getType())
396     RHS = Builder.CreateSExt(RHS, MaxType);
397 
398   if (MaxType != LHS->getType())
399     LHS = Builder.CreateSExt(LHS, MaxType);
400 
401   switch (OpType) {
402   default:
403     llvm_unreachable("This is no binary isl ast expression");
404   case isl_ast_op_add:
405     Res = createAdd(LHS, RHS);
406     break;
407   case isl_ast_op_sub:
408     Res = createSub(LHS, RHS);
409     break;
410   case isl_ast_op_mul:
411     Res = createMul(LHS, RHS);
412     break;
413   case isl_ast_op_div:
414     Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true);
415     break;
416   case isl_ast_op_pdiv_q: // Dividend is non-negative
417     Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q");
418     break;
419   case isl_ast_op_fdiv_q: { // Round towards -infty
420     if (auto *Const = dyn_cast<ConstantInt>(RHS)) {
421       auto &Val = Const->getValue();
422       if (Val.isPowerOf2() && Val.isNonNegative()) {
423         Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr");
424         break;
425       }
426     }
427     // TODO: Review code and check that this calculation does not yield
428     //       incorrect overflow in some edge cases.
429     //
430     // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
431     Value *One = ConstantInt::get(MaxType, 1);
432     Value *Zero = ConstantInt::get(MaxType, 0);
433     Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0");
434     Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1");
435     Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2");
436     Value *Dividend =
437         Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3");
438     Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4");
439     break;
440   }
441   case isl_ast_op_pdiv_r: // Dividend is non-negative
442     Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r");
443     break;
444 
445   case isl_ast_op_zdiv_r: // Result only compared against zero
446     Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r");
447     break;
448   }
449 
450   // TODO: We can truncate the result, if it fits into a smaller type. This can
451   // help in cases where we have larger operands (e.g. i67) but the result is
452   // known to fit into i64. Without the truncation, the larger i67 type may
453   // force all subsequent operations to be performed on a non-native type.
454   isl_ast_expr_free(Expr);
455   return Res;
456 }
457 
458 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) {
459   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select &&
460          "Unsupported unary isl ast expression");
461   Value *LHS, *RHS, *Cond;
462   Type *MaxType = getType(Expr);
463 
464   Cond = create(isl_ast_expr_get_op_arg(Expr, 0));
465   if (!Cond->getType()->isIntegerTy(1))
466     Cond = Builder.CreateIsNotNull(Cond);
467 
468   LHS = create(isl_ast_expr_get_op_arg(Expr, 1));
469   RHS = create(isl_ast_expr_get_op_arg(Expr, 2));
470 
471   MaxType = getWidestType(MaxType, LHS->getType());
472   MaxType = getWidestType(MaxType, RHS->getType());
473 
474   if (MaxType != RHS->getType())
475     RHS = Builder.CreateSExt(RHS, MaxType);
476 
477   if (MaxType != LHS->getType())
478     LHS = Builder.CreateSExt(LHS, MaxType);
479 
480   // TODO: Do we want to truncate the result?
481   isl_ast_expr_free(Expr);
482   return Builder.CreateSelect(Cond, LHS, RHS);
483 }
484 
485 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) {
486   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
487          "Expected an isl_ast_expr_op expression");
488 
489   Value *LHS, *RHS, *Res;
490 
491   auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0);
492   auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1);
493   bool HasNonAddressOfOperand =
494       isl_ast_expr_get_type(Op0) != isl_ast_expr_op ||
495       isl_ast_expr_get_type(Op1) != isl_ast_expr_op ||
496       isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of ||
497       isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of;
498 
499   LHS = create(Op0);
500   RHS = create(Op1);
501 
502   auto *LHSTy = LHS->getType();
503   auto *RHSTy = RHS->getType();
504   bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy();
505   bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand;
506 
507   auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits());
508   if (LHSTy->isPointerTy())
509     LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy);
510   if (RHSTy->isPointerTy())
511     RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy);
512 
513   if (LHS->getType() != RHS->getType()) {
514     Type *MaxType = LHS->getType();
515     MaxType = getWidestType(MaxType, RHS->getType());
516 
517     if (MaxType != RHS->getType())
518       RHS = Builder.CreateSExt(RHS, MaxType);
519 
520     if (MaxType != LHS->getType())
521       LHS = Builder.CreateSExt(LHS, MaxType);
522   }
523 
524   isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr);
525   assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt &&
526          "Unsupported ICmp isl ast expression");
527   assert(isl_ast_op_eq + 4 == isl_ast_op_gt &&
528          "Isl ast op type interface changed");
529 
530   CmpInst::Predicate Predicates[5][2] = {
531       {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ},
532       {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE},
533       {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT},
534       {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE},
535       {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT},
536   };
537 
538   Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp],
539                            LHS, RHS);
540 
541   isl_ast_expr_free(Expr);
542   return Res;
543 }
544 
545 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) {
546   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
547          "Expected an isl_ast_expr_op expression");
548 
549   Value *LHS, *RHS, *Res;
550   isl_ast_op_type OpType;
551 
552   OpType = isl_ast_expr_get_op_type(Expr);
553 
554   assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) &&
555          "Unsupported isl_ast_op_type");
556 
557   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
558   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
559 
560   // Even though the isl pretty printer prints the expressions as 'exp && exp'
561   // or 'exp || exp', we actually code generate the bitwise expressions
562   // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches,
563   // but it is, due to the use of i1 types, otherwise equivalent. The reason
564   // to go for bitwise operations is, that we assume the reduced control flow
565   // will outweigh the overhead introduced by evaluating unneeded expressions.
566   // The isl code generation currently does not take advantage of the fact that
567   // the expression after an '||' or '&&' is in some cases not evaluated.
568   // Evaluating it anyways does not cause any undefined behaviour.
569   //
570   // TODO: Document in isl itself, that the unconditionally evaluating the
571   // second part of '||' or '&&' expressions is safe.
572   if (!LHS->getType()->isIntegerTy(1))
573     LHS = Builder.CreateIsNotNull(LHS);
574   if (!RHS->getType()->isIntegerTy(1))
575     RHS = Builder.CreateIsNotNull(RHS);
576 
577   switch (OpType) {
578   default:
579     llvm_unreachable("Unsupported boolean expression");
580   case isl_ast_op_and:
581     Res = Builder.CreateAnd(LHS, RHS);
582     break;
583   case isl_ast_op_or:
584     Res = Builder.CreateOr(LHS, RHS);
585     break;
586   }
587 
588   isl_ast_expr_free(Expr);
589   return Res;
590 }
591 
592 Value *
593 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) {
594   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
595          "Expected an isl_ast_expr_op expression");
596 
597   Value *LHS, *RHS;
598   isl_ast_op_type OpType;
599 
600   Function *F = Builder.GetInsertBlock()->getParent();
601   LLVMContext &Context = F->getContext();
602 
603   OpType = isl_ast_expr_get_op_type(Expr);
604 
605   assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) &&
606          "Unsupported isl_ast_op_type");
607 
608   auto InsertBB = Builder.GetInsertBlock();
609   auto InsertPoint = Builder.GetInsertPoint();
610   auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI);
611   BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F);
612   LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB));
613   DT.addNewBlock(CondBB, InsertBB);
614 
615   InsertBB->getTerminator()->eraseFromParent();
616   Builder.SetInsertPoint(InsertBB);
617   auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB);
618 
619   Builder.SetInsertPoint(CondBB);
620   Builder.CreateBr(NextBB);
621 
622   Builder.SetInsertPoint(InsertBB->getTerminator());
623 
624   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
625   if (!LHS->getType()->isIntegerTy(1))
626     LHS = Builder.CreateIsNotNull(LHS);
627   auto LeftBB = Builder.GetInsertBlock();
628 
629   if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then)
630     BR->setCondition(Builder.CreateNeg(LHS));
631   else
632     BR->setCondition(LHS);
633 
634   Builder.SetInsertPoint(CondBB->getTerminator());
635   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
636   if (!RHS->getType()->isIntegerTy(1))
637     RHS = Builder.CreateIsNotNull(RHS);
638   auto RightBB = Builder.GetInsertBlock();
639 
640   Builder.SetInsertPoint(NextBB->getTerminator());
641   auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2);
642   PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse()
643                                                  : Builder.getTrue(),
644                    LeftBB);
645   PHI->addIncoming(RHS, RightBB);
646 
647   isl_ast_expr_free(Expr);
648   return PHI;
649 }
650 
651 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) {
652   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
653          "Expression not of type isl_ast_expr_op");
654   switch (isl_ast_expr_get_op_type(Expr)) {
655   case isl_ast_op_error:
656   case isl_ast_op_cond:
657   case isl_ast_op_call:
658   case isl_ast_op_member:
659     llvm_unreachable("Unsupported isl ast expression");
660   case isl_ast_op_access:
661     return createOpAccess(Expr);
662   case isl_ast_op_max:
663   case isl_ast_op_min:
664     return createOpNAry(Expr);
665   case isl_ast_op_add:
666   case isl_ast_op_sub:
667   case isl_ast_op_mul:
668   case isl_ast_op_div:
669   case isl_ast_op_fdiv_q: // Round towards -infty
670   case isl_ast_op_pdiv_q: // Dividend is non-negative
671   case isl_ast_op_pdiv_r: // Dividend is non-negative
672   case isl_ast_op_zdiv_r: // Result only compared against zero
673     return createOpBin(Expr);
674   case isl_ast_op_minus:
675     return createOpUnary(Expr);
676   case isl_ast_op_select:
677     return createOpSelect(Expr);
678   case isl_ast_op_and:
679   case isl_ast_op_or:
680     return createOpBoolean(Expr);
681   case isl_ast_op_and_then:
682   case isl_ast_op_or_else:
683     return createOpBooleanConditional(Expr);
684   case isl_ast_op_eq:
685   case isl_ast_op_le:
686   case isl_ast_op_lt:
687   case isl_ast_op_ge:
688   case isl_ast_op_gt:
689     return createOpICmp(Expr);
690   case isl_ast_op_address_of:
691     return createOpAddressOf(Expr);
692   }
693 
694   llvm_unreachable("Unsupported isl_ast_expr_op kind.");
695 }
696 
697 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) {
698   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
699          "Expected an isl_ast_expr_op expression.");
700   assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary.");
701 
702   isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0);
703   assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op &&
704          "Expected address of operator to be an isl_ast_expr_op expression.");
705   assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access &&
706          "Expected address of operator to be an access expression.");
707 
708   Value *V = createAccessAddress(Op);
709 
710   isl_ast_expr_free(Expr);
711 
712   return V;
713 }
714 
715 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) {
716   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id &&
717          "Expression not of type isl_ast_expr_ident");
718 
719   isl_id *Id;
720   Value *V;
721 
722   Id = isl_ast_expr_get_id(Expr);
723 
724   assert(IDToValue.count(Id) && "Identifier not found");
725 
726   V = IDToValue[Id];
727   if (!V)
728     V = UndefValue::get(getType(Expr));
729 
730   if (V->getType()->isPointerTy())
731     V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits()));
732 
733   assert(V && "Unknown parameter id found");
734 
735   isl_id_free(Id);
736   isl_ast_expr_free(Expr);
737 
738   return V;
739 }
740 
741 IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) {
742   // XXX: We assume i64 is large enough. This is often true, but in general
743   //      incorrect. Also, on 32bit architectures, it would be beneficial to
744   //      use a smaller type. We can and should directly derive this information
745   //      during code generation.
746   return IntegerType::get(Builder.getContext(), 64);
747 }
748 
749 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) {
750   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int &&
751          "Expression not of type isl_ast_expr_int");
752   isl_val *Val;
753   Value *V;
754   APInt APValue;
755   IntegerType *T;
756 
757   Val = isl_ast_expr_get_val(Expr);
758   APValue = APIntFromVal(Val);
759 
760   auto BitWidth = APValue.getBitWidth();
761   if (BitWidth <= 64)
762     T = getType(Expr);
763   else
764     T = Builder.getIntNTy(BitWidth);
765 
766   APValue = APValue.sextOrSelf(T->getBitWidth());
767   V = ConstantInt::get(T, APValue);
768 
769   isl_ast_expr_free(Expr);
770   return V;
771 }
772 
773 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) {
774   switch (isl_ast_expr_get_type(Expr)) {
775   case isl_ast_expr_error:
776     llvm_unreachable("Code generation error");
777   case isl_ast_expr_op:
778     return createOp(Expr);
779   case isl_ast_expr_id:
780     return createId(Expr);
781   case isl_ast_expr_int:
782     return createInt(Expr);
783   }
784 
785   llvm_unreachable("Unexpected enum value");
786 }
787