1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 11 #include "polly/CodeGen/IslExprBuilder.h" 12 #include "polly/CodeGen/RuntimeDebugBuilder.h" 13 #include "polly/Options.h" 14 #include "polly/ScopInfo.h" 15 #include "polly/Support/GICHelper.h" 16 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 17 18 using namespace llvm; 19 using namespace polly; 20 21 /// Different overflow tracking modes. 22 enum OverflowTrackingChoice { 23 OT_NEVER, ///< Never tack potential overflows. 24 OT_REQUEST, ///< Track potential overflows if requested. 25 OT_ALWAYS ///< Always track potential overflows. 26 }; 27 28 static cl::opt<OverflowTrackingChoice> OTMode( 29 "polly-overflow-tracking", 30 cl::desc("Define where potential integer overflows in generated " 31 "expressions should be tracked."), 32 cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."), 33 clEnumValN(OT_REQUEST, "request", 34 "Track the overflow bit if requested."), 35 clEnumValN(OT_ALWAYS, "always", 36 "Always track the overflow bit.")), 37 cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory)); 38 39 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder, 40 IDToValueTy &IDToValue, ValueMapT &GlobalMap, 41 const DataLayout &DL, ScalarEvolution &SE, 42 DominatorTree &DT, LoopInfo &LI, 43 BasicBlock *StartBlock) 44 : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap), 45 DL(DL), SE(SE), DT(DT), LI(LI), StartBlock(StartBlock) { 46 OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr; 47 } 48 49 void IslExprBuilder::setTrackOverflow(bool Enable) { 50 // If potential overflows are tracked always or never we ignore requests 51 // to change the behavior. 52 if (OTMode != OT_REQUEST) 53 return; 54 55 if (Enable) { 56 // If tracking should be enabled initialize the OverflowState. 57 OverflowState = Builder.getFalse(); 58 } else { 59 // If tracking should be disabled just unset the OverflowState. 60 OverflowState = nullptr; 61 } 62 } 63 64 Value *IslExprBuilder::getOverflowState() const { 65 // If the overflow tracking was requested but it is disabled we avoid the 66 // additional nullptr checks at the call sides but instead provide a 67 // meaningful result. 68 if (OTMode == OT_NEVER) 69 return Builder.getFalse(); 70 return OverflowState; 71 } 72 73 bool IslExprBuilder::hasLargeInts(isl::ast_expr Expr) { 74 enum isl_ast_expr_type Type = isl_ast_expr_get_type(Expr.get()); 75 76 if (Type == isl_ast_expr_id) 77 return false; 78 79 if (Type == isl_ast_expr_int) { 80 isl::val Val = Expr.get_val(); 81 APInt APValue = APIntFromVal(Val); 82 auto BitWidth = APValue.getBitWidth(); 83 return BitWidth >= 64; 84 } 85 86 assert(Type == isl_ast_expr_op && "Expected isl_ast_expr of type operation"); 87 88 int NumArgs = isl_ast_expr_get_op_n_arg(Expr.get()); 89 90 for (int i = 0; i < NumArgs; i++) { 91 isl::ast_expr Operand = Expr.get_op_arg(i); 92 if (hasLargeInts(Operand)) 93 return true; 94 } 95 96 return false; 97 } 98 99 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS, 100 Value *RHS, const Twine &Name) { 101 // Handle the plain operation (without overflow tracking) first. 102 if (!OverflowState) { 103 switch (Opc) { 104 case Instruction::Add: 105 return Builder.CreateNSWAdd(LHS, RHS, Name); 106 case Instruction::Sub: 107 return Builder.CreateNSWSub(LHS, RHS, Name); 108 case Instruction::Mul: 109 return Builder.CreateNSWMul(LHS, RHS, Name); 110 default: 111 llvm_unreachable("Unknown binary operator!"); 112 } 113 } 114 115 Function *F = nullptr; 116 Module *M = Builder.GetInsertBlock()->getModule(); 117 switch (Opc) { 118 case Instruction::Add: 119 F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow, 120 {LHS->getType()}); 121 break; 122 case Instruction::Sub: 123 F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow, 124 {LHS->getType()}); 125 break; 126 case Instruction::Mul: 127 F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow, 128 {LHS->getType()}); 129 break; 130 default: 131 llvm_unreachable("No overflow intrinsic for binary operator found!"); 132 } 133 134 auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name); 135 assert(ResultStruct->getType()->isStructTy()); 136 137 auto *OverflowFlag = 138 Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit"); 139 140 // If all overflows are tracked we do not combine the results as this could 141 // cause dominance problems. Instead we will always keep the last overflow 142 // flag as current state. 143 if (OTMode == OT_ALWAYS) 144 OverflowState = OverflowFlag; 145 else 146 OverflowState = 147 Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state"); 148 149 return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res"); 150 } 151 152 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) { 153 return createBinOp(Instruction::Add, LHS, RHS, Name); 154 } 155 156 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) { 157 return createBinOp(Instruction::Sub, LHS, RHS, Name); 158 } 159 160 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) { 161 return createBinOp(Instruction::Mul, LHS, RHS, Name); 162 } 163 164 Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) { 165 assert(isa<IntegerType>(T1) && isa<IntegerType>(T2)); 166 167 if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits()) 168 return T2; 169 else 170 return T1; 171 } 172 173 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) { 174 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus && 175 "Unsupported unary operation"); 176 177 Value *V; 178 Type *MaxType = getType(Expr); 179 assert(MaxType->isIntegerTy() && 180 "Unary expressions can only be created for integer types"); 181 182 V = create(isl_ast_expr_get_op_arg(Expr, 0)); 183 MaxType = getWidestType(MaxType, V->getType()); 184 185 if (MaxType != V->getType()) 186 V = Builder.CreateSExt(V, MaxType); 187 188 isl_ast_expr_free(Expr); 189 return createSub(ConstantInt::getNullValue(MaxType), V); 190 } 191 192 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) { 193 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 194 "isl ast expression not of type isl_ast_op"); 195 assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 && 196 "We need at least two operands in an n-ary operation"); 197 198 CmpInst::Predicate Pred; 199 switch (isl_ast_expr_get_op_type(Expr)) { 200 default: 201 llvm_unreachable("This is not a an n-ary isl ast expression"); 202 case isl_ast_op_max: 203 Pred = CmpInst::ICMP_SGT; 204 break; 205 case isl_ast_op_min: 206 Pred = CmpInst::ICMP_SLT; 207 break; 208 } 209 210 Value *V = create(isl_ast_expr_get_op_arg(Expr, 0)); 211 212 for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) { 213 Value *OpV = create(isl_ast_expr_get_op_arg(Expr, i)); 214 Type *Ty = getWidestType(V->getType(), OpV->getType()); 215 216 if (Ty != OpV->getType()) 217 OpV = Builder.CreateSExt(OpV, Ty); 218 219 if (Ty != V->getType()) 220 V = Builder.CreateSExt(V, Ty); 221 222 Value *Cmp = Builder.CreateICmp(Pred, V, OpV); 223 V = Builder.CreateSelect(Cmp, V, OpV); 224 } 225 226 // TODO: We can truncate the result, if it fits into a smaller type. This can 227 // help in cases where we have larger operands (e.g. i67) but the result is 228 // known to fit into i64. Without the truncation, the larger i67 type may 229 // force all subsequent operations to be performed on a non-native type. 230 isl_ast_expr_free(Expr); 231 return V; 232 } 233 234 Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) { 235 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 236 "isl ast expression not of type isl_ast_op"); 237 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access && 238 "not an access isl ast expression"); 239 assert(isl_ast_expr_get_op_n_arg(Expr) >= 1 && 240 "We need at least two operands to create a member access."); 241 242 Value *Base, *IndexOp, *Access; 243 isl_ast_expr *BaseExpr; 244 isl_id *BaseId; 245 246 BaseExpr = isl_ast_expr_get_op_arg(Expr, 0); 247 BaseId = isl_ast_expr_get_id(BaseExpr); 248 isl_ast_expr_free(BaseExpr); 249 250 const ScopArrayInfo *SAI = nullptr; 251 252 if (PollyDebugPrinting) 253 RuntimeDebugBuilder::createCPUPrinter(Builder, isl_id_get_name(BaseId)); 254 255 if (IDToSAI) 256 SAI = (*IDToSAI)[BaseId]; 257 258 if (!SAI) 259 SAI = ScopArrayInfo::getFromId(isl::manage(BaseId)); 260 else 261 isl_id_free(BaseId); 262 263 assert(SAI && "No ScopArrayInfo found for this isl_id."); 264 265 Base = SAI->getBasePtr(); 266 267 if (auto NewBase = GlobalMap.lookup(Base)) 268 Base = NewBase; 269 270 assert(Base->getType()->isPointerTy() && "Access base should be a pointer"); 271 StringRef BaseName = Base->getName(); 272 273 auto PointerTy = PointerType::get(SAI->getElementType(), 274 Base->getType()->getPointerAddressSpace()); 275 if (Base->getType() != PointerTy) { 276 Base = 277 Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName); 278 } 279 280 if (isl_ast_expr_get_op_n_arg(Expr) == 1) { 281 isl_ast_expr_free(Expr); 282 if (PollyDebugPrinting) 283 RuntimeDebugBuilder::createCPUPrinter(Builder, "\n"); 284 return Base; 285 } 286 287 IndexOp = nullptr; 288 for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) { 289 Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u)); 290 assert(NextIndex->getType()->isIntegerTy() && 291 "Access index should be an integer"); 292 293 if (PollyDebugPrinting) 294 RuntimeDebugBuilder::createCPUPrinter(Builder, "[", NextIndex, "]"); 295 296 if (!IndexOp) { 297 IndexOp = NextIndex; 298 } else { 299 Type *Ty = getWidestType(NextIndex->getType(), IndexOp->getType()); 300 301 if (Ty != NextIndex->getType()) 302 NextIndex = Builder.CreateIntCast(NextIndex, Ty, true); 303 if (Ty != IndexOp->getType()) 304 IndexOp = Builder.CreateIntCast(IndexOp, Ty, true); 305 306 IndexOp = createAdd(IndexOp, NextIndex, "polly.access.add." + BaseName); 307 } 308 309 // For every but the last dimension multiply the size, for the last 310 // dimension we can exit the loop. 311 if (u + 1 >= e) 312 break; 313 314 const SCEV *DimSCEV = SAI->getDimensionSize(u); 315 316 llvm::ValueToSCEVMapTy Map; 317 for (auto &KV : GlobalMap) 318 Map[KV.first] = SE.getSCEV(KV.second); 319 DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map); 320 Value *DimSize = 321 expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(), 322 &*Builder.GetInsertPoint(), nullptr, 323 StartBlock->getSinglePredecessor()); 324 325 Type *Ty = getWidestType(DimSize->getType(), IndexOp->getType()); 326 327 if (Ty != IndexOp->getType()) 328 IndexOp = Builder.CreateSExtOrTrunc(IndexOp, Ty, 329 "polly.access.sext." + BaseName); 330 if (Ty != DimSize->getType()) 331 DimSize = Builder.CreateSExtOrTrunc(DimSize, Ty, 332 "polly.access.sext." + BaseName); 333 IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName); 334 } 335 336 Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName); 337 338 if (PollyDebugPrinting) 339 RuntimeDebugBuilder::createCPUPrinter(Builder, "\n"); 340 isl_ast_expr_free(Expr); 341 return Access; 342 } 343 344 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) { 345 Value *Addr = createAccessAddress(Expr); 346 assert(Addr && "Could not create op access address"); 347 return Builder.CreateLoad(Addr, Addr->getName() + ".load"); 348 } 349 350 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) { 351 Value *LHS, *RHS, *Res; 352 Type *MaxType; 353 isl_ast_op_type OpType; 354 355 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 356 "isl ast expression not of type isl_ast_op"); 357 assert(isl_ast_expr_get_op_n_arg(Expr) == 2 && 358 "not a binary isl ast expression"); 359 360 OpType = isl_ast_expr_get_op_type(Expr); 361 362 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 363 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 364 365 Type *LHSType = LHS->getType(); 366 Type *RHSType = RHS->getType(); 367 368 MaxType = getWidestType(LHSType, RHSType); 369 370 // Take the result into account when calculating the widest type. 371 // 372 // For operations such as '+' the result may require a type larger than 373 // the type of the individual operands. For other operations such as '/', the 374 // result type cannot be larger than the type of the individual operand. isl 375 // does not calculate correct types for these operations and we consequently 376 // exclude those operations here. 377 switch (OpType) { 378 case isl_ast_op_pdiv_q: 379 case isl_ast_op_pdiv_r: 380 case isl_ast_op_div: 381 case isl_ast_op_fdiv_q: 382 case isl_ast_op_zdiv_r: 383 // Do nothing 384 break; 385 case isl_ast_op_add: 386 case isl_ast_op_sub: 387 case isl_ast_op_mul: 388 MaxType = getWidestType(MaxType, getType(Expr)); 389 break; 390 default: 391 llvm_unreachable("This is no binary isl ast expression"); 392 } 393 394 if (MaxType != RHS->getType()) 395 RHS = Builder.CreateSExt(RHS, MaxType); 396 397 if (MaxType != LHS->getType()) 398 LHS = Builder.CreateSExt(LHS, MaxType); 399 400 switch (OpType) { 401 default: 402 llvm_unreachable("This is no binary isl ast expression"); 403 case isl_ast_op_add: 404 Res = createAdd(LHS, RHS); 405 break; 406 case isl_ast_op_sub: 407 Res = createSub(LHS, RHS); 408 break; 409 case isl_ast_op_mul: 410 Res = createMul(LHS, RHS); 411 break; 412 case isl_ast_op_div: 413 Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true); 414 break; 415 case isl_ast_op_pdiv_q: // Dividend is non-negative 416 Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q"); 417 break; 418 case isl_ast_op_fdiv_q: { // Round towards -infty 419 if (auto *Const = dyn_cast<ConstantInt>(RHS)) { 420 auto &Val = Const->getValue(); 421 if (Val.isPowerOf2() && Val.isNonNegative()) { 422 Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr"); 423 break; 424 } 425 } 426 // TODO: Review code and check that this calculation does not yield 427 // incorrect overflow in some edge cases. 428 // 429 // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d 430 Value *One = ConstantInt::get(MaxType, 1); 431 Value *Zero = ConstantInt::get(MaxType, 0); 432 Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0"); 433 Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1"); 434 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2"); 435 Value *Dividend = 436 Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3"); 437 Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4"); 438 break; 439 } 440 case isl_ast_op_pdiv_r: // Dividend is non-negative 441 Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r"); 442 break; 443 444 case isl_ast_op_zdiv_r: // Result only compared against zero 445 Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r"); 446 break; 447 } 448 449 // TODO: We can truncate the result, if it fits into a smaller type. This can 450 // help in cases where we have larger operands (e.g. i67) but the result is 451 // known to fit into i64. Without the truncation, the larger i67 type may 452 // force all subsequent operations to be performed on a non-native type. 453 isl_ast_expr_free(Expr); 454 return Res; 455 } 456 457 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) { 458 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select && 459 "Unsupported unary isl ast expression"); 460 Value *LHS, *RHS, *Cond; 461 Type *MaxType = getType(Expr); 462 463 Cond = create(isl_ast_expr_get_op_arg(Expr, 0)); 464 if (!Cond->getType()->isIntegerTy(1)) 465 Cond = Builder.CreateIsNotNull(Cond); 466 467 LHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 468 RHS = create(isl_ast_expr_get_op_arg(Expr, 2)); 469 470 MaxType = getWidestType(MaxType, LHS->getType()); 471 MaxType = getWidestType(MaxType, RHS->getType()); 472 473 if (MaxType != RHS->getType()) 474 RHS = Builder.CreateSExt(RHS, MaxType); 475 476 if (MaxType != LHS->getType()) 477 LHS = Builder.CreateSExt(LHS, MaxType); 478 479 // TODO: Do we want to truncate the result? 480 isl_ast_expr_free(Expr); 481 return Builder.CreateSelect(Cond, LHS, RHS); 482 } 483 484 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) { 485 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 486 "Expected an isl_ast_expr_op expression"); 487 488 Value *LHS, *RHS, *Res; 489 490 auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0); 491 auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1); 492 bool HasNonAddressOfOperand = 493 isl_ast_expr_get_type(Op0) != isl_ast_expr_op || 494 isl_ast_expr_get_type(Op1) != isl_ast_expr_op || 495 isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of || 496 isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of; 497 498 LHS = create(Op0); 499 RHS = create(Op1); 500 501 auto *LHSTy = LHS->getType(); 502 auto *RHSTy = RHS->getType(); 503 bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy(); 504 bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand; 505 506 auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits()); 507 if (LHSTy->isPointerTy()) 508 LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy); 509 if (RHSTy->isPointerTy()) 510 RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy); 511 512 if (LHS->getType() != RHS->getType()) { 513 Type *MaxType = LHS->getType(); 514 MaxType = getWidestType(MaxType, RHS->getType()); 515 516 if (MaxType != RHS->getType()) 517 RHS = Builder.CreateSExt(RHS, MaxType); 518 519 if (MaxType != LHS->getType()) 520 LHS = Builder.CreateSExt(LHS, MaxType); 521 } 522 523 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr); 524 assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt && 525 "Unsupported ICmp isl ast expression"); 526 assert(isl_ast_op_eq + 4 == isl_ast_op_gt && 527 "Isl ast op type interface changed"); 528 529 CmpInst::Predicate Predicates[5][2] = { 530 {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ}, 531 {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE}, 532 {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT}, 533 {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE}, 534 {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT}, 535 }; 536 537 Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp], 538 LHS, RHS); 539 540 isl_ast_expr_free(Expr); 541 return Res; 542 } 543 544 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) { 545 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 546 "Expected an isl_ast_expr_op expression"); 547 548 Value *LHS, *RHS, *Res; 549 isl_ast_op_type OpType; 550 551 OpType = isl_ast_expr_get_op_type(Expr); 552 553 assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) && 554 "Unsupported isl_ast_op_type"); 555 556 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 557 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 558 559 // Even though the isl pretty printer prints the expressions as 'exp && exp' 560 // or 'exp || exp', we actually code generate the bitwise expressions 561 // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches, 562 // but it is, due to the use of i1 types, otherwise equivalent. The reason 563 // to go for bitwise operations is, that we assume the reduced control flow 564 // will outweigh the overhead introduced by evaluating unneeded expressions. 565 // The isl code generation currently does not take advantage of the fact that 566 // the expression after an '||' or '&&' is in some cases not evaluated. 567 // Evaluating it anyways does not cause any undefined behaviour. 568 // 569 // TODO: Document in isl itself, that the unconditionally evaluating the 570 // second part of '||' or '&&' expressions is safe. 571 if (!LHS->getType()->isIntegerTy(1)) 572 LHS = Builder.CreateIsNotNull(LHS); 573 if (!RHS->getType()->isIntegerTy(1)) 574 RHS = Builder.CreateIsNotNull(RHS); 575 576 switch (OpType) { 577 default: 578 llvm_unreachable("Unsupported boolean expression"); 579 case isl_ast_op_and: 580 Res = Builder.CreateAnd(LHS, RHS); 581 break; 582 case isl_ast_op_or: 583 Res = Builder.CreateOr(LHS, RHS); 584 break; 585 } 586 587 isl_ast_expr_free(Expr); 588 return Res; 589 } 590 591 Value * 592 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) { 593 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 594 "Expected an isl_ast_expr_op expression"); 595 596 Value *LHS, *RHS; 597 isl_ast_op_type OpType; 598 599 Function *F = Builder.GetInsertBlock()->getParent(); 600 LLVMContext &Context = F->getContext(); 601 602 OpType = isl_ast_expr_get_op_type(Expr); 603 604 assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) && 605 "Unsupported isl_ast_op_type"); 606 607 auto InsertBB = Builder.GetInsertBlock(); 608 auto InsertPoint = Builder.GetInsertPoint(); 609 auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI); 610 BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F); 611 LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB)); 612 DT.addNewBlock(CondBB, InsertBB); 613 614 InsertBB->getTerminator()->eraseFromParent(); 615 Builder.SetInsertPoint(InsertBB); 616 auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB); 617 618 Builder.SetInsertPoint(CondBB); 619 Builder.CreateBr(NextBB); 620 621 Builder.SetInsertPoint(InsertBB->getTerminator()); 622 623 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 624 if (!LHS->getType()->isIntegerTy(1)) 625 LHS = Builder.CreateIsNotNull(LHS); 626 auto LeftBB = Builder.GetInsertBlock(); 627 628 if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then) 629 BR->setCondition(Builder.CreateNeg(LHS)); 630 else 631 BR->setCondition(LHS); 632 633 Builder.SetInsertPoint(CondBB->getTerminator()); 634 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 635 if (!RHS->getType()->isIntegerTy(1)) 636 RHS = Builder.CreateIsNotNull(RHS); 637 auto RightBB = Builder.GetInsertBlock(); 638 639 Builder.SetInsertPoint(NextBB->getTerminator()); 640 auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2); 641 PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse() 642 : Builder.getTrue(), 643 LeftBB); 644 PHI->addIncoming(RHS, RightBB); 645 646 isl_ast_expr_free(Expr); 647 return PHI; 648 } 649 650 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) { 651 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 652 "Expression not of type isl_ast_expr_op"); 653 switch (isl_ast_expr_get_op_type(Expr)) { 654 case isl_ast_op_error: 655 case isl_ast_op_cond: 656 case isl_ast_op_call: 657 case isl_ast_op_member: 658 llvm_unreachable("Unsupported isl ast expression"); 659 case isl_ast_op_access: 660 return createOpAccess(Expr); 661 case isl_ast_op_max: 662 case isl_ast_op_min: 663 return createOpNAry(Expr); 664 case isl_ast_op_add: 665 case isl_ast_op_sub: 666 case isl_ast_op_mul: 667 case isl_ast_op_div: 668 case isl_ast_op_fdiv_q: // Round towards -infty 669 case isl_ast_op_pdiv_q: // Dividend is non-negative 670 case isl_ast_op_pdiv_r: // Dividend is non-negative 671 case isl_ast_op_zdiv_r: // Result only compared against zero 672 return createOpBin(Expr); 673 case isl_ast_op_minus: 674 return createOpUnary(Expr); 675 case isl_ast_op_select: 676 return createOpSelect(Expr); 677 case isl_ast_op_and: 678 case isl_ast_op_or: 679 return createOpBoolean(Expr); 680 case isl_ast_op_and_then: 681 case isl_ast_op_or_else: 682 return createOpBooleanConditional(Expr); 683 case isl_ast_op_eq: 684 case isl_ast_op_le: 685 case isl_ast_op_lt: 686 case isl_ast_op_ge: 687 case isl_ast_op_gt: 688 return createOpICmp(Expr); 689 case isl_ast_op_address_of: 690 return createOpAddressOf(Expr); 691 } 692 693 llvm_unreachable("Unsupported isl_ast_expr_op kind."); 694 } 695 696 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) { 697 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 698 "Expected an isl_ast_expr_op expression."); 699 assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary."); 700 701 isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0); 702 assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op && 703 "Expected address of operator to be an isl_ast_expr_op expression."); 704 assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access && 705 "Expected address of operator to be an access expression."); 706 707 Value *V = createAccessAddress(Op); 708 709 isl_ast_expr_free(Expr); 710 711 return V; 712 } 713 714 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) { 715 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id && 716 "Expression not of type isl_ast_expr_ident"); 717 718 isl_id *Id; 719 Value *V; 720 721 Id = isl_ast_expr_get_id(Expr); 722 723 assert(IDToValue.count(Id) && "Identifier not found"); 724 725 V = IDToValue[Id]; 726 if (!V) 727 V = UndefValue::get(getType(Expr)); 728 729 if (V->getType()->isPointerTy()) 730 V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits())); 731 732 assert(V && "Unknown parameter id found"); 733 734 isl_id_free(Id); 735 isl_ast_expr_free(Expr); 736 737 return V; 738 } 739 740 IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) { 741 // XXX: We assume i64 is large enough. This is often true, but in general 742 // incorrect. Also, on 32bit architectures, it would be beneficial to 743 // use a smaller type. We can and should directly derive this information 744 // during code generation. 745 return IntegerType::get(Builder.getContext(), 64); 746 } 747 748 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) { 749 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int && 750 "Expression not of type isl_ast_expr_int"); 751 isl_val *Val; 752 Value *V; 753 APInt APValue; 754 IntegerType *T; 755 756 Val = isl_ast_expr_get_val(Expr); 757 APValue = APIntFromVal(Val); 758 759 auto BitWidth = APValue.getBitWidth(); 760 if (BitWidth <= 64) 761 T = getType(Expr); 762 else 763 T = Builder.getIntNTy(BitWidth); 764 765 APValue = APValue.sextOrSelf(T->getBitWidth()); 766 V = ConstantInt::get(T, APValue); 767 768 isl_ast_expr_free(Expr); 769 return V; 770 } 771 772 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) { 773 switch (isl_ast_expr_get_type(Expr)) { 774 case isl_ast_expr_error: 775 llvm_unreachable("Code generation error"); 776 case isl_ast_expr_op: 777 return createOp(Expr); 778 case isl_ast_expr_id: 779 return createId(Expr); 780 case isl_ast_expr_int: 781 return createInt(Expr); 782 } 783 784 llvm_unreachable("Unexpected enum value"); 785 } 786