1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "polly/CodeGen/IslExprBuilder.h" 13 #include "polly/Options.h" 14 #include "polly/ScopInfo.h" 15 #include "polly/Support/GICHelper.h" 16 #include "polly/Support/ScopHelper.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 19 20 using namespace llvm; 21 using namespace polly; 22 23 /// @brief Different overflow tracking modes. 24 enum OverflowTrackingChoice { 25 OT_NEVER, ///< Never tack potential overflows. 26 OT_REQUEST, ///< Track potential overflows if requested. 27 OT_ALWAYS ///< Always track potential overflows. 28 }; 29 30 static cl::opt<OverflowTrackingChoice> OTMode( 31 "polly-overflow-tracking", 32 cl::desc("Define where potential integer overflows in generated " 33 "expressions should be tracked."), 34 cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."), 35 clEnumValN(OT_REQUEST, "request", 36 "Track the overflow bit if requested."), 37 clEnumValN(OT_ALWAYS, "always", 38 "Always track the overflow bit."), 39 clEnumValEnd), 40 cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory)); 41 42 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder, 43 IDToValueTy &IDToValue, ValueMapT &GlobalMap, 44 const DataLayout &DL, ScalarEvolution &SE, 45 DominatorTree &DT, LoopInfo &LI) 46 : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap), 47 DL(DL), SE(SE), DT(DT), LI(LI) { 48 OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr; 49 } 50 51 void IslExprBuilder::setTrackOverflow(bool Enable) { 52 // If potential overflows are tracked always or never we ignore requests 53 // to change the behaviour. 54 if (OTMode != OT_REQUEST) 55 return; 56 57 if (Enable) { 58 // If tracking should be enabled initialize the OverflowState. 59 OverflowState = Builder.getFalse(); 60 } else { 61 // If tracking should be disabled just unset the OverflowState. 62 OverflowState = nullptr; 63 } 64 } 65 66 Value *IslExprBuilder::getOverflowState() const { 67 // If the overflow tracking was requested but it is disabled we avoid the 68 // additional nullptr checks at the call sides but instead provide a 69 // meaningful result. 70 if (OTMode == OT_NEVER) 71 return Builder.getFalse(); 72 return OverflowState; 73 } 74 75 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS, 76 Value *RHS, const Twine &Name) { 77 // @TODO Temporarily promote types of potentially overflowing binary 78 // operations to at least i64. 79 Value *I64C = Builder.getInt64(0); 80 unifyTypes(LHS, RHS, I64C); 81 82 // Handle the plain operation (without overflow tracking) first. 83 if (!OverflowState) { 84 switch (Opc) { 85 case Instruction::Add: 86 return Builder.CreateNSWAdd(LHS, RHS, Name); 87 case Instruction::Sub: 88 return Builder.CreateNSWSub(LHS, RHS, Name); 89 case Instruction::Mul: 90 return Builder.CreateNSWMul(LHS, RHS, Name); 91 default: 92 llvm_unreachable("Unknown binary operator!"); 93 } 94 } 95 96 Function *F = nullptr; 97 Module *M = Builder.GetInsertBlock()->getModule(); 98 switch (Opc) { 99 case Instruction::Add: 100 F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow, 101 {LHS->getType()}); 102 break; 103 case Instruction::Sub: 104 F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow, 105 {LHS->getType()}); 106 break; 107 case Instruction::Mul: 108 F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow, 109 {LHS->getType()}); 110 break; 111 default: 112 llvm_unreachable("No overflow intrinsic for binary operator found!"); 113 } 114 115 auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name); 116 assert(ResultStruct->getType()->isStructTy()); 117 118 auto *OverflowFlag = 119 Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit"); 120 121 // If all overflows are tracked we do not combine the results as this could 122 // cause dominance problems. Instead we will always keep the last overflow 123 // flag as current state. 124 if (OTMode == OT_ALWAYS) 125 OverflowState = OverflowFlag; 126 else 127 OverflowState = 128 Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state"); 129 130 return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res"); 131 } 132 133 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) { 134 return createBinOp(Instruction::Add, LHS, RHS, Name); 135 } 136 137 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) { 138 return createBinOp(Instruction::Sub, LHS, RHS, Name); 139 } 140 141 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) { 142 return createBinOp(Instruction::Mul, LHS, RHS, Name); 143 } 144 145 static Type *getWidestType(Type *T1, Type *T2) { 146 assert(isa<IntegerType>(T1) && isa<IntegerType>(T2)); 147 148 if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits()) 149 return T2; 150 else 151 return T1; 152 } 153 154 void IslExprBuilder::unifyTypes(Value *&V0, Value *&V1, Value *&V2) { 155 auto *T0 = V0->getType(); 156 auto *T1 = V1->getType(); 157 auto *T2 = V2->getType(); 158 if (T0 == T1 && T1 == T2) 159 return; 160 auto *MaxT = getWidestType(T0, T1); 161 MaxT = getWidestType(MaxT, T2); 162 V0 = Builder.CreateSExt(V0, MaxT); 163 V1 = Builder.CreateSExt(V1, MaxT); 164 V2 = Builder.CreateSExt(V2, MaxT); 165 } 166 167 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) { 168 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus && 169 "Unsupported unary operation"); 170 171 auto *V = create(isl_ast_expr_get_op_arg(Expr, 0)); 172 assert(V->getType()->isIntegerTy() && 173 "Unary expressions can only be created for integer types"); 174 175 isl_ast_expr_free(Expr); 176 return createSub(ConstantInt::getNullValue(V->getType()), V); 177 } 178 179 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) { 180 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 181 "isl ast expression not of type isl_ast_op"); 182 assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 && 183 "We need at least two operands in an n-ary operation"); 184 assert((isl_ast_expr_get_op_type(Expr) == isl_ast_op_max || 185 isl_ast_expr_get_op_type(Expr) == isl_ast_op_min) && 186 "This is no n-ary isl ast expression"); 187 188 bool IsMax = isl_ast_expr_get_op_type(Expr) == isl_ast_op_max; 189 auto Pred = IsMax ? CmpInst::ICMP_SGT : CmpInst::ICMP_SLT; 190 auto *V = create(isl_ast_expr_get_op_arg(Expr, 0)); 191 192 for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) { 193 auto *OpV = create(isl_ast_expr_get_op_arg(Expr, i)); 194 unifyTypes(V, OpV); 195 V = Builder.CreateSelect(Builder.CreateICmp(Pred, V, OpV), V, OpV); 196 } 197 198 // TODO: We can truncate the result, if it fits into a smaller type. This can 199 // help in cases where we have larger operands (e.g. i67) but the result is 200 // known to fit into i64. Without the truncation, the larger i67 type may 201 // force all subsequent operations to be performed on a non-native type. 202 isl_ast_expr_free(Expr); 203 return V; 204 } 205 206 Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) { 207 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 208 "isl ast expression not of type isl_ast_op"); 209 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access && 210 "not an access isl ast expression"); 211 assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 && 212 "We need at least two operands to create a member access."); 213 214 Value *Base, *IndexOp, *Access; 215 isl_ast_expr *BaseExpr; 216 isl_id *BaseId; 217 218 BaseExpr = isl_ast_expr_get_op_arg(Expr, 0); 219 BaseId = isl_ast_expr_get_id(BaseExpr); 220 isl_ast_expr_free(BaseExpr); 221 222 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(BaseId); 223 Base = SAI->getBasePtr(); 224 225 if (auto NewBase = GlobalMap.lookup(Base)) 226 Base = NewBase; 227 228 assert(Base->getType()->isPointerTy() && "Access base should be a pointer"); 229 StringRef BaseName = Base->getName(); 230 231 auto PointerTy = PointerType::get(SAI->getElementType(), 232 Base->getType()->getPointerAddressSpace()); 233 if (Base->getType() != PointerTy) { 234 Base = 235 Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName); 236 } 237 238 IndexOp = nullptr; 239 for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) { 240 Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u)); 241 assert(NextIndex->getType()->isIntegerTy() && 242 "Access index should be an integer"); 243 244 IndexOp = !IndexOp ? NextIndex : createAdd(IndexOp, NextIndex, 245 "polly.access.add." + BaseName); 246 247 // For every but the last dimension multiply the size, for the last 248 // dimension we can exit the loop. 249 if (u + 1 >= e) 250 break; 251 252 const SCEV *DimSCEV = SAI->getDimensionSize(u); 253 254 llvm::ValueToValueMap Map(GlobalMap.begin(), GlobalMap.end()); 255 DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map); 256 Value *DimSize = 257 expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(), 258 &*Builder.GetInsertPoint()); 259 260 IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName); 261 } 262 263 Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName); 264 265 isl_ast_expr_free(Expr); 266 return Access; 267 } 268 269 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) { 270 Value *Addr = createAccessAddress(Expr); 271 assert(Addr && "Could not create op access address"); 272 return Builder.CreateLoad(Addr, Addr->getName() + ".load"); 273 } 274 275 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) { 276 Value *LHS, *RHS, *Res; 277 isl_ast_op_type OpType; 278 279 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 280 "isl ast expression not of type isl_ast_op"); 281 assert(isl_ast_expr_get_op_n_arg(Expr) == 2 && 282 "not a binary isl ast expression"); 283 284 OpType = isl_ast_expr_get_op_type(Expr); 285 286 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 287 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 288 289 // For possibly overflowing operations we will later adjust types but 290 // for others we do it now as we will directly create the operations. 291 switch (OpType) { 292 case isl_ast_op_pdiv_q: 293 case isl_ast_op_pdiv_r: 294 case isl_ast_op_div: 295 case isl_ast_op_fdiv_q: 296 case isl_ast_op_zdiv_r: 297 unifyTypes(LHS, RHS); 298 break; 299 case isl_ast_op_add: 300 case isl_ast_op_sub: 301 case isl_ast_op_mul: 302 // Do nothing 303 break; 304 default: 305 llvm_unreachable("This is no binary isl ast expression"); 306 } 307 308 switch (OpType) { 309 default: 310 llvm_unreachable("This is no binary isl ast expression"); 311 case isl_ast_op_add: 312 Res = createAdd(LHS, RHS); 313 break; 314 case isl_ast_op_sub: 315 Res = createSub(LHS, RHS); 316 break; 317 case isl_ast_op_mul: 318 Res = createMul(LHS, RHS); 319 break; 320 case isl_ast_op_div: 321 Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true); 322 break; 323 case isl_ast_op_pdiv_q: // Dividend is non-negative 324 Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q"); 325 break; 326 case isl_ast_op_fdiv_q: { // Round towards -infty 327 if (auto *Const = dyn_cast<ConstantInt>(RHS)) { 328 auto &Val = Const->getValue(); 329 if (Val.isPowerOf2() && Val.isNonNegative()) { 330 Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr"); 331 break; 332 } 333 } 334 // TODO: Review code and check that this calculation does not yield 335 // incorrect overflow in some bordercases. 336 // 337 // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d 338 Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0"); 339 Value *One = ConstantInt::get(Sum1->getType(), 1); 340 Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1"); 341 Value *Zero = ConstantInt::get(LHS->getType(), 0); 342 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2"); 343 unifyTypes(LHS, Sum2); 344 Value *Dividend = 345 Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3"); 346 unifyTypes(Dividend, RHS); 347 Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4"); 348 break; 349 } 350 case isl_ast_op_pdiv_r: // Dividend is non-negative 351 Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r"); 352 break; 353 354 case isl_ast_op_zdiv_r: // Result only compared against zero 355 Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r"); 356 break; 357 } 358 359 // TODO: We can truncate the result, if it fits into a smaller type. This can 360 // help in cases where we have larger operands (e.g. i67) but the result is 361 // known to fit into i64. Without the truncation, the larger i67 type may 362 // force all subsequent operations to be performed on a non-native type. 363 isl_ast_expr_free(Expr); 364 return Res; 365 } 366 367 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) { 368 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select && 369 "Unsupported unary isl ast expression"); 370 Value *LHS, *RHS, *Cond; 371 372 Cond = create(isl_ast_expr_get_op_arg(Expr, 0)); 373 if (!Cond->getType()->isIntegerTy(1)) 374 Cond = Builder.CreateIsNotNull(Cond); 375 376 LHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 377 RHS = create(isl_ast_expr_get_op_arg(Expr, 2)); 378 unifyTypes(LHS, RHS); 379 380 isl_ast_expr_free(Expr); 381 return Builder.CreateSelect(Cond, LHS, RHS); 382 } 383 384 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) { 385 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 386 "Expected an isl_ast_expr_op expression"); 387 388 Value *LHS, *RHS, *Res; 389 390 auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0); 391 auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1); 392 bool HasNonAddressOfOperand = 393 isl_ast_expr_get_type(Op0) != isl_ast_expr_op || 394 isl_ast_expr_get_type(Op1) != isl_ast_expr_op || 395 isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of || 396 isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of; 397 398 LHS = create(Op0); 399 RHS = create(Op1); 400 401 auto *LHSTy = LHS->getType(); 402 auto *RHSTy = RHS->getType(); 403 bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy(); 404 bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand; 405 406 auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits()); 407 if (LHSTy->isPointerTy()) 408 LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy); 409 if (RHSTy->isPointerTy()) 410 RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy); 411 412 unifyTypes(LHS, RHS); 413 414 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr); 415 assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt && 416 "Unsupported ICmp isl ast expression"); 417 assert(isl_ast_op_eq + 4 == isl_ast_op_gt && 418 "Isl ast op type interface changed"); 419 420 CmpInst::Predicate Predicates[5][2] = { 421 {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ}, 422 {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE}, 423 {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT}, 424 {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE}, 425 {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT}, 426 }; 427 428 Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp], 429 LHS, RHS); 430 431 isl_ast_expr_free(Expr); 432 return Res; 433 } 434 435 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) { 436 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 437 "Expected an isl_ast_expr_op expression"); 438 439 Value *LHS, *RHS, *Res; 440 isl_ast_op_type OpType; 441 442 OpType = isl_ast_expr_get_op_type(Expr); 443 444 assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) && 445 "Unsupported isl_ast_op_type"); 446 447 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 448 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 449 450 // Even though the isl pretty printer prints the expressions as 'exp && exp' 451 // or 'exp || exp', we actually code generate the bitwise expressions 452 // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches, 453 // but it is, due to the use of i1 types, otherwise equivalent. The reason 454 // to go for bitwise operations is, that we assume the reduced control flow 455 // will outweight the overhead introduced by evaluating unneeded expressions. 456 // The isl code generation currently does not take advantage of the fact that 457 // the expression after an '||' or '&&' is in some cases not evaluated. 458 // Evaluating it anyways does not cause any undefined behaviour. 459 // 460 // TODO: Document in isl itself, that the unconditionally evaluating the 461 // second part of '||' or '&&' expressions is safe. 462 if (!LHS->getType()->isIntegerTy(1)) 463 LHS = Builder.CreateIsNotNull(LHS); 464 if (!RHS->getType()->isIntegerTy(1)) 465 RHS = Builder.CreateIsNotNull(RHS); 466 467 switch (OpType) { 468 default: 469 llvm_unreachable("Unsupported boolean expression"); 470 case isl_ast_op_and: 471 Res = Builder.CreateAnd(LHS, RHS); 472 break; 473 case isl_ast_op_or: 474 Res = Builder.CreateOr(LHS, RHS); 475 break; 476 } 477 478 isl_ast_expr_free(Expr); 479 return Res; 480 } 481 482 Value * 483 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) { 484 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 485 "Expected an isl_ast_expr_op expression"); 486 487 Value *LHS, *RHS; 488 isl_ast_op_type OpType; 489 490 Function *F = Builder.GetInsertBlock()->getParent(); 491 LLVMContext &Context = F->getContext(); 492 493 OpType = isl_ast_expr_get_op_type(Expr); 494 495 assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) && 496 "Unsupported isl_ast_op_type"); 497 498 auto InsertBB = Builder.GetInsertBlock(); 499 auto InsertPoint = Builder.GetInsertPoint(); 500 auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI); 501 BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F); 502 LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB)); 503 DT.addNewBlock(CondBB, InsertBB); 504 505 InsertBB->getTerminator()->eraseFromParent(); 506 Builder.SetInsertPoint(InsertBB); 507 auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB); 508 509 Builder.SetInsertPoint(CondBB); 510 Builder.CreateBr(NextBB); 511 512 Builder.SetInsertPoint(InsertBB->getTerminator()); 513 514 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 515 if (!LHS->getType()->isIntegerTy(1)) 516 LHS = Builder.CreateIsNotNull(LHS); 517 auto LeftBB = Builder.GetInsertBlock(); 518 519 if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then) 520 BR->setCondition(Builder.CreateNeg(LHS)); 521 else 522 BR->setCondition(LHS); 523 524 Builder.SetInsertPoint(CondBB->getTerminator()); 525 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 526 if (!RHS->getType()->isIntegerTy(1)) 527 RHS = Builder.CreateIsNotNull(RHS); 528 auto RightBB = Builder.GetInsertBlock(); 529 530 Builder.SetInsertPoint(NextBB->getTerminator()); 531 auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2); 532 PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse() 533 : Builder.getTrue(), 534 LeftBB); 535 PHI->addIncoming(RHS, RightBB); 536 537 isl_ast_expr_free(Expr); 538 return PHI; 539 } 540 541 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) { 542 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 543 "Expression not of type isl_ast_expr_op"); 544 switch (isl_ast_expr_get_op_type(Expr)) { 545 case isl_ast_op_error: 546 case isl_ast_op_cond: 547 case isl_ast_op_call: 548 case isl_ast_op_member: 549 llvm_unreachable("Unsupported isl ast expression"); 550 case isl_ast_op_access: 551 return createOpAccess(Expr); 552 case isl_ast_op_max: 553 case isl_ast_op_min: 554 return createOpNAry(Expr); 555 case isl_ast_op_add: 556 case isl_ast_op_sub: 557 case isl_ast_op_mul: 558 case isl_ast_op_div: 559 case isl_ast_op_fdiv_q: // Round towards -infty 560 case isl_ast_op_pdiv_q: // Dividend is non-negative 561 case isl_ast_op_pdiv_r: // Dividend is non-negative 562 case isl_ast_op_zdiv_r: // Result only compared against zero 563 return createOpBin(Expr); 564 case isl_ast_op_minus: 565 return createOpUnary(Expr); 566 case isl_ast_op_select: 567 return createOpSelect(Expr); 568 case isl_ast_op_and: 569 case isl_ast_op_or: 570 return createOpBoolean(Expr); 571 case isl_ast_op_and_then: 572 case isl_ast_op_or_else: 573 return createOpBooleanConditional(Expr); 574 case isl_ast_op_eq: 575 case isl_ast_op_le: 576 case isl_ast_op_lt: 577 case isl_ast_op_ge: 578 case isl_ast_op_gt: 579 return createOpICmp(Expr); 580 case isl_ast_op_address_of: 581 return createOpAddressOf(Expr); 582 } 583 584 llvm_unreachable("Unsupported isl_ast_expr_op kind."); 585 } 586 587 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) { 588 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 589 "Expected an isl_ast_expr_op expression."); 590 assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary."); 591 592 isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0); 593 assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op && 594 "Expected address of operator to be an isl_ast_expr_op expression."); 595 assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access && 596 "Expected address of operator to be an access expression."); 597 598 Value *V = createAccessAddress(Op); 599 600 isl_ast_expr_free(Expr); 601 602 return V; 603 } 604 605 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) { 606 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id && 607 "Expression not of type isl_ast_expr_ident"); 608 609 isl_id *Id; 610 Value *V; 611 612 Id = isl_ast_expr_get_id(Expr); 613 614 assert(IDToValue.count(Id) && "Identifier not found"); 615 616 V = IDToValue[Id]; 617 if (!V) 618 V = UndefValue::get(getType(Expr)); 619 620 if (V->getType()->isPointerTy()) 621 V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits())); 622 623 assert(V && "Unknown parameter id found"); 624 625 isl_id_free(Id); 626 isl_ast_expr_free(Expr); 627 628 return V; 629 } 630 631 IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) { 632 // XXX: We assume i64 is large enough. This is often true, but in general 633 // incorrect. Also, on 32bit architectures, it would be beneficial to 634 // use a smaller type. We can and should directly derive this information 635 // during code generation. 636 return IntegerType::get(Builder.getContext(), 64); 637 } 638 639 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) { 640 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int && 641 "Expression not of type isl_ast_expr_int"); 642 isl_val *Val; 643 Value *V; 644 APInt APValue; 645 IntegerType *T; 646 647 Val = isl_ast_expr_get_val(Expr); 648 APValue = APIntFromVal(Val); 649 650 auto BitWidth = APValue.getBitWidth(); 651 if (BitWidth <= 64) 652 T = getType(Expr); 653 else 654 T = Builder.getIntNTy(BitWidth); 655 656 APValue = APValue.sextOrSelf(T->getBitWidth()); 657 V = ConstantInt::get(T, APValue); 658 659 isl_ast_expr_free(Expr); 660 return V; 661 } 662 663 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) { 664 switch (isl_ast_expr_get_type(Expr)) { 665 case isl_ast_expr_error: 666 llvm_unreachable("Code generation error"); 667 case isl_ast_expr_op: 668 return createOp(Expr); 669 case isl_ast_expr_id: 670 return createId(Expr); 671 case isl_ast_expr_int: 672 return createInt(Expr); 673 } 674 675 llvm_unreachable("Unexpected enum value"); 676 } 677