1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //===----------------------------------------------------------------------===//
11 
12 #include "polly/CodeGen/IslExprBuilder.h"
13 #include "polly/Options.h"
14 #include "polly/ScopInfo.h"
15 #include "polly/Support/GICHelper.h"
16 #include "polly/Support/ScopHelper.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
19 
20 using namespace llvm;
21 using namespace polly;
22 
23 /// @brief Different overflow tracking modes.
24 enum OverflowTrackingChoice {
25   OT_NEVER,   ///< Never tack potential overflows.
26   OT_REQUEST, ///< Track potential overflows if requested.
27   OT_ALWAYS   ///< Always track potential overflows.
28 };
29 
30 static cl::opt<OverflowTrackingChoice> OTMode(
31     "polly-overflow-tracking",
32     cl::desc("Define where potential integer overflows in generated "
33              "expressions should be tracked."),
34     cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."),
35                clEnumValN(OT_REQUEST, "request",
36                           "Track the overflow bit if requested."),
37                clEnumValN(OT_ALWAYS, "always",
38                           "Always track the overflow bit."),
39                clEnumValEnd),
40     cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory));
41 
42 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder,
43                                IDToValueTy &IDToValue, ValueMapT &GlobalMap,
44                                const DataLayout &DL, ScalarEvolution &SE,
45                                DominatorTree &DT, LoopInfo &LI)
46     : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap),
47       DL(DL), SE(SE), DT(DT), LI(LI) {
48   OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr;
49 }
50 
51 void IslExprBuilder::setTrackOverflow(bool Enable) {
52   // If potential overflows are tracked always or never we ignore requests
53   // to change the behaviour.
54   if (OTMode != OT_REQUEST)
55     return;
56 
57   if (Enable) {
58     // If tracking should be enabled initialize the OverflowState.
59     OverflowState = Builder.getFalse();
60   } else {
61     // If tracking should be disabled just unset the OverflowState.
62     OverflowState = nullptr;
63   }
64 }
65 
66 Value *IslExprBuilder::getOverflowState() const {
67   // If the overflow tracking was requested but it is disabled we avoid the
68   // additional nullptr checks at the call sides but instead provide a
69   // meaningful result.
70   if (OTMode == OT_NEVER)
71     return Builder.getFalse();
72   return OverflowState;
73 }
74 
75 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS,
76                                    Value *RHS, const Twine &Name) {
77   // Handle the plain operation (without overflow tracking) first.
78   if (!OverflowState) {
79     switch (Opc) {
80     case Instruction::Add:
81       return Builder.CreateNSWAdd(LHS, RHS, Name);
82     case Instruction::Sub:
83       return Builder.CreateNSWSub(LHS, RHS, Name);
84     case Instruction::Mul:
85       return Builder.CreateNSWMul(LHS, RHS, Name);
86     default:
87       llvm_unreachable("Unknown binary operator!");
88     }
89   }
90 
91   Function *F = nullptr;
92   Module *M = Builder.GetInsertBlock()->getModule();
93   switch (Opc) {
94   case Instruction::Add:
95     F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
96                                   {LHS->getType()});
97     break;
98   case Instruction::Sub:
99     F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow,
100                                   {LHS->getType()});
101     break;
102   case Instruction::Mul:
103     F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow,
104                                   {LHS->getType()});
105     break;
106   default:
107     llvm_unreachable("No overflow intrinsic for binary operator found!");
108   }
109 
110   auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name);
111   assert(ResultStruct->getType()->isStructTy());
112 
113   auto *OverflowFlag =
114       Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit");
115 
116   // If all overflows are tracked we do not combine the results as this could
117   // cause dominance problems. Instead we will always keep the last overflow
118   // flag as current state.
119   if (OTMode == OT_ALWAYS)
120     OverflowState = OverflowFlag;
121   else
122     OverflowState =
123         Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state");
124 
125   return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res");
126 }
127 
128 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) {
129   return createBinOp(Instruction::Add, LHS, RHS, Name);
130 }
131 
132 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) {
133   return createBinOp(Instruction::Sub, LHS, RHS, Name);
134 }
135 
136 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) {
137   return createBinOp(Instruction::Mul, LHS, RHS, Name);
138 }
139 
140 Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) {
141   assert(isa<IntegerType>(T1) && isa<IntegerType>(T2));
142 
143   if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits())
144     return T2;
145   else
146     return T1;
147 }
148 
149 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) {
150   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus &&
151          "Unsupported unary operation");
152 
153   Value *V;
154   Type *MaxType = getType(Expr);
155   assert(MaxType->isIntegerTy() &&
156          "Unary expressions can only be created for integer types");
157 
158   V = create(isl_ast_expr_get_op_arg(Expr, 0));
159   MaxType = getWidestType(MaxType, V->getType());
160 
161   if (MaxType != V->getType())
162     V = Builder.CreateSExt(V, MaxType);
163 
164   isl_ast_expr_free(Expr);
165   return Builder.CreateNSWNeg(V);
166 }
167 
168 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) {
169   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
170          "isl ast expression not of type isl_ast_op");
171   assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
172          "We need at least two operands in an n-ary operation");
173 
174   Value *V;
175 
176   V = create(isl_ast_expr_get_op_arg(Expr, 0));
177 
178   for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr); ++i) {
179     Value *OpV;
180     OpV = create(isl_ast_expr_get_op_arg(Expr, i));
181 
182     Type *Ty = getWidestType(V->getType(), OpV->getType());
183 
184     if (Ty != OpV->getType())
185       OpV = Builder.CreateSExt(OpV, Ty);
186 
187     if (Ty != V->getType())
188       V = Builder.CreateSExt(V, Ty);
189 
190     switch (isl_ast_expr_get_op_type(Expr)) {
191     default:
192       llvm_unreachable("This is no n-ary isl ast expression");
193 
194     case isl_ast_op_max: {
195       Value *Cmp = Builder.CreateICmpSGT(V, OpV);
196       V = Builder.CreateSelect(Cmp, V, OpV);
197       continue;
198     }
199     case isl_ast_op_min: {
200       Value *Cmp = Builder.CreateICmpSLT(V, OpV);
201       V = Builder.CreateSelect(Cmp, V, OpV);
202       continue;
203     }
204     }
205   }
206 
207   // TODO: We can truncate the result, if it fits into a smaller type. This can
208   // help in cases where we have larger operands (e.g. i67) but the result is
209   // known to fit into i64. Without the truncation, the larger i67 type may
210   // force all subsequent operations to be performed on a non-native type.
211   isl_ast_expr_free(Expr);
212   return V;
213 }
214 
215 Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) {
216   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
217          "isl ast expression not of type isl_ast_op");
218   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access &&
219          "not an access isl ast expression");
220   assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
221          "We need at least two operands to create a member access.");
222 
223   Value *Base, *IndexOp, *Access;
224   isl_ast_expr *BaseExpr;
225   isl_id *BaseId;
226 
227   BaseExpr = isl_ast_expr_get_op_arg(Expr, 0);
228   BaseId = isl_ast_expr_get_id(BaseExpr);
229   isl_ast_expr_free(BaseExpr);
230 
231   const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(BaseId);
232   Base = SAI->getBasePtr();
233 
234   if (auto NewBase = GlobalMap.lookup(Base))
235     Base = NewBase;
236 
237   assert(Base->getType()->isPointerTy() && "Access base should be a pointer");
238   StringRef BaseName = Base->getName();
239 
240   auto PointerTy = PointerType::get(SAI->getElementType(),
241                                     Base->getType()->getPointerAddressSpace());
242   if (Base->getType() != PointerTy) {
243     Base =
244         Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName);
245   }
246 
247   IndexOp = nullptr;
248   for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) {
249     Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u));
250     assert(NextIndex->getType()->isIntegerTy() &&
251            "Access index should be an integer");
252 
253     if (!IndexOp) {
254       IndexOp = NextIndex;
255     } else {
256       Type *Ty = getWidestType(NextIndex->getType(), IndexOp->getType());
257 
258       if (Ty != NextIndex->getType())
259         NextIndex = Builder.CreateIntCast(NextIndex, Ty, true);
260       if (Ty != IndexOp->getType())
261         IndexOp = Builder.CreateIntCast(IndexOp, Ty, true);
262 
263       IndexOp = createAdd(IndexOp, NextIndex, "polly.access.add." + BaseName);
264     }
265 
266     // For every but the last dimension multiply the size, for the last
267     // dimension we can exit the loop.
268     if (u + 1 >= e)
269       break;
270 
271     const SCEV *DimSCEV = SAI->getDimensionSize(u);
272 
273     llvm::ValueToValueMap Map(GlobalMap.begin(), GlobalMap.end());
274     DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map);
275     Value *DimSize =
276         expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(),
277                       &*Builder.GetInsertPoint());
278 
279     Type *Ty = getWidestType(DimSize->getType(), IndexOp->getType());
280 
281     if (Ty != IndexOp->getType())
282       IndexOp = Builder.CreateSExtOrTrunc(IndexOp, Ty,
283                                           "polly.access.sext." + BaseName);
284     if (Ty != DimSize->getType())
285       DimSize = Builder.CreateSExtOrTrunc(DimSize, Ty,
286                                           "polly.access.sext." + BaseName);
287     IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName);
288   }
289 
290   Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName);
291 
292   isl_ast_expr_free(Expr);
293   return Access;
294 }
295 
296 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) {
297   Value *Addr = createAccessAddress(Expr);
298   assert(Addr && "Could not create op access address");
299   return Builder.CreateLoad(Addr, Addr->getName() + ".load");
300 }
301 
302 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) {
303   Value *LHS, *RHS, *Res;
304   Type *MaxType;
305   isl_ast_op_type OpType;
306 
307   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
308          "isl ast expression not of type isl_ast_op");
309   assert(isl_ast_expr_get_op_n_arg(Expr) == 2 &&
310          "not a binary isl ast expression");
311 
312   OpType = isl_ast_expr_get_op_type(Expr);
313 
314   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
315   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
316 
317   Type *LHSType = LHS->getType();
318   Type *RHSType = RHS->getType();
319 
320   MaxType = getWidestType(LHSType, RHSType);
321 
322   // Take the result into account when calculating the widest type.
323   //
324   // For operations such as '+' the result may require a type larger than
325   // the type of the individual operands. For other operations such as '/', the
326   // result type cannot be larger than the type of the individual operand. isl
327   // does not calculate correct types for these operations and we consequently
328   // exclude those operations here.
329   switch (OpType) {
330   case isl_ast_op_pdiv_q:
331   case isl_ast_op_pdiv_r:
332   case isl_ast_op_div:
333   case isl_ast_op_fdiv_q:
334   case isl_ast_op_zdiv_r:
335     // Do nothing
336     break;
337   case isl_ast_op_add:
338   case isl_ast_op_sub:
339   case isl_ast_op_mul:
340     MaxType = getWidestType(MaxType, getType(Expr));
341     break;
342   default:
343     llvm_unreachable("This is no binary isl ast expression");
344   }
345 
346   if (MaxType != RHS->getType())
347     RHS = Builder.CreateSExt(RHS, MaxType);
348 
349   if (MaxType != LHS->getType())
350     LHS = Builder.CreateSExt(LHS, MaxType);
351 
352   switch (OpType) {
353   default:
354     llvm_unreachable("This is no binary isl ast expression");
355   case isl_ast_op_add:
356     Res = createAdd(LHS, RHS);
357     break;
358   case isl_ast_op_sub:
359     Res = createSub(LHS, RHS);
360     break;
361   case isl_ast_op_mul:
362     Res = createMul(LHS, RHS);
363     break;
364   case isl_ast_op_div:
365     Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true);
366     break;
367   case isl_ast_op_pdiv_q: // Dividend is non-negative
368     Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q");
369     break;
370   case isl_ast_op_fdiv_q: { // Round towards -infty
371     if (auto *Const = dyn_cast<ConstantInt>(RHS)) {
372       auto &Val = Const->getValue();
373       if (Val.isPowerOf2() && Val.isNonNegative()) {
374         Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr");
375         break;
376       }
377     }
378     // TODO: Review code and check that this calculation does not yield
379     //       incorrect overflow in some bordercases.
380     //
381     // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
382     Value *One = ConstantInt::get(MaxType, 1);
383     Value *Zero = ConstantInt::get(MaxType, 0);
384     Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0");
385     Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1");
386     Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2");
387     Value *Dividend =
388         Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3");
389     Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4");
390     break;
391   }
392   case isl_ast_op_pdiv_r: // Dividend is non-negative
393     Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r");
394     break;
395 
396   case isl_ast_op_zdiv_r: // Result only compared against zero
397     Res = Builder.CreateURem(LHS, RHS, "pexp.zdiv_r");
398     break;
399   }
400 
401   // TODO: We can truncate the result, if it fits into a smaller type. This can
402   // help in cases where we have larger operands (e.g. i67) but the result is
403   // known to fit into i64. Without the truncation, the larger i67 type may
404   // force all subsequent operations to be performed on a non-native type.
405   isl_ast_expr_free(Expr);
406   return Res;
407 }
408 
409 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) {
410   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select &&
411          "Unsupported unary isl ast expression");
412   Value *LHS, *RHS, *Cond;
413   Type *MaxType = getType(Expr);
414 
415   Cond = create(isl_ast_expr_get_op_arg(Expr, 0));
416   if (!Cond->getType()->isIntegerTy(1))
417     Cond = Builder.CreateIsNotNull(Cond);
418 
419   LHS = create(isl_ast_expr_get_op_arg(Expr, 1));
420   RHS = create(isl_ast_expr_get_op_arg(Expr, 2));
421 
422   MaxType = getWidestType(MaxType, LHS->getType());
423   MaxType = getWidestType(MaxType, RHS->getType());
424 
425   if (MaxType != RHS->getType())
426     RHS = Builder.CreateSExt(RHS, MaxType);
427 
428   if (MaxType != LHS->getType())
429     LHS = Builder.CreateSExt(LHS, MaxType);
430 
431   // TODO: Do we want to truncate the result?
432   isl_ast_expr_free(Expr);
433   return Builder.CreateSelect(Cond, LHS, RHS);
434 }
435 
436 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) {
437   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
438          "Expected an isl_ast_expr_op expression");
439 
440   Value *LHS, *RHS, *Res;
441 
442   auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0);
443   auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1);
444   bool HasNonAddressOfOperand =
445       isl_ast_expr_get_type(Op0) != isl_ast_expr_op ||
446       isl_ast_expr_get_type(Op1) != isl_ast_expr_op ||
447       isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of ||
448       isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of;
449 
450   LHS = create(Op0);
451   RHS = create(Op1);
452 
453   auto *LHSTy = LHS->getType();
454   auto *RHSTy = RHS->getType();
455   bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy();
456   bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand;
457 
458   auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits());
459   if (LHSTy->isPointerTy())
460     LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy);
461   if (RHSTy->isPointerTy())
462     RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy);
463 
464   if (LHS->getType() != RHS->getType()) {
465     Type *MaxType = LHS->getType();
466     MaxType = getWidestType(MaxType, RHS->getType());
467 
468     if (MaxType != RHS->getType())
469       RHS = Builder.CreateSExt(RHS, MaxType);
470 
471     if (MaxType != LHS->getType())
472       LHS = Builder.CreateSExt(LHS, MaxType);
473   }
474 
475   isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr);
476   assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt &&
477          "Unsupported ICmp isl ast expression");
478   assert(isl_ast_op_eq + 4 == isl_ast_op_gt &&
479          "Isl ast op type interface changed");
480 
481   CmpInst::Predicate Predicates[5][2] = {
482       {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ},
483       {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE},
484       {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT},
485       {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE},
486       {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT},
487   };
488 
489   Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp],
490                            LHS, RHS);
491 
492   isl_ast_expr_free(Expr);
493   return Res;
494 }
495 
496 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) {
497   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
498          "Expected an isl_ast_expr_op expression");
499 
500   Value *LHS, *RHS, *Res;
501   isl_ast_op_type OpType;
502 
503   OpType = isl_ast_expr_get_op_type(Expr);
504 
505   assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) &&
506          "Unsupported isl_ast_op_type");
507 
508   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
509   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
510 
511   // Even though the isl pretty printer prints the expressions as 'exp && exp'
512   // or 'exp || exp', we actually code generate the bitwise expressions
513   // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches,
514   // but it is, due to the use of i1 types, otherwise equivalent. The reason
515   // to go for bitwise operations is, that we assume the reduced control flow
516   // will outweight the overhead introduced by evaluating unneeded expressions.
517   // The isl code generation currently does not take advantage of the fact that
518   // the expression after an '||' or '&&' is in some cases not evaluated.
519   // Evaluating it anyways does not cause any undefined behaviour.
520   //
521   // TODO: Document in isl itself, that the unconditionally evaluating the
522   // second part of '||' or '&&' expressions is safe.
523   if (!LHS->getType()->isIntegerTy(1))
524     LHS = Builder.CreateIsNotNull(LHS);
525   if (!RHS->getType()->isIntegerTy(1))
526     RHS = Builder.CreateIsNotNull(RHS);
527 
528   switch (OpType) {
529   default:
530     llvm_unreachable("Unsupported boolean expression");
531   case isl_ast_op_and:
532     Res = Builder.CreateAnd(LHS, RHS);
533     break;
534   case isl_ast_op_or:
535     Res = Builder.CreateOr(LHS, RHS);
536     break;
537   }
538 
539   isl_ast_expr_free(Expr);
540   return Res;
541 }
542 
543 Value *
544 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) {
545   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
546          "Expected an isl_ast_expr_op expression");
547 
548   Value *LHS, *RHS;
549   isl_ast_op_type OpType;
550 
551   Function *F = Builder.GetInsertBlock()->getParent();
552   LLVMContext &Context = F->getContext();
553 
554   OpType = isl_ast_expr_get_op_type(Expr);
555 
556   assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) &&
557          "Unsupported isl_ast_op_type");
558 
559   auto InsertBB = Builder.GetInsertBlock();
560   auto InsertPoint = Builder.GetInsertPoint();
561   auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI);
562   BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F);
563   LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB));
564   DT.addNewBlock(CondBB, InsertBB);
565 
566   InsertBB->getTerminator()->eraseFromParent();
567   Builder.SetInsertPoint(InsertBB);
568   auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB);
569 
570   Builder.SetInsertPoint(CondBB);
571   Builder.CreateBr(NextBB);
572 
573   Builder.SetInsertPoint(InsertBB->getTerminator());
574 
575   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
576   if (!LHS->getType()->isIntegerTy(1))
577     LHS = Builder.CreateIsNotNull(LHS);
578   auto LeftBB = Builder.GetInsertBlock();
579 
580   if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then)
581     BR->setCondition(Builder.CreateNeg(LHS));
582   else
583     BR->setCondition(LHS);
584 
585   Builder.SetInsertPoint(CondBB->getTerminator());
586   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
587   if (!RHS->getType()->isIntegerTy(1))
588     RHS = Builder.CreateIsNotNull(RHS);
589   auto RightBB = Builder.GetInsertBlock();
590 
591   Builder.SetInsertPoint(NextBB->getTerminator());
592   auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2);
593   PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse()
594                                                  : Builder.getTrue(),
595                    LeftBB);
596   PHI->addIncoming(RHS, RightBB);
597 
598   isl_ast_expr_free(Expr);
599   return PHI;
600 }
601 
602 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) {
603   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
604          "Expression not of type isl_ast_expr_op");
605   switch (isl_ast_expr_get_op_type(Expr)) {
606   case isl_ast_op_error:
607   case isl_ast_op_cond:
608   case isl_ast_op_call:
609   case isl_ast_op_member:
610     llvm_unreachable("Unsupported isl ast expression");
611   case isl_ast_op_access:
612     return createOpAccess(Expr);
613   case isl_ast_op_max:
614   case isl_ast_op_min:
615     return createOpNAry(Expr);
616   case isl_ast_op_add:
617   case isl_ast_op_sub:
618   case isl_ast_op_mul:
619   case isl_ast_op_div:
620   case isl_ast_op_fdiv_q: // Round towards -infty
621   case isl_ast_op_pdiv_q: // Dividend is non-negative
622   case isl_ast_op_pdiv_r: // Dividend is non-negative
623   case isl_ast_op_zdiv_r: // Result only compared against zero
624     return createOpBin(Expr);
625   case isl_ast_op_minus:
626     return createOpUnary(Expr);
627   case isl_ast_op_select:
628     return createOpSelect(Expr);
629   case isl_ast_op_and:
630   case isl_ast_op_or:
631     return createOpBoolean(Expr);
632   case isl_ast_op_and_then:
633   case isl_ast_op_or_else:
634     return createOpBooleanConditional(Expr);
635   case isl_ast_op_eq:
636   case isl_ast_op_le:
637   case isl_ast_op_lt:
638   case isl_ast_op_ge:
639   case isl_ast_op_gt:
640     return createOpICmp(Expr);
641   case isl_ast_op_address_of:
642     return createOpAddressOf(Expr);
643   }
644 
645   llvm_unreachable("Unsupported isl_ast_expr_op kind.");
646 }
647 
648 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) {
649   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
650          "Expected an isl_ast_expr_op expression.");
651   assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary.");
652 
653   isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0);
654   assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op &&
655          "Expected address of operator to be an isl_ast_expr_op expression.");
656   assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access &&
657          "Expected address of operator to be an access expression.");
658 
659   Value *V = createAccessAddress(Op);
660 
661   isl_ast_expr_free(Expr);
662 
663   return V;
664 }
665 
666 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) {
667   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id &&
668          "Expression not of type isl_ast_expr_ident");
669 
670   isl_id *Id;
671   Value *V;
672 
673   Id = isl_ast_expr_get_id(Expr);
674 
675   assert(IDToValue.count(Id) && "Identifier not found");
676 
677   V = IDToValue[Id];
678   if (!V)
679     V = UndefValue::get(getType(Expr));
680 
681   if (V->getType()->isPointerTy())
682     V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits()));
683 
684   assert(V && "Unknown parameter id found");
685 
686   isl_id_free(Id);
687   isl_ast_expr_free(Expr);
688 
689   return V;
690 }
691 
692 IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) {
693   // XXX: We assume i64 is large enough. This is often true, but in general
694   //      incorrect. Also, on 32bit architectures, it would be beneficial to
695   //      use a smaller type. We can and should directly derive this information
696   //      during code generation.
697   return IntegerType::get(Builder.getContext(), 64);
698 }
699 
700 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) {
701   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int &&
702          "Expression not of type isl_ast_expr_int");
703   isl_val *Val;
704   Value *V;
705   APInt APValue;
706   IntegerType *T;
707 
708   Val = isl_ast_expr_get_val(Expr);
709   APValue = APIntFromVal(Val);
710 
711   auto BitWidth = APValue.getBitWidth();
712   if (BitWidth <= 64)
713     T = getType(Expr);
714   else
715     T = Builder.getIntNTy(BitWidth);
716 
717   APValue = APValue.sextOrSelf(T->getBitWidth());
718   V = ConstantInt::get(T, APValue);
719 
720   isl_ast_expr_free(Expr);
721   return V;
722 }
723 
724 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) {
725   switch (isl_ast_expr_get_type(Expr)) {
726   case isl_ast_expr_error:
727     llvm_unreachable("Code generation error");
728   case isl_ast_expr_op:
729     return createOp(Expr);
730   case isl_ast_expr_id:
731     return createId(Expr);
732   case isl_ast_expr_int:
733     return createInt(Expr);
734   }
735 
736   llvm_unreachable("Unexpected enum value");
737 }
738