1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "polly/CodeGen/IslExprBuilder.h" 13 #include "polly/Options.h" 14 #include "polly/ScopInfo.h" 15 #include "polly/Support/GICHelper.h" 16 #include "polly/Support/ScopHelper.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 19 20 using namespace llvm; 21 using namespace polly; 22 23 /// Different overflow tracking modes. 24 enum OverflowTrackingChoice { 25 OT_NEVER, ///< Never tack potential overflows. 26 OT_REQUEST, ///< Track potential overflows if requested. 27 OT_ALWAYS ///< Always track potential overflows. 28 }; 29 30 static cl::opt<OverflowTrackingChoice> OTMode( 31 "polly-overflow-tracking", 32 cl::desc("Define where potential integer overflows in generated " 33 "expressions should be tracked."), 34 cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."), 35 clEnumValN(OT_REQUEST, "request", 36 "Track the overflow bit if requested."), 37 clEnumValN(OT_ALWAYS, "always", 38 "Always track the overflow bit.")), 39 cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory)); 40 41 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder, 42 IDToValueTy &IDToValue, ValueMapT &GlobalMap, 43 const DataLayout &DL, ScalarEvolution &SE, 44 DominatorTree &DT, LoopInfo &LI) 45 : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap), 46 DL(DL), SE(SE), DT(DT), LI(LI) { 47 OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr; 48 } 49 50 void IslExprBuilder::setTrackOverflow(bool Enable) { 51 // If potential overflows are tracked always or never we ignore requests 52 // to change the behaviour. 53 if (OTMode != OT_REQUEST) 54 return; 55 56 if (Enable) { 57 // If tracking should be enabled initialize the OverflowState. 58 OverflowState = Builder.getFalse(); 59 } else { 60 // If tracking should be disabled just unset the OverflowState. 61 OverflowState = nullptr; 62 } 63 } 64 65 Value *IslExprBuilder::getOverflowState() const { 66 // If the overflow tracking was requested but it is disabled we avoid the 67 // additional nullptr checks at the call sides but instead provide a 68 // meaningful result. 69 if (OTMode == OT_NEVER) 70 return Builder.getFalse(); 71 return OverflowState; 72 } 73 74 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS, 75 Value *RHS, const Twine &Name) { 76 // Handle the plain operation (without overflow tracking) first. 77 if (!OverflowState) { 78 switch (Opc) { 79 case Instruction::Add: 80 return Builder.CreateNSWAdd(LHS, RHS, Name); 81 case Instruction::Sub: 82 return Builder.CreateNSWSub(LHS, RHS, Name); 83 case Instruction::Mul: 84 return Builder.CreateNSWMul(LHS, RHS, Name); 85 default: 86 llvm_unreachable("Unknown binary operator!"); 87 } 88 } 89 90 Function *F = nullptr; 91 Module *M = Builder.GetInsertBlock()->getModule(); 92 switch (Opc) { 93 case Instruction::Add: 94 F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow, 95 {LHS->getType()}); 96 break; 97 case Instruction::Sub: 98 F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow, 99 {LHS->getType()}); 100 break; 101 case Instruction::Mul: 102 F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow, 103 {LHS->getType()}); 104 break; 105 default: 106 llvm_unreachable("No overflow intrinsic for binary operator found!"); 107 } 108 109 auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name); 110 assert(ResultStruct->getType()->isStructTy()); 111 112 auto *OverflowFlag = 113 Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit"); 114 115 // If all overflows are tracked we do not combine the results as this could 116 // cause dominance problems. Instead we will always keep the last overflow 117 // flag as current state. 118 if (OTMode == OT_ALWAYS) 119 OverflowState = OverflowFlag; 120 else 121 OverflowState = 122 Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state"); 123 124 return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res"); 125 } 126 127 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) { 128 return createBinOp(Instruction::Add, LHS, RHS, Name); 129 } 130 131 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) { 132 return createBinOp(Instruction::Sub, LHS, RHS, Name); 133 } 134 135 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) { 136 return createBinOp(Instruction::Mul, LHS, RHS, Name); 137 } 138 139 Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) { 140 assert(isa<IntegerType>(T1) && isa<IntegerType>(T2)); 141 142 if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits()) 143 return T2; 144 else 145 return T1; 146 } 147 148 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) { 149 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus && 150 "Unsupported unary operation"); 151 152 Value *V; 153 Type *MaxType = getType(Expr); 154 assert(MaxType->isIntegerTy() && 155 "Unary expressions can only be created for integer types"); 156 157 V = create(isl_ast_expr_get_op_arg(Expr, 0)); 158 MaxType = getWidestType(MaxType, V->getType()); 159 160 if (MaxType != V->getType()) 161 V = Builder.CreateSExt(V, MaxType); 162 163 isl_ast_expr_free(Expr); 164 return createSub(ConstantInt::getNullValue(MaxType), V); 165 } 166 167 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) { 168 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 169 "isl ast expression not of type isl_ast_op"); 170 assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 && 171 "We need at least two operands in an n-ary operation"); 172 173 CmpInst::Predicate Pred; 174 switch (isl_ast_expr_get_op_type(Expr)) { 175 default: 176 llvm_unreachable("This is not a an n-ary isl ast expression"); 177 case isl_ast_op_max: 178 Pred = CmpInst::ICMP_SGT; 179 break; 180 case isl_ast_op_min: 181 Pred = CmpInst::ICMP_SLT; 182 break; 183 } 184 185 Value *V = create(isl_ast_expr_get_op_arg(Expr, 0)); 186 187 for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) { 188 Value *OpV = create(isl_ast_expr_get_op_arg(Expr, i)); 189 Type *Ty = getWidestType(V->getType(), OpV->getType()); 190 191 if (Ty != OpV->getType()) 192 OpV = Builder.CreateSExt(OpV, Ty); 193 194 if (Ty != V->getType()) 195 V = Builder.CreateSExt(V, Ty); 196 197 Value *Cmp = Builder.CreateICmp(Pred, V, OpV); 198 V = Builder.CreateSelect(Cmp, V, OpV); 199 } 200 201 // TODO: We can truncate the result, if it fits into a smaller type. This can 202 // help in cases where we have larger operands (e.g. i67) but the result is 203 // known to fit into i64. Without the truncation, the larger i67 type may 204 // force all subsequent operations to be performed on a non-native type. 205 isl_ast_expr_free(Expr); 206 return V; 207 } 208 209 Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) { 210 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 211 "isl ast expression not of type isl_ast_op"); 212 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access && 213 "not an access isl ast expression"); 214 assert(isl_ast_expr_get_op_n_arg(Expr) >= 1 && 215 "We need at least two operands to create a member access."); 216 217 Value *Base, *IndexOp, *Access; 218 isl_ast_expr *BaseExpr; 219 isl_id *BaseId; 220 221 BaseExpr = isl_ast_expr_get_op_arg(Expr, 0); 222 BaseId = isl_ast_expr_get_id(BaseExpr); 223 isl_ast_expr_free(BaseExpr); 224 225 const ScopArrayInfo *SAI = nullptr; 226 227 if (IDToSAI) 228 SAI = (*IDToSAI)[BaseId]; 229 230 if (!SAI) 231 SAI = ScopArrayInfo::getFromId(BaseId); 232 else 233 isl_id_free(BaseId); 234 235 assert(SAI && "No ScopArrayInfo found for this isl_id."); 236 237 Base = SAI->getBasePtr(); 238 239 if (auto NewBase = GlobalMap.lookup(Base)) 240 Base = NewBase; 241 242 assert(Base->getType()->isPointerTy() && "Access base should be a pointer"); 243 StringRef BaseName = Base->getName(); 244 245 auto PointerTy = PointerType::get(SAI->getElementType(), 246 Base->getType()->getPointerAddressSpace()); 247 if (Base->getType() != PointerTy) { 248 Base = 249 Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName); 250 } 251 252 if (isl_ast_expr_get_op_n_arg(Expr) == 1) { 253 isl_ast_expr_free(Expr); 254 return Base; 255 } 256 257 IndexOp = nullptr; 258 for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) { 259 Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u)); 260 assert(NextIndex->getType()->isIntegerTy() && 261 "Access index should be an integer"); 262 263 if (!IndexOp) { 264 IndexOp = NextIndex; 265 } else { 266 Type *Ty = getWidestType(NextIndex->getType(), IndexOp->getType()); 267 268 if (Ty != NextIndex->getType()) 269 NextIndex = Builder.CreateIntCast(NextIndex, Ty, true); 270 if (Ty != IndexOp->getType()) 271 IndexOp = Builder.CreateIntCast(IndexOp, Ty, true); 272 273 IndexOp = createAdd(IndexOp, NextIndex, "polly.access.add." + BaseName); 274 } 275 276 // For every but the last dimension multiply the size, for the last 277 // dimension we can exit the loop. 278 if (u + 1 >= e) 279 break; 280 281 const SCEV *DimSCEV = SAI->getDimensionSize(u); 282 283 llvm::ValueToValueMap Map(GlobalMap.begin(), GlobalMap.end()); 284 DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map); 285 Value *DimSize = 286 expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(), 287 &*Builder.GetInsertPoint()); 288 289 Type *Ty = getWidestType(DimSize->getType(), IndexOp->getType()); 290 291 if (Ty != IndexOp->getType()) 292 IndexOp = Builder.CreateSExtOrTrunc(IndexOp, Ty, 293 "polly.access.sext." + BaseName); 294 if (Ty != DimSize->getType()) 295 DimSize = Builder.CreateSExtOrTrunc(DimSize, Ty, 296 "polly.access.sext." + BaseName); 297 IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName); 298 } 299 300 Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName); 301 302 isl_ast_expr_free(Expr); 303 return Access; 304 } 305 306 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) { 307 Value *Addr = createAccessAddress(Expr); 308 assert(Addr && "Could not create op access address"); 309 return Builder.CreateLoad(Addr, Addr->getName() + ".load"); 310 } 311 312 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) { 313 Value *LHS, *RHS, *Res; 314 Type *MaxType; 315 isl_ast_op_type OpType; 316 317 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 318 "isl ast expression not of type isl_ast_op"); 319 assert(isl_ast_expr_get_op_n_arg(Expr) == 2 && 320 "not a binary isl ast expression"); 321 322 OpType = isl_ast_expr_get_op_type(Expr); 323 324 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 325 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 326 327 Type *LHSType = LHS->getType(); 328 Type *RHSType = RHS->getType(); 329 330 MaxType = getWidestType(LHSType, RHSType); 331 332 // Take the result into account when calculating the widest type. 333 // 334 // For operations such as '+' the result may require a type larger than 335 // the type of the individual operands. For other operations such as '/', the 336 // result type cannot be larger than the type of the individual operand. isl 337 // does not calculate correct types for these operations and we consequently 338 // exclude those operations here. 339 switch (OpType) { 340 case isl_ast_op_pdiv_q: 341 case isl_ast_op_pdiv_r: 342 case isl_ast_op_div: 343 case isl_ast_op_fdiv_q: 344 case isl_ast_op_zdiv_r: 345 // Do nothing 346 break; 347 case isl_ast_op_add: 348 case isl_ast_op_sub: 349 case isl_ast_op_mul: 350 MaxType = getWidestType(MaxType, getType(Expr)); 351 break; 352 default: 353 llvm_unreachable("This is no binary isl ast expression"); 354 } 355 356 if (MaxType != RHS->getType()) 357 RHS = Builder.CreateSExt(RHS, MaxType); 358 359 if (MaxType != LHS->getType()) 360 LHS = Builder.CreateSExt(LHS, MaxType); 361 362 switch (OpType) { 363 default: 364 llvm_unreachable("This is no binary isl ast expression"); 365 case isl_ast_op_add: 366 Res = createAdd(LHS, RHS); 367 break; 368 case isl_ast_op_sub: 369 Res = createSub(LHS, RHS); 370 break; 371 case isl_ast_op_mul: 372 Res = createMul(LHS, RHS); 373 break; 374 case isl_ast_op_div: 375 Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true); 376 break; 377 case isl_ast_op_pdiv_q: // Dividend is non-negative 378 Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q"); 379 break; 380 case isl_ast_op_fdiv_q: { // Round towards -infty 381 if (auto *Const = dyn_cast<ConstantInt>(RHS)) { 382 auto &Val = Const->getValue(); 383 if (Val.isPowerOf2() && Val.isNonNegative()) { 384 Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr"); 385 break; 386 } 387 } 388 // TODO: Review code and check that this calculation does not yield 389 // incorrect overflow in some bordercases. 390 // 391 // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d 392 Value *One = ConstantInt::get(MaxType, 1); 393 Value *Zero = ConstantInt::get(MaxType, 0); 394 Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0"); 395 Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1"); 396 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2"); 397 Value *Dividend = 398 Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3"); 399 Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4"); 400 break; 401 } 402 case isl_ast_op_pdiv_r: // Dividend is non-negative 403 Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r"); 404 break; 405 406 case isl_ast_op_zdiv_r: // Result only compared against zero 407 Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r"); 408 break; 409 } 410 411 // TODO: We can truncate the result, if it fits into a smaller type. This can 412 // help in cases where we have larger operands (e.g. i67) but the result is 413 // known to fit into i64. Without the truncation, the larger i67 type may 414 // force all subsequent operations to be performed on a non-native type. 415 isl_ast_expr_free(Expr); 416 return Res; 417 } 418 419 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) { 420 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select && 421 "Unsupported unary isl ast expression"); 422 Value *LHS, *RHS, *Cond; 423 Type *MaxType = getType(Expr); 424 425 Cond = create(isl_ast_expr_get_op_arg(Expr, 0)); 426 if (!Cond->getType()->isIntegerTy(1)) 427 Cond = Builder.CreateIsNotNull(Cond); 428 429 LHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 430 RHS = create(isl_ast_expr_get_op_arg(Expr, 2)); 431 432 MaxType = getWidestType(MaxType, LHS->getType()); 433 MaxType = getWidestType(MaxType, RHS->getType()); 434 435 if (MaxType != RHS->getType()) 436 RHS = Builder.CreateSExt(RHS, MaxType); 437 438 if (MaxType != LHS->getType()) 439 LHS = Builder.CreateSExt(LHS, MaxType); 440 441 // TODO: Do we want to truncate the result? 442 isl_ast_expr_free(Expr); 443 return Builder.CreateSelect(Cond, LHS, RHS); 444 } 445 446 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) { 447 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 448 "Expected an isl_ast_expr_op expression"); 449 450 Value *LHS, *RHS, *Res; 451 452 auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0); 453 auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1); 454 bool HasNonAddressOfOperand = 455 isl_ast_expr_get_type(Op0) != isl_ast_expr_op || 456 isl_ast_expr_get_type(Op1) != isl_ast_expr_op || 457 isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of || 458 isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of; 459 460 LHS = create(Op0); 461 RHS = create(Op1); 462 463 auto *LHSTy = LHS->getType(); 464 auto *RHSTy = RHS->getType(); 465 bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy(); 466 bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand; 467 468 auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits()); 469 if (LHSTy->isPointerTy()) 470 LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy); 471 if (RHSTy->isPointerTy()) 472 RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy); 473 474 if (LHS->getType() != RHS->getType()) { 475 Type *MaxType = LHS->getType(); 476 MaxType = getWidestType(MaxType, RHS->getType()); 477 478 if (MaxType != RHS->getType()) 479 RHS = Builder.CreateSExt(RHS, MaxType); 480 481 if (MaxType != LHS->getType()) 482 LHS = Builder.CreateSExt(LHS, MaxType); 483 } 484 485 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr); 486 assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt && 487 "Unsupported ICmp isl ast expression"); 488 assert(isl_ast_op_eq + 4 == isl_ast_op_gt && 489 "Isl ast op type interface changed"); 490 491 CmpInst::Predicate Predicates[5][2] = { 492 {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ}, 493 {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE}, 494 {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT}, 495 {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE}, 496 {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT}, 497 }; 498 499 Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp], 500 LHS, RHS); 501 502 isl_ast_expr_free(Expr); 503 return Res; 504 } 505 506 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) { 507 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 508 "Expected an isl_ast_expr_op expression"); 509 510 Value *LHS, *RHS, *Res; 511 isl_ast_op_type OpType; 512 513 OpType = isl_ast_expr_get_op_type(Expr); 514 515 assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) && 516 "Unsupported isl_ast_op_type"); 517 518 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 519 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 520 521 // Even though the isl pretty printer prints the expressions as 'exp && exp' 522 // or 'exp || exp', we actually code generate the bitwise expressions 523 // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches, 524 // but it is, due to the use of i1 types, otherwise equivalent. The reason 525 // to go for bitwise operations is, that we assume the reduced control flow 526 // will outweight the overhead introduced by evaluating unneeded expressions. 527 // The isl code generation currently does not take advantage of the fact that 528 // the expression after an '||' or '&&' is in some cases not evaluated. 529 // Evaluating it anyways does not cause any undefined behaviour. 530 // 531 // TODO: Document in isl itself, that the unconditionally evaluating the 532 // second part of '||' or '&&' expressions is safe. 533 if (!LHS->getType()->isIntegerTy(1)) 534 LHS = Builder.CreateIsNotNull(LHS); 535 if (!RHS->getType()->isIntegerTy(1)) 536 RHS = Builder.CreateIsNotNull(RHS); 537 538 switch (OpType) { 539 default: 540 llvm_unreachable("Unsupported boolean expression"); 541 case isl_ast_op_and: 542 Res = Builder.CreateAnd(LHS, RHS); 543 break; 544 case isl_ast_op_or: 545 Res = Builder.CreateOr(LHS, RHS); 546 break; 547 } 548 549 isl_ast_expr_free(Expr); 550 return Res; 551 } 552 553 Value * 554 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) { 555 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 556 "Expected an isl_ast_expr_op expression"); 557 558 Value *LHS, *RHS; 559 isl_ast_op_type OpType; 560 561 Function *F = Builder.GetInsertBlock()->getParent(); 562 LLVMContext &Context = F->getContext(); 563 564 OpType = isl_ast_expr_get_op_type(Expr); 565 566 assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) && 567 "Unsupported isl_ast_op_type"); 568 569 auto InsertBB = Builder.GetInsertBlock(); 570 auto InsertPoint = Builder.GetInsertPoint(); 571 auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI); 572 BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F); 573 LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB)); 574 DT.addNewBlock(CondBB, InsertBB); 575 576 InsertBB->getTerminator()->eraseFromParent(); 577 Builder.SetInsertPoint(InsertBB); 578 auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB); 579 580 Builder.SetInsertPoint(CondBB); 581 Builder.CreateBr(NextBB); 582 583 Builder.SetInsertPoint(InsertBB->getTerminator()); 584 585 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 586 if (!LHS->getType()->isIntegerTy(1)) 587 LHS = Builder.CreateIsNotNull(LHS); 588 auto LeftBB = Builder.GetInsertBlock(); 589 590 if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then) 591 BR->setCondition(Builder.CreateNeg(LHS)); 592 else 593 BR->setCondition(LHS); 594 595 Builder.SetInsertPoint(CondBB->getTerminator()); 596 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 597 if (!RHS->getType()->isIntegerTy(1)) 598 RHS = Builder.CreateIsNotNull(RHS); 599 auto RightBB = Builder.GetInsertBlock(); 600 601 Builder.SetInsertPoint(NextBB->getTerminator()); 602 auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2); 603 PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse() 604 : Builder.getTrue(), 605 LeftBB); 606 PHI->addIncoming(RHS, RightBB); 607 608 isl_ast_expr_free(Expr); 609 return PHI; 610 } 611 612 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) { 613 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 614 "Expression not of type isl_ast_expr_op"); 615 switch (isl_ast_expr_get_op_type(Expr)) { 616 case isl_ast_op_error: 617 case isl_ast_op_cond: 618 case isl_ast_op_call: 619 case isl_ast_op_member: 620 llvm_unreachable("Unsupported isl ast expression"); 621 case isl_ast_op_access: 622 return createOpAccess(Expr); 623 case isl_ast_op_max: 624 case isl_ast_op_min: 625 return createOpNAry(Expr); 626 case isl_ast_op_add: 627 case isl_ast_op_sub: 628 case isl_ast_op_mul: 629 case isl_ast_op_div: 630 case isl_ast_op_fdiv_q: // Round towards -infty 631 case isl_ast_op_pdiv_q: // Dividend is non-negative 632 case isl_ast_op_pdiv_r: // Dividend is non-negative 633 case isl_ast_op_zdiv_r: // Result only compared against zero 634 return createOpBin(Expr); 635 case isl_ast_op_minus: 636 return createOpUnary(Expr); 637 case isl_ast_op_select: 638 return createOpSelect(Expr); 639 case isl_ast_op_and: 640 case isl_ast_op_or: 641 return createOpBoolean(Expr); 642 case isl_ast_op_and_then: 643 case isl_ast_op_or_else: 644 return createOpBooleanConditional(Expr); 645 case isl_ast_op_eq: 646 case isl_ast_op_le: 647 case isl_ast_op_lt: 648 case isl_ast_op_ge: 649 case isl_ast_op_gt: 650 return createOpICmp(Expr); 651 case isl_ast_op_address_of: 652 return createOpAddressOf(Expr); 653 } 654 655 llvm_unreachable("Unsupported isl_ast_expr_op kind."); 656 } 657 658 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) { 659 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 660 "Expected an isl_ast_expr_op expression."); 661 assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary."); 662 663 isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0); 664 assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op && 665 "Expected address of operator to be an isl_ast_expr_op expression."); 666 assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access && 667 "Expected address of operator to be an access expression."); 668 669 Value *V = createAccessAddress(Op); 670 671 isl_ast_expr_free(Expr); 672 673 return V; 674 } 675 676 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) { 677 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id && 678 "Expression not of type isl_ast_expr_ident"); 679 680 isl_id *Id; 681 Value *V; 682 683 Id = isl_ast_expr_get_id(Expr); 684 685 assert(IDToValue.count(Id) && "Identifier not found"); 686 687 V = IDToValue[Id]; 688 if (!V) 689 V = UndefValue::get(getType(Expr)); 690 691 if (V->getType()->isPointerTy()) 692 V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits())); 693 694 assert(V && "Unknown parameter id found"); 695 696 isl_id_free(Id); 697 isl_ast_expr_free(Expr); 698 699 return V; 700 } 701 702 IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) { 703 // XXX: We assume i64 is large enough. This is often true, but in general 704 // incorrect. Also, on 32bit architectures, it would be beneficial to 705 // use a smaller type. We can and should directly derive this information 706 // during code generation. 707 return IntegerType::get(Builder.getContext(), 64); 708 } 709 710 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) { 711 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int && 712 "Expression not of type isl_ast_expr_int"); 713 isl_val *Val; 714 Value *V; 715 APInt APValue; 716 IntegerType *T; 717 718 Val = isl_ast_expr_get_val(Expr); 719 APValue = APIntFromVal(Val); 720 721 auto BitWidth = APValue.getBitWidth(); 722 if (BitWidth <= 64) 723 T = getType(Expr); 724 else 725 T = Builder.getIntNTy(BitWidth); 726 727 APValue = APValue.sextOrSelf(T->getBitWidth()); 728 V = ConstantInt::get(T, APValue); 729 730 isl_ast_expr_free(Expr); 731 return V; 732 } 733 734 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) { 735 switch (isl_ast_expr_get_type(Expr)) { 736 case isl_ast_expr_error: 737 llvm_unreachable("Code generation error"); 738 case isl_ast_expr_op: 739 return createOp(Expr); 740 case isl_ast_expr_id: 741 return createId(Expr); 742 case isl_ast_expr_int: 743 return createInt(Expr); 744 } 745 746 llvm_unreachable("Unexpected enum value"); 747 } 748