1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 
11 #include "polly/CodeGen/IslExprBuilder.h"
12 #include "polly/CodeGen/RuntimeDebugBuilder.h"
13 #include "polly/Options.h"
14 #include "polly/ScopInfo.h"
15 #include "polly/Support/GICHelper.h"
16 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
17 
18 using namespace llvm;
19 using namespace polly;
20 
21 /// Different overflow tracking modes.
22 enum OverflowTrackingChoice {
23   OT_NEVER,   ///< Never tack potential overflows.
24   OT_REQUEST, ///< Track potential overflows if requested.
25   OT_ALWAYS   ///< Always track potential overflows.
26 };
27 
28 static cl::opt<OverflowTrackingChoice> OTMode(
29     "polly-overflow-tracking",
30     cl::desc("Define where potential integer overflows in generated "
31              "expressions should be tracked."),
32     cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."),
33                clEnumValN(OT_REQUEST, "request",
34                           "Track the overflow bit if requested."),
35                clEnumValN(OT_ALWAYS, "always",
36                           "Always track the overflow bit.")),
37     cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory));
38 
39 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder,
40                                IDToValueTy &IDToValue, ValueMapT &GlobalMap,
41                                const DataLayout &DL, ScalarEvolution &SE,
42                                DominatorTree &DT, LoopInfo &LI,
43                                BasicBlock *StartBlock)
44     : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap),
45       DL(DL), SE(SE), DT(DT), LI(LI), StartBlock(StartBlock) {
46   OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr;
47 }
48 
49 void IslExprBuilder::setTrackOverflow(bool Enable) {
50   // If potential overflows are tracked always or never we ignore requests
51   // to change the behavior.
52   if (OTMode != OT_REQUEST)
53     return;
54 
55   if (Enable) {
56     // If tracking should be enabled initialize the OverflowState.
57     OverflowState = Builder.getFalse();
58   } else {
59     // If tracking should be disabled just unset the OverflowState.
60     OverflowState = nullptr;
61   }
62 }
63 
64 Value *IslExprBuilder::getOverflowState() const {
65   // If the overflow tracking was requested but it is disabled we avoid the
66   // additional nullptr checks at the call sides but instead provide a
67   // meaningful result.
68   if (OTMode == OT_NEVER)
69     return Builder.getFalse();
70   return OverflowState;
71 }
72 
73 bool IslExprBuilder::hasLargeInts(isl::ast_expr Expr) {
74   enum isl_ast_expr_type Type = isl_ast_expr_get_type(Expr.get());
75 
76   if (Type == isl_ast_expr_id)
77     return false;
78 
79   if (Type == isl_ast_expr_int) {
80     isl::val Val = Expr.get_val();
81     APInt APValue = APIntFromVal(Val);
82     auto BitWidth = APValue.getBitWidth();
83     return BitWidth >= 64;
84   }
85 
86   assert(Type == isl_ast_expr_op && "Expected isl_ast_expr of type operation");
87 
88   int NumArgs = isl_ast_expr_get_op_n_arg(Expr.get());
89 
90   for (int i = 0; i < NumArgs; i++) {
91     isl::ast_expr Operand = Expr.get_op_arg(i);
92     if (hasLargeInts(Operand))
93       return true;
94   }
95 
96   return false;
97 }
98 
99 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS,
100                                    Value *RHS, const Twine &Name) {
101   // Handle the plain operation (without overflow tracking) first.
102   if (!OverflowState) {
103     switch (Opc) {
104     case Instruction::Add:
105       return Builder.CreateNSWAdd(LHS, RHS, Name);
106     case Instruction::Sub:
107       return Builder.CreateNSWSub(LHS, RHS, Name);
108     case Instruction::Mul:
109       return Builder.CreateNSWMul(LHS, RHS, Name);
110     default:
111       llvm_unreachable("Unknown binary operator!");
112     }
113   }
114 
115   Function *F = nullptr;
116   Module *M = Builder.GetInsertBlock()->getModule();
117   switch (Opc) {
118   case Instruction::Add:
119     F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
120                                   {LHS->getType()});
121     break;
122   case Instruction::Sub:
123     F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow,
124                                   {LHS->getType()});
125     break;
126   case Instruction::Mul:
127     F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow,
128                                   {LHS->getType()});
129     break;
130   default:
131     llvm_unreachable("No overflow intrinsic for binary operator found!");
132   }
133 
134   auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name);
135   assert(ResultStruct->getType()->isStructTy());
136 
137   auto *OverflowFlag =
138       Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit");
139 
140   // If all overflows are tracked we do not combine the results as this could
141   // cause dominance problems. Instead we will always keep the last overflow
142   // flag as current state.
143   if (OTMode == OT_ALWAYS)
144     OverflowState = OverflowFlag;
145   else
146     OverflowState =
147         Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state");
148 
149   return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res");
150 }
151 
152 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) {
153   return createBinOp(Instruction::Add, LHS, RHS, Name);
154 }
155 
156 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) {
157   return createBinOp(Instruction::Sub, LHS, RHS, Name);
158 }
159 
160 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) {
161   return createBinOp(Instruction::Mul, LHS, RHS, Name);
162 }
163 
164 Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) {
165   assert(isa<IntegerType>(T1) && isa<IntegerType>(T2));
166 
167   if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits())
168     return T2;
169   else
170     return T1;
171 }
172 
173 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) {
174   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus &&
175          "Unsupported unary operation");
176 
177   Value *V;
178   Type *MaxType = getType(Expr);
179   assert(MaxType->isIntegerTy() &&
180          "Unary expressions can only be created for integer types");
181 
182   V = create(isl_ast_expr_get_op_arg(Expr, 0));
183   MaxType = getWidestType(MaxType, V->getType());
184 
185   if (MaxType != V->getType())
186     V = Builder.CreateSExt(V, MaxType);
187 
188   isl_ast_expr_free(Expr);
189   return createSub(ConstantInt::getNullValue(MaxType), V);
190 }
191 
192 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) {
193   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
194          "isl ast expression not of type isl_ast_op");
195   assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
196          "We need at least two operands in an n-ary operation");
197 
198   CmpInst::Predicate Pred;
199   switch (isl_ast_expr_get_op_type(Expr)) {
200   default:
201     llvm_unreachable("This is not a an n-ary isl ast expression");
202   case isl_ast_op_max:
203     Pred = CmpInst::ICMP_SGT;
204     break;
205   case isl_ast_op_min:
206     Pred = CmpInst::ICMP_SLT;
207     break;
208   }
209 
210   Value *V = create(isl_ast_expr_get_op_arg(Expr, 0));
211 
212   for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) {
213     Value *OpV = create(isl_ast_expr_get_op_arg(Expr, i));
214     Type *Ty = getWidestType(V->getType(), OpV->getType());
215 
216     if (Ty != OpV->getType())
217       OpV = Builder.CreateSExt(OpV, Ty);
218 
219     if (Ty != V->getType())
220       V = Builder.CreateSExt(V, Ty);
221 
222     Value *Cmp = Builder.CreateICmp(Pred, V, OpV);
223     V = Builder.CreateSelect(Cmp, V, OpV);
224   }
225 
226   // TODO: We can truncate the result, if it fits into a smaller type. This can
227   // help in cases where we have larger operands (e.g. i67) but the result is
228   // known to fit into i64. Without the truncation, the larger i67 type may
229   // force all subsequent operations to be performed on a non-native type.
230   isl_ast_expr_free(Expr);
231   return V;
232 }
233 
234 std::pair<Value *, Type *>
235 IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) {
236   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
237          "isl ast expression not of type isl_ast_op");
238   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access &&
239          "not an access isl ast expression");
240   assert(isl_ast_expr_get_op_n_arg(Expr) >= 1 &&
241          "We need at least two operands to create a member access.");
242 
243   Value *Base, *IndexOp, *Access;
244   isl_ast_expr *BaseExpr;
245   isl_id *BaseId;
246 
247   BaseExpr = isl_ast_expr_get_op_arg(Expr, 0);
248   BaseId = isl_ast_expr_get_id(BaseExpr);
249   isl_ast_expr_free(BaseExpr);
250 
251   const ScopArrayInfo *SAI = nullptr;
252 
253   if (PollyDebugPrinting)
254     RuntimeDebugBuilder::createCPUPrinter(Builder, isl_id_get_name(BaseId));
255 
256   if (IDToSAI)
257     SAI = (*IDToSAI)[BaseId];
258 
259   if (!SAI)
260     SAI = ScopArrayInfo::getFromId(isl::manage(BaseId));
261   else
262     isl_id_free(BaseId);
263 
264   assert(SAI && "No ScopArrayInfo found for this isl_id.");
265 
266   Base = SAI->getBasePtr();
267 
268   if (auto NewBase = GlobalMap.lookup(Base))
269     Base = NewBase;
270 
271   assert(Base->getType()->isPointerTy() && "Access base should be a pointer");
272   StringRef BaseName = Base->getName();
273 
274   auto PointerTy = PointerType::get(SAI->getElementType(),
275                                     Base->getType()->getPointerAddressSpace());
276   if (Base->getType() != PointerTy) {
277     Base =
278         Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName);
279   }
280 
281   if (isl_ast_expr_get_op_n_arg(Expr) == 1) {
282     isl_ast_expr_free(Expr);
283     if (PollyDebugPrinting)
284       RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
285     return {Base, SAI->getElementType()};
286   }
287 
288   IndexOp = nullptr;
289   for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) {
290     Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u));
291     assert(NextIndex->getType()->isIntegerTy() &&
292            "Access index should be an integer");
293 
294     if (PollyDebugPrinting)
295       RuntimeDebugBuilder::createCPUPrinter(Builder, "[", NextIndex, "]");
296 
297     if (!IndexOp) {
298       IndexOp = NextIndex;
299     } else {
300       Type *Ty = getWidestType(NextIndex->getType(), IndexOp->getType());
301 
302       if (Ty != NextIndex->getType())
303         NextIndex = Builder.CreateIntCast(NextIndex, Ty, true);
304       if (Ty != IndexOp->getType())
305         IndexOp = Builder.CreateIntCast(IndexOp, Ty, true);
306 
307       IndexOp = createAdd(IndexOp, NextIndex, "polly.access.add." + BaseName);
308     }
309 
310     // For every but the last dimension multiply the size, for the last
311     // dimension we can exit the loop.
312     if (u + 1 >= e)
313       break;
314 
315     const SCEV *DimSCEV = SAI->getDimensionSize(u);
316 
317     llvm::ValueToSCEVMapTy Map;
318     for (auto &KV : GlobalMap)
319       Map[KV.first] = SE.getSCEV(KV.second);
320     DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map);
321     Value *DimSize =
322         expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(),
323                       &*Builder.GetInsertPoint(), nullptr,
324                       StartBlock->getSinglePredecessor());
325 
326     Type *Ty = getWidestType(DimSize->getType(), IndexOp->getType());
327 
328     if (Ty != IndexOp->getType())
329       IndexOp = Builder.CreateSExtOrTrunc(IndexOp, Ty,
330                                           "polly.access.sext." + BaseName);
331     if (Ty != DimSize->getType())
332       DimSize = Builder.CreateSExtOrTrunc(DimSize, Ty,
333                                           "polly.access.sext." + BaseName);
334     IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName);
335   }
336 
337   Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName);
338 
339   if (PollyDebugPrinting)
340     RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
341   isl_ast_expr_free(Expr);
342   return {Access, SAI->getElementType()};
343 }
344 
345 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) {
346   auto Info = createAccessAddress(Expr);
347   assert(Info.first && "Could not create op access address");
348   return Builder.CreateLoad(Info.second, Info.first,
349                             Info.first->getName() + ".load");
350 }
351 
352 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) {
353   Value *LHS, *RHS, *Res;
354   Type *MaxType;
355   isl_ast_op_type OpType;
356 
357   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
358          "isl ast expression not of type isl_ast_op");
359   assert(isl_ast_expr_get_op_n_arg(Expr) == 2 &&
360          "not a binary isl ast expression");
361 
362   OpType = isl_ast_expr_get_op_type(Expr);
363 
364   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
365   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
366 
367   Type *LHSType = LHS->getType();
368   Type *RHSType = RHS->getType();
369 
370   MaxType = getWidestType(LHSType, RHSType);
371 
372   // Take the result into account when calculating the widest type.
373   //
374   // For operations such as '+' the result may require a type larger than
375   // the type of the individual operands. For other operations such as '/', the
376   // result type cannot be larger than the type of the individual operand. isl
377   // does not calculate correct types for these operations and we consequently
378   // exclude those operations here.
379   switch (OpType) {
380   case isl_ast_op_pdiv_q:
381   case isl_ast_op_pdiv_r:
382   case isl_ast_op_div:
383   case isl_ast_op_fdiv_q:
384   case isl_ast_op_zdiv_r:
385     // Do nothing
386     break;
387   case isl_ast_op_add:
388   case isl_ast_op_sub:
389   case isl_ast_op_mul:
390     MaxType = getWidestType(MaxType, getType(Expr));
391     break;
392   default:
393     llvm_unreachable("This is no binary isl ast expression");
394   }
395 
396   if (MaxType != RHS->getType())
397     RHS = Builder.CreateSExt(RHS, MaxType);
398 
399   if (MaxType != LHS->getType())
400     LHS = Builder.CreateSExt(LHS, MaxType);
401 
402   switch (OpType) {
403   default:
404     llvm_unreachable("This is no binary isl ast expression");
405   case isl_ast_op_add:
406     Res = createAdd(LHS, RHS);
407     break;
408   case isl_ast_op_sub:
409     Res = createSub(LHS, RHS);
410     break;
411   case isl_ast_op_mul:
412     Res = createMul(LHS, RHS);
413     break;
414   case isl_ast_op_div:
415     Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true);
416     break;
417   case isl_ast_op_pdiv_q: // Dividend is non-negative
418     Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q");
419     break;
420   case isl_ast_op_fdiv_q: { // Round towards -infty
421     if (auto *Const = dyn_cast<ConstantInt>(RHS)) {
422       auto &Val = Const->getValue();
423       if (Val.isPowerOf2() && Val.isNonNegative()) {
424         Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr");
425         break;
426       }
427     }
428     // TODO: Review code and check that this calculation does not yield
429     //       incorrect overflow in some edge cases.
430     //
431     // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
432     Value *One = ConstantInt::get(MaxType, 1);
433     Value *Zero = ConstantInt::get(MaxType, 0);
434     Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0");
435     Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1");
436     Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2");
437     Value *Dividend =
438         Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3");
439     Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4");
440     break;
441   }
442   case isl_ast_op_pdiv_r: // Dividend is non-negative
443     Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r");
444     break;
445 
446   case isl_ast_op_zdiv_r: // Result only compared against zero
447     Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r");
448     break;
449   }
450 
451   // TODO: We can truncate the result, if it fits into a smaller type. This can
452   // help in cases where we have larger operands (e.g. i67) but the result is
453   // known to fit into i64. Without the truncation, the larger i67 type may
454   // force all subsequent operations to be performed on a non-native type.
455   isl_ast_expr_free(Expr);
456   return Res;
457 }
458 
459 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) {
460   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select &&
461          "Unsupported unary isl ast expression");
462   Value *LHS, *RHS, *Cond;
463   Type *MaxType = getType(Expr);
464 
465   Cond = create(isl_ast_expr_get_op_arg(Expr, 0));
466   if (!Cond->getType()->isIntegerTy(1))
467     Cond = Builder.CreateIsNotNull(Cond);
468 
469   LHS = create(isl_ast_expr_get_op_arg(Expr, 1));
470   RHS = create(isl_ast_expr_get_op_arg(Expr, 2));
471 
472   MaxType = getWidestType(MaxType, LHS->getType());
473   MaxType = getWidestType(MaxType, RHS->getType());
474 
475   if (MaxType != RHS->getType())
476     RHS = Builder.CreateSExt(RHS, MaxType);
477 
478   if (MaxType != LHS->getType())
479     LHS = Builder.CreateSExt(LHS, MaxType);
480 
481   // TODO: Do we want to truncate the result?
482   isl_ast_expr_free(Expr);
483   return Builder.CreateSelect(Cond, LHS, RHS);
484 }
485 
486 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) {
487   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
488          "Expected an isl_ast_expr_op expression");
489 
490   Value *LHS, *RHS, *Res;
491 
492   auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0);
493   auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1);
494   bool HasNonAddressOfOperand =
495       isl_ast_expr_get_type(Op0) != isl_ast_expr_op ||
496       isl_ast_expr_get_type(Op1) != isl_ast_expr_op ||
497       isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of ||
498       isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of;
499 
500   LHS = create(Op0);
501   RHS = create(Op1);
502 
503   auto *LHSTy = LHS->getType();
504   auto *RHSTy = RHS->getType();
505   bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy();
506   bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand;
507 
508   auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits());
509   if (LHSTy->isPointerTy())
510     LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy);
511   if (RHSTy->isPointerTy())
512     RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy);
513 
514   if (LHS->getType() != RHS->getType()) {
515     Type *MaxType = LHS->getType();
516     MaxType = getWidestType(MaxType, RHS->getType());
517 
518     if (MaxType != RHS->getType())
519       RHS = Builder.CreateSExt(RHS, MaxType);
520 
521     if (MaxType != LHS->getType())
522       LHS = Builder.CreateSExt(LHS, MaxType);
523   }
524 
525   isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr);
526   assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt &&
527          "Unsupported ICmp isl ast expression");
528   assert(isl_ast_op_eq + 4 == isl_ast_op_gt &&
529          "Isl ast op type interface changed");
530 
531   CmpInst::Predicate Predicates[5][2] = {
532       {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ},
533       {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE},
534       {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT},
535       {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE},
536       {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT},
537   };
538 
539   Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp],
540                            LHS, RHS);
541 
542   isl_ast_expr_free(Expr);
543   return Res;
544 }
545 
546 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) {
547   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
548          "Expected an isl_ast_expr_op expression");
549 
550   Value *LHS, *RHS, *Res;
551   isl_ast_op_type OpType;
552 
553   OpType = isl_ast_expr_get_op_type(Expr);
554 
555   assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) &&
556          "Unsupported isl_ast_op_type");
557 
558   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
559   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
560 
561   // Even though the isl pretty printer prints the expressions as 'exp && exp'
562   // or 'exp || exp', we actually code generate the bitwise expressions
563   // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches,
564   // but it is, due to the use of i1 types, otherwise equivalent. The reason
565   // to go for bitwise operations is, that we assume the reduced control flow
566   // will outweigh the overhead introduced by evaluating unneeded expressions.
567   // The isl code generation currently does not take advantage of the fact that
568   // the expression after an '||' or '&&' is in some cases not evaluated.
569   // Evaluating it anyways does not cause any undefined behaviour.
570   //
571   // TODO: Document in isl itself, that the unconditionally evaluating the
572   // second part of '||' or '&&' expressions is safe.
573   if (!LHS->getType()->isIntegerTy(1))
574     LHS = Builder.CreateIsNotNull(LHS);
575   if (!RHS->getType()->isIntegerTy(1))
576     RHS = Builder.CreateIsNotNull(RHS);
577 
578   switch (OpType) {
579   default:
580     llvm_unreachable("Unsupported boolean expression");
581   case isl_ast_op_and:
582     Res = Builder.CreateAnd(LHS, RHS);
583     break;
584   case isl_ast_op_or:
585     Res = Builder.CreateOr(LHS, RHS);
586     break;
587   }
588 
589   isl_ast_expr_free(Expr);
590   return Res;
591 }
592 
593 Value *
594 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) {
595   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
596          "Expected an isl_ast_expr_op expression");
597 
598   Value *LHS, *RHS;
599   isl_ast_op_type OpType;
600 
601   Function *F = Builder.GetInsertBlock()->getParent();
602   LLVMContext &Context = F->getContext();
603 
604   OpType = isl_ast_expr_get_op_type(Expr);
605 
606   assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) &&
607          "Unsupported isl_ast_op_type");
608 
609   auto InsertBB = Builder.GetInsertBlock();
610   auto InsertPoint = Builder.GetInsertPoint();
611   auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI);
612   BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F);
613   LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB));
614   DT.addNewBlock(CondBB, InsertBB);
615 
616   InsertBB->getTerminator()->eraseFromParent();
617   Builder.SetInsertPoint(InsertBB);
618   auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB);
619 
620   Builder.SetInsertPoint(CondBB);
621   Builder.CreateBr(NextBB);
622 
623   Builder.SetInsertPoint(InsertBB->getTerminator());
624 
625   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
626   if (!LHS->getType()->isIntegerTy(1))
627     LHS = Builder.CreateIsNotNull(LHS);
628   auto LeftBB = Builder.GetInsertBlock();
629 
630   if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then)
631     BR->setCondition(Builder.CreateNeg(LHS));
632   else
633     BR->setCondition(LHS);
634 
635   Builder.SetInsertPoint(CondBB->getTerminator());
636   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
637   if (!RHS->getType()->isIntegerTy(1))
638     RHS = Builder.CreateIsNotNull(RHS);
639   auto RightBB = Builder.GetInsertBlock();
640 
641   Builder.SetInsertPoint(NextBB->getTerminator());
642   auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2);
643   PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse()
644                                                  : Builder.getTrue(),
645                    LeftBB);
646   PHI->addIncoming(RHS, RightBB);
647 
648   isl_ast_expr_free(Expr);
649   return PHI;
650 }
651 
652 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) {
653   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
654          "Expression not of type isl_ast_expr_op");
655   switch (isl_ast_expr_get_op_type(Expr)) {
656   case isl_ast_op_error:
657   case isl_ast_op_cond:
658   case isl_ast_op_call:
659   case isl_ast_op_member:
660     llvm_unreachable("Unsupported isl ast expression");
661   case isl_ast_op_access:
662     return createOpAccess(Expr);
663   case isl_ast_op_max:
664   case isl_ast_op_min:
665     return createOpNAry(Expr);
666   case isl_ast_op_add:
667   case isl_ast_op_sub:
668   case isl_ast_op_mul:
669   case isl_ast_op_div:
670   case isl_ast_op_fdiv_q: // Round towards -infty
671   case isl_ast_op_pdiv_q: // Dividend is non-negative
672   case isl_ast_op_pdiv_r: // Dividend is non-negative
673   case isl_ast_op_zdiv_r: // Result only compared against zero
674     return createOpBin(Expr);
675   case isl_ast_op_minus:
676     return createOpUnary(Expr);
677   case isl_ast_op_select:
678     return createOpSelect(Expr);
679   case isl_ast_op_and:
680   case isl_ast_op_or:
681     return createOpBoolean(Expr);
682   case isl_ast_op_and_then:
683   case isl_ast_op_or_else:
684     return createOpBooleanConditional(Expr);
685   case isl_ast_op_eq:
686   case isl_ast_op_le:
687   case isl_ast_op_lt:
688   case isl_ast_op_ge:
689   case isl_ast_op_gt:
690     return createOpICmp(Expr);
691   case isl_ast_op_address_of:
692     return createOpAddressOf(Expr);
693   }
694 
695   llvm_unreachable("Unsupported isl_ast_expr_op kind.");
696 }
697 
698 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) {
699   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
700          "Expected an isl_ast_expr_op expression.");
701   assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary.");
702 
703   isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0);
704   assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op &&
705          "Expected address of operator to be an isl_ast_expr_op expression.");
706   assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access &&
707          "Expected address of operator to be an access expression.");
708 
709   Value *V = createAccessAddress(Op).first;
710 
711   isl_ast_expr_free(Expr);
712 
713   return V;
714 }
715 
716 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) {
717   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id &&
718          "Expression not of type isl_ast_expr_ident");
719 
720   isl_id *Id;
721   Value *V;
722 
723   Id = isl_ast_expr_get_id(Expr);
724 
725   assert(IDToValue.count(Id) && "Identifier not found");
726 
727   V = IDToValue[Id];
728   if (!V)
729     V = UndefValue::get(getType(Expr));
730 
731   if (V->getType()->isPointerTy())
732     V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits()));
733 
734   assert(V && "Unknown parameter id found");
735 
736   isl_id_free(Id);
737   isl_ast_expr_free(Expr);
738 
739   return V;
740 }
741 
742 IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) {
743   // XXX: We assume i64 is large enough. This is often true, but in general
744   //      incorrect. Also, on 32bit architectures, it would be beneficial to
745   //      use a smaller type. We can and should directly derive this information
746   //      during code generation.
747   return IntegerType::get(Builder.getContext(), 64);
748 }
749 
750 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) {
751   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int &&
752          "Expression not of type isl_ast_expr_int");
753   isl_val *Val;
754   Value *V;
755   APInt APValue;
756   IntegerType *T;
757 
758   Val = isl_ast_expr_get_val(Expr);
759   APValue = APIntFromVal(Val);
760 
761   auto BitWidth = APValue.getBitWidth();
762   if (BitWidth <= 64)
763     T = getType(Expr);
764   else
765     T = Builder.getIntNTy(BitWidth);
766 
767   APValue = APValue.sextOrSelf(T->getBitWidth());
768   V = ConstantInt::get(T, APValue);
769 
770   isl_ast_expr_free(Expr);
771   return V;
772 }
773 
774 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) {
775   switch (isl_ast_expr_get_type(Expr)) {
776   case isl_ast_expr_error:
777     llvm_unreachable("Code generation error");
778   case isl_ast_expr_op:
779     return createOp(Expr);
780   case isl_ast_expr_id:
781     return createId(Expr);
782   case isl_ast_expr_int:
783     return createInt(Expr);
784   }
785 
786   llvm_unreachable("Unexpected enum value");
787 }
788