1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //===----------------------------------------------------------------------===//
11 
12 #include "polly/CodeGen/IslExprBuilder.h"
13 #include "polly/Options.h"
14 #include "polly/ScopInfo.h"
15 #include "polly/Support/GICHelper.h"
16 #include "polly/Support/ScopHelper.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
19 
20 using namespace llvm;
21 using namespace polly;
22 
23 /// @brief Different overflow tracking modes.
24 enum OverflowTrackingChoice {
25   OT_NEVER,   ///< Never tack potential overflows.
26   OT_REQUEST, ///< Track potential overflows if requested.
27   OT_ALWAYS   ///< Always track potential overflows.
28 };
29 
30 static cl::opt<OverflowTrackingChoice> OTMode(
31     "polly-overflow-tracking",
32     cl::desc("Define where potential integer overflows in generated "
33              "expressions should be tracked."),
34     cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."),
35                clEnumValN(OT_REQUEST, "request",
36                           "Track the overflow bit if requested."),
37                clEnumValN(OT_ALWAYS, "always",
38                           "Always track the overflow bit."),
39                clEnumValEnd),
40     cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory));
41 
42 // @TODO This should actually be derived from the DataLayout.
43 static cl::opt<unsigned> PollyMaxAllowedBitWidth(
44     "polly-max-expr-bit-width",
45     cl::desc("The maximal bit with for generated expressions."), cl::Hidden,
46     cl::ZeroOrMore, cl::init(64), cl::cat(PollyCategory));
47 
48 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder,
49                                IDToValueTy &IDToValue, ValueMapT &GlobalMap,
50                                const DataLayout &DL, ScalarEvolution &SE,
51                                DominatorTree &DT, LoopInfo &LI)
52     : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap),
53       DL(DL), SE(SE), DT(DT), LI(LI) {
54   OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr;
55 }
56 
57 void IslExprBuilder::setTrackOverflow(bool Enable) {
58   // If potential overflows are tracked always or never we ignore requests
59   // to change the behaviour.
60   if (OTMode != OT_REQUEST)
61     return;
62 
63   if (Enable) {
64     // If tracking should be enabled initialize the OverflowState.
65     OverflowState = Builder.getFalse();
66   } else {
67     // If tracking should be disabled just unset the OverflowState.
68     OverflowState = nullptr;
69   }
70 }
71 
72 Value *IslExprBuilder::getOverflowState() const {
73   // If the overflow tracking was requested but it is disabled we avoid the
74   // additional nullptr checks at the call sides but instead provide a
75   // meaningful result.
76   if (OTMode == OT_NEVER)
77     return Builder.getFalse();
78   return OverflowState;
79 }
80 
81 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS,
82                                    Value *RHS, const Twine &Name) {
83   // Flag that is true if the computation cannot overflow.
84   bool IsSafeToCompute = false;
85   switch (Opc) {
86   case Instruction::Add:
87   case Instruction::Sub:
88     IsSafeToCompute = adjustTypesForSafeAddition(LHS, RHS);
89     break;
90   case Instruction::Mul:
91     IsSafeToCompute = adjustTypesForSafeMultiplication(LHS, RHS);
92     break;
93   default:
94     llvm_unreachable("Unknown binary operator!");
95   }
96 
97   // Handle the plain operation (without overflow tracking or a safe
98   // computation) first.
99   if (!OverflowState || (IsSafeToCompute && (OTMode != OT_ALWAYS))) {
100     switch (Opc) {
101     case Instruction::Add:
102       return Builder.CreateNSWAdd(LHS, RHS, Name);
103     case Instruction::Sub:
104       return Builder.CreateNSWSub(LHS, RHS, Name);
105     case Instruction::Mul:
106       return Builder.CreateNSWMul(LHS, RHS, Name);
107     default:
108       llvm_unreachable("Unknown binary operator!");
109     }
110   }
111 
112   Function *F = nullptr;
113   Module *M = Builder.GetInsertBlock()->getModule();
114   switch (Opc) {
115   case Instruction::Add:
116     F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
117                                   {LHS->getType()});
118     break;
119   case Instruction::Sub:
120     F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow,
121                                   {LHS->getType()});
122     break;
123   case Instruction::Mul:
124     F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow,
125                                   {LHS->getType()});
126     break;
127   default:
128     llvm_unreachable("No overflow intrinsic for binary operator found!");
129   }
130 
131   auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name);
132   assert(ResultStruct->getType()->isStructTy());
133 
134   auto *OverflowFlag =
135       Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit");
136 
137   // If all overflows are tracked we do not combine the results as this could
138   // cause dominance problems. Instead we will always keep the last overflow
139   // flag as current state.
140   if (OTMode == OT_ALWAYS)
141     OverflowState = OverflowFlag;
142   else
143     OverflowState =
144         Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state");
145 
146   return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res");
147 }
148 
149 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) {
150   return createBinOp(Instruction::Add, LHS, RHS, Name);
151 }
152 
153 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) {
154   return createBinOp(Instruction::Sub, LHS, RHS, Name);
155 }
156 
157 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) {
158   return createBinOp(Instruction::Mul, LHS, RHS, Name);
159 }
160 
161 static Type *getWidestType(Type *T1, Type *T2) {
162   assert(isa<IntegerType>(T1) && isa<IntegerType>(T2));
163 
164   if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits())
165     return T2;
166   else
167     return T1;
168 }
169 
170 void IslExprBuilder::unifyTypes(Value *&V0, Value *&V1, Value *&V2) {
171   auto *T0 = V0->getType();
172   auto *T1 = V1->getType();
173   auto *T2 = V2->getType();
174   if (T0 == T1 && T1 == T2)
175     return;
176   auto *MaxT = getWidestType(T0, T1);
177   MaxT = getWidestType(MaxT, T2);
178   V0 = Builder.CreateSExt(V0, MaxT);
179   V1 = Builder.CreateSExt(V1, MaxT);
180   V2 = Builder.CreateSExt(V2, MaxT);
181 }
182 
183 bool IslExprBuilder::adjustTypesForSafeComputation(Value *&LHS, Value *&RHS,
184                                                    unsigned RequiredBitWidth) {
185   unsigned LBitWidth = LHS->getType()->getPrimitiveSizeInBits();
186   unsigned RBitWidth = RHS->getType()->getPrimitiveSizeInBits();
187   unsigned MaxUsedBitWidth = std::max(LBitWidth, RBitWidth);
188 
189   // @TODO For now use the maximal bit width if the required one is to large but
190   //       note that this is not sound.
191   unsigned MaxAllowedBitWidth = PollyMaxAllowedBitWidth;
192   unsigned NewBitWidth =
193       std::max(MaxUsedBitWidth, std::min(MaxAllowedBitWidth, RequiredBitWidth));
194 
195   Type *Ty = Builder.getIntNTy(NewBitWidth);
196   LHS = Builder.CreateSExt(LHS, Ty);
197   RHS = Builder.CreateSExt(RHS, Ty);
198 
199   // If the new bit width is not large enough the computation is not sound.
200   return NewBitWidth == RequiredBitWidth;
201 }
202 
203 bool IslExprBuilder::adjustTypesForSafeAddition(Value *&LHS, Value *&RHS) {
204   unsigned LBitWidth = LHS->getType()->getPrimitiveSizeInBits();
205   unsigned RBitWidth = RHS->getType()->getPrimitiveSizeInBits();
206   return adjustTypesForSafeComputation(LHS, RHS,
207                                        std::max(LBitWidth, RBitWidth) + 1);
208 }
209 
210 bool IslExprBuilder::adjustTypesForSafeMultiplication(Value *&LHS,
211                                                       Value *&RHS) {
212   unsigned LBitWidth = LHS->getType()->getPrimitiveSizeInBits();
213   unsigned RBitWidth = RHS->getType()->getPrimitiveSizeInBits();
214   return adjustTypesForSafeComputation(LHS, RHS, LBitWidth + RBitWidth);
215 }
216 
217 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) {
218   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus &&
219          "Unsupported unary operation");
220 
221   auto *V = create(isl_ast_expr_get_op_arg(Expr, 0));
222   assert(V->getType()->isIntegerTy() &&
223          "Unary expressions can only be created for integer types");
224 
225   isl_ast_expr_free(Expr);
226   return createSub(ConstantInt::getNullValue(V->getType()), V);
227 }
228 
229 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) {
230   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
231          "isl ast expression not of type isl_ast_op");
232   assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
233          "We need at least two operands in an n-ary operation");
234   assert((isl_ast_expr_get_op_type(Expr) == isl_ast_op_max ||
235           isl_ast_expr_get_op_type(Expr) == isl_ast_op_min) &&
236          "This is no n-ary isl ast expression");
237 
238   bool IsMax = isl_ast_expr_get_op_type(Expr) == isl_ast_op_max;
239   auto Pred = IsMax ? CmpInst::ICMP_SGT : CmpInst::ICMP_SLT;
240   auto *V = create(isl_ast_expr_get_op_arg(Expr, 0));
241 
242   for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) {
243     auto *OpV = create(isl_ast_expr_get_op_arg(Expr, i));
244     unifyTypes(V, OpV);
245     V = Builder.CreateSelect(Builder.CreateICmp(Pred, V, OpV), V, OpV);
246   }
247 
248   isl_ast_expr_free(Expr);
249   return V;
250 }
251 
252 Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) {
253   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
254          "isl ast expression not of type isl_ast_op");
255   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access &&
256          "not an access isl ast expression");
257   assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
258          "We need at least two operands to create a member access.");
259 
260   Value *Base, *IndexOp, *Access;
261   isl_ast_expr *BaseExpr;
262   isl_id *BaseId;
263 
264   BaseExpr = isl_ast_expr_get_op_arg(Expr, 0);
265   BaseId = isl_ast_expr_get_id(BaseExpr);
266   isl_ast_expr_free(BaseExpr);
267 
268   const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(BaseId);
269   Base = SAI->getBasePtr();
270 
271   if (auto NewBase = GlobalMap.lookup(Base))
272     Base = NewBase;
273 
274   assert(Base->getType()->isPointerTy() && "Access base should be a pointer");
275   StringRef BaseName = Base->getName();
276 
277   auto PointerTy = PointerType::get(SAI->getElementType(),
278                                     Base->getType()->getPointerAddressSpace());
279   if (Base->getType() != PointerTy) {
280     Base =
281         Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName);
282   }
283 
284   IndexOp = nullptr;
285   for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) {
286     Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u));
287     assert(NextIndex->getType()->isIntegerTy() &&
288            "Access index should be an integer");
289 
290     IndexOp = !IndexOp ? NextIndex : createAdd(IndexOp, NextIndex,
291                                                "polly.access.add." + BaseName);
292 
293     // For every but the last dimension multiply the size, for the last
294     // dimension we can exit the loop.
295     if (u + 1 >= e)
296       break;
297 
298     const SCEV *DimSCEV = SAI->getDimensionSize(u);
299 
300     llvm::ValueToValueMap Map(GlobalMap.begin(), GlobalMap.end());
301     DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map);
302     Value *DimSize =
303         expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(),
304                       &*Builder.GetInsertPoint());
305 
306     IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName);
307   }
308 
309   Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName);
310 
311   isl_ast_expr_free(Expr);
312   return Access;
313 }
314 
315 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) {
316   Value *Addr = createAccessAddress(Expr);
317   assert(Addr && "Could not create op access address");
318   return Builder.CreateLoad(Addr, Addr->getName() + ".load");
319 }
320 
321 Value *IslExprBuilder::createDiv(Value *LHS, Value *RHS, DivisionMode DM) {
322   auto *ConstRHS = dyn_cast<ConstantInt>(RHS);
323   unsigned UnusedBits = 0;
324   Value *Res = nullptr;
325 
326   if (ConstRHS)
327     UnusedBits = ConstRHS->getValue().logBase2();
328 
329   if (ConstRHS && ConstRHS->getValue().isPowerOf2() &&
330       ConstRHS->getValue().isNonNegative())
331     Res = Builder.CreateAShr(LHS, UnusedBits, "polly.div.shr");
332   else if (DM == DM_SIGNED)
333     Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true);
334   else if (DM == DM_UNSIGNED)
335     Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q");
336   else {
337     assert(DM == DM_FLOORED);
338     // TODO: Review code and check that this calculation does not yield
339     //       incorrect overflow in some bordercases.
340     //
341     // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
342     Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0");
343     Value *One = ConstantInt::get(Sum1->getType(), 1);
344     Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1");
345     Value *Zero = ConstantInt::get(LHS->getType(), 0);
346     Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2");
347     unifyTypes(LHS, Sum2);
348     Value *Dividend =
349         Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3");
350     unifyTypes(Dividend, RHS);
351     Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4");
352   }
353 
354   if (UnusedBits) {
355     auto RequiredBits = Res->getType()->getPrimitiveSizeInBits() - UnusedBits;
356     Res = Builder.CreateTrunc(Res, Builder.getIntNTy(RequiredBits),
357                               "polly.div.trunc");
358   }
359 
360   return Res;
361 }
362 
363 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) {
364   Value *LHS, *RHS, *Res;
365   isl_ast_op_type OpType;
366 
367   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
368          "isl ast expression not of type isl_ast_op");
369   assert(isl_ast_expr_get_op_n_arg(Expr) == 2 &&
370          "not a binary isl ast expression");
371 
372   OpType = isl_ast_expr_get_op_type(Expr);
373 
374   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
375   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
376 
377   // For possibly overflowing operations we will later adjust types but
378   // for others we do it now as we will directly create the operations.
379   switch (OpType) {
380   case isl_ast_op_pdiv_q:
381   case isl_ast_op_pdiv_r:
382   case isl_ast_op_div:
383   case isl_ast_op_fdiv_q:
384   case isl_ast_op_zdiv_r:
385     unifyTypes(LHS, RHS);
386     break;
387   case isl_ast_op_add:
388   case isl_ast_op_sub:
389   case isl_ast_op_mul:
390     // Do nothing
391     break;
392   default:
393     llvm_unreachable("This is no binary isl ast expression");
394   }
395 
396   switch (OpType) {
397   default:
398     llvm_unreachable("This is no binary isl ast expression");
399   case isl_ast_op_add:
400     Res = createAdd(LHS, RHS);
401     break;
402   case isl_ast_op_sub:
403     Res = createSub(LHS, RHS);
404     break;
405   case isl_ast_op_mul:
406     Res = createMul(LHS, RHS);
407     break;
408   case isl_ast_op_div:
409     Res = createDiv(LHS, RHS, DM_SIGNED);
410     break;
411   case isl_ast_op_pdiv_q: // Dividend is non-negative
412     Res = createDiv(LHS, RHS, DM_UNSIGNED);
413     break;
414   case isl_ast_op_fdiv_q: // Round towards -infty
415     Res = createDiv(LHS, RHS, DM_FLOORED);
416     break;
417   case isl_ast_op_pdiv_r: // Dividend is non-negative
418     Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r");
419     break;
420   case isl_ast_op_zdiv_r: // Result only compared against zero
421     Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r");
422     break;
423   }
424 
425   isl_ast_expr_free(Expr);
426   return Res;
427 }
428 
429 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) {
430   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select &&
431          "Unsupported unary isl ast expression");
432   Value *LHS, *RHS, *Cond;
433 
434   Cond = create(isl_ast_expr_get_op_arg(Expr, 0));
435   if (!Cond->getType()->isIntegerTy(1))
436     Cond = Builder.CreateIsNotNull(Cond);
437 
438   LHS = create(isl_ast_expr_get_op_arg(Expr, 1));
439   RHS = create(isl_ast_expr_get_op_arg(Expr, 2));
440   unifyTypes(LHS, RHS);
441 
442   isl_ast_expr_free(Expr);
443   return Builder.CreateSelect(Cond, LHS, RHS);
444 }
445 
446 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) {
447   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
448          "Expected an isl_ast_expr_op expression");
449 
450   Value *LHS, *RHS, *Res;
451 
452   auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0);
453   auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1);
454   bool HasNonAddressOfOperand =
455       isl_ast_expr_get_type(Op0) != isl_ast_expr_op ||
456       isl_ast_expr_get_type(Op1) != isl_ast_expr_op ||
457       isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of ||
458       isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of;
459 
460   LHS = create(Op0);
461   RHS = create(Op1);
462 
463   auto *LHSTy = LHS->getType();
464   auto *RHSTy = RHS->getType();
465   bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy();
466   bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand;
467 
468   auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits());
469   if (LHSTy->isPointerTy())
470     LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy);
471   if (RHSTy->isPointerTy())
472     RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy);
473 
474   unifyTypes(LHS, RHS);
475 
476   isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr);
477   assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt &&
478          "Unsupported ICmp isl ast expression");
479   assert(isl_ast_op_eq + 4 == isl_ast_op_gt &&
480          "Isl ast op type interface changed");
481 
482   CmpInst::Predicate Predicates[5][2] = {
483       {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ},
484       {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE},
485       {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT},
486       {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE},
487       {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT},
488   };
489 
490   Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp],
491                            LHS, RHS);
492 
493   isl_ast_expr_free(Expr);
494   return Res;
495 }
496 
497 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) {
498   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
499          "Expected an isl_ast_expr_op expression");
500 
501   Value *LHS, *RHS, *Res;
502   isl_ast_op_type OpType;
503 
504   OpType = isl_ast_expr_get_op_type(Expr);
505 
506   assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) &&
507          "Unsupported isl_ast_op_type");
508 
509   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
510   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
511 
512   // Even though the isl pretty printer prints the expressions as 'exp && exp'
513   // or 'exp || exp', we actually code generate the bitwise expressions
514   // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches,
515   // but it is, due to the use of i1 types, otherwise equivalent. The reason
516   // to go for bitwise operations is, that we assume the reduced control flow
517   // will outweight the overhead introduced by evaluating unneeded expressions.
518   // The isl code generation currently does not take advantage of the fact that
519   // the expression after an '||' or '&&' is in some cases not evaluated.
520   // Evaluating it anyways does not cause any undefined behaviour.
521   //
522   // TODO: Document in isl itself, that the unconditionally evaluating the
523   // second part of '||' or '&&' expressions is safe.
524   if (!LHS->getType()->isIntegerTy(1))
525     LHS = Builder.CreateIsNotNull(LHS);
526   if (!RHS->getType()->isIntegerTy(1))
527     RHS = Builder.CreateIsNotNull(RHS);
528 
529   switch (OpType) {
530   default:
531     llvm_unreachable("Unsupported boolean expression");
532   case isl_ast_op_and:
533     Res = Builder.CreateAnd(LHS, RHS);
534     break;
535   case isl_ast_op_or:
536     Res = Builder.CreateOr(LHS, RHS);
537     break;
538   }
539 
540   isl_ast_expr_free(Expr);
541   return Res;
542 }
543 
544 Value *
545 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) {
546   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
547          "Expected an isl_ast_expr_op expression");
548 
549   Value *LHS, *RHS;
550   isl_ast_op_type OpType;
551 
552   Function *F = Builder.GetInsertBlock()->getParent();
553   LLVMContext &Context = F->getContext();
554 
555   OpType = isl_ast_expr_get_op_type(Expr);
556 
557   assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) &&
558          "Unsupported isl_ast_op_type");
559 
560   auto InsertBB = Builder.GetInsertBlock();
561   auto InsertPoint = Builder.GetInsertPoint();
562   auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI);
563   BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F);
564   LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB));
565   DT.addNewBlock(CondBB, InsertBB);
566 
567   InsertBB->getTerminator()->eraseFromParent();
568   Builder.SetInsertPoint(InsertBB);
569   auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB);
570 
571   Builder.SetInsertPoint(CondBB);
572   Builder.CreateBr(NextBB);
573 
574   Builder.SetInsertPoint(InsertBB->getTerminator());
575 
576   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
577   if (!LHS->getType()->isIntegerTy(1))
578     LHS = Builder.CreateIsNotNull(LHS);
579   auto LeftBB = Builder.GetInsertBlock();
580 
581   if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then)
582     BR->setCondition(Builder.CreateNeg(LHS));
583   else
584     BR->setCondition(LHS);
585 
586   Builder.SetInsertPoint(CondBB->getTerminator());
587   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
588   if (!RHS->getType()->isIntegerTy(1))
589     RHS = Builder.CreateIsNotNull(RHS);
590   auto RightBB = Builder.GetInsertBlock();
591 
592   Builder.SetInsertPoint(NextBB->getTerminator());
593   auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2);
594   PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse()
595                                                  : Builder.getTrue(),
596                    LeftBB);
597   PHI->addIncoming(RHS, RightBB);
598 
599   isl_ast_expr_free(Expr);
600   return PHI;
601 }
602 
603 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) {
604   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
605          "Expression not of type isl_ast_expr_op");
606   switch (isl_ast_expr_get_op_type(Expr)) {
607   case isl_ast_op_error:
608   case isl_ast_op_cond:
609   case isl_ast_op_call:
610   case isl_ast_op_member:
611     llvm_unreachable("Unsupported isl ast expression");
612   case isl_ast_op_access:
613     return createOpAccess(Expr);
614   case isl_ast_op_max:
615   case isl_ast_op_min:
616     return createOpNAry(Expr);
617   case isl_ast_op_add:
618   case isl_ast_op_sub:
619   case isl_ast_op_mul:
620   case isl_ast_op_div:
621   case isl_ast_op_fdiv_q: // Round towards -infty
622   case isl_ast_op_pdiv_q: // Dividend is non-negative
623   case isl_ast_op_pdiv_r: // Dividend is non-negative
624   case isl_ast_op_zdiv_r: // Result only compared against zero
625     return createOpBin(Expr);
626   case isl_ast_op_minus:
627     return createOpUnary(Expr);
628   case isl_ast_op_select:
629     return createOpSelect(Expr);
630   case isl_ast_op_and:
631   case isl_ast_op_or:
632     return createOpBoolean(Expr);
633   case isl_ast_op_and_then:
634   case isl_ast_op_or_else:
635     return createOpBooleanConditional(Expr);
636   case isl_ast_op_eq:
637   case isl_ast_op_le:
638   case isl_ast_op_lt:
639   case isl_ast_op_ge:
640   case isl_ast_op_gt:
641     return createOpICmp(Expr);
642   case isl_ast_op_address_of:
643     return createOpAddressOf(Expr);
644   }
645 
646   llvm_unreachable("Unsupported isl_ast_expr_op kind.");
647 }
648 
649 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) {
650   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
651          "Expected an isl_ast_expr_op expression.");
652   assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary.");
653 
654   isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0);
655   assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op &&
656          "Expected address of operator to be an isl_ast_expr_op expression.");
657   assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access &&
658          "Expected address of operator to be an access expression.");
659 
660   Value *V = createAccessAddress(Op);
661 
662   isl_ast_expr_free(Expr);
663 
664   return V;
665 }
666 
667 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) {
668   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id &&
669          "Expression not of type isl_ast_expr_ident");
670 
671   isl_id *Id;
672   Value *V;
673 
674   Id = isl_ast_expr_get_id(Expr);
675 
676   assert(IDToValue.count(Id) && "Identifier not found");
677 
678   V = IDToValue[Id];
679   if (!V)
680     V = UndefValue::get(Builder.getInt1Ty());
681 
682   if (V->getType()->isPointerTy())
683     V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits()));
684 
685   assert(V && "Unknown parameter id found");
686 
687   isl_id_free(Id);
688   isl_ast_expr_free(Expr);
689 
690   return V;
691 }
692 
693 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) {
694   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int &&
695          "Expression not of type isl_ast_expr_int");
696 
697   auto *Val = isl_ast_expr_get_val(Expr);
698   auto *V = ConstantInt::get(Builder.getContext(), APIntFromVal(Val));
699 
700   isl_ast_expr_free(Expr);
701   return V;
702 }
703 
704 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) {
705   switch (isl_ast_expr_get_type(Expr)) {
706   case isl_ast_expr_error:
707     llvm_unreachable("Code generation error");
708   case isl_ast_expr_op:
709     return createOp(Expr);
710   case isl_ast_expr_id:
711     return createId(Expr);
712   case isl_ast_expr_int:
713     return createInt(Expr);
714   }
715 
716   llvm_unreachable("Unexpected enum value");
717 }
718