1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "polly/CodeGen/IslExprBuilder.h" 13 #include "polly/Options.h" 14 #include "polly/ScopInfo.h" 15 #include "polly/Support/GICHelper.h" 16 #include "polly/Support/ScopHelper.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 19 20 using namespace llvm; 21 using namespace polly; 22 23 /// @brief Different overflow tracking modes. 24 enum OverflowTrackingChoice { 25 OT_NEVER, ///< Never tack potential overflows. 26 OT_REQUEST, ///< Track potential overflows if requested. 27 OT_ALWAYS ///< Always track potential overflows. 28 }; 29 30 static cl::opt<OverflowTrackingChoice> OTMode( 31 "polly-overflow-tracking", 32 cl::desc("Define where potential integer overflows in generated " 33 "expressions should be tracked."), 34 cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."), 35 clEnumValN(OT_REQUEST, "request", 36 "Track the overflow bit if requested."), 37 clEnumValN(OT_ALWAYS, "always", 38 "Always track the overflow bit."), 39 clEnumValEnd), 40 cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory)); 41 42 // @TODO This should actually be derived from the DataLayout. 43 static cl::opt<unsigned> PollyMaxAllowedBitWidth( 44 "polly-max-expr-bit-width", 45 cl::desc("The maximal bit with for generated expressions."), cl::Hidden, 46 cl::ZeroOrMore, cl::init(64), cl::cat(PollyCategory)); 47 48 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder, 49 IDToValueTy &IDToValue, ValueMapT &GlobalMap, 50 const DataLayout &DL, ScalarEvolution &SE, 51 DominatorTree &DT, LoopInfo &LI) 52 : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap), 53 DL(DL), SE(SE), DT(DT), LI(LI) { 54 OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr; 55 } 56 57 void IslExprBuilder::setTrackOverflow(bool Enable) { 58 // If potential overflows are tracked always or never we ignore requests 59 // to change the behaviour. 60 if (OTMode != OT_REQUEST) 61 return; 62 63 if (Enable) { 64 // If tracking should be enabled initialize the OverflowState. 65 OverflowState = Builder.getFalse(); 66 } else { 67 // If tracking should be disabled just unset the OverflowState. 68 OverflowState = nullptr; 69 } 70 } 71 72 Value *IslExprBuilder::getOverflowState() const { 73 // If the overflow tracking was requested but it is disabled we avoid the 74 // additional nullptr checks at the call sides but instead provide a 75 // meaningful result. 76 if (OTMode == OT_NEVER) 77 return Builder.getFalse(); 78 return OverflowState; 79 } 80 81 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS, 82 Value *RHS, const Twine &Name) { 83 // Flag that is true if the computation cannot overflow. 84 bool IsSafeToCompute = false; 85 switch (Opc) { 86 case Instruction::Add: 87 case Instruction::Sub: 88 IsSafeToCompute = adjustTypesForSafeAddition(LHS, RHS); 89 break; 90 case Instruction::Mul: 91 IsSafeToCompute = adjustTypesForSafeMultiplication(LHS, RHS); 92 break; 93 default: 94 llvm_unreachable("Unknown binary operator!"); 95 } 96 97 // Handle the plain operation (without overflow tracking or a safe 98 // computation) first. 99 if (!OverflowState || (IsSafeToCompute && (OTMode != OT_ALWAYS))) { 100 switch (Opc) { 101 case Instruction::Add: 102 return Builder.CreateNSWAdd(LHS, RHS, Name); 103 case Instruction::Sub: 104 return Builder.CreateNSWSub(LHS, RHS, Name); 105 case Instruction::Mul: 106 return Builder.CreateNSWMul(LHS, RHS, Name); 107 default: 108 llvm_unreachable("Unknown binary operator!"); 109 } 110 } 111 112 Function *F = nullptr; 113 Module *M = Builder.GetInsertBlock()->getModule(); 114 switch (Opc) { 115 case Instruction::Add: 116 F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow, 117 {LHS->getType()}); 118 break; 119 case Instruction::Sub: 120 F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow, 121 {LHS->getType()}); 122 break; 123 case Instruction::Mul: 124 F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow, 125 {LHS->getType()}); 126 break; 127 default: 128 llvm_unreachable("No overflow intrinsic for binary operator found!"); 129 } 130 131 auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name); 132 assert(ResultStruct->getType()->isStructTy()); 133 134 auto *OverflowFlag = 135 Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit"); 136 137 // If all overflows are tracked we do not combine the results as this could 138 // cause dominance problems. Instead we will always keep the last overflow 139 // flag as current state. 140 if (OTMode == OT_ALWAYS) 141 OverflowState = OverflowFlag; 142 else 143 OverflowState = 144 Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state"); 145 146 return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res"); 147 } 148 149 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) { 150 return createBinOp(Instruction::Add, LHS, RHS, Name); 151 } 152 153 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) { 154 return createBinOp(Instruction::Sub, LHS, RHS, Name); 155 } 156 157 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) { 158 return createBinOp(Instruction::Mul, LHS, RHS, Name); 159 } 160 161 static Type *getWidestType(Type *T1, Type *T2) { 162 assert(isa<IntegerType>(T1) && isa<IntegerType>(T2)); 163 164 if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits()) 165 return T2; 166 else 167 return T1; 168 } 169 170 void IslExprBuilder::unifyTypes(Value *&V0, Value *&V1, Value *&V2) { 171 auto *T0 = V0->getType(); 172 auto *T1 = V1->getType(); 173 auto *T2 = V2->getType(); 174 if (T0 == T1 && T1 == T2) 175 return; 176 auto *MaxT = getWidestType(T0, T1); 177 MaxT = getWidestType(MaxT, T2); 178 V0 = Builder.CreateSExt(V0, MaxT); 179 V1 = Builder.CreateSExt(V1, MaxT); 180 V2 = Builder.CreateSExt(V2, MaxT); 181 } 182 183 bool IslExprBuilder::adjustTypesForSafeComputation(Value *&LHS, Value *&RHS, 184 unsigned RequiredBitWidth) { 185 unsigned LBitWidth = LHS->getType()->getPrimitiveSizeInBits(); 186 unsigned RBitWidth = RHS->getType()->getPrimitiveSizeInBits(); 187 unsigned MaxUsedBitWidth = std::max(LBitWidth, RBitWidth); 188 189 // @TODO For now use the maximal bit width if the required one is to large but 190 // note that this is not sound. 191 unsigned MaxAllowedBitWidth = PollyMaxAllowedBitWidth; 192 unsigned NewBitWidth = 193 std::max(MaxUsedBitWidth, std::min(MaxAllowedBitWidth, RequiredBitWidth)); 194 195 Type *Ty = Builder.getIntNTy(NewBitWidth); 196 LHS = Builder.CreateSExt(LHS, Ty); 197 RHS = Builder.CreateSExt(RHS, Ty); 198 199 // If the new bit width is not large enough the computation is not sound. 200 return NewBitWidth == RequiredBitWidth; 201 } 202 203 bool IslExprBuilder::adjustTypesForSafeAddition(Value *&LHS, Value *&RHS) { 204 unsigned LBitWidth = LHS->getType()->getPrimitiveSizeInBits(); 205 unsigned RBitWidth = RHS->getType()->getPrimitiveSizeInBits(); 206 return adjustTypesForSafeComputation(LHS, RHS, 207 std::max(LBitWidth, RBitWidth) + 1); 208 } 209 210 bool IslExprBuilder::adjustTypesForSafeMultiplication(Value *&LHS, 211 Value *&RHS) { 212 unsigned LBitWidth = LHS->getType()->getPrimitiveSizeInBits(); 213 unsigned RBitWidth = RHS->getType()->getPrimitiveSizeInBits(); 214 return adjustTypesForSafeComputation(LHS, RHS, LBitWidth + RBitWidth); 215 } 216 217 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) { 218 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus && 219 "Unsupported unary operation"); 220 221 auto *V = create(isl_ast_expr_get_op_arg(Expr, 0)); 222 assert(V->getType()->isIntegerTy() && 223 "Unary expressions can only be created for integer types"); 224 225 isl_ast_expr_free(Expr); 226 return createSub(ConstantInt::getNullValue(V->getType()), V); 227 } 228 229 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) { 230 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 231 "isl ast expression not of type isl_ast_op"); 232 assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 && 233 "We need at least two operands in an n-ary operation"); 234 assert((isl_ast_expr_get_op_type(Expr) == isl_ast_op_max || 235 isl_ast_expr_get_op_type(Expr) == isl_ast_op_min) && 236 "This is no n-ary isl ast expression"); 237 238 bool IsMax = isl_ast_expr_get_op_type(Expr) == isl_ast_op_max; 239 auto Pred = IsMax ? CmpInst::ICMP_SGT : CmpInst::ICMP_SLT; 240 auto *V = create(isl_ast_expr_get_op_arg(Expr, 0)); 241 242 for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) { 243 auto *OpV = create(isl_ast_expr_get_op_arg(Expr, i)); 244 unifyTypes(V, OpV); 245 V = Builder.CreateSelect(Builder.CreateICmp(Pred, V, OpV), V, OpV); 246 } 247 248 isl_ast_expr_free(Expr); 249 return V; 250 } 251 252 Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) { 253 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 254 "isl ast expression not of type isl_ast_op"); 255 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access && 256 "not an access isl ast expression"); 257 assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 && 258 "We need at least two operands to create a member access."); 259 260 Value *Base, *IndexOp, *Access; 261 isl_ast_expr *BaseExpr; 262 isl_id *BaseId; 263 264 BaseExpr = isl_ast_expr_get_op_arg(Expr, 0); 265 BaseId = isl_ast_expr_get_id(BaseExpr); 266 isl_ast_expr_free(BaseExpr); 267 268 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(BaseId); 269 Base = SAI->getBasePtr(); 270 271 if (auto NewBase = GlobalMap.lookup(Base)) 272 Base = NewBase; 273 274 assert(Base->getType()->isPointerTy() && "Access base should be a pointer"); 275 StringRef BaseName = Base->getName(); 276 277 auto PointerTy = PointerType::get(SAI->getElementType(), 278 Base->getType()->getPointerAddressSpace()); 279 if (Base->getType() != PointerTy) { 280 Base = 281 Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName); 282 } 283 284 IndexOp = nullptr; 285 for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) { 286 Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u)); 287 assert(NextIndex->getType()->isIntegerTy() && 288 "Access index should be an integer"); 289 290 IndexOp = !IndexOp ? NextIndex : createAdd(IndexOp, NextIndex, 291 "polly.access.add." + BaseName); 292 293 // For every but the last dimension multiply the size, for the last 294 // dimension we can exit the loop. 295 if (u + 1 >= e) 296 break; 297 298 const SCEV *DimSCEV = SAI->getDimensionSize(u); 299 300 llvm::ValueToValueMap Map(GlobalMap.begin(), GlobalMap.end()); 301 DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map); 302 Value *DimSize = 303 expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(), 304 &*Builder.GetInsertPoint()); 305 306 IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName); 307 } 308 309 Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName); 310 311 isl_ast_expr_free(Expr); 312 return Access; 313 } 314 315 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) { 316 Value *Addr = createAccessAddress(Expr); 317 assert(Addr && "Could not create op access address"); 318 return Builder.CreateLoad(Addr, Addr->getName() + ".load"); 319 } 320 321 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) { 322 Value *LHS, *RHS, *Res; 323 isl_ast_op_type OpType; 324 325 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 326 "isl ast expression not of type isl_ast_op"); 327 assert(isl_ast_expr_get_op_n_arg(Expr) == 2 && 328 "not a binary isl ast expression"); 329 330 OpType = isl_ast_expr_get_op_type(Expr); 331 332 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 333 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 334 335 // For possibly overflowing operations we will later adjust types but 336 // for others we do it now as we will directly create the operations. 337 switch (OpType) { 338 case isl_ast_op_pdiv_q: 339 case isl_ast_op_pdiv_r: 340 case isl_ast_op_div: 341 case isl_ast_op_fdiv_q: 342 case isl_ast_op_zdiv_r: 343 unifyTypes(LHS, RHS); 344 break; 345 case isl_ast_op_add: 346 case isl_ast_op_sub: 347 case isl_ast_op_mul: 348 // Do nothing 349 break; 350 default: 351 llvm_unreachable("This is no binary isl ast expression"); 352 } 353 354 switch (OpType) { 355 default: 356 llvm_unreachable("This is no binary isl ast expression"); 357 case isl_ast_op_add: 358 Res = createAdd(LHS, RHS); 359 break; 360 case isl_ast_op_sub: 361 Res = createSub(LHS, RHS); 362 break; 363 case isl_ast_op_mul: 364 Res = createMul(LHS, RHS); 365 break; 366 case isl_ast_op_div: 367 Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true); 368 break; 369 case isl_ast_op_pdiv_q: // Dividend is non-negative 370 Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q"); 371 break; 372 case isl_ast_op_fdiv_q: { // Round towards -infty 373 if (auto *Const = dyn_cast<ConstantInt>(RHS)) { 374 auto &Val = Const->getValue(); 375 if (Val.isPowerOf2() && Val.isNonNegative()) { 376 Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr"); 377 break; 378 } 379 } 380 // TODO: Review code and check that this calculation does not yield 381 // incorrect overflow in some bordercases. 382 // 383 // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d 384 Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0"); 385 Value *One = ConstantInt::get(Sum1->getType(), 1); 386 Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1"); 387 Value *Zero = ConstantInt::get(LHS->getType(), 0); 388 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2"); 389 unifyTypes(LHS, Sum2); 390 Value *Dividend = 391 Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3"); 392 unifyTypes(Dividend, RHS); 393 Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4"); 394 break; 395 } 396 case isl_ast_op_pdiv_r: // Dividend is non-negative 397 Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r"); 398 break; 399 400 case isl_ast_op_zdiv_r: // Result only compared against zero 401 Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r"); 402 break; 403 } 404 405 isl_ast_expr_free(Expr); 406 return Res; 407 } 408 409 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) { 410 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select && 411 "Unsupported unary isl ast expression"); 412 Value *LHS, *RHS, *Cond; 413 414 Cond = create(isl_ast_expr_get_op_arg(Expr, 0)); 415 if (!Cond->getType()->isIntegerTy(1)) 416 Cond = Builder.CreateIsNotNull(Cond); 417 418 LHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 419 RHS = create(isl_ast_expr_get_op_arg(Expr, 2)); 420 unifyTypes(LHS, RHS); 421 422 isl_ast_expr_free(Expr); 423 return Builder.CreateSelect(Cond, LHS, RHS); 424 } 425 426 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) { 427 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 428 "Expected an isl_ast_expr_op expression"); 429 430 Value *LHS, *RHS, *Res; 431 432 auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0); 433 auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1); 434 bool HasNonAddressOfOperand = 435 isl_ast_expr_get_type(Op0) != isl_ast_expr_op || 436 isl_ast_expr_get_type(Op1) != isl_ast_expr_op || 437 isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of || 438 isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of; 439 440 LHS = create(Op0); 441 RHS = create(Op1); 442 443 auto *LHSTy = LHS->getType(); 444 auto *RHSTy = RHS->getType(); 445 bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy(); 446 bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand; 447 448 auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits()); 449 if (LHSTy->isPointerTy()) 450 LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy); 451 if (RHSTy->isPointerTy()) 452 RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy); 453 454 unifyTypes(LHS, RHS); 455 456 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr); 457 assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt && 458 "Unsupported ICmp isl ast expression"); 459 assert(isl_ast_op_eq + 4 == isl_ast_op_gt && 460 "Isl ast op type interface changed"); 461 462 CmpInst::Predicate Predicates[5][2] = { 463 {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ}, 464 {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE}, 465 {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT}, 466 {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE}, 467 {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT}, 468 }; 469 470 Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp], 471 LHS, RHS); 472 473 isl_ast_expr_free(Expr); 474 return Res; 475 } 476 477 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) { 478 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 479 "Expected an isl_ast_expr_op expression"); 480 481 Value *LHS, *RHS, *Res; 482 isl_ast_op_type OpType; 483 484 OpType = isl_ast_expr_get_op_type(Expr); 485 486 assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) && 487 "Unsupported isl_ast_op_type"); 488 489 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 490 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 491 492 // Even though the isl pretty printer prints the expressions as 'exp && exp' 493 // or 'exp || exp', we actually code generate the bitwise expressions 494 // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches, 495 // but it is, due to the use of i1 types, otherwise equivalent. The reason 496 // to go for bitwise operations is, that we assume the reduced control flow 497 // will outweight the overhead introduced by evaluating unneeded expressions. 498 // The isl code generation currently does not take advantage of the fact that 499 // the expression after an '||' or '&&' is in some cases not evaluated. 500 // Evaluating it anyways does not cause any undefined behaviour. 501 // 502 // TODO: Document in isl itself, that the unconditionally evaluating the 503 // second part of '||' or '&&' expressions is safe. 504 if (!LHS->getType()->isIntegerTy(1)) 505 LHS = Builder.CreateIsNotNull(LHS); 506 if (!RHS->getType()->isIntegerTy(1)) 507 RHS = Builder.CreateIsNotNull(RHS); 508 509 switch (OpType) { 510 default: 511 llvm_unreachable("Unsupported boolean expression"); 512 case isl_ast_op_and: 513 Res = Builder.CreateAnd(LHS, RHS); 514 break; 515 case isl_ast_op_or: 516 Res = Builder.CreateOr(LHS, RHS); 517 break; 518 } 519 520 isl_ast_expr_free(Expr); 521 return Res; 522 } 523 524 Value * 525 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) { 526 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 527 "Expected an isl_ast_expr_op expression"); 528 529 Value *LHS, *RHS; 530 isl_ast_op_type OpType; 531 532 Function *F = Builder.GetInsertBlock()->getParent(); 533 LLVMContext &Context = F->getContext(); 534 535 OpType = isl_ast_expr_get_op_type(Expr); 536 537 assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) && 538 "Unsupported isl_ast_op_type"); 539 540 auto InsertBB = Builder.GetInsertBlock(); 541 auto InsertPoint = Builder.GetInsertPoint(); 542 auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI); 543 BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F); 544 LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB)); 545 DT.addNewBlock(CondBB, InsertBB); 546 547 InsertBB->getTerminator()->eraseFromParent(); 548 Builder.SetInsertPoint(InsertBB); 549 auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB); 550 551 Builder.SetInsertPoint(CondBB); 552 Builder.CreateBr(NextBB); 553 554 Builder.SetInsertPoint(InsertBB->getTerminator()); 555 556 LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); 557 if (!LHS->getType()->isIntegerTy(1)) 558 LHS = Builder.CreateIsNotNull(LHS); 559 auto LeftBB = Builder.GetInsertBlock(); 560 561 if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then) 562 BR->setCondition(Builder.CreateNeg(LHS)); 563 else 564 BR->setCondition(LHS); 565 566 Builder.SetInsertPoint(CondBB->getTerminator()); 567 RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); 568 if (!RHS->getType()->isIntegerTy(1)) 569 RHS = Builder.CreateIsNotNull(RHS); 570 auto RightBB = Builder.GetInsertBlock(); 571 572 Builder.SetInsertPoint(NextBB->getTerminator()); 573 auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2); 574 PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse() 575 : Builder.getTrue(), 576 LeftBB); 577 PHI->addIncoming(RHS, RightBB); 578 579 isl_ast_expr_free(Expr); 580 return PHI; 581 } 582 583 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) { 584 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 585 "Expression not of type isl_ast_expr_op"); 586 switch (isl_ast_expr_get_op_type(Expr)) { 587 case isl_ast_op_error: 588 case isl_ast_op_cond: 589 case isl_ast_op_call: 590 case isl_ast_op_member: 591 llvm_unreachable("Unsupported isl ast expression"); 592 case isl_ast_op_access: 593 return createOpAccess(Expr); 594 case isl_ast_op_max: 595 case isl_ast_op_min: 596 return createOpNAry(Expr); 597 case isl_ast_op_add: 598 case isl_ast_op_sub: 599 case isl_ast_op_mul: 600 case isl_ast_op_div: 601 case isl_ast_op_fdiv_q: // Round towards -infty 602 case isl_ast_op_pdiv_q: // Dividend is non-negative 603 case isl_ast_op_pdiv_r: // Dividend is non-negative 604 case isl_ast_op_zdiv_r: // Result only compared against zero 605 return createOpBin(Expr); 606 case isl_ast_op_minus: 607 return createOpUnary(Expr); 608 case isl_ast_op_select: 609 return createOpSelect(Expr); 610 case isl_ast_op_and: 611 case isl_ast_op_or: 612 return createOpBoolean(Expr); 613 case isl_ast_op_and_then: 614 case isl_ast_op_or_else: 615 return createOpBooleanConditional(Expr); 616 case isl_ast_op_eq: 617 case isl_ast_op_le: 618 case isl_ast_op_lt: 619 case isl_ast_op_ge: 620 case isl_ast_op_gt: 621 return createOpICmp(Expr); 622 case isl_ast_op_address_of: 623 return createOpAddressOf(Expr); 624 } 625 626 llvm_unreachable("Unsupported isl_ast_expr_op kind."); 627 } 628 629 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) { 630 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && 631 "Expected an isl_ast_expr_op expression."); 632 assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary."); 633 634 isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0); 635 assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op && 636 "Expected address of operator to be an isl_ast_expr_op expression."); 637 assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access && 638 "Expected address of operator to be an access expression."); 639 640 Value *V = createAccessAddress(Op); 641 642 isl_ast_expr_free(Expr); 643 644 return V; 645 } 646 647 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) { 648 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id && 649 "Expression not of type isl_ast_expr_ident"); 650 651 isl_id *Id; 652 Value *V; 653 654 Id = isl_ast_expr_get_id(Expr); 655 656 assert(IDToValue.count(Id) && "Identifier not found"); 657 658 V = IDToValue[Id]; 659 if (!V) 660 V = UndefValue::get(Builder.getInt1Ty()); 661 662 if (V->getType()->isPointerTy()) 663 V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits())); 664 665 assert(V && "Unknown parameter id found"); 666 667 isl_id_free(Id); 668 isl_ast_expr_free(Expr); 669 670 return V; 671 } 672 673 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) { 674 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int && 675 "Expression not of type isl_ast_expr_int"); 676 677 auto *Val = isl_ast_expr_get_val(Expr); 678 auto *V = ConstantInt::get(Builder.getContext(), APIntFromVal(Val)); 679 680 isl_ast_expr_free(Expr); 681 return V; 682 } 683 684 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) { 685 switch (isl_ast_expr_get_type(Expr)) { 686 case isl_ast_expr_error: 687 llvm_unreachable("Code generation error"); 688 case isl_ast_expr_op: 689 return createOp(Expr); 690 case isl_ast_expr_id: 691 return createId(Expr); 692 case isl_ast_expr_int: 693 return createInt(Expr); 694 } 695 696 llvm_unreachable("Unexpected enum value"); 697 } 698