1 //===------ CodeGeneration.cpp - Code generate the Scops. -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The CodeGeneration pass takes a Scop created by ScopInfo and translates it 11 // back to LLVM-IR using Cloog. 12 // 13 // The Scop describes the high level memory behaviour of a control flow region. 14 // Transformation passes can update the schedule (execution order) of statements 15 // in the Scop. Cloog is used to generate an abstract syntax tree (clast) that 16 // reflects the updated execution order. This clast is used to create new 17 // LLVM-IR that is computational equivalent to the original control flow region, 18 // but executes its code in the new execution order defined by the changed 19 // scattering. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "polly/CodeGen/Cloog.h" 24 #ifdef CLOOG_FOUND 25 26 #include "polly/Dependences.h" 27 #include "polly/LinkAllPasses.h" 28 #include "polly/Options.h" 29 #include "polly/ScopInfo.h" 30 #include "polly/TempScopInfo.h" 31 #include "polly/CodeGen/CodeGeneration.h" 32 #include "polly/CodeGen/BlockGenerators.h" 33 #include "polly/CodeGen/LoopGenerators.h" 34 #include "polly/CodeGen/PTXGenerator.h" 35 #include "polly/CodeGen/Utils.h" 36 #include "polly/Support/GICHelper.h" 37 #include "polly/Support/ScopHelper.h" 38 39 #include "llvm/IR/Module.h" 40 #include "llvm/ADT/SetVector.h" 41 #include "llvm/ADT/PostOrderIterator.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/ScalarEvolutionExpander.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 48 #define CLOOG_INT_GMP 1 49 #include "cloog/cloog.h" 50 #include "cloog/isl/cloog.h" 51 52 #include "isl/aff.h" 53 54 #include <vector> 55 #include <utility> 56 57 using namespace polly; 58 using namespace llvm; 59 60 #define DEBUG_TYPE "polly-codegen" 61 62 struct isl_set; 63 64 namespace polly { 65 static cl::opt<bool> 66 OpenMP("enable-polly-openmp", cl::desc("Generate OpenMP parallel code"), 67 cl::value_desc("OpenMP code generation enabled if true"), 68 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 69 70 #ifdef GPU_CODEGEN 71 static cl::opt<bool> 72 GPGPU("enable-polly-gpgpu", cl::desc("Generate GPU parallel code"), 73 cl::Hidden, cl::value_desc("GPGPU code generation enabled if true"), 74 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 75 76 static cl::opt<std::string> 77 GPUTriple("polly-gpgpu-triple", 78 cl::desc("Target triple for GPU code generation"), cl::Hidden, 79 cl::init(""), cl::cat(PollyCategory)); 80 #endif /* GPU_CODEGEN */ 81 82 typedef DenseMap<const char *, Value *> CharMapT; 83 84 /// Class to generate LLVM-IR that calculates the value of a clast_expr. 85 class ClastExpCodeGen { 86 PollyIRBuilder &Builder; 87 const CharMapT &IVS; 88 89 Value *codegen(const clast_name *e, Type *Ty); 90 Value *codegen(const clast_term *e, Type *Ty); 91 Value *codegen(const clast_binary *e, Type *Ty); 92 Value *codegen(const clast_reduction *r, Type *Ty); 93 94 public: 95 // A generator for clast expressions. 96 // 97 // @param B The IRBuilder that defines where the code to calculate the 98 // clast expressions should be inserted. 99 // @param IVMAP A Map that translates strings describing the induction 100 // variables to the Values* that represent these variables 101 // on the LLVM side. 102 ClastExpCodeGen(PollyIRBuilder &B, CharMapT &IVMap); 103 104 // Generates code to calculate a given clast expression. 105 // 106 // @param e The expression to calculate. 107 // @return The Value that holds the result. 108 Value *codegen(const clast_expr *e, Type *Ty); 109 }; 110 111 Value *ClastExpCodeGen::codegen(const clast_name *e, Type *Ty) { 112 CharMapT::const_iterator I = IVS.find(e->name); 113 114 assert(I != IVS.end() && "Clast name not found"); 115 116 return Builder.CreateSExtOrBitCast(I->second, Ty); 117 } 118 119 static APInt APInt_from_MPZ(const mpz_t mpz) { 120 uint64_t *p = nullptr; 121 size_t sz; 122 123 p = (uint64_t *)mpz_export(p, &sz, -1, sizeof(uint64_t), 0, 0, mpz); 124 125 if (p) { 126 APInt A((unsigned)mpz_sizeinbase(mpz, 2), (unsigned)sz, p); 127 A = A.zext(A.getBitWidth() + 1); 128 free(p); 129 130 if (mpz_sgn(mpz) == -1) 131 return -A; 132 else 133 return A; 134 } else { 135 uint64_t val = 0; 136 return APInt(1, 1, &val); 137 } 138 } 139 140 Value *ClastExpCodeGen::codegen(const clast_term *e, Type *Ty) { 141 APInt a = APInt_from_MPZ(e->val); 142 143 Value *ConstOne = ConstantInt::get(Builder.getContext(), a); 144 ConstOne = Builder.CreateSExtOrBitCast(ConstOne, Ty); 145 146 if (!e->var) 147 return ConstOne; 148 149 Value *var = codegen(e->var, Ty); 150 return Builder.CreateMul(ConstOne, var); 151 } 152 153 Value *ClastExpCodeGen::codegen(const clast_binary *e, Type *Ty) { 154 Value *LHS = codegen(e->LHS, Ty); 155 156 APInt RHS_AP = APInt_from_MPZ(e->RHS); 157 158 Value *RHS = ConstantInt::get(Builder.getContext(), RHS_AP); 159 RHS = Builder.CreateSExtOrBitCast(RHS, Ty); 160 161 switch (e->type) { 162 case clast_bin_mod: 163 return Builder.CreateSRem(LHS, RHS); 164 case clast_bin_fdiv: { 165 // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d 166 Value *One = ConstantInt::get(Ty, 1); 167 Value *Zero = ConstantInt::get(Ty, 0); 168 Value *Sum1 = Builder.CreateSub(LHS, RHS); 169 Value *Sum2 = Builder.CreateAdd(Sum1, One); 170 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); 171 Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS); 172 return Builder.CreateSDiv(Dividend, RHS); 173 } 174 case clast_bin_cdiv: { 175 // ceild(n,d) ((n < 0) ? n : (n + d - 1)) / d 176 Value *One = ConstantInt::get(Ty, 1); 177 Value *Zero = ConstantInt::get(Ty, 0); 178 Value *Sum1 = Builder.CreateAdd(LHS, RHS); 179 Value *Sum2 = Builder.CreateSub(Sum1, One); 180 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); 181 Value *Dividend = Builder.CreateSelect(isNegative, LHS, Sum2); 182 return Builder.CreateSDiv(Dividend, RHS); 183 } 184 case clast_bin_div: 185 return Builder.CreateSDiv(LHS, RHS); 186 } 187 188 llvm_unreachable("Unknown clast binary expression type"); 189 } 190 191 Value *ClastExpCodeGen::codegen(const clast_reduction *r, Type *Ty) { 192 assert((r->type == clast_red_min || r->type == clast_red_max || 193 r->type == clast_red_sum) && 194 "Clast reduction type not supported"); 195 Value *old = codegen(r->elts[0], Ty); 196 197 for (int i = 1; i < r->n; ++i) { 198 Value *exprValue = codegen(r->elts[i], Ty); 199 200 switch (r->type) { 201 case clast_red_min: { 202 Value *cmp = Builder.CreateICmpSLT(old, exprValue); 203 old = Builder.CreateSelect(cmp, old, exprValue); 204 break; 205 } 206 case clast_red_max: { 207 Value *cmp = Builder.CreateICmpSGT(old, exprValue); 208 old = Builder.CreateSelect(cmp, old, exprValue); 209 break; 210 } 211 case clast_red_sum: 212 old = Builder.CreateAdd(old, exprValue); 213 break; 214 } 215 } 216 217 return old; 218 } 219 220 ClastExpCodeGen::ClastExpCodeGen(PollyIRBuilder &B, CharMapT &IVMap) 221 : Builder(B), IVS(IVMap) {} 222 223 Value *ClastExpCodeGen::codegen(const clast_expr *e, Type *Ty) { 224 switch (e->type) { 225 case clast_expr_name: 226 return codegen((const clast_name *)e, Ty); 227 case clast_expr_term: 228 return codegen((const clast_term *)e, Ty); 229 case clast_expr_bin: 230 return codegen((const clast_binary *)e, Ty); 231 case clast_expr_red: 232 return codegen((const clast_reduction *)e, Ty); 233 } 234 235 llvm_unreachable("Unknown clast expression!"); 236 } 237 238 class ClastStmtCodeGen { 239 public: 240 const std::vector<std::string> &getParallelLoops(); 241 242 private: 243 // The Scop we code generate. 244 Scop *S; 245 Pass *P; 246 LoopInfo &LI; 247 ScalarEvolution &SE; 248 DominatorTree &DT; 249 const DataLayout &DL; 250 251 // The Builder specifies the current location to code generate at. 252 PollyIRBuilder &Builder; 253 254 // Map the Values from the old code to their counterparts in the new code. 255 ValueMapT ValueMap; 256 257 // Map the loops from the old code to expressions function of the induction 258 // variables in the new code. For example, when the code generator produces 259 // this AST: 260 // 261 // for (int c1 = 0; c1 <= 1023; c1 += 1) 262 // for (int c2 = 0; c2 <= 1023; c2 += 1) 263 // Stmt(c2 + 3, c1); 264 // 265 // LoopToScev is a map associating: 266 // "outer loop in the old loop nest" -> SCEV("c2 + 3"), 267 // "inner loop in the old loop nest" -> SCEV("c1"). 268 LoopToScevMapT LoopToScev; 269 270 // clastVars maps from the textual representation of a clast variable to its 271 // current *Value. clast variables are scheduling variables, original 272 // induction variables or parameters. They are used either in loop bounds or 273 // to define the statement instance that is executed. 274 // 275 // for (s = 0; s < n + 3; ++i) 276 // for (t = s; t < m; ++j) 277 // Stmt(i = s + 3 * m, j = t); 278 // 279 // {s,t,i,j,n,m} is the set of clast variables in this clast. 280 CharMapT ClastVars; 281 282 // Codegenerator for clast expressions. 283 ClastExpCodeGen ExpGen; 284 285 // Do we currently generate parallel code? 286 bool parallelCodeGeneration; 287 288 std::vector<std::string> parallelLoops; 289 290 void codegen(const clast_assignment *a); 291 292 void codegen(const clast_assignment *a, ScopStmt *Statement, 293 unsigned Dimension, int vectorDim, 294 std::vector<ValueMapT> *VectorVMap = 0, 295 std::vector<LoopToScevMapT> *VLTS = 0); 296 297 void codegenSubstitutions(const clast_stmt *Assignment, ScopStmt *Statement, 298 int vectorDim = 0, 299 std::vector<ValueMapT> *VectorVMap = 0, 300 std::vector<LoopToScevMapT> *VLTS = 0); 301 302 void codegen(const clast_user_stmt *u, std::vector<Value *> *IVS = nullptr, 303 const char *iterator = nullptr, 304 __isl_take isl_set *scatteringDomain = 0); 305 306 void codegen(const clast_block *b); 307 308 /// @brief Create a classical sequential loop. 309 void codegenForSequential(const clast_for *f); 310 311 /// @brief Create OpenMP structure values. 312 /// 313 /// Create a list of values that has to be stored into the OpenMP subfuncition 314 /// structure. 315 SetVector<Value *> getOMPValues(const clast_stmt *Body); 316 317 /// @brief Update ClastVars and ValueMap according to a value map. 318 /// 319 /// @param VMap A map from old to new values. 320 void updateWithValueMap(ParallelLoopGenerator::ValueToValueMapTy &VMap); 321 322 /// @brief Create an OpenMP parallel for loop. 323 /// 324 /// This loop reflects a loop as if it would have been created by an OpenMP 325 /// statement. 326 void codegenForOpenMP(const clast_for *f); 327 328 #ifdef GPU_CODEGEN 329 /// @brief Create GPGPU device memory access values. 330 /// 331 /// Create a list of values that will be set to be parameters of the GPGPU 332 /// subfunction. These parameters represent device memory base addresses 333 /// and the size in bytes. 334 SetVector<Value *> getGPUValues(unsigned &OutputBytes); 335 336 /// @brief Create a GPU parallel for loop. 337 /// 338 /// This loop reflects a loop as if it would have been created by a GPU 339 /// statement. 340 void codegenForGPGPU(const clast_for *F); 341 342 /// @brief Get innermost for loop. 343 const clast_stmt *getScheduleInfo(const clast_for *F, 344 std::vector<int> &NumIters, 345 unsigned &LoopDepth, 346 unsigned &NonPLoopDepth); 347 #endif /* GPU_CODEGEN */ 348 349 /// @brief Check if a loop is parallel 350 /// 351 /// Detect if a clast_for loop can be executed in parallel. 352 /// 353 /// @param For The clast for loop to check. 354 /// 355 /// @return bool Returns true if the incoming clast_for statement can 356 /// execute in parallel. 357 bool isParallelFor(const clast_for *For); 358 359 bool isInnermostLoop(const clast_for *f); 360 361 /// @brief Get the number of loop iterations for this loop. 362 /// @param f The clast for loop to check. 363 int getNumberOfIterations(const clast_for *f); 364 365 /// @brief Create vector instructions for this loop. 366 void codegenForVector(const clast_for *f); 367 368 void codegen(const clast_for *f); 369 370 Value *codegen(const clast_equation *eq); 371 372 void codegen(const clast_guard *g); 373 374 void codegen(const clast_stmt *stmt); 375 376 void addParameters(const CloogNames *names); 377 378 IntegerType *getIntPtrTy(); 379 380 public: 381 void codegen(const clast_root *r); 382 383 ClastStmtCodeGen(Scop *scop, PollyIRBuilder &B, Pass *P); 384 }; 385 } 386 387 IntegerType *ClastStmtCodeGen::getIntPtrTy() { 388 return P->getAnalysis<DataLayoutPass>().getDataLayout().getIntPtrType( 389 Builder.getContext()); 390 } 391 392 const std::vector<std::string> &ClastStmtCodeGen::getParallelLoops() { 393 return parallelLoops; 394 } 395 396 void ClastStmtCodeGen::codegen(const clast_assignment *a) { 397 Value *V = ExpGen.codegen(a->RHS, getIntPtrTy()); 398 ClastVars[a->LHS] = V; 399 } 400 401 void ClastStmtCodeGen::codegen(const clast_assignment *A, ScopStmt *Stmt, 402 unsigned Dim, int VectorDim, 403 std::vector<ValueMapT> *VectorVMap, 404 std::vector<LoopToScevMapT> *VLTS) { 405 Value *RHS; 406 407 assert(!A->LHS && "Statement assignments do not have left hand side"); 408 409 RHS = ExpGen.codegen(A->RHS, Builder.getInt64Ty()); 410 411 const llvm::SCEV *URHS = S->getSE()->getUnknown(RHS); 412 if (VLTS) 413 (*VLTS)[VectorDim][Stmt->getLoopForDimension(Dim)] = URHS; 414 LoopToScev[Stmt->getLoopForDimension(Dim)] = URHS; 415 416 const PHINode *PN = Stmt->getInductionVariableForDimension(Dim); 417 if (PN) { 418 RHS = Builder.CreateTruncOrBitCast(RHS, PN->getType()); 419 420 if (VectorVMap) 421 (*VectorVMap)[VectorDim][PN] = RHS; 422 423 ValueMap[PN] = RHS; 424 } 425 } 426 427 void ClastStmtCodeGen::codegenSubstitutions(const clast_stmt *Assignment, 428 ScopStmt *Statement, int vectorDim, 429 std::vector<ValueMapT> *VectorVMap, 430 std::vector<LoopToScevMapT> *VLTS) { 431 int Dimension = 0; 432 433 while (Assignment) { 434 assert(CLAST_STMT_IS_A(Assignment, stmt_ass) && 435 "Substitions are expected to be assignments"); 436 codegen((const clast_assignment *)Assignment, Statement, Dimension, 437 vectorDim, VectorVMap, VLTS); 438 Assignment = Assignment->next; 439 Dimension++; 440 } 441 } 442 443 // Takes the cloog specific domain and translates it into a map Statement -> 444 // PartialSchedule, where the PartialSchedule contains all the dimensions that 445 // have been code generated up to this point. 446 static __isl_give isl_map *extractPartialSchedule(ScopStmt *Statement, 447 __isl_take isl_set *Domain) { 448 isl_map *Schedule = Statement->getScattering(); 449 int ScheduledDimensions = isl_set_dim(Domain, isl_dim_set); 450 int UnscheduledDimensions = 451 isl_map_dim(Schedule, isl_dim_out) - ScheduledDimensions; 452 453 isl_set_free(Domain); 454 455 return isl_map_project_out(Schedule, isl_dim_out, ScheduledDimensions, 456 UnscheduledDimensions); 457 } 458 459 void ClastStmtCodeGen::codegen(const clast_user_stmt *u, 460 std::vector<Value *> *IVS, const char *iterator, 461 __isl_take isl_set *Domain) { 462 ScopStmt *Statement = (ScopStmt *)u->statement->usr; 463 464 if (u->substitutions) 465 codegenSubstitutions(u->substitutions, Statement); 466 467 int VectorDimensions = IVS ? IVS->size() : 1; 468 469 if (VectorDimensions == 1) { 470 BlockGenerator::generate(Builder, *Statement, ValueMap, LoopToScev, P, LI, 471 SE); 472 isl_set_free(Domain); 473 return; 474 } 475 476 VectorValueMapT VectorMap(VectorDimensions); 477 std::vector<LoopToScevMapT> VLTS(VectorDimensions); 478 479 if (IVS) { 480 assert(u->substitutions && "Substitutions expected!"); 481 int i = 0; 482 for (Value *IV : *IVS) { 483 ClastVars[iterator] = IV; 484 codegenSubstitutions(u->substitutions, Statement, i, &VectorMap, &VLTS); 485 i++; 486 } 487 } 488 489 // Copy the current value map into all vector maps if the key wasn't 490 // available yet. This is needed in case vector codegen is performed in 491 // OpenMP subfunctions. 492 for (const auto &KV : ValueMap) 493 for (int i = 0; i < VectorDimensions; ++i) 494 VectorMap[i].insert(KV); 495 496 isl_map *Schedule = extractPartialSchedule(Statement, Domain); 497 VectorBlockGenerator::generate(Builder, *Statement, VectorMap, VLTS, Schedule, 498 P, LI, SE); 499 isl_map_free(Schedule); 500 } 501 502 void ClastStmtCodeGen::codegen(const clast_block *b) { 503 if (b->body) 504 codegen(b->body); 505 } 506 507 void ClastStmtCodeGen::codegenForSequential(const clast_for *f) { 508 Value *LowerBound, *UpperBound, *IV, *Stride; 509 BasicBlock *ExitBlock; 510 Type *IntPtrTy = getIntPtrTy(); 511 512 LowerBound = ExpGen.codegen(f->LB, IntPtrTy); 513 UpperBound = ExpGen.codegen(f->UB, IntPtrTy); 514 Stride = Builder.getInt(APInt_from_MPZ(f->stride)); 515 516 IV = createLoop(LowerBound, UpperBound, Stride, Builder, P, LI, DT, ExitBlock, 517 CmpInst::ICMP_SLE); 518 519 // Add loop iv to symbols. 520 ClastVars[f->iterator] = IV; 521 522 if (f->body) 523 codegen(f->body); 524 525 // Loop is finished, so remove its iv from the live symbols. 526 ClastVars.erase(f->iterator); 527 Builder.SetInsertPoint(ExitBlock->begin()); 528 } 529 530 // Helper class to determine all scalar parameters used in the basic blocks of a 531 // clast. Scalar parameters are scalar variables defined outside of the SCoP. 532 class ParameterVisitor : public ClastVisitor { 533 std::set<Value *> Values; 534 535 public: 536 ParameterVisitor() : ClastVisitor(), Values() {} 537 538 void visitUser(const clast_user_stmt *Stmt) { 539 const ScopStmt *S = static_cast<const ScopStmt *>(Stmt->statement->usr); 540 const BasicBlock *BB = S->getBasicBlock(); 541 542 // Check all the operands of instructions in the basic block. 543 for (const Instruction &Inst : *BB) { 544 for (Value *SrcVal : Inst.operands()) { 545 if (Instruction *OpInst = dyn_cast<Instruction>(SrcVal)) 546 if (S->getParent()->getRegion().contains(OpInst)) 547 continue; 548 549 if (isa<Instruction>(SrcVal) || isa<Argument>(SrcVal)) 550 Values.insert(SrcVal); 551 } 552 } 553 } 554 555 // Iterator to iterate over the values found. 556 typedef std::set<Value *>::const_iterator const_iterator; 557 inline const_iterator begin() const { return Values.begin(); } 558 inline const_iterator end() const { return Values.end(); } 559 }; 560 561 SetVector<Value *> ClastStmtCodeGen::getOMPValues(const clast_stmt *Body) { 562 SetVector<Value *> Values; 563 564 // The clast variables 565 for (const auto &I : ClastVars) 566 Values.insert(I.second); 567 568 // Find the temporaries that are referenced in the clast statements' 569 // basic blocks but are not defined by these blocks (e.g., references 570 // to function arguments or temporaries defined before the start of 571 // the SCoP). 572 ParameterVisitor Params; 573 Params.visit(Body); 574 575 for (Value *V : Params) { 576 Values.insert(V); 577 DEBUG(dbgs() << "Adding temporary for OMP copy-in: " << *V << "\n"); 578 } 579 580 return Values; 581 } 582 583 void ClastStmtCodeGen::updateWithValueMap( 584 ParallelLoopGenerator::ValueToValueMapTy &VMap) { 585 std::set<Value *> Inserted; 586 587 for (const auto &I : ClastVars) { 588 ClastVars[I.first] = VMap[I.second]; 589 Inserted.insert(I.second); 590 } 591 592 for (const auto &I : VMap) { 593 if (Inserted.count(I.first)) 594 continue; 595 596 ValueMap[I.first] = I.second; 597 } 598 } 599 600 static void clearDomtree(Function *F, DominatorTree &DT) { 601 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 602 std::vector<BasicBlock *> Nodes; 603 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 604 Nodes.push_back(I->getBlock()); 605 606 for (BasicBlock *BB : Nodes) 607 DT.eraseNode(BB); 608 } 609 610 void ClastStmtCodeGen::codegenForOpenMP(const clast_for *For) { 611 Value *Stride, *LB, *UB, *IV; 612 BasicBlock::iterator LoopBody; 613 IntegerType *IntPtrTy = getIntPtrTy(); 614 SetVector<Value *> Values; 615 ParallelLoopGenerator::ValueToValueMapTy VMap; 616 ParallelLoopGenerator OMPGen(Builder, P, LI, DT, DL); 617 618 Stride = Builder.getInt(APInt_from_MPZ(For->stride)); 619 Stride = Builder.CreateSExtOrBitCast(Stride, IntPtrTy); 620 LB = ExpGen.codegen(For->LB, IntPtrTy); 621 UB = ExpGen.codegen(For->UB, IntPtrTy); 622 623 Values = getOMPValues(For->body); 624 625 IV = OMPGen.createParallelLoop(LB, UB, Stride, Values, VMap, &LoopBody); 626 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 627 Builder.SetInsertPoint(LoopBody); 628 629 // Save the current values. 630 const ValueMapT ValueMapCopy = ValueMap; 631 const CharMapT ClastVarsCopy = ClastVars; 632 633 updateWithValueMap(VMap); 634 ClastVars[For->iterator] = IV; 635 636 if (For->body) 637 codegen(For->body); 638 639 // Restore the original values. 640 ValueMap = ValueMapCopy; 641 ClastVars = ClastVarsCopy; 642 643 clearDomtree((*LoopBody).getParent()->getParent(), 644 P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 645 646 Builder.SetInsertPoint(AfterLoop); 647 } 648 649 #ifdef GPU_CODEGEN 650 static unsigned getArraySizeInBytes(const ArrayType *AT) { 651 unsigned Bytes = AT->getNumElements(); 652 if (const ArrayType *T = dyn_cast<ArrayType>(AT->getElementType())) 653 Bytes *= getArraySizeInBytes(T); 654 else 655 Bytes *= AT->getElementType()->getPrimitiveSizeInBits() / 8; 656 657 return Bytes; 658 } 659 660 SetVector<Value *> ClastStmtCodeGen::getGPUValues(unsigned &OutputBytes) { 661 SetVector<Value *> Values; 662 OutputBytes = 0; 663 664 // Record the memory reference base addresses. 665 for (ScopStmt *Stmt : *S) { 666 for (MemoryAccess *MA : *Stmt) { 667 Value *BaseAddr = MA->getBaseAddr(); 668 Values.insert((BaseAddr)); 669 670 // FIXME: we assume that there is one and only one array to be written 671 // in a SCoP. 672 int NumWrites = 0; 673 if (MA->isWrite()) { 674 ++NumWrites; 675 assert(NumWrites <= 1 && 676 "We support at most one array to be written in a SCoP."); 677 if (const PointerType *PT = 678 dyn_cast<PointerType>(BaseAddr->getType())) { 679 Type *T = PT->getArrayElementType(); 680 const ArrayType *ATy = dyn_cast<ArrayType>(T); 681 OutputBytes = getArraySizeInBytes(ATy); 682 } 683 } 684 } 685 } 686 687 return Values; 688 } 689 690 const clast_stmt *ClastStmtCodeGen::getScheduleInfo(const clast_for *F, 691 std::vector<int> &NumIters, 692 unsigned &LoopDepth, 693 unsigned &NonPLoopDepth) { 694 clast_stmt *Stmt = (clast_stmt *)F; 695 const clast_for *Result; 696 bool NonParaFlag = false; 697 LoopDepth = 0; 698 NonPLoopDepth = 0; 699 700 while (Stmt) { 701 if (CLAST_STMT_IS_A(Stmt, stmt_for)) { 702 const clast_for *T = (clast_for *)Stmt; 703 if (isParallelFor(T)) { 704 if (!NonParaFlag) { 705 NumIters.push_back(getNumberOfIterations(T)); 706 Result = T; 707 } 708 } else 709 NonParaFlag = true; 710 711 Stmt = T->body; 712 LoopDepth++; 713 continue; 714 } 715 Stmt = Stmt->next; 716 } 717 718 assert(NumIters.size() == 4 && 719 "The loops should be tiled into 4-depth parallel loops and an " 720 "innermost non-parallel one (if exist)."); 721 NonPLoopDepth = LoopDepth - NumIters.size(); 722 assert(NonPLoopDepth <= 1 && 723 "We support only one innermost non-parallel loop currently."); 724 return (const clast_stmt *)Result->body; 725 } 726 727 void ClastStmtCodeGen::codegenForGPGPU(const clast_for *F) { 728 BasicBlock::iterator LoopBody; 729 SetVector<Value *> Values; 730 SetVector<Value *> IVS; 731 std::vector<int> NumIterations; 732 PTXGenerator::ValueToValueMapTy VMap; 733 734 assert(!GPUTriple.empty() && 735 "Target triple should be set properly for GPGPU code generation."); 736 PTXGenerator PTXGen(Builder, P, GPUTriple); 737 738 // Get original IVS and ScopStmt 739 unsigned TiledLoopDepth, NonPLoopDepth; 740 const clast_stmt *InnerStmt = 741 getScheduleInfo(F, NumIterations, TiledLoopDepth, NonPLoopDepth); 742 const clast_stmt *TmpStmt; 743 const clast_user_stmt *U; 744 const clast_for *InnerFor; 745 if (CLAST_STMT_IS_A(InnerStmt, stmt_for)) { 746 InnerFor = (const clast_for *)InnerStmt; 747 TmpStmt = InnerFor->body; 748 } else 749 TmpStmt = InnerStmt; 750 U = (const clast_user_stmt *)TmpStmt; 751 ScopStmt *Statement = (ScopStmt *)U->statement->usr; 752 for (unsigned i = 0; i < Statement->getNumIterators() - NonPLoopDepth; i++) { 753 const Value *IV = Statement->getInductionVariableForDimension(i); 754 IVS.insert(const_cast<Value *>(IV)); 755 } 756 757 unsigned OutBytes; 758 Values = getGPUValues(OutBytes); 759 PTXGen.setOutputBytes(OutBytes); 760 PTXGen.startGeneration(Values, IVS, VMap, &LoopBody); 761 762 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 763 Builder.SetInsertPoint(LoopBody); 764 765 BasicBlock *AfterBB = 0; 766 if (NonPLoopDepth) { 767 Value *LowerBound, *UpperBound, *IV, *Stride; 768 Type *IntPtrTy = getIntPtrTy(); 769 LowerBound = ExpGen.codegen(InnerFor->LB, IntPtrTy); 770 UpperBound = ExpGen.codegen(InnerFor->UB, IntPtrTy); 771 Stride = Builder.getInt(APInt_from_MPZ(InnerFor->stride)); 772 IV = createLoop(LowerBound, UpperBound, Stride, Builder, P, LI, DT, AfterBB, 773 CmpInst::ICMP_SLE); 774 const Value *OldIV_ = Statement->getInductionVariableForDimension(2); 775 Value *OldIV = const_cast<Value *>(OldIV_); 776 VMap.insert(std::make_pair(OldIV, IV)); 777 } 778 779 updateWithValueMap(VMap); 780 781 BlockGenerator::generate(Builder, *Statement, ValueMap, LoopToScev, P, LI, 782 SE); 783 784 if (AfterBB) 785 Builder.SetInsertPoint(AfterBB->begin()); 786 787 // FIXME: The replacement of the host base address with the parameter of ptx 788 // subfunction should have been done by updateWithValueMap. We use the 789 // following codes to avoid affecting other parts of Polly. This should be 790 // fixed later. 791 Function *FN = Builder.GetInsertBlock()->getParent(); 792 for (Value *BaseAddr : Values) 793 for (BasicBlock *BB : *FN) 794 for (Instruction *Inst : *BB) 795 Inst->replaceUsesOfWith(BaseAddr, ValueMap[BaseAddr]); 796 Builder.SetInsertPoint(AfterLoop); 797 PTXGen.setLaunchingParameters(NumIterations[0], NumIterations[1], 798 NumIterations[2], NumIterations[3]); 799 PTXGen.finishGeneration(FN); 800 } 801 #endif 802 803 bool ClastStmtCodeGen::isInnermostLoop(const clast_for *f) { 804 const clast_stmt *stmt = f->body; 805 806 while (stmt) { 807 if (!CLAST_STMT_IS_A(stmt, stmt_user)) 808 return false; 809 810 stmt = stmt->next; 811 } 812 813 return true; 814 } 815 816 int ClastStmtCodeGen::getNumberOfIterations(const clast_for *For) { 817 isl_set *LoopDomain = isl_set_copy(isl_set_from_cloog_domain(For->domain)); 818 int NumberOfIterations = polly::getNumberOfIterations(LoopDomain); 819 if (NumberOfIterations == -1) 820 return -1; 821 return NumberOfIterations / mpz_get_si(For->stride) + 1; 822 } 823 824 void ClastStmtCodeGen::codegenForVector(const clast_for *F) { 825 DEBUG(dbgs() << "Vectorizing loop '" << F->iterator << "'\n";); 826 int VectorWidth = getNumberOfIterations(F); 827 828 Value *LB = ExpGen.codegen(F->LB, getIntPtrTy()); 829 830 APInt Stride = APInt_from_MPZ(F->stride); 831 IntegerType *LoopIVType = dyn_cast<IntegerType>(LB->getType()); 832 Stride = Stride.zext(LoopIVType->getBitWidth()); 833 Value *StrideValue = ConstantInt::get(LoopIVType, Stride); 834 835 std::vector<Value *> IVS(VectorWidth); 836 IVS[0] = LB; 837 838 for (int i = 1; i < VectorWidth; i++) 839 IVS[i] = Builder.CreateAdd(IVS[i - 1], StrideValue, "p_vector_iv"); 840 841 isl_set *Domain = isl_set_copy(isl_set_from_cloog_domain(F->domain)); 842 843 // Add loop iv to symbols. 844 ClastVars[F->iterator] = LB; 845 846 const clast_stmt *Stmt = F->body; 847 848 while (Stmt) { 849 codegen((const clast_user_stmt *)Stmt, &IVS, F->iterator, 850 isl_set_copy(Domain)); 851 Stmt = Stmt->next; 852 } 853 854 // Loop is finished, so remove its iv from the live symbols. 855 isl_set_free(Domain); 856 ClastVars.erase(F->iterator); 857 } 858 859 static isl_union_map *getCombinedScheduleForSpace(Scop *S, unsigned dimLevel) { 860 isl_space *Space = S->getParamSpace(); 861 isl_union_map *schedule = isl_union_map_empty(Space); 862 863 for (ScopStmt *Stmt : *S) { 864 unsigned remainingDimensions = Stmt->getNumScattering() - dimLevel; 865 isl_map *Scattering = isl_map_project_out( 866 Stmt->getScattering(), isl_dim_out, dimLevel, remainingDimensions); 867 schedule = isl_union_map_add_map(schedule, Scattering); 868 } 869 870 return schedule; 871 } 872 873 bool ClastStmtCodeGen::isParallelFor(const clast_for *f) { 874 isl_set *Domain = isl_set_copy(isl_set_from_cloog_domain(f->domain)); 875 assert(Domain && "Cannot access domain of loop"); 876 877 Dependences &D = P->getAnalysis<Dependences>(); 878 isl_union_map *Deps = 879 D.getDependences(Dependences::TYPE_RAW | Dependences::TYPE_WAW | 880 Dependences::TYPE_WAR | Dependences::TYPE_RAW); 881 isl_union_map *Schedule = 882 getCombinedScheduleForSpace(S, isl_set_n_dim(Domain)); 883 Schedule = 884 isl_union_map_intersect_range(Schedule, isl_union_set_from_set(Domain)); 885 bool IsParallel = D.isParallel(Schedule, Deps); 886 isl_union_map_free(Schedule); 887 return IsParallel; 888 } 889 890 void ClastStmtCodeGen::codegen(const clast_for *f) { 891 bool Vector = PollyVectorizerChoice != VECTORIZER_NONE; 892 if ((Vector || OpenMP) && isParallelFor(f)) { 893 if (Vector && isInnermostLoop(f) && (-1 != getNumberOfIterations(f)) && 894 (getNumberOfIterations(f) <= 16)) { 895 codegenForVector(f); 896 return; 897 } 898 899 if (OpenMP && !parallelCodeGeneration) { 900 parallelCodeGeneration = true; 901 parallelLoops.push_back(f->iterator); 902 codegenForOpenMP(f); 903 parallelCodeGeneration = false; 904 return; 905 } 906 } 907 908 #ifdef GPU_CODEGEN 909 if (GPGPU && isParallelFor(f)) { 910 if (!parallelCodeGeneration) { 911 parallelCodeGeneration = true; 912 parallelLoops.push_back(f->iterator); 913 codegenForGPGPU(f); 914 parallelCodeGeneration = false; 915 return; 916 } 917 } 918 #endif 919 920 codegenForSequential(f); 921 } 922 923 Value *ClastStmtCodeGen::codegen(const clast_equation *eq) { 924 Value *LHS = ExpGen.codegen(eq->LHS, getIntPtrTy()); 925 Value *RHS = ExpGen.codegen(eq->RHS, getIntPtrTy()); 926 CmpInst::Predicate P; 927 928 if (eq->sign == 0) 929 P = ICmpInst::ICMP_EQ; 930 else if (eq->sign > 0) 931 P = ICmpInst::ICMP_SGE; 932 else 933 P = ICmpInst::ICMP_SLE; 934 935 return Builder.CreateICmp(P, LHS, RHS); 936 } 937 938 void ClastStmtCodeGen::codegen(const clast_guard *g) { 939 Function *F = Builder.GetInsertBlock()->getParent(); 940 LLVMContext &Context = F->getContext(); 941 942 BasicBlock *CondBB = 943 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), P); 944 CondBB->setName("polly.cond"); 945 BasicBlock *MergeBB = SplitBlock(CondBB, CondBB->begin(), P); 946 MergeBB->setName("polly.merge"); 947 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 948 949 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 950 DT.addNewBlock(ThenBB, CondBB); 951 DT.changeImmediateDominator(MergeBB, CondBB); 952 953 CondBB->getTerminator()->eraseFromParent(); 954 955 Builder.SetInsertPoint(CondBB); 956 957 Value *Predicate = codegen(&(g->eq[0])); 958 959 for (int i = 1; i < g->n; ++i) { 960 Value *TmpPredicate = codegen(&(g->eq[i])); 961 Predicate = Builder.CreateAnd(Predicate, TmpPredicate); 962 } 963 964 Builder.CreateCondBr(Predicate, ThenBB, MergeBB); 965 Builder.SetInsertPoint(ThenBB); 966 Builder.CreateBr(MergeBB); 967 Builder.SetInsertPoint(ThenBB->begin()); 968 969 LoopInfo &LI = P->getAnalysis<LoopInfo>(); 970 Loop *L = LI.getLoopFor(CondBB); 971 if (L) 972 L->addBasicBlockToLoop(ThenBB, LI.getBase()); 973 974 codegen(g->then); 975 976 Builder.SetInsertPoint(MergeBB->begin()); 977 } 978 979 void ClastStmtCodeGen::codegen(const clast_stmt *stmt) { 980 if (CLAST_STMT_IS_A(stmt, stmt_root)) 981 assert(false && "No second root statement expected"); 982 else if (CLAST_STMT_IS_A(stmt, stmt_ass)) 983 codegen((const clast_assignment *)stmt); 984 else if (CLAST_STMT_IS_A(stmt, stmt_user)) 985 codegen((const clast_user_stmt *)stmt); 986 else if (CLAST_STMT_IS_A(stmt, stmt_block)) 987 codegen((const clast_block *)stmt); 988 else if (CLAST_STMT_IS_A(stmt, stmt_for)) 989 codegen((const clast_for *)stmt); 990 else if (CLAST_STMT_IS_A(stmt, stmt_guard)) 991 codegen((const clast_guard *)stmt); 992 993 if (stmt->next) 994 codegen(stmt->next); 995 } 996 997 void ClastStmtCodeGen::addParameters(const CloogNames *names) { 998 SCEVExpander Rewriter(P->getAnalysis<ScalarEvolution>(), "polly"); 999 1000 int i = 0; 1001 for (Scop::param_iterator PI = S->param_begin(), PE = S->param_end(); 1002 PI != PE; ++PI) { 1003 assert(i < names->nb_parameters && "Not enough parameter names"); 1004 1005 const SCEV *Param = *PI; 1006 Type *Ty = Param->getType(); 1007 1008 Instruction *insertLocation = --(Builder.GetInsertBlock()->end()); 1009 Value *V = Rewriter.expandCodeFor(Param, Ty, insertLocation); 1010 ClastVars[names->parameters[i]] = V; 1011 1012 ++i; 1013 } 1014 } 1015 1016 void ClastStmtCodeGen::codegen(const clast_root *r) { 1017 addParameters(r->names); 1018 1019 parallelCodeGeneration = false; 1020 1021 const clast_stmt *stmt = (const clast_stmt *)r; 1022 if (stmt->next) 1023 codegen(stmt->next); 1024 } 1025 1026 ClastStmtCodeGen::ClastStmtCodeGen(Scop *scop, PollyIRBuilder &B, Pass *P) 1027 : S(scop), P(P), LI(P->getAnalysis<LoopInfo>()), 1028 SE(P->getAnalysis<ScalarEvolution>()), 1029 DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), 1030 DL(P->getAnalysis<DataLayoutPass>().getDataLayout()), Builder(B), 1031 ExpGen(Builder, ClastVars) {} 1032 1033 namespace { 1034 class CodeGeneration : public ScopPass { 1035 std::vector<std::string> ParallelLoops; 1036 1037 public: 1038 static char ID; 1039 1040 CodeGeneration() : ScopPass(ID) {} 1041 1042 bool runOnScop(Scop &S) { 1043 ParallelLoops.clear(); 1044 1045 assert(!S.getRegion().isTopLevelRegion() && 1046 "Top level regions are not supported"); 1047 1048 simplifyRegion(&S, this); 1049 1050 Value *RTC = ConstantInt::getTrue(S.getSE()->getContext()); 1051 BasicBlock *StartBlock = executeScopConditionally(S, this, RTC); 1052 1053 PollyIRBuilder Builder(StartBlock->begin()); 1054 1055 ClastStmtCodeGen CodeGen(&S, Builder, this); 1056 CloogInfo &C = getAnalysis<CloogInfo>(); 1057 CodeGen.codegen(C.getClast()); 1058 1059 ParallelLoops.insert(ParallelLoops.begin(), 1060 CodeGen.getParallelLoops().begin(), 1061 CodeGen.getParallelLoops().end()); 1062 return true; 1063 } 1064 1065 virtual void printScop(raw_ostream &OS) const { 1066 for (const auto &PI : ParallelLoops) 1067 OS << "Parallel loop with iterator '" << PI << "' generated\n"; 1068 } 1069 1070 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1071 AU.addRequired<CloogInfo>(); 1072 AU.addRequired<Dependences>(); 1073 AU.addRequired<DominatorTreeWrapperPass>(); 1074 AU.addRequired<RegionInfoPass>(); 1075 AU.addRequired<ScalarEvolution>(); 1076 AU.addRequired<ScopDetection>(); 1077 AU.addRequired<ScopInfo>(); 1078 AU.addRequired<DataLayoutPass>(); 1079 AU.addRequired<DataLayoutPass>(); 1080 AU.addRequired<LoopInfo>(); 1081 1082 AU.addPreserved<CloogInfo>(); 1083 AU.addPreserved<DataLayoutPass>(); 1084 AU.addPreserved<Dependences>(); 1085 AU.addPreserved<LoopInfo>(); 1086 AU.addPreserved<DominatorTreeWrapperPass>(); 1087 AU.addPreserved<ScopDetection>(); 1088 AU.addPreserved<ScalarEvolution>(); 1089 1090 // FIXME: We do not yet add regions for the newly generated code to the 1091 // region tree. 1092 AU.addPreserved<RegionInfoPass>(); 1093 AU.addPreserved<TempScopInfo>(); 1094 AU.addPreserved<ScopInfo>(); 1095 AU.addPreservedID(IndependentBlocksID); 1096 } 1097 }; 1098 } 1099 1100 char CodeGeneration::ID = 1; 1101 1102 Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); } 1103 1104 INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", 1105 "Polly - Create LLVM-IR from SCoPs", false, false); 1106 INITIALIZE_PASS_DEPENDENCY(CloogInfo); 1107 INITIALIZE_PASS_DEPENDENCY(Dependences); 1108 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 1109 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 1110 INITIALIZE_PASS_DEPENDENCY(DataLayoutPass); 1111 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution); 1112 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 1113 INITIALIZE_PASS_DEPENDENCY(DataLayoutPass); 1114 INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", 1115 "Polly - Create LLVM-IR from SCoPs", false, false) 1116 1117 #endif // CLOOG_FOUND 1118