1 //===------ CodeGeneration.cpp - Code generate the Scops. -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The CodeGeneration pass takes a Scop created by ScopInfo and translates it 11 // back to LLVM-IR using Cloog. 12 // 13 // The Scop describes the high level memory behaviour of a control flow region. 14 // Transformation passes can update the schedule (execution order) of statements 15 // in the Scop. Cloog is used to generate an abstract syntax tree (clast) that 16 // reflects the updated execution order. This clast is used to create new 17 // LLVM-IR that is computational equivalent to the original control flow region, 18 // but executes its code in the new execution order defined by the changed 19 // scattering. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "polly/CodeGen/Cloog.h" 24 #ifdef CLOOG_FOUND 25 26 #define DEBUG_TYPE "polly-codegen" 27 #include "polly/Dependences.h" 28 #include "polly/LinkAllPasses.h" 29 #include "polly/ScopInfo.h" 30 #include "polly/TempScopInfo.h" 31 #include "polly/CodeGen/CodeGeneration.h" 32 #include "polly/CodeGen/BlockGenerators.h" 33 #include "polly/CodeGen/LoopGenerators.h" 34 #include "polly/CodeGen/PTXGenerator.h" 35 #include "polly/CodeGen/Utils.h" 36 #include "polly/Support/GICHelper.h" 37 38 #include "llvm/Module.h" 39 #include "llvm/ADT/SetVector.h" 40 #include "llvm/ADT/PostOrderIterator.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/DataLayout.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 48 #define CLOOG_INT_GMP 1 49 #include "cloog/cloog.h" 50 #include "cloog/isl/cloog.h" 51 52 #include "isl/aff.h" 53 54 #include <vector> 55 #include <utility> 56 57 using namespace polly; 58 using namespace llvm; 59 60 struct isl_set; 61 62 namespace polly { 63 static cl::opt<bool> 64 OpenMP("enable-polly-openmp", 65 cl::desc("Generate OpenMP parallel code"), cl::Hidden, 66 cl::value_desc("OpenMP code generation enabled if true"), 67 cl::init(false), cl::ZeroOrMore); 68 69 #ifdef GPU_CODEGEN 70 static cl::opt<bool> 71 GPGPU("enable-polly-gpgpu", 72 cl::desc("Generate GPU parallel code"), cl::Hidden, 73 cl::value_desc("GPGPU code generation enabled if true"), 74 cl::init(false), cl::ZeroOrMore); 75 76 static cl::opt<std::string> 77 GPUTriple("polly-gpgpu-triple", 78 cl::desc("Target triple for GPU code generation"), 79 cl::Hidden, cl::init("")); 80 #endif /* GPU_CODEGEN */ 81 82 static cl::opt<bool> 83 AtLeastOnce("enable-polly-atLeastOnce", 84 cl::desc("Give polly the hint, that every loop is executed at least" 85 "once"), cl::Hidden, 86 cl::value_desc("OpenMP code generation enabled if true"), 87 cl::init(false), cl::ZeroOrMore); 88 89 typedef DenseMap<const char*, Value*> CharMapT; 90 91 /// Class to generate LLVM-IR that calculates the value of a clast_expr. 92 class ClastExpCodeGen { 93 IRBuilder<> &Builder; 94 const CharMapT &IVS; 95 96 Value *codegen(const clast_name *e, Type *Ty); 97 Value *codegen(const clast_term *e, Type *Ty); 98 Value *codegen(const clast_binary *e, Type *Ty); 99 Value *codegen(const clast_reduction *r, Type *Ty); 100 public: 101 102 // A generator for clast expressions. 103 // 104 // @param B The IRBuilder that defines where the code to calculate the 105 // clast expressions should be inserted. 106 // @param IVMAP A Map that translates strings describing the induction 107 // variables to the Values* that represent these variables 108 // on the LLVM side. 109 ClastExpCodeGen(IRBuilder<> &B, CharMapT &IVMap); 110 111 // Generates code to calculate a given clast expression. 112 // 113 // @param e The expression to calculate. 114 // @return The Value that holds the result. 115 Value *codegen(const clast_expr *e, Type *Ty); 116 }; 117 118 Value *ClastExpCodeGen::codegen(const clast_name *e, Type *Ty) { 119 CharMapT::const_iterator I = IVS.find(e->name); 120 121 assert(I != IVS.end() && "Clast name not found"); 122 123 return Builder.CreateSExtOrBitCast(I->second, Ty); 124 } 125 126 Value *ClastExpCodeGen::codegen(const clast_term *e, Type *Ty) { 127 APInt a = APInt_from_MPZ(e->val); 128 129 Value *ConstOne = ConstantInt::get(Builder.getContext(), a); 130 ConstOne = Builder.CreateSExtOrBitCast(ConstOne, Ty); 131 132 if (!e->var) 133 return ConstOne; 134 135 Value *var = codegen(e->var, Ty); 136 return Builder.CreateMul(ConstOne, var); 137 } 138 139 Value *ClastExpCodeGen::codegen(const clast_binary *e, Type *Ty) { 140 Value *LHS = codegen(e->LHS, Ty); 141 142 APInt RHS_AP = APInt_from_MPZ(e->RHS); 143 144 Value *RHS = ConstantInt::get(Builder.getContext(), RHS_AP); 145 RHS = Builder.CreateSExtOrBitCast(RHS, Ty); 146 147 switch (e->type) { 148 case clast_bin_mod: 149 return Builder.CreateSRem(LHS, RHS); 150 case clast_bin_fdiv: 151 { 152 // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d 153 Value *One = ConstantInt::get(Ty, 1); 154 Value *Zero = ConstantInt::get(Ty, 0); 155 Value *Sum1 = Builder.CreateSub(LHS, RHS); 156 Value *Sum2 = Builder.CreateAdd(Sum1, One); 157 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); 158 Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS); 159 return Builder.CreateSDiv(Dividend, RHS); 160 } 161 case clast_bin_cdiv: 162 { 163 // ceild(n,d) ((n < 0) ? n : (n + d - 1)) / d 164 Value *One = ConstantInt::get(Ty, 1); 165 Value *Zero = ConstantInt::get(Ty, 0); 166 Value *Sum1 = Builder.CreateAdd(LHS, RHS); 167 Value *Sum2 = Builder.CreateSub(Sum1, One); 168 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); 169 Value *Dividend = Builder.CreateSelect(isNegative, LHS, Sum2); 170 return Builder.CreateSDiv(Dividend, RHS); 171 } 172 case clast_bin_div: 173 return Builder.CreateSDiv(LHS, RHS); 174 }; 175 176 llvm_unreachable("Unknown clast binary expression type"); 177 } 178 179 Value *ClastExpCodeGen::codegen(const clast_reduction *r, Type *Ty) { 180 assert(( r->type == clast_red_min 181 || r->type == clast_red_max 182 || r->type == clast_red_sum) 183 && "Clast reduction type not supported"); 184 Value *old = codegen(r->elts[0], Ty); 185 186 for (int i=1; i < r->n; ++i) { 187 Value *exprValue = codegen(r->elts[i], Ty); 188 189 switch (r->type) { 190 case clast_red_min: 191 { 192 Value *cmp = Builder.CreateICmpSLT(old, exprValue); 193 old = Builder.CreateSelect(cmp, old, exprValue); 194 break; 195 } 196 case clast_red_max: 197 { 198 Value *cmp = Builder.CreateICmpSGT(old, exprValue); 199 old = Builder.CreateSelect(cmp, old, exprValue); 200 break; 201 } 202 case clast_red_sum: 203 old = Builder.CreateAdd(old, exprValue); 204 break; 205 } 206 } 207 208 return old; 209 } 210 211 ClastExpCodeGen::ClastExpCodeGen(IRBuilder<> &B, CharMapT &IVMap) 212 : Builder(B), IVS(IVMap) {} 213 214 Value *ClastExpCodeGen::codegen(const clast_expr *e, Type *Ty) { 215 switch(e->type) { 216 case clast_expr_name: 217 return codegen((const clast_name *)e, Ty); 218 case clast_expr_term: 219 return codegen((const clast_term *)e, Ty); 220 case clast_expr_bin: 221 return codegen((const clast_binary *)e, Ty); 222 case clast_expr_red: 223 return codegen((const clast_reduction *)e, Ty); 224 } 225 226 llvm_unreachable("Unknown clast expression!"); 227 } 228 229 class ClastStmtCodeGen { 230 public: 231 const std::vector<std::string> &getParallelLoops(); 232 233 private: 234 // The Scop we code generate. 235 Scop *S; 236 Pass *P; 237 238 // The Builder specifies the current location to code generate at. 239 IRBuilder<> &Builder; 240 241 // Map the Values from the old code to their counterparts in the new code. 242 ValueMapT ValueMap; 243 244 // clastVars maps from the textual representation of a clast variable to its 245 // current *Value. clast variables are scheduling variables, original 246 // induction variables or parameters. They are used either in loop bounds or 247 // to define the statement instance that is executed. 248 // 249 // for (s = 0; s < n + 3; ++i) 250 // for (t = s; t < m; ++j) 251 // Stmt(i = s + 3 * m, j = t); 252 // 253 // {s,t,i,j,n,m} is the set of clast variables in this clast. 254 CharMapT ClastVars; 255 256 // Codegenerator for clast expressions. 257 ClastExpCodeGen ExpGen; 258 259 // Do we currently generate parallel code? 260 bool parallelCodeGeneration; 261 262 std::vector<std::string> parallelLoops; 263 264 void codegen(const clast_assignment *a); 265 266 void codegen(const clast_assignment *a, ScopStmt *Statement, 267 unsigned Dimension, int vectorDim, 268 std::vector<ValueMapT> *VectorVMap = 0); 269 270 void codegenSubstitutions(const clast_stmt *Assignment, 271 ScopStmt *Statement, int vectorDim = 0, 272 std::vector<ValueMapT> *VectorVMap = 0); 273 274 void codegen(const clast_user_stmt *u, std::vector<Value*> *IVS = NULL, 275 const char *iterator = NULL, isl_set *scatteringDomain = 0); 276 277 void codegen(const clast_block *b); 278 279 /// @brief Create a classical sequential loop. 280 void codegenForSequential(const clast_for *f); 281 282 /// @brief Create OpenMP structure values. 283 /// 284 /// Create a list of values that has to be stored into the OpenMP subfuncition 285 /// structure. 286 SetVector<Value*> getOMPValues(); 287 288 /// @brief Update the internal structures according to a Value Map. 289 /// 290 /// @param VMap A map from old to new values. 291 /// @param Reverse If true, we assume the update should be reversed. 292 void updateWithValueMap(OMPGenerator::ValueToValueMapTy &VMap, 293 bool Reverse); 294 295 /// @brief Create an OpenMP parallel for loop. 296 /// 297 /// This loop reflects a loop as if it would have been created by an OpenMP 298 /// statement. 299 void codegenForOpenMP(const clast_for *f); 300 301 #ifdef GPU_CODEGEN 302 /// @brief Create GPGPU device memory access values. 303 /// 304 /// Create a list of values that will be set to be parameters of the GPGPU 305 /// subfunction. These parameters represent device memory base addresses 306 /// and the size in bytes. 307 SetVector<Value*> getGPUValues(unsigned &OutputBytes); 308 309 /// @brief Create a GPU parallel for loop. 310 /// 311 /// This loop reflects a loop as if it would have been created by a GPU 312 /// statement. 313 void codegenForGPGPU(const clast_for *F); 314 315 /// @brief Get innermost for loop. 316 const clast_stmt *getScheduleInfo(const clast_for *F, 317 std::vector<int> &NumIters, 318 unsigned &LoopDepth, 319 unsigned &NonPLoopDepth); 320 #endif /* GPU_CODEGEN */ 321 322 /// @brief Check if a loop is parallel 323 /// 324 /// Detect if a clast_for loop can be executed in parallel. 325 /// 326 /// @param f The clast for loop to check. 327 /// 328 /// @return bool Returns true if the incoming clast_for statement can 329 /// execute in parallel. 330 bool isParallelFor(const clast_for *For); 331 332 bool isInnermostLoop(const clast_for *f); 333 334 /// @brief Get the number of loop iterations for this loop. 335 /// @param f The clast for loop to check. 336 int getNumberOfIterations(const clast_for *f); 337 338 /// @brief Create vector instructions for this loop. 339 void codegenForVector(const clast_for *f); 340 341 void codegen(const clast_for *f); 342 343 Value *codegen(const clast_equation *eq); 344 345 void codegen(const clast_guard *g); 346 347 void codegen(const clast_stmt *stmt); 348 349 void addParameters(const CloogNames *names); 350 351 IntegerType *getIntPtrTy(); 352 353 public: 354 void codegen(const clast_root *r); 355 356 ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P); 357 }; 358 } 359 360 IntegerType *ClastStmtCodeGen::getIntPtrTy() { 361 return P->getAnalysis<DataLayout>().getIntPtrType(Builder.getContext()); 362 } 363 364 const std::vector<std::string> &ClastStmtCodeGen::getParallelLoops() { 365 return parallelLoops; 366 } 367 368 void ClastStmtCodeGen::codegen(const clast_assignment *a) { 369 Value *V= ExpGen.codegen(a->RHS, getIntPtrTy()); 370 ClastVars[a->LHS] = V; 371 } 372 373 void ClastStmtCodeGen::codegen(const clast_assignment *A, ScopStmt *Stmt, 374 unsigned Dim, int VectorDim, 375 std::vector<ValueMapT> *VectorVMap) { 376 const PHINode *PN; 377 Value *RHS; 378 379 assert(!A->LHS && "Statement assignments do not have left hand side"); 380 381 PN = Stmt->getInductionVariableForDimension(Dim); 382 RHS = ExpGen.codegen(A->RHS, Builder.getInt64Ty()); 383 RHS = Builder.CreateTruncOrBitCast(RHS, PN->getType()); 384 385 if (VectorVMap) 386 (*VectorVMap)[VectorDim][PN] = RHS; 387 388 ValueMap[PN] = RHS; 389 } 390 391 void ClastStmtCodeGen::codegenSubstitutions(const clast_stmt *Assignment, 392 ScopStmt *Statement, int vectorDim, 393 std::vector<ValueMapT> *VectorVMap) { 394 int Dimension = 0; 395 396 while (Assignment) { 397 assert(CLAST_STMT_IS_A(Assignment, stmt_ass) 398 && "Substitions are expected to be assignments"); 399 codegen((const clast_assignment *)Assignment, Statement, Dimension, 400 vectorDim, VectorVMap); 401 Assignment = Assignment->next; 402 Dimension++; 403 } 404 } 405 406 void ClastStmtCodeGen::codegen(const clast_user_stmt *u, 407 std::vector<Value*> *IVS , const char *iterator, 408 isl_set *Domain) { 409 ScopStmt *Statement = (ScopStmt *)u->statement->usr; 410 411 if (u->substitutions) 412 codegenSubstitutions(u->substitutions, Statement); 413 414 int VectorDimensions = IVS ? IVS->size() : 1; 415 416 if (VectorDimensions == 1) { 417 BlockGenerator::generate(Builder, *Statement, ValueMap, P); 418 return; 419 } 420 421 VectorValueMapT VectorMap(VectorDimensions); 422 423 if (IVS) { 424 assert (u->substitutions && "Substitutions expected!"); 425 int i = 0; 426 for (std::vector<Value*>::iterator II = IVS->begin(), IE = IVS->end(); 427 II != IE; ++II) { 428 ClastVars[iterator] = *II; 429 codegenSubstitutions(u->substitutions, Statement, i, &VectorMap); 430 i++; 431 } 432 } 433 434 VectorBlockGenerator::generate(Builder, *Statement, VectorMap, Domain, P); 435 } 436 437 void ClastStmtCodeGen::codegen(const clast_block *b) { 438 if (b->body) 439 codegen(b->body); 440 } 441 442 void ClastStmtCodeGen::codegenForSequential(const clast_for *f) { 443 Value *LowerBound, *UpperBound, *IV, *Stride; 444 BasicBlock *AfterBB; 445 Type *IntPtrTy = getIntPtrTy(); 446 447 LowerBound = ExpGen.codegen(f->LB, IntPtrTy); 448 UpperBound = ExpGen.codegen(f->UB, IntPtrTy); 449 Stride = Builder.getInt(APInt_from_MPZ(f->stride)); 450 451 IV = createLoop(LowerBound, UpperBound, Stride, Builder, P, AfterBB, 452 CmpInst::ICMP_SLE); 453 454 // Add loop iv to symbols. 455 ClastVars[f->iterator] = IV; 456 457 if (f->body) 458 codegen(f->body); 459 460 // Loop is finished, so remove its iv from the live symbols. 461 ClastVars.erase(f->iterator); 462 Builder.SetInsertPoint(AfterBB->begin()); 463 } 464 465 SetVector<Value*> ClastStmtCodeGen::getOMPValues() { 466 SetVector<Value*> Values; 467 468 // The clast variables 469 for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); 470 I != E; I++) 471 Values.insert(I->second); 472 473 // The memory reference base addresses 474 for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { 475 ScopStmt *Stmt = *SI; 476 for (SmallVector<MemoryAccess*, 8>::iterator I = Stmt->memacc_begin(), 477 E = Stmt->memacc_end(); I != E; ++I) { 478 Value *BaseAddr = const_cast<Value*>((*I)->getBaseAddr()); 479 Values.insert((BaseAddr)); 480 } 481 } 482 483 return Values; 484 } 485 486 void ClastStmtCodeGen::updateWithValueMap(OMPGenerator::ValueToValueMapTy &VMap, 487 bool Reverse) { 488 std::set<Value*> Inserted; 489 490 if (Reverse) { 491 OMPGenerator::ValueToValueMapTy ReverseMap; 492 493 for (std::map<Value*, Value*>::iterator I = VMap.begin(), E = VMap.end(); 494 I != E; ++I) 495 ReverseMap.insert(std::make_pair(I->second, I->first)); 496 497 for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); 498 I != E; I++) { 499 ClastVars[I->first] = ReverseMap[I->second]; 500 Inserted.insert(I->second); 501 } 502 503 /// FIXME: At the moment we do not reverse the update of the ValueMap. 504 /// This is incomplet, but the failure should be obvious, such that 505 /// we can fix this later. 506 return; 507 } 508 509 for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); 510 I != E; I++) { 511 ClastVars[I->first] = VMap[I->second]; 512 Inserted.insert(I->second); 513 } 514 515 for (std::map<Value*, Value*>::iterator I = VMap.begin(), E = VMap.end(); 516 I != E; ++I) { 517 if (Inserted.count(I->first)) 518 continue; 519 520 ValueMap[I->first] = I->second; 521 } 522 } 523 524 static void clearDomtree(Function *F, DominatorTree &DT) { 525 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 526 std::vector<BasicBlock*> Nodes; 527 for (po_iterator<DomTreeNode*> I = po_begin(N), E = po_end(N); I != E; ++I) 528 Nodes.push_back(I->getBlock()); 529 530 for (std::vector<BasicBlock*>::iterator I = Nodes.begin(), E = Nodes.end(); 531 I != E; ++I) 532 DT.eraseNode(*I); 533 } 534 535 void ClastStmtCodeGen::codegenForOpenMP(const clast_for *For) { 536 Value *Stride, *LB, *UB, *IV; 537 BasicBlock::iterator LoopBody; 538 IntegerType *IntPtrTy = getIntPtrTy(); 539 SetVector<Value*> Values; 540 OMPGenerator::ValueToValueMapTy VMap; 541 OMPGenerator OMPGen(Builder, P); 542 543 Stride = Builder.getInt(APInt_from_MPZ(For->stride)); 544 Stride = Builder.CreateSExtOrBitCast(Stride, IntPtrTy); 545 LB = ExpGen.codegen(For->LB, IntPtrTy); 546 UB = ExpGen.codegen(For->UB, IntPtrTy); 547 548 Values = getOMPValues(); 549 550 IV = OMPGen.createParallelLoop(LB, UB, Stride, Values, VMap, &LoopBody); 551 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 552 Builder.SetInsertPoint(LoopBody); 553 554 updateWithValueMap(VMap, /* reverse */ false); 555 ClastVars[For->iterator] = IV; 556 557 if (For->body) 558 codegen(For->body); 559 560 ClastVars.erase(For->iterator); 561 updateWithValueMap(VMap, /* reverse */ true); 562 563 clearDomtree((*LoopBody).getParent()->getParent(), 564 P->getAnalysis<DominatorTree>()); 565 566 Builder.SetInsertPoint(AfterLoop); 567 } 568 569 #ifdef GPU_CODEGEN 570 static unsigned getArraySizeInBytes(const ArrayType *AT) { 571 unsigned Bytes = AT->getNumElements(); 572 if (const ArrayType *T = dyn_cast<ArrayType>(AT->getElementType())) 573 Bytes *= getArraySizeInBytes(T); 574 else 575 Bytes *= AT->getElementType()->getPrimitiveSizeInBits() / 8; 576 577 return Bytes; 578 } 579 580 SetVector<Value*> ClastStmtCodeGen::getGPUValues(unsigned &OutputBytes) { 581 SetVector<Value*> Values; 582 OutputBytes = 0; 583 584 // Record the memory reference base addresses. 585 for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { 586 ScopStmt *Stmt = *SI; 587 for (SmallVector<MemoryAccess*, 8>::iterator I = Stmt->memacc_begin(), 588 E = Stmt->memacc_end(); I != E; ++I) { 589 Value *BaseAddr = const_cast<Value*>((*I)->getBaseAddr()); 590 Values.insert((BaseAddr)); 591 592 // FIXME: we assume that there is one and only one array to be written 593 // in a SCoP. 594 int NumWrites = 0; 595 if ((*I)->isWrite()) { 596 ++NumWrites; 597 assert(NumWrites <= 1 && 598 "We support at most one array to be written in a SCoP."); 599 if (const PointerType * PT = 600 dyn_cast<PointerType>(BaseAddr->getType())) { 601 Type *T = PT->getArrayElementType(); 602 const ArrayType *ATy = dyn_cast<ArrayType>(T); 603 OutputBytes = getArraySizeInBytes(ATy); 604 } 605 } 606 } 607 } 608 609 return Values; 610 } 611 612 const clast_stmt *ClastStmtCodeGen::getScheduleInfo(const clast_for *F, 613 std::vector<int> &NumIters, 614 unsigned &LoopDepth, 615 unsigned &NonPLoopDepth) { 616 clast_stmt *Stmt = (clast_stmt *)F; 617 const clast_for *Result; 618 bool NonParaFlag = false; 619 LoopDepth = 0; 620 NonPLoopDepth = 0; 621 622 while (Stmt) { 623 if (CLAST_STMT_IS_A(Stmt, stmt_for)) { 624 const clast_for *T = (clast_for *) Stmt; 625 if (isParallelFor(T)) { 626 if (!NonParaFlag) { 627 NumIters.push_back(getNumberOfIterations(T)); 628 Result = T; 629 } 630 } else 631 NonParaFlag = true; 632 633 Stmt = T->body; 634 LoopDepth++; 635 continue; 636 } 637 Stmt = Stmt->next; 638 } 639 640 assert(NumIters.size() == 4 && 641 "The loops should be tiled into 4-depth parallel loops and an " 642 "innermost non-parallel one (if exist)."); 643 NonPLoopDepth = LoopDepth - NumIters.size(); 644 assert(NonPLoopDepth <= 1 645 && "We support only one innermost non-parallel loop currently."); 646 return (const clast_stmt *)Result->body; 647 } 648 649 void ClastStmtCodeGen::codegenForGPGPU(const clast_for *F) { 650 BasicBlock::iterator LoopBody; 651 SetVector<Value *> Values; 652 SetVector<Value *> IVS; 653 std::vector<int> NumIterations; 654 PTXGenerator::ValueToValueMapTy VMap; 655 656 assert(!GPUTriple.empty() 657 && "Target triple should be set properly for GPGPU code generation."); 658 PTXGenerator PTXGen(Builder, P, GPUTriple); 659 660 // Get original IVS and ScopStmt 661 unsigned TiledLoopDepth, NonPLoopDepth; 662 const clast_stmt *InnerStmt = getScheduleInfo(F, NumIterations, 663 TiledLoopDepth, NonPLoopDepth); 664 const clast_stmt *TmpStmt; 665 const clast_user_stmt *U; 666 const clast_for *InnerFor; 667 if (CLAST_STMT_IS_A(InnerStmt, stmt_for)) { 668 InnerFor = (const clast_for *)InnerStmt; 669 TmpStmt = InnerFor->body; 670 } else 671 TmpStmt = InnerStmt; 672 U = (const clast_user_stmt *) TmpStmt; 673 ScopStmt *Statement = (ScopStmt *) U->statement->usr; 674 for (unsigned i = 0; i < Statement->getNumIterators() - NonPLoopDepth; i++) { 675 const Value* IV = Statement->getInductionVariableForDimension(i); 676 IVS.insert(const_cast<Value *>(IV)); 677 } 678 679 unsigned OutBytes; 680 Values = getGPUValues(OutBytes); 681 PTXGen.setOutputBytes(OutBytes); 682 PTXGen.startGeneration(Values, IVS, VMap, &LoopBody); 683 684 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 685 Builder.SetInsertPoint(LoopBody); 686 687 BasicBlock *AfterBB = 0; 688 if (NonPLoopDepth) { 689 Value *LowerBound, *UpperBound, *IV, *Stride; 690 Type *IntPtrTy = getIntPtrTy(); 691 LowerBound = ExpGen.codegen(InnerFor->LB, IntPtrTy); 692 UpperBound = ExpGen.codegen(InnerFor->UB, IntPtrTy); 693 Stride = Builder.getInt(APInt_from_MPZ(InnerFor->stride)); 694 IV = createLoop(LowerBound, UpperBound, Stride, Builder, P, AfterBB); 695 const Value *OldIV_ = Statement->getInductionVariableForDimension(2); 696 Value *OldIV = const_cast<Value *>(OldIV_); 697 VMap.insert(std::make_pair<Value*, Value*>(OldIV, IV)); 698 } 699 700 updateWithValueMap(VMap, /* reverse */ false); 701 BlockGenerator::generate(Builder, *Statement, ValueMap, P); 702 updateWithValueMap(VMap, /* reverse */ true); 703 704 if (AfterBB) 705 Builder.SetInsertPoint(AfterBB->begin()); 706 707 // FIXME: The replacement of the host base address with the parameter of ptx 708 // subfunction should have been done by updateWithValueMap. We use the 709 // following codes to avoid affecting other parts of Polly. This should be 710 // fixed later. 711 Function *FN = Builder.GetInsertBlock()->getParent(); 712 for (unsigned j = 0; j < Values.size(); j++) { 713 Value *baseAddr = Values[j]; 714 for (Function::iterator B = FN->begin(); B != FN->end(); ++B) { 715 for (BasicBlock::iterator I = B->begin(); I != B->end(); ++I) 716 I->replaceUsesOfWith(baseAddr, ValueMap[baseAddr]); 717 } 718 } 719 Builder.SetInsertPoint(AfterLoop); 720 PTXGen.setLaunchingParameters(NumIterations[0], NumIterations[1], 721 NumIterations[2], NumIterations[3]); 722 PTXGen.finishGeneration(FN); 723 } 724 #endif 725 726 bool ClastStmtCodeGen::isInnermostLoop(const clast_for *f) { 727 const clast_stmt *stmt = f->body; 728 729 while (stmt) { 730 if (!CLAST_STMT_IS_A(stmt, stmt_user)) 731 return false; 732 733 stmt = stmt->next; 734 } 735 736 return true; 737 } 738 739 int ClastStmtCodeGen::getNumberOfIterations(const clast_for *f) { 740 isl_set *loopDomain = isl_set_copy(isl_set_from_cloog_domain(f->domain)); 741 isl_set *tmp = isl_set_copy(loopDomain); 742 743 // Calculate a map similar to the identity map, but with the last input 744 // and output dimension not related. 745 // [i0, i1, i2, i3] -> [i0, i1, i2, o0] 746 isl_space *Space = isl_set_get_space(loopDomain); 747 Space = isl_space_drop_outputs(Space, 748 isl_set_dim(loopDomain, isl_dim_set) - 2, 1); 749 Space = isl_space_map_from_set(Space); 750 isl_map *identity = isl_map_identity(Space); 751 identity = isl_map_add_dims(identity, isl_dim_in, 1); 752 identity = isl_map_add_dims(identity, isl_dim_out, 1); 753 754 isl_map *map = isl_map_from_domain_and_range(tmp, loopDomain); 755 map = isl_map_intersect(map, identity); 756 757 isl_map *lexmax = isl_map_lexmax(isl_map_copy(map)); 758 isl_map *lexmin = isl_map_lexmin(map); 759 isl_map *sub = isl_map_sum(lexmax, isl_map_neg(lexmin)); 760 761 isl_set *elements = isl_map_range(sub); 762 763 if (!isl_set_is_singleton(elements)) { 764 isl_set_free(elements); 765 return -1; 766 } 767 768 isl_point *p = isl_set_sample_point(elements); 769 770 isl_int v; 771 isl_int_init(v); 772 isl_point_get_coordinate(p, isl_dim_set, isl_set_n_dim(loopDomain) - 1, &v); 773 int numberIterations = isl_int_get_si(v); 774 isl_int_clear(v); 775 isl_point_free(p); 776 777 return (numberIterations) / isl_int_get_si(f->stride) + 1; 778 } 779 780 void ClastStmtCodeGen::codegenForVector(const clast_for *F) { 781 DEBUG(dbgs() << "Vectorizing loop '" << F->iterator << "'\n";); 782 int VectorWidth = getNumberOfIterations(F); 783 784 Value *LB = ExpGen.codegen(F->LB, getIntPtrTy()); 785 786 APInt Stride = APInt_from_MPZ(F->stride); 787 IntegerType *LoopIVType = dyn_cast<IntegerType>(LB->getType()); 788 Stride = Stride.zext(LoopIVType->getBitWidth()); 789 Value *StrideValue = ConstantInt::get(LoopIVType, Stride); 790 791 std::vector<Value*> IVS(VectorWidth); 792 IVS[0] = LB; 793 794 for (int i = 1; i < VectorWidth; i++) 795 IVS[i] = Builder.CreateAdd(IVS[i-1], StrideValue, "p_vector_iv"); 796 797 isl_set *Domain = isl_set_from_cloog_domain(F->domain); 798 799 // Add loop iv to symbols. 800 ClastVars[F->iterator] = LB; 801 802 const clast_stmt *Stmt = F->body; 803 804 while (Stmt) { 805 codegen((const clast_user_stmt *)Stmt, &IVS, F->iterator, 806 isl_set_copy(Domain)); 807 Stmt = Stmt->next; 808 } 809 810 // Loop is finished, so remove its iv from the live symbols. 811 isl_set_free(Domain); 812 ClastVars.erase(F->iterator); 813 } 814 815 816 bool ClastStmtCodeGen::isParallelFor(const clast_for *f) { 817 isl_set *Domain = isl_set_from_cloog_domain(f->domain); 818 assert(Domain && "Cannot access domain of loop"); 819 820 Dependences &D = P->getAnalysis<Dependences>(); 821 822 return D.isParallelDimension(isl_set_copy(Domain), isl_set_n_dim(Domain)); 823 } 824 825 void ClastStmtCodeGen::codegen(const clast_for *f) { 826 bool Vector = PollyVectorizerChoice != VECTORIZER_NONE; 827 if ((Vector || OpenMP) && isParallelFor(f)) { 828 if (Vector && isInnermostLoop(f) && (-1 != getNumberOfIterations(f)) 829 && (getNumberOfIterations(f) <= 16)) { 830 codegenForVector(f); 831 return; 832 } 833 834 if (OpenMP && !parallelCodeGeneration) { 835 parallelCodeGeneration = true; 836 parallelLoops.push_back(f->iterator); 837 codegenForOpenMP(f); 838 parallelCodeGeneration = false; 839 return; 840 } 841 } 842 843 #ifdef GPU_CODEGEN 844 if (GPGPU && isParallelFor(f)) { 845 if (!parallelCodeGeneration) { 846 parallelCodeGeneration = true; 847 parallelLoops.push_back(f->iterator); 848 codegenForGPGPU(f); 849 parallelCodeGeneration = false; 850 return; 851 } 852 } 853 #endif 854 855 codegenForSequential(f); 856 } 857 858 Value *ClastStmtCodeGen::codegen(const clast_equation *eq) { 859 Value *LHS = ExpGen.codegen(eq->LHS, getIntPtrTy()); 860 Value *RHS = ExpGen.codegen(eq->RHS, getIntPtrTy()); 861 CmpInst::Predicate P; 862 863 if (eq->sign == 0) 864 P = ICmpInst::ICMP_EQ; 865 else if (eq->sign > 0) 866 P = ICmpInst::ICMP_SGE; 867 else 868 P = ICmpInst::ICMP_SLE; 869 870 return Builder.CreateICmp(P, LHS, RHS); 871 } 872 873 void ClastStmtCodeGen::codegen(const clast_guard *g) { 874 Function *F = Builder.GetInsertBlock()->getParent(); 875 LLVMContext &Context = F->getContext(); 876 877 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 878 Builder.GetInsertPoint(), P); 879 CondBB->setName("polly.cond"); 880 BasicBlock *MergeBB = SplitBlock(CondBB, CondBB->begin(), P); 881 MergeBB->setName("polly.merge"); 882 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 883 884 DominatorTree &DT = P->getAnalysis<DominatorTree>(); 885 DT.addNewBlock(ThenBB, CondBB); 886 DT.changeImmediateDominator(MergeBB, CondBB); 887 888 CondBB->getTerminator()->eraseFromParent(); 889 890 Builder.SetInsertPoint(CondBB); 891 892 Value *Predicate = codegen(&(g->eq[0])); 893 894 for (int i = 1; i < g->n; ++i) { 895 Value *TmpPredicate = codegen(&(g->eq[i])); 896 Predicate = Builder.CreateAnd(Predicate, TmpPredicate); 897 } 898 899 Builder.CreateCondBr(Predicate, ThenBB, MergeBB); 900 Builder.SetInsertPoint(ThenBB); 901 Builder.CreateBr(MergeBB); 902 Builder.SetInsertPoint(ThenBB->begin()); 903 904 codegen(g->then); 905 906 Builder.SetInsertPoint(MergeBB->begin()); 907 } 908 909 void ClastStmtCodeGen::codegen(const clast_stmt *stmt) { 910 if (CLAST_STMT_IS_A(stmt, stmt_root)) 911 assert(false && "No second root statement expected"); 912 else if (CLAST_STMT_IS_A(stmt, stmt_ass)) 913 codegen((const clast_assignment *)stmt); 914 else if (CLAST_STMT_IS_A(stmt, stmt_user)) 915 codegen((const clast_user_stmt *)stmt); 916 else if (CLAST_STMT_IS_A(stmt, stmt_block)) 917 codegen((const clast_block *)stmt); 918 else if (CLAST_STMT_IS_A(stmt, stmt_for)) 919 codegen((const clast_for *)stmt); 920 else if (CLAST_STMT_IS_A(stmt, stmt_guard)) 921 codegen((const clast_guard *)stmt); 922 923 if (stmt->next) 924 codegen(stmt->next); 925 } 926 927 void ClastStmtCodeGen::addParameters(const CloogNames *names) { 928 SCEVExpander Rewriter(P->getAnalysis<ScalarEvolution>(), "polly"); 929 930 int i = 0; 931 for (Scop::param_iterator PI = S->param_begin(), PE = S->param_end(); 932 PI != PE; ++PI) { 933 assert(i < names->nb_parameters && "Not enough parameter names"); 934 935 const SCEV *Param = *PI; 936 Type *Ty = Param->getType(); 937 938 Instruction *insertLocation = --(Builder.GetInsertBlock()->end()); 939 Value *V = Rewriter.expandCodeFor(Param, Ty, insertLocation); 940 ClastVars[names->parameters[i]] = V; 941 942 ++i; 943 } 944 } 945 946 void ClastStmtCodeGen::codegen(const clast_root *r) { 947 addParameters(r->names); 948 949 parallelCodeGeneration = false; 950 951 const clast_stmt *stmt = (const clast_stmt*) r; 952 if (stmt->next) 953 codegen(stmt->next); 954 } 955 956 ClastStmtCodeGen::ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P) : 957 S(scop), P(P), Builder(B), ExpGen(Builder, ClastVars) {} 958 959 namespace { 960 class CodeGeneration : public ScopPass { 961 std::vector<std::string> ParallelLoops; 962 963 public: 964 static char ID; 965 966 CodeGeneration() : ScopPass(ID) {} 967 968 969 bool runOnScop(Scop &S) { 970 ParallelLoops.clear(); 971 972 assert(S.getRegion().isSimple() && "Only simple regions are supported"); 973 974 BasicBlock *StartBlock = executeScopConditionally(S, this); 975 976 IRBuilder<> Builder(StartBlock->begin()); 977 978 ClastStmtCodeGen CodeGen(&S, Builder, this); 979 CloogInfo &C = getAnalysis<CloogInfo>(); 980 CodeGen.codegen(C.getClast()); 981 982 ParallelLoops.insert(ParallelLoops.begin(), 983 CodeGen.getParallelLoops().begin(), 984 CodeGen.getParallelLoops().end()); 985 return true; 986 } 987 988 virtual void printScop(raw_ostream &OS) const { 989 for (std::vector<std::string>::const_iterator PI = ParallelLoops.begin(), 990 PE = ParallelLoops.end(); PI != PE; ++PI) 991 OS << "Parallel loop with iterator '" << *PI << "' generated\n"; 992 } 993 994 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 995 AU.addRequired<CloogInfo>(); 996 AU.addRequired<Dependences>(); 997 AU.addRequired<DominatorTree>(); 998 AU.addRequired<RegionInfo>(); 999 AU.addRequired<ScalarEvolution>(); 1000 AU.addRequired<ScopDetection>(); 1001 AU.addRequired<ScopInfo>(); 1002 AU.addRequired<DataLayout>(); 1003 1004 AU.addPreserved<CloogInfo>(); 1005 AU.addPreserved<Dependences>(); 1006 1007 // FIXME: We do not create LoopInfo for the newly generated loops. 1008 AU.addPreserved<LoopInfo>(); 1009 AU.addPreserved<DominatorTree>(); 1010 AU.addPreserved<ScopDetection>(); 1011 AU.addPreserved<ScalarEvolution>(); 1012 1013 // FIXME: We do not yet add regions for the newly generated code to the 1014 // region tree. 1015 AU.addPreserved<RegionInfo>(); 1016 AU.addPreserved<TempScopInfo>(); 1017 AU.addPreserved<ScopInfo>(); 1018 AU.addPreservedID(IndependentBlocksID); 1019 } 1020 }; 1021 } 1022 1023 char CodeGeneration::ID = 1; 1024 1025 INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", 1026 "Polly - Create LLVM-IR from SCoPs", false, false) 1027 INITIALIZE_PASS_DEPENDENCY(CloogInfo) 1028 INITIALIZE_PASS_DEPENDENCY(Dependences) 1029 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 1030 INITIALIZE_PASS_DEPENDENCY(RegionInfo) 1031 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1032 INITIALIZE_PASS_DEPENDENCY(ScopDetection) 1033 INITIALIZE_PASS_DEPENDENCY(DataLayout) 1034 INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", 1035 "Polly - Create LLVM-IR from SCoPs", false, false) 1036 1037 Pass *polly::createCodeGenerationPass() { 1038 return new CodeGeneration(); 1039 } 1040 1041 #endif // CLOOG_FOUND 1042