1 //===------ CodeGeneration.cpp - Code generate the Scops using ISL. ----======// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The CodeGeneration pass takes a Scop created by ScopInfo and translates it 11 // back to LLVM-IR using the ISL code generator. 12 // 13 // The Scop describes the high level memory behavior of a control flow region. 14 // Transformation passes can update the schedule (execution order) of statements 15 // in the Scop. ISL is used to generate an abstract syntax tree that reflects 16 // the updated execution order. This clast is used to create new LLVM-IR that is 17 // computationally equivalent to the original control flow region, but executes 18 // its code in the new execution order defined by the changed schedule. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "polly/CodeGen/CodeGeneration.h" 23 #include "polly/CodeGen/IslAst.h" 24 #include "polly/CodeGen/IslNodeBuilder.h" 25 #include "polly/CodeGen/PerfMonitor.h" 26 #include "polly/CodeGen/Utils.h" 27 #include "polly/DependenceInfo.h" 28 #include "polly/LinkAllPasses.h" 29 #include "polly/Options.h" 30 #include "polly/ScopInfo.h" 31 #include "polly/Support/ScopHelper.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/GlobalsModRef.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/PassManager.h" 39 #include "llvm/IR/Verifier.h" 40 #include "llvm/Support/Debug.h" 41 42 using namespace polly; 43 using namespace llvm; 44 45 #define DEBUG_TYPE "polly-codegen" 46 47 static cl::opt<bool> Verify("polly-codegen-verify", 48 cl::desc("Verify the function generated by Polly"), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, 50 cl::cat(PollyCategory)); 51 52 static cl::opt<bool> 53 PerfMonitoring("polly-codegen-perf-monitoring", 54 cl::desc("Add run-time performance monitoring"), cl::Hidden, 55 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 56 57 namespace polly { 58 /// Mark a basic block unreachable. 59 /// 60 /// Marks the basic block @p Block unreachable by equipping it with an 61 /// UnreachableInst. 62 void markBlockUnreachable(BasicBlock &Block, PollyIRBuilder &Builder) { 63 auto *OrigTerminator = Block.getTerminator(); 64 Builder.SetInsertPoint(OrigTerminator); 65 Builder.CreateUnreachable(); 66 OrigTerminator->eraseFromParent(); 67 } 68 69 } // namespace polly 70 71 namespace { 72 73 static void verifyGeneratedFunction(Scop &S, Function &F, IslAstInfo &AI) { 74 if (!Verify || !verifyFunction(F, &errs())) 75 return; 76 77 DEBUG({ 78 errs() << "== ISL Codegen created an invalid function ==\n\n== The " 79 "SCoP ==\n"; 80 errs() << S; 81 errs() << "\n== The isl AST ==\n"; 82 AI.print(errs()); 83 errs() << "\n== The invalid function ==\n"; 84 F.print(errs()); 85 }); 86 87 llvm_unreachable("Polly generated function could not be verified. Add " 88 "-polly-codegen-verify=false to disable this assertion."); 89 } 90 91 // CodeGeneration adds a lot of BBs without updating the RegionInfo 92 // We make all created BBs belong to the scop's parent region without any 93 // nested structure to keep the RegionInfo verifier happy. 94 static void fixRegionInfo(Function &F, Region &ParentRegion, RegionInfo &RI) { 95 for (BasicBlock &BB : F) { 96 if (RI.getRegionFor(&BB)) 97 continue; 98 99 RI.setRegionFor(&BB, &ParentRegion); 100 } 101 } 102 103 /// Remove all lifetime markers (llvm.lifetime.start, llvm.lifetime.end) from 104 /// @R. 105 /// 106 /// CodeGeneration does not copy lifetime markers into the optimized SCoP, 107 /// which would leave the them only in the original path. This can transform 108 /// code such as 109 /// 110 /// llvm.lifetime.start(%p) 111 /// llvm.lifetime.end(%p) 112 /// 113 /// into 114 /// 115 /// if (RTC) { 116 /// // generated code 117 /// } else { 118 /// // original code 119 /// llvm.lifetime.start(%p) 120 /// } 121 /// llvm.lifetime.end(%p) 122 /// 123 /// The current StackColoring algorithm cannot handle if some, but not all, 124 /// paths from the end marker to the entry block cross the start marker. Same 125 /// for start markers that do not always cross the end markers. We avoid any 126 /// issues by removing all lifetime markers, even from the original code. 127 /// 128 /// A better solution could be to hoist all llvm.lifetime.start to the split 129 /// node and all llvm.lifetime.end to the merge node, which should be 130 /// conservatively correct. 131 static void removeLifetimeMarkers(Region *R) { 132 for (auto *BB : R->blocks()) { 133 auto InstIt = BB->begin(); 134 auto InstEnd = BB->end(); 135 136 while (InstIt != InstEnd) { 137 auto NextIt = InstIt; 138 ++NextIt; 139 140 if (auto *IT = dyn_cast<IntrinsicInst>(&*InstIt)) { 141 switch (IT->getIntrinsicID()) { 142 case llvm::Intrinsic::lifetime_start: 143 case llvm::Intrinsic::lifetime_end: 144 BB->getInstList().erase(InstIt); 145 break; 146 default: 147 break; 148 } 149 } 150 151 InstIt = NextIt; 152 } 153 } 154 } 155 156 static bool CodeGen(Scop &S, IslAstInfo &AI, LoopInfo &LI, DominatorTree &DT, 157 ScalarEvolution &SE, RegionInfo &RI) { 158 // Check if we created an isl_ast root node, otherwise exit. 159 isl_ast_node *AstRoot = AI.getAst(); 160 if (!AstRoot) 161 return false; 162 163 auto &DL = S.getFunction().getParent()->getDataLayout(); 164 Region *R = &S.getRegion(); 165 assert(!R->isTopLevelRegion() && "Top level regions are not supported"); 166 167 ScopAnnotator Annotator; 168 169 simplifyRegion(R, &DT, &LI, &RI); 170 assert(R->isSimple()); 171 BasicBlock *EnteringBB = S.getEnteringBlock(); 172 assert(EnteringBB); 173 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 174 175 // Only build the run-time condition and parameters _after_ having 176 // introduced the conditional branch. This is important as the conditional 177 // branch will guard the original scop from new induction variables that 178 // the SCEVExpander may introduce while code generating the parameters and 179 // which may introduce scalar dependences that prevent us from correctly 180 // code generating this scop. 181 BBPair StartExitBlocks = 182 std::get<0>(executeScopConditionally(S, Builder.getTrue(), DT, RI, LI)); 183 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 184 BasicBlock *ExitBlock = std::get<1>(StartExitBlocks); 185 186 removeLifetimeMarkers(R); 187 auto *SplitBlock = StartBlock->getSinglePredecessor(); 188 189 IslNodeBuilder NodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock); 190 191 // All arrays must have their base pointers known before 192 // ScopAnnotator::buildAliasScopes. 193 NodeBuilder.allocateNewArrays(StartExitBlocks); 194 Annotator.buildAliasScopes(S); 195 196 if (PerfMonitoring) { 197 PerfMonitor P(S, EnteringBB->getParent()->getParent()); 198 P.initialize(); 199 P.insertRegionStart(SplitBlock->getTerminator()); 200 201 BasicBlock *MergeBlock = ExitBlock->getUniqueSuccessor(); 202 P.insertRegionEnd(MergeBlock->getTerminator()); 203 } 204 205 // First generate code for the hoisted invariant loads and transitively the 206 // parameters they reference. Afterwards, for the remaining parameters that 207 // might reference the hoisted loads. Finally, build the runtime check 208 // that might reference both hoisted loads as well as parameters. 209 // If the hoisting fails we have to bail and execute the original code. 210 Builder.SetInsertPoint(SplitBlock->getTerminator()); 211 if (!NodeBuilder.preloadInvariantLoads()) { 212 213 // Patch the introduced branch condition to ensure that we always execute 214 // the original SCoP. 215 auto *FalseI1 = Builder.getFalse(); 216 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 217 SplitBBTerm->setOperand(0, FalseI1); 218 219 // Since the other branch is hence ignored we mark it as unreachable and 220 // adjust the dominator tree accordingly. 221 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 222 assert(ExitingBlock); 223 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 224 assert(MergeBlock); 225 markBlockUnreachable(*StartBlock, Builder); 226 markBlockUnreachable(*ExitingBlock, Builder); 227 auto *ExitingBB = S.getExitingBlock(); 228 assert(ExitingBB); 229 DT.changeImmediateDominator(MergeBlock, ExitingBB); 230 DT.eraseNode(ExitingBlock); 231 232 isl_ast_node_free(AstRoot); 233 } else { 234 NodeBuilder.addParameters(S.getContext().release()); 235 Value *RTC = NodeBuilder.createRTC(AI.getRunCondition()); 236 237 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 238 239 // Explicitly set the insert point to the end of the block to avoid that a 240 // split at the builder's current 241 // insert position would move the malloc calls to the wrong BasicBlock. 242 // Ideally we would just split the block during allocation of the new 243 // arrays, but this would break the assumption that there are no blocks 244 // between polly.start and polly.exiting (at this point). 245 Builder.SetInsertPoint(StartBlock->getTerminator()); 246 247 NodeBuilder.create(AstRoot); 248 NodeBuilder.finalize(); 249 fixRegionInfo(*EnteringBB->getParent(), *R->getParent(), RI); 250 } 251 252 Function *F = EnteringBB->getParent(); 253 verifyGeneratedFunction(S, *F, AI); 254 for (auto *SubF : NodeBuilder.getParallelSubfunctions()) 255 verifyGeneratedFunction(S, *SubF, AI); 256 257 // Mark the function such that we run additional cleanup passes on this 258 // function (e.g. mem2reg to rediscover phi nodes). 259 F->addFnAttr("polly-optimized"); 260 return true; 261 } 262 263 class CodeGeneration : public ScopPass { 264 public: 265 static char ID; 266 267 CodeGeneration() : ScopPass(ID) {} 268 269 /// The data layout used. 270 const DataLayout *DL; 271 272 /// @name The analysis passes we need to generate code. 273 /// 274 ///{ 275 LoopInfo *LI; 276 IslAstInfo *AI; 277 DominatorTree *DT; 278 ScalarEvolution *SE; 279 RegionInfo *RI; 280 ///} 281 282 /// Generate LLVM-IR for the SCoP @p S. 283 bool runOnScop(Scop &S) override { 284 // Skip SCoPs in case they're already code-generated by PPCGCodeGeneration. 285 if (S.isToBeSkipped()) 286 return false; 287 288 AI = &getAnalysis<IslAstInfoWrapperPass>().getAI(); 289 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 290 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 291 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 292 DL = &S.getFunction().getParent()->getDataLayout(); 293 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 294 return CodeGen(S, *AI, *LI, *DT, *SE, *RI); 295 } 296 297 /// Register all analyses and transformation required. 298 void getAnalysisUsage(AnalysisUsage &AU) const override { 299 AU.addRequired<DominatorTreeWrapperPass>(); 300 AU.addRequired<IslAstInfoWrapperPass>(); 301 AU.addRequired<RegionInfoPass>(); 302 AU.addRequired<ScalarEvolutionWrapperPass>(); 303 AU.addRequired<ScopDetectionWrapperPass>(); 304 AU.addRequired<ScopInfoRegionPass>(); 305 AU.addRequired<LoopInfoWrapperPass>(); 306 307 AU.addPreserved<DependenceInfo>(); 308 309 AU.addPreserved<AAResultsWrapperPass>(); 310 AU.addPreserved<BasicAAWrapperPass>(); 311 AU.addPreserved<LoopInfoWrapperPass>(); 312 AU.addPreserved<DominatorTreeWrapperPass>(); 313 AU.addPreserved<GlobalsAAWrapperPass>(); 314 AU.addPreserved<IslAstInfoWrapperPass>(); 315 AU.addPreserved<ScopDetectionWrapperPass>(); 316 AU.addPreserved<ScalarEvolutionWrapperPass>(); 317 AU.addPreserved<SCEVAAWrapperPass>(); 318 319 // FIXME: We do not yet add regions for the newly generated code to the 320 // region tree. 321 AU.addPreserved<RegionInfoPass>(); 322 AU.addPreserved<ScopInfoRegionPass>(); 323 } 324 }; 325 } // namespace 326 327 PreservedAnalyses 328 polly::CodeGenerationPass::run(Scop &S, ScopAnalysisManager &SAM, 329 ScopStandardAnalysisResults &AR, SPMUpdater &U) { 330 auto &AI = SAM.getResult<IslAstAnalysis>(S, AR); 331 if (CodeGen(S, AI, AR.LI, AR.DT, AR.SE, AR.RI)) 332 return PreservedAnalyses::none(); 333 334 return PreservedAnalyses::all(); 335 } 336 337 char CodeGeneration::ID = 1; 338 339 Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); } 340 341 INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", 342 "Polly - Create LLVM-IR from SCoPs", false, false); 343 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 344 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 345 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 346 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 347 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 348 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 349 INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", 350 "Polly - Create LLVM-IR from SCoPs", false, false) 351