1 //===------ CodeGeneration.cpp - Code generate the Scops. -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The CodeGeneration pass takes a Scop created by ScopInfo and translates it 11 // back to LLVM-IR using Cloog. 12 // 13 // The Scop describes the high level memory behaviour of a control flow region. 14 // Transformation passes can update the schedule (execution order) of statements 15 // in the Scop. Cloog is used to generate an abstract syntax tree (clast) that 16 // reflects the updated execution order. This clast is used to create new 17 // LLVM-IR that is computational equivalent to the original control flow region, 18 // but executes its code in the new execution order defined by the changed 19 // scattering. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "polly/CodeGen/Cloog.h" 24 #ifdef CLOOG_FOUND 25 26 #define DEBUG_TYPE "polly-codegen" 27 #include "polly/Dependences.h" 28 #include "polly/LinkAllPasses.h" 29 #include "polly/ScopInfo.h" 30 #include "polly/TempScopInfo.h" 31 #include "polly/CodeGen/CodeGeneration.h" 32 #include "polly/CodeGen/BlockGenerators.h" 33 #include "polly/CodeGen/LoopGenerators.h" 34 #include "polly/CodeGen/PTXGenerator.h" 35 #include "polly/CodeGen/Utils.h" 36 #include "polly/Support/GICHelper.h" 37 38 #include "llvm/Module.h" 39 #include "llvm/ADT/SetVector.h" 40 #include "llvm/ADT/PostOrderIterator.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/DataLayout.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 48 #define CLOOG_INT_GMP 1 49 #include "cloog/cloog.h" 50 #include "cloog/isl/cloog.h" 51 52 #include "isl/aff.h" 53 54 #include <vector> 55 #include <utility> 56 57 using namespace polly; 58 using namespace llvm; 59 60 struct isl_set; 61 62 namespace polly { 63 static cl::opt<bool> 64 OpenMP("enable-polly-openmp", 65 cl::desc("Generate OpenMP parallel code"), cl::Hidden, 66 cl::value_desc("OpenMP code generation enabled if true"), 67 cl::init(false), cl::ZeroOrMore); 68 69 #ifdef GPU_CODEGEN 70 static cl::opt<bool> 71 GPGPU("enable-polly-gpgpu", 72 cl::desc("Generate GPU parallel code"), cl::Hidden, 73 cl::value_desc("GPGPU code generation enabled if true"), 74 cl::init(false), cl::ZeroOrMore); 75 76 static cl::opt<std::string> 77 GPUTriple("polly-gpgpu-triple", 78 cl::desc("Target triple for GPU code generation"), 79 cl::Hidden, cl::init("")); 80 #endif /* GPU_CODEGEN */ 81 82 static cl::opt<bool> 83 AtLeastOnce("enable-polly-atLeastOnce", 84 cl::desc("Give polly the hint, that every loop is executed at least" 85 "once"), cl::Hidden, 86 cl::value_desc("OpenMP code generation enabled if true"), 87 cl::init(false), cl::ZeroOrMore); 88 89 typedef DenseMap<const char*, Value*> CharMapT; 90 91 /// Class to generate LLVM-IR that calculates the value of a clast_expr. 92 class ClastExpCodeGen { 93 IRBuilder<> &Builder; 94 const CharMapT &IVS; 95 96 Value *codegen(const clast_name *e, Type *Ty); 97 Value *codegen(const clast_term *e, Type *Ty); 98 Value *codegen(const clast_binary *e, Type *Ty); 99 Value *codegen(const clast_reduction *r, Type *Ty); 100 public: 101 102 // A generator for clast expressions. 103 // 104 // @param B The IRBuilder that defines where the code to calculate the 105 // clast expressions should be inserted. 106 // @param IVMAP A Map that translates strings describing the induction 107 // variables to the Values* that represent these variables 108 // on the LLVM side. 109 ClastExpCodeGen(IRBuilder<> &B, CharMapT &IVMap); 110 111 // Generates code to calculate a given clast expression. 112 // 113 // @param e The expression to calculate. 114 // @return The Value that holds the result. 115 Value *codegen(const clast_expr *e, Type *Ty); 116 }; 117 118 Value *ClastExpCodeGen::codegen(const clast_name *e, Type *Ty) { 119 CharMapT::const_iterator I = IVS.find(e->name); 120 121 assert(I != IVS.end() && "Clast name not found"); 122 123 return Builder.CreateSExtOrBitCast(I->second, Ty); 124 } 125 126 Value *ClastExpCodeGen::codegen(const clast_term *e, Type *Ty) { 127 APInt a = APInt_from_MPZ(e->val); 128 129 Value *ConstOne = ConstantInt::get(Builder.getContext(), a); 130 ConstOne = Builder.CreateSExtOrBitCast(ConstOne, Ty); 131 132 if (!e->var) 133 return ConstOne; 134 135 Value *var = codegen(e->var, Ty); 136 return Builder.CreateMul(ConstOne, var); 137 } 138 139 Value *ClastExpCodeGen::codegen(const clast_binary *e, Type *Ty) { 140 Value *LHS = codegen(e->LHS, Ty); 141 142 APInt RHS_AP = APInt_from_MPZ(e->RHS); 143 144 Value *RHS = ConstantInt::get(Builder.getContext(), RHS_AP); 145 RHS = Builder.CreateSExtOrBitCast(RHS, Ty); 146 147 switch (e->type) { 148 case clast_bin_mod: 149 return Builder.CreateSRem(LHS, RHS); 150 case clast_bin_fdiv: 151 { 152 // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d 153 Value *One = ConstantInt::get(Ty, 1); 154 Value *Zero = ConstantInt::get(Ty, 0); 155 Value *Sum1 = Builder.CreateSub(LHS, RHS); 156 Value *Sum2 = Builder.CreateAdd(Sum1, One); 157 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); 158 Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS); 159 return Builder.CreateSDiv(Dividend, RHS); 160 } 161 case clast_bin_cdiv: 162 { 163 // ceild(n,d) ((n < 0) ? n : (n + d - 1)) / d 164 Value *One = ConstantInt::get(Ty, 1); 165 Value *Zero = ConstantInt::get(Ty, 0); 166 Value *Sum1 = Builder.CreateAdd(LHS, RHS); 167 Value *Sum2 = Builder.CreateSub(Sum1, One); 168 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); 169 Value *Dividend = Builder.CreateSelect(isNegative, LHS, Sum2); 170 return Builder.CreateSDiv(Dividend, RHS); 171 } 172 case clast_bin_div: 173 return Builder.CreateSDiv(LHS, RHS); 174 }; 175 176 llvm_unreachable("Unknown clast binary expression type"); 177 } 178 179 Value *ClastExpCodeGen::codegen(const clast_reduction *r, Type *Ty) { 180 assert(( r->type == clast_red_min 181 || r->type == clast_red_max 182 || r->type == clast_red_sum) 183 && "Clast reduction type not supported"); 184 Value *old = codegen(r->elts[0], Ty); 185 186 for (int i=1; i < r->n; ++i) { 187 Value *exprValue = codegen(r->elts[i], Ty); 188 189 switch (r->type) { 190 case clast_red_min: 191 { 192 Value *cmp = Builder.CreateICmpSLT(old, exprValue); 193 old = Builder.CreateSelect(cmp, old, exprValue); 194 break; 195 } 196 case clast_red_max: 197 { 198 Value *cmp = Builder.CreateICmpSGT(old, exprValue); 199 old = Builder.CreateSelect(cmp, old, exprValue); 200 break; 201 } 202 case clast_red_sum: 203 old = Builder.CreateAdd(old, exprValue); 204 break; 205 } 206 } 207 208 return old; 209 } 210 211 ClastExpCodeGen::ClastExpCodeGen(IRBuilder<> &B, CharMapT &IVMap) 212 : Builder(B), IVS(IVMap) {} 213 214 Value *ClastExpCodeGen::codegen(const clast_expr *e, Type *Ty) { 215 switch(e->type) { 216 case clast_expr_name: 217 return codegen((const clast_name *)e, Ty); 218 case clast_expr_term: 219 return codegen((const clast_term *)e, Ty); 220 case clast_expr_bin: 221 return codegen((const clast_binary *)e, Ty); 222 case clast_expr_red: 223 return codegen((const clast_reduction *)e, Ty); 224 } 225 226 llvm_unreachable("Unknown clast expression!"); 227 } 228 229 class ClastStmtCodeGen { 230 public: 231 const std::vector<std::string> &getParallelLoops(); 232 233 private: 234 // The Scop we code generate. 235 Scop *S; 236 Pass *P; 237 238 // The Builder specifies the current location to code generate at. 239 IRBuilder<> &Builder; 240 241 // Map the Values from the old code to their counterparts in the new code. 242 ValueMapT ValueMap; 243 244 // clastVars maps from the textual representation of a clast variable to its 245 // current *Value. clast variables are scheduling variables, original 246 // induction variables or parameters. They are used either in loop bounds or 247 // to define the statement instance that is executed. 248 // 249 // for (s = 0; s < n + 3; ++i) 250 // for (t = s; t < m; ++j) 251 // Stmt(i = s + 3 * m, j = t); 252 // 253 // {s,t,i,j,n,m} is the set of clast variables in this clast. 254 CharMapT ClastVars; 255 256 // Codegenerator for clast expressions. 257 ClastExpCodeGen ExpGen; 258 259 // Do we currently generate parallel code? 260 bool parallelCodeGeneration; 261 262 std::vector<std::string> parallelLoops; 263 264 void codegen(const clast_assignment *a); 265 266 void codegen(const clast_assignment *a, ScopStmt *Statement, 267 unsigned Dimension, int vectorDim, 268 std::vector<ValueMapT> *VectorVMap = 0); 269 270 void codegenSubstitutions(const clast_stmt *Assignment, 271 ScopStmt *Statement, int vectorDim = 0, 272 std::vector<ValueMapT> *VectorVMap = 0); 273 274 void codegen(const clast_user_stmt *u, std::vector<Value*> *IVS = NULL, 275 const char *iterator = NULL, isl_set *scatteringDomain = 0); 276 277 void codegen(const clast_block *b); 278 279 /// @brief Create a classical sequential loop. 280 void codegenForSequential(const clast_for *f); 281 282 /// @brief Create OpenMP structure values. 283 /// 284 /// Create a list of values that has to be stored into the OpenMP subfuncition 285 /// structure. 286 SetVector<Value*> getOMPValues(); 287 288 /// @brief Update the internal structures according to a Value Map. 289 /// 290 /// @param VMap A map from old to new values. 291 /// @param Reverse If true, we assume the update should be reversed. 292 void updateWithValueMap(OMPGenerator::ValueToValueMapTy &VMap, 293 bool Reverse); 294 295 /// @brief Create an OpenMP parallel for loop. 296 /// 297 /// This loop reflects a loop as if it would have been created by an OpenMP 298 /// statement. 299 void codegenForOpenMP(const clast_for *f); 300 301 #ifdef GPU_CODEGEN 302 /// @brief Create GPGPU device memory access values. 303 /// 304 /// Create a list of values that will be set to be parameters of the GPGPU 305 /// subfunction. These parameters represent device memory base addresses 306 /// and the size in bytes. 307 SetVector<Value*> getGPUValues(unsigned &OutputBytes); 308 309 /// @brief Create a GPU parallel for loop. 310 /// 311 /// This loop reflects a loop as if it would have been created by a GPU 312 /// statement. 313 void codegenForGPGPU(const clast_for *F); 314 315 /// @brief Get innermost for loop. 316 const clast_stmt *getScheduleInfo(const clast_for *F, 317 std::vector<int> &NumIters, 318 unsigned &LoopDepth, 319 unsigned &NonPLoopDepth); 320 #endif /* GPU_CODEGEN */ 321 322 /// @brief Check if a loop is parallel 323 /// 324 /// Detect if a clast_for loop can be executed in parallel. 325 /// 326 /// @param f The clast for loop to check. 327 /// 328 /// @return bool Returns true if the incoming clast_for statement can 329 /// execute in parallel. 330 bool isParallelFor(const clast_for *For); 331 332 bool isInnermostLoop(const clast_for *f); 333 334 /// @brief Get the number of loop iterations for this loop. 335 /// @param f The clast for loop to check. 336 int getNumberOfIterations(const clast_for *f); 337 338 /// @brief Create vector instructions for this loop. 339 void codegenForVector(const clast_for *f); 340 341 void codegen(const clast_for *f); 342 343 Value *codegen(const clast_equation *eq); 344 345 void codegen(const clast_guard *g); 346 347 void codegen(const clast_stmt *stmt); 348 349 void addParameters(const CloogNames *names); 350 351 IntegerType *getIntPtrTy(); 352 353 public: 354 void codegen(const clast_root *r); 355 356 ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P); 357 }; 358 } 359 360 IntegerType *ClastStmtCodeGen::getIntPtrTy() { 361 // FIXME: This might need to get a proper address space. Hard code 0 for now. 362 return P->getAnalysis<DataLayout>().getIntPtrType(Builder.getContext(), 0u); 363 } 364 365 const std::vector<std::string> &ClastStmtCodeGen::getParallelLoops() { 366 return parallelLoops; 367 } 368 369 void ClastStmtCodeGen::codegen(const clast_assignment *a) { 370 Value *V= ExpGen.codegen(a->RHS, getIntPtrTy()); 371 ClastVars[a->LHS] = V; 372 } 373 374 void ClastStmtCodeGen::codegen(const clast_assignment *A, ScopStmt *Stmt, 375 unsigned Dim, int VectorDim, 376 std::vector<ValueMapT> *VectorVMap) { 377 const PHINode *PN; 378 Value *RHS; 379 380 assert(!A->LHS && "Statement assignments do not have left hand side"); 381 382 PN = Stmt->getInductionVariableForDimension(Dim); 383 RHS = ExpGen.codegen(A->RHS, Builder.getInt64Ty()); 384 RHS = Builder.CreateTruncOrBitCast(RHS, PN->getType()); 385 386 if (VectorVMap) 387 (*VectorVMap)[VectorDim][PN] = RHS; 388 389 ValueMap[PN] = RHS; 390 } 391 392 void ClastStmtCodeGen::codegenSubstitutions(const clast_stmt *Assignment, 393 ScopStmt *Statement, int vectorDim, 394 std::vector<ValueMapT> *VectorVMap) { 395 int Dimension = 0; 396 397 while (Assignment) { 398 assert(CLAST_STMT_IS_A(Assignment, stmt_ass) 399 && "Substitions are expected to be assignments"); 400 codegen((const clast_assignment *)Assignment, Statement, Dimension, 401 vectorDim, VectorVMap); 402 Assignment = Assignment->next; 403 Dimension++; 404 } 405 } 406 407 void ClastStmtCodeGen::codegen(const clast_user_stmt *u, 408 std::vector<Value*> *IVS , const char *iterator, 409 isl_set *Domain) { 410 ScopStmt *Statement = (ScopStmt *)u->statement->usr; 411 412 if (u->substitutions) 413 codegenSubstitutions(u->substitutions, Statement); 414 415 int VectorDimensions = IVS ? IVS->size() : 1; 416 417 if (VectorDimensions == 1) { 418 BlockGenerator::generate(Builder, *Statement, ValueMap, P); 419 return; 420 } 421 422 VectorValueMapT VectorMap(VectorDimensions); 423 424 if (IVS) { 425 assert (u->substitutions && "Substitutions expected!"); 426 int i = 0; 427 for (std::vector<Value*>::iterator II = IVS->begin(), IE = IVS->end(); 428 II != IE; ++II) { 429 ClastVars[iterator] = *II; 430 codegenSubstitutions(u->substitutions, Statement, i, &VectorMap); 431 i++; 432 } 433 } 434 435 VectorBlockGenerator::generate(Builder, *Statement, VectorMap, Domain, P); 436 } 437 438 void ClastStmtCodeGen::codegen(const clast_block *b) { 439 if (b->body) 440 codegen(b->body); 441 } 442 443 void ClastStmtCodeGen::codegenForSequential(const clast_for *f) { 444 Value *LowerBound, *UpperBound, *IV, *Stride; 445 BasicBlock *AfterBB; 446 Type *IntPtrTy = getIntPtrTy(); 447 448 LowerBound = ExpGen.codegen(f->LB, IntPtrTy); 449 UpperBound = ExpGen.codegen(f->UB, IntPtrTy); 450 Stride = Builder.getInt(APInt_from_MPZ(f->stride)); 451 452 IV = createLoop(LowerBound, UpperBound, Stride, Builder, P, AfterBB, 453 CmpInst::ICMP_SLE); 454 455 // Add loop iv to symbols. 456 ClastVars[f->iterator] = IV; 457 458 if (f->body) 459 codegen(f->body); 460 461 // Loop is finished, so remove its iv from the live symbols. 462 ClastVars.erase(f->iterator); 463 Builder.SetInsertPoint(AfterBB->begin()); 464 } 465 466 SetVector<Value*> ClastStmtCodeGen::getOMPValues() { 467 SetVector<Value*> Values; 468 469 // The clast variables 470 for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); 471 I != E; I++) 472 Values.insert(I->second); 473 474 // The memory reference base addresses 475 for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { 476 ScopStmt *Stmt = *SI; 477 for (SmallVector<MemoryAccess*, 8>::iterator I = Stmt->memacc_begin(), 478 E = Stmt->memacc_end(); I != E; ++I) { 479 Value *BaseAddr = const_cast<Value*>((*I)->getBaseAddr()); 480 Values.insert((BaseAddr)); 481 } 482 } 483 484 return Values; 485 } 486 487 void ClastStmtCodeGen::updateWithValueMap(OMPGenerator::ValueToValueMapTy &VMap, 488 bool Reverse) { 489 std::set<Value*> Inserted; 490 491 if (Reverse) { 492 OMPGenerator::ValueToValueMapTy ReverseMap; 493 494 for (std::map<Value*, Value*>::iterator I = VMap.begin(), E = VMap.end(); 495 I != E; ++I) 496 ReverseMap.insert(std::make_pair(I->second, I->first)); 497 498 for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); 499 I != E; I++) { 500 ClastVars[I->first] = ReverseMap[I->second]; 501 Inserted.insert(I->second); 502 } 503 504 /// FIXME: At the moment we do not reverse the update of the ValueMap. 505 /// This is incomplet, but the failure should be obvious, such that 506 /// we can fix this later. 507 return; 508 } 509 510 for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); 511 I != E; I++) { 512 ClastVars[I->first] = VMap[I->second]; 513 Inserted.insert(I->second); 514 } 515 516 for (std::map<Value*, Value*>::iterator I = VMap.begin(), E = VMap.end(); 517 I != E; ++I) { 518 if (Inserted.count(I->first)) 519 continue; 520 521 ValueMap[I->first] = I->second; 522 } 523 } 524 525 static void clearDomtree(Function *F, DominatorTree &DT) { 526 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 527 std::vector<BasicBlock*> Nodes; 528 for (po_iterator<DomTreeNode*> I = po_begin(N), E = po_end(N); I != E; ++I) 529 Nodes.push_back(I->getBlock()); 530 531 for (std::vector<BasicBlock*>::iterator I = Nodes.begin(), E = Nodes.end(); 532 I != E; ++I) 533 DT.eraseNode(*I); 534 } 535 536 void ClastStmtCodeGen::codegenForOpenMP(const clast_for *For) { 537 Value *Stride, *LB, *UB, *IV; 538 BasicBlock::iterator LoopBody; 539 IntegerType *IntPtrTy = getIntPtrTy(); 540 SetVector<Value*> Values; 541 OMPGenerator::ValueToValueMapTy VMap; 542 OMPGenerator OMPGen(Builder, P); 543 544 Stride = Builder.getInt(APInt_from_MPZ(For->stride)); 545 Stride = Builder.CreateSExtOrBitCast(Stride, IntPtrTy); 546 LB = ExpGen.codegen(For->LB, IntPtrTy); 547 UB = ExpGen.codegen(For->UB, IntPtrTy); 548 549 Values = getOMPValues(); 550 551 IV = OMPGen.createParallelLoop(LB, UB, Stride, Values, VMap, &LoopBody); 552 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 553 Builder.SetInsertPoint(LoopBody); 554 555 updateWithValueMap(VMap, /* reverse */ false); 556 ClastVars[For->iterator] = IV; 557 558 if (For->body) 559 codegen(For->body); 560 561 ClastVars.erase(For->iterator); 562 updateWithValueMap(VMap, /* reverse */ true); 563 564 clearDomtree((*LoopBody).getParent()->getParent(), 565 P->getAnalysis<DominatorTree>()); 566 567 Builder.SetInsertPoint(AfterLoop); 568 } 569 570 #ifdef GPU_CODEGEN 571 static unsigned getArraySizeInBytes(const ArrayType *AT) { 572 unsigned Bytes = AT->getNumElements(); 573 if (const ArrayType *T = dyn_cast<ArrayType>(AT->getElementType())) 574 Bytes *= getArraySizeInBytes(T); 575 else 576 Bytes *= AT->getElementType()->getPrimitiveSizeInBits() / 8; 577 578 return Bytes; 579 } 580 581 SetVector<Value*> ClastStmtCodeGen::getGPUValues(unsigned &OutputBytes) { 582 SetVector<Value*> Values; 583 OutputBytes = 0; 584 585 // Record the memory reference base addresses. 586 for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { 587 ScopStmt *Stmt = *SI; 588 for (SmallVector<MemoryAccess*, 8>::iterator I = Stmt->memacc_begin(), 589 E = Stmt->memacc_end(); I != E; ++I) { 590 Value *BaseAddr = const_cast<Value*>((*I)->getBaseAddr()); 591 Values.insert((BaseAddr)); 592 593 // FIXME: we assume that there is one and only one array to be written 594 // in a SCoP. 595 int NumWrites = 0; 596 if ((*I)->isWrite()) { 597 ++NumWrites; 598 assert(NumWrites <= 1 && 599 "We support at most one array to be written in a SCoP."); 600 if (const PointerType * PT = 601 dyn_cast<PointerType>(BaseAddr->getType())) { 602 Type *T = PT->getArrayElementType(); 603 const ArrayType *ATy = dyn_cast<ArrayType>(T); 604 OutputBytes = getArraySizeInBytes(ATy); 605 } 606 } 607 } 608 } 609 610 return Values; 611 } 612 613 const clast_stmt *ClastStmtCodeGen::getScheduleInfo(const clast_for *F, 614 std::vector<int> &NumIters, 615 unsigned &LoopDepth, 616 unsigned &NonPLoopDepth) { 617 clast_stmt *Stmt = (clast_stmt *)F; 618 const clast_for *Result; 619 bool NonParaFlag = false; 620 LoopDepth = 0; 621 NonPLoopDepth = 0; 622 623 while (Stmt) { 624 if (CLAST_STMT_IS_A(Stmt, stmt_for)) { 625 const clast_for *T = (clast_for *) Stmt; 626 if (isParallelFor(T)) { 627 if (!NonParaFlag) { 628 NumIters.push_back(getNumberOfIterations(T)); 629 Result = T; 630 } 631 } else 632 NonParaFlag = true; 633 634 Stmt = T->body; 635 LoopDepth++; 636 continue; 637 } 638 Stmt = Stmt->next; 639 } 640 641 assert(NumIters.size() == 4 && 642 "The loops should be tiled into 4-depth parallel loops and an " 643 "innermost non-parallel one (if exist)."); 644 NonPLoopDepth = LoopDepth - NumIters.size(); 645 assert(NonPLoopDepth <= 1 646 && "We support only one innermost non-parallel loop currently."); 647 return (const clast_stmt *)Result->body; 648 } 649 650 void ClastStmtCodeGen::codegenForGPGPU(const clast_for *F) { 651 BasicBlock::iterator LoopBody; 652 SetVector<Value *> Values; 653 SetVector<Value *> IVS; 654 std::vector<int> NumIterations; 655 PTXGenerator::ValueToValueMapTy VMap; 656 657 assert(!GPUTriple.empty() 658 && "Target triple should be set properly for GPGPU code generation."); 659 PTXGenerator PTXGen(Builder, P, GPUTriple); 660 661 // Get original IVS and ScopStmt 662 unsigned TiledLoopDepth, NonPLoopDepth; 663 const clast_stmt *InnerStmt = getScheduleInfo(F, NumIterations, 664 TiledLoopDepth, NonPLoopDepth); 665 const clast_stmt *TmpStmt; 666 const clast_user_stmt *U; 667 const clast_for *InnerFor; 668 if (CLAST_STMT_IS_A(InnerStmt, stmt_for)) { 669 InnerFor = (const clast_for *)InnerStmt; 670 TmpStmt = InnerFor->body; 671 } else 672 TmpStmt = InnerStmt; 673 U = (const clast_user_stmt *) TmpStmt; 674 ScopStmt *Statement = (ScopStmt *) U->statement->usr; 675 for (unsigned i = 0; i < Statement->getNumIterators() - NonPLoopDepth; i++) { 676 const Value* IV = Statement->getInductionVariableForDimension(i); 677 IVS.insert(const_cast<Value *>(IV)); 678 } 679 680 unsigned OutBytes; 681 Values = getGPUValues(OutBytes); 682 PTXGen.setOutputBytes(OutBytes); 683 PTXGen.startGeneration(Values, IVS, VMap, &LoopBody); 684 685 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 686 Builder.SetInsertPoint(LoopBody); 687 688 BasicBlock *AfterBB = 0; 689 if (NonPLoopDepth) { 690 Value *LowerBound, *UpperBound, *IV, *Stride; 691 Type *IntPtrTy = getIntPtrTy(); 692 LowerBound = ExpGen.codegen(InnerFor->LB, IntPtrTy); 693 UpperBound = ExpGen.codegen(InnerFor->UB, IntPtrTy); 694 Stride = Builder.getInt(APInt_from_MPZ(InnerFor->stride)); 695 IV = createLoop(LowerBound, UpperBound, Stride, Builder, P, AfterBB); 696 const Value *OldIV_ = Statement->getInductionVariableForDimension(2); 697 Value *OldIV = const_cast<Value *>(OldIV_); 698 VMap.insert(std::make_pair<Value*, Value*>(OldIV, IV)); 699 } 700 701 updateWithValueMap(VMap, /* reverse */ false); 702 BlockGenerator::generate(Builder, *Statement, ValueMap, P); 703 updateWithValueMap(VMap, /* reverse */ true); 704 705 if (AfterBB) 706 Builder.SetInsertPoint(AfterBB->begin()); 707 708 // FIXME: The replacement of the host base address with the parameter of ptx 709 // subfunction should have been done by updateWithValueMap. We use the 710 // following codes to avoid affecting other parts of Polly. This should be 711 // fixed later. 712 Function *FN = Builder.GetInsertBlock()->getParent(); 713 for (unsigned j = 0; j < Values.size(); j++) { 714 Value *baseAddr = Values[j]; 715 for (Function::iterator B = FN->begin(); B != FN->end(); ++B) { 716 for (BasicBlock::iterator I = B->begin(); I != B->end(); ++I) 717 I->replaceUsesOfWith(baseAddr, ValueMap[baseAddr]); 718 } 719 } 720 Builder.SetInsertPoint(AfterLoop); 721 PTXGen.setLaunchingParameters(NumIterations[0], NumIterations[1], 722 NumIterations[2], NumIterations[3]); 723 PTXGen.finishGeneration(FN); 724 } 725 #endif 726 727 bool ClastStmtCodeGen::isInnermostLoop(const clast_for *f) { 728 const clast_stmt *stmt = f->body; 729 730 while (stmt) { 731 if (!CLAST_STMT_IS_A(stmt, stmt_user)) 732 return false; 733 734 stmt = stmt->next; 735 } 736 737 return true; 738 } 739 740 int ClastStmtCodeGen::getNumberOfIterations(const clast_for *f) { 741 isl_set *loopDomain = isl_set_copy(isl_set_from_cloog_domain(f->domain)); 742 isl_set *tmp = isl_set_copy(loopDomain); 743 744 // Calculate a map similar to the identity map, but with the last input 745 // and output dimension not related. 746 // [i0, i1, i2, i3] -> [i0, i1, i2, o0] 747 isl_space *Space = isl_set_get_space(loopDomain); 748 Space = isl_space_drop_outputs(Space, 749 isl_set_dim(loopDomain, isl_dim_set) - 2, 1); 750 Space = isl_space_map_from_set(Space); 751 isl_map *identity = isl_map_identity(Space); 752 identity = isl_map_add_dims(identity, isl_dim_in, 1); 753 identity = isl_map_add_dims(identity, isl_dim_out, 1); 754 755 isl_map *map = isl_map_from_domain_and_range(tmp, loopDomain); 756 map = isl_map_intersect(map, identity); 757 758 isl_map *lexmax = isl_map_lexmax(isl_map_copy(map)); 759 isl_map *lexmin = isl_map_lexmin(map); 760 isl_map *sub = isl_map_sum(lexmax, isl_map_neg(lexmin)); 761 762 isl_set *elements = isl_map_range(sub); 763 764 if (!isl_set_is_singleton(elements)) { 765 isl_set_free(elements); 766 return -1; 767 } 768 769 isl_point *p = isl_set_sample_point(elements); 770 771 isl_int v; 772 isl_int_init(v); 773 isl_point_get_coordinate(p, isl_dim_set, isl_set_n_dim(loopDomain) - 1, &v); 774 int numberIterations = isl_int_get_si(v); 775 isl_int_clear(v); 776 isl_point_free(p); 777 778 return (numberIterations) / isl_int_get_si(f->stride) + 1; 779 } 780 781 void ClastStmtCodeGen::codegenForVector(const clast_for *F) { 782 DEBUG(dbgs() << "Vectorizing loop '" << F->iterator << "'\n";); 783 int VectorWidth = getNumberOfIterations(F); 784 785 Value *LB = ExpGen.codegen(F->LB, getIntPtrTy()); 786 787 APInt Stride = APInt_from_MPZ(F->stride); 788 IntegerType *LoopIVType = dyn_cast<IntegerType>(LB->getType()); 789 Stride = Stride.zext(LoopIVType->getBitWidth()); 790 Value *StrideValue = ConstantInt::get(LoopIVType, Stride); 791 792 std::vector<Value*> IVS(VectorWidth); 793 IVS[0] = LB; 794 795 for (int i = 1; i < VectorWidth; i++) 796 IVS[i] = Builder.CreateAdd(IVS[i-1], StrideValue, "p_vector_iv"); 797 798 isl_set *Domain = isl_set_from_cloog_domain(F->domain); 799 800 // Add loop iv to symbols. 801 ClastVars[F->iterator] = LB; 802 803 const clast_stmt *Stmt = F->body; 804 805 while (Stmt) { 806 codegen((const clast_user_stmt *)Stmt, &IVS, F->iterator, 807 isl_set_copy(Domain)); 808 Stmt = Stmt->next; 809 } 810 811 // Loop is finished, so remove its iv from the live symbols. 812 isl_set_free(Domain); 813 ClastVars.erase(F->iterator); 814 } 815 816 817 bool ClastStmtCodeGen::isParallelFor(const clast_for *f) { 818 isl_set *Domain = isl_set_from_cloog_domain(f->domain); 819 assert(Domain && "Cannot access domain of loop"); 820 821 Dependences &D = P->getAnalysis<Dependences>(); 822 823 return D.isParallelDimension(isl_set_copy(Domain), isl_set_n_dim(Domain)); 824 } 825 826 void ClastStmtCodeGen::codegen(const clast_for *f) { 827 bool Vector = PollyVectorizerChoice != VECTORIZER_NONE; 828 if ((Vector || OpenMP) && isParallelFor(f)) { 829 if (Vector && isInnermostLoop(f) && (-1 != getNumberOfIterations(f)) 830 && (getNumberOfIterations(f) <= 16)) { 831 codegenForVector(f); 832 return; 833 } 834 835 if (OpenMP && !parallelCodeGeneration) { 836 parallelCodeGeneration = true; 837 parallelLoops.push_back(f->iterator); 838 codegenForOpenMP(f); 839 parallelCodeGeneration = false; 840 return; 841 } 842 } 843 844 #ifdef GPU_CODEGEN 845 if (GPGPU && isParallelFor(f)) { 846 if (!parallelCodeGeneration) { 847 parallelCodeGeneration = true; 848 parallelLoops.push_back(f->iterator); 849 codegenForGPGPU(f); 850 parallelCodeGeneration = false; 851 return; 852 } 853 } 854 #endif 855 856 codegenForSequential(f); 857 } 858 859 Value *ClastStmtCodeGen::codegen(const clast_equation *eq) { 860 Value *LHS = ExpGen.codegen(eq->LHS, getIntPtrTy()); 861 Value *RHS = ExpGen.codegen(eq->RHS, getIntPtrTy()); 862 CmpInst::Predicate P; 863 864 if (eq->sign == 0) 865 P = ICmpInst::ICMP_EQ; 866 else if (eq->sign > 0) 867 P = ICmpInst::ICMP_SGE; 868 else 869 P = ICmpInst::ICMP_SLE; 870 871 return Builder.CreateICmp(P, LHS, RHS); 872 } 873 874 void ClastStmtCodeGen::codegen(const clast_guard *g) { 875 Function *F = Builder.GetInsertBlock()->getParent(); 876 LLVMContext &Context = F->getContext(); 877 878 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 879 Builder.GetInsertPoint(), P); 880 CondBB->setName("polly.cond"); 881 BasicBlock *MergeBB = SplitBlock(CondBB, CondBB->begin(), P); 882 MergeBB->setName("polly.merge"); 883 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 884 885 DominatorTree &DT = P->getAnalysis<DominatorTree>(); 886 DT.addNewBlock(ThenBB, CondBB); 887 DT.changeImmediateDominator(MergeBB, CondBB); 888 889 CondBB->getTerminator()->eraseFromParent(); 890 891 Builder.SetInsertPoint(CondBB); 892 893 Value *Predicate = codegen(&(g->eq[0])); 894 895 for (int i = 1; i < g->n; ++i) { 896 Value *TmpPredicate = codegen(&(g->eq[i])); 897 Predicate = Builder.CreateAnd(Predicate, TmpPredicate); 898 } 899 900 Builder.CreateCondBr(Predicate, ThenBB, MergeBB); 901 Builder.SetInsertPoint(ThenBB); 902 Builder.CreateBr(MergeBB); 903 Builder.SetInsertPoint(ThenBB->begin()); 904 905 codegen(g->then); 906 907 Builder.SetInsertPoint(MergeBB->begin()); 908 } 909 910 void ClastStmtCodeGen::codegen(const clast_stmt *stmt) { 911 if (CLAST_STMT_IS_A(stmt, stmt_root)) 912 assert(false && "No second root statement expected"); 913 else if (CLAST_STMT_IS_A(stmt, stmt_ass)) 914 codegen((const clast_assignment *)stmt); 915 else if (CLAST_STMT_IS_A(stmt, stmt_user)) 916 codegen((const clast_user_stmt *)stmt); 917 else if (CLAST_STMT_IS_A(stmt, stmt_block)) 918 codegen((const clast_block *)stmt); 919 else if (CLAST_STMT_IS_A(stmt, stmt_for)) 920 codegen((const clast_for *)stmt); 921 else if (CLAST_STMT_IS_A(stmt, stmt_guard)) 922 codegen((const clast_guard *)stmt); 923 924 if (stmt->next) 925 codegen(stmt->next); 926 } 927 928 void ClastStmtCodeGen::addParameters(const CloogNames *names) { 929 SCEVExpander Rewriter(P->getAnalysis<ScalarEvolution>(), "polly"); 930 931 int i = 0; 932 for (Scop::param_iterator PI = S->param_begin(), PE = S->param_end(); 933 PI != PE; ++PI) { 934 assert(i < names->nb_parameters && "Not enough parameter names"); 935 936 const SCEV *Param = *PI; 937 Type *Ty = Param->getType(); 938 939 Instruction *insertLocation = --(Builder.GetInsertBlock()->end()); 940 Value *V = Rewriter.expandCodeFor(Param, Ty, insertLocation); 941 ClastVars[names->parameters[i]] = V; 942 943 ++i; 944 } 945 } 946 947 void ClastStmtCodeGen::codegen(const clast_root *r) { 948 addParameters(r->names); 949 950 parallelCodeGeneration = false; 951 952 const clast_stmt *stmt = (const clast_stmt*) r; 953 if (stmt->next) 954 codegen(stmt->next); 955 } 956 957 ClastStmtCodeGen::ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P) : 958 S(scop), P(P), Builder(B), ExpGen(Builder, ClastVars) {} 959 960 namespace { 961 class CodeGeneration : public ScopPass { 962 std::vector<std::string> ParallelLoops; 963 964 public: 965 static char ID; 966 967 CodeGeneration() : ScopPass(ID) {} 968 969 970 bool runOnScop(Scop &S) { 971 ParallelLoops.clear(); 972 973 assert(S.getRegion().isSimple() && "Only simple regions are supported"); 974 975 BasicBlock *StartBlock = executeScopConditionally(S, this); 976 977 IRBuilder<> Builder(StartBlock->begin()); 978 979 ClastStmtCodeGen CodeGen(&S, Builder, this); 980 CloogInfo &C = getAnalysis<CloogInfo>(); 981 CodeGen.codegen(C.getClast()); 982 983 ParallelLoops.insert(ParallelLoops.begin(), 984 CodeGen.getParallelLoops().begin(), 985 CodeGen.getParallelLoops().end()); 986 return true; 987 } 988 989 virtual void printScop(raw_ostream &OS) const { 990 for (std::vector<std::string>::const_iterator PI = ParallelLoops.begin(), 991 PE = ParallelLoops.end(); PI != PE; ++PI) 992 OS << "Parallel loop with iterator '" << *PI << "' generated\n"; 993 } 994 995 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 996 AU.addRequired<CloogInfo>(); 997 AU.addRequired<Dependences>(); 998 AU.addRequired<DominatorTree>(); 999 AU.addRequired<RegionInfo>(); 1000 AU.addRequired<ScalarEvolution>(); 1001 AU.addRequired<ScopDetection>(); 1002 AU.addRequired<ScopInfo>(); 1003 AU.addRequired<DataLayout>(); 1004 1005 AU.addPreserved<CloogInfo>(); 1006 AU.addPreserved<Dependences>(); 1007 1008 // FIXME: We do not create LoopInfo for the newly generated loops. 1009 AU.addPreserved<LoopInfo>(); 1010 AU.addPreserved<DominatorTree>(); 1011 AU.addPreserved<ScopDetection>(); 1012 AU.addPreserved<ScalarEvolution>(); 1013 1014 // FIXME: We do not yet add regions for the newly generated code to the 1015 // region tree. 1016 AU.addPreserved<RegionInfo>(); 1017 AU.addPreserved<TempScopInfo>(); 1018 AU.addPreserved<ScopInfo>(); 1019 AU.addPreservedID(IndependentBlocksID); 1020 } 1021 }; 1022 } 1023 1024 char CodeGeneration::ID = 1; 1025 1026 INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", 1027 "Polly - Create LLVM-IR from SCoPs", false, false) 1028 INITIALIZE_PASS_DEPENDENCY(CloogInfo) 1029 INITIALIZE_PASS_DEPENDENCY(Dependences) 1030 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 1031 INITIALIZE_PASS_DEPENDENCY(RegionInfo) 1032 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1033 INITIALIZE_PASS_DEPENDENCY(ScopDetection) 1034 INITIALIZE_PASS_DEPENDENCY(DataLayout) 1035 INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", 1036 "Polly - Create LLVM-IR from SCoPs", false, false) 1037 1038 Pass *polly::createCodeGenerationPass() { 1039 return new CodeGeneration(); 1040 } 1041 1042 #endif // CLOOG_FOUND 1043