1 //===------ CodeGeneration.cpp - Code generate the Scops. -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The CodeGeneration pass takes a Scop created by ScopInfo and translates it 11 // back to LLVM-IR using Cloog. 12 // 13 // The Scop describes the high level memory behaviour of a control flow region. 14 // Transformation passes can update the schedule (execution order) of statements 15 // in the Scop. Cloog is used to generate an abstract syntax tree (clast) that 16 // reflects the updated execution order. This clast is used to create new 17 // LLVM-IR that is computational equivalent to the original control flow region, 18 // but executes its code in the new execution order defined by the changed 19 // scattering. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "polly/CodeGen/Cloog.h" 24 #ifdef CLOOG_FOUND 25 26 #define DEBUG_TYPE "polly-codegen" 27 #include "polly/Dependences.h" 28 #include "polly/LinkAllPasses.h" 29 #include "polly/ScopInfo.h" 30 #include "polly/TempScopInfo.h" 31 #include "polly/CodeGen/CodeGeneration.h" 32 #include "polly/CodeGen/BlockGenerators.h" 33 #include "polly/CodeGen/LoopGenerators.h" 34 #include "polly/CodeGen/PTXGenerator.h" 35 #include "polly/CodeGen/Utils.h" 36 #include "polly/Support/GICHelper.h" 37 38 #include "llvm/Module.h" 39 #include "llvm/ADT/SetVector.h" 40 #include "llvm/ADT/PostOrderIterator.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/DataLayout.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 48 #define CLOOG_INT_GMP 1 49 #include "cloog/cloog.h" 50 #include "cloog/isl/cloog.h" 51 52 #include "isl/aff.h" 53 54 #include <vector> 55 #include <utility> 56 57 using namespace polly; 58 using namespace llvm; 59 60 struct isl_set; 61 62 namespace polly { 63 static cl::opt<bool> 64 OpenMP("enable-polly-openmp", 65 cl::desc("Generate OpenMP parallel code"), cl::Hidden, 66 cl::value_desc("OpenMP code generation enabled if true"), 67 cl::init(false), cl::ZeroOrMore); 68 69 #ifdef GPU_CODEGEN 70 static cl::opt<bool> 71 GPGPU("enable-polly-gpgpu", 72 cl::desc("Generate GPU parallel code"), cl::Hidden, 73 cl::value_desc("GPGPU code generation enabled if true"), 74 cl::init(false), cl::ZeroOrMore); 75 76 static cl::opt<std::string> 77 GPUTriple("polly-gpgpu-triple", 78 cl::desc("Target triple for GPU code generation"), 79 cl::Hidden, cl::init("")); 80 #endif /* GPU_CODEGEN */ 81 82 static cl::opt<bool> 83 AtLeastOnce("enable-polly-atLeastOnce", 84 cl::desc("Give polly the hint, that every loop is executed at least" 85 "once"), cl::Hidden, 86 cl::value_desc("OpenMP code generation enabled if true"), 87 cl::init(false), cl::ZeroOrMore); 88 89 typedef DenseMap<const char*, Value*> CharMapT; 90 91 /// Class to generate LLVM-IR that calculates the value of a clast_expr. 92 class ClastExpCodeGen { 93 IRBuilder<> &Builder; 94 const CharMapT &IVS; 95 96 Value *codegen(const clast_name *e, Type *Ty); 97 Value *codegen(const clast_term *e, Type *Ty); 98 Value *codegen(const clast_binary *e, Type *Ty); 99 Value *codegen(const clast_reduction *r, Type *Ty); 100 public: 101 102 // A generator for clast expressions. 103 // 104 // @param B The IRBuilder that defines where the code to calculate the 105 // clast expressions should be inserted. 106 // @param IVMAP A Map that translates strings describing the induction 107 // variables to the Values* that represent these variables 108 // on the LLVM side. 109 ClastExpCodeGen(IRBuilder<> &B, CharMapT &IVMap); 110 111 // Generates code to calculate a given clast expression. 112 // 113 // @param e The expression to calculate. 114 // @return The Value that holds the result. 115 Value *codegen(const clast_expr *e, Type *Ty); 116 }; 117 118 Value *ClastExpCodeGen::codegen(const clast_name *e, Type *Ty) { 119 CharMapT::const_iterator I = IVS.find(e->name); 120 121 assert(I != IVS.end() && "Clast name not found"); 122 123 return Builder.CreateSExtOrBitCast(I->second, Ty); 124 } 125 126 Value *ClastExpCodeGen::codegen(const clast_term *e, Type *Ty) { 127 APInt a = APInt_from_MPZ(e->val); 128 129 Value *ConstOne = ConstantInt::get(Builder.getContext(), a); 130 ConstOne = Builder.CreateSExtOrBitCast(ConstOne, Ty); 131 132 if (!e->var) 133 return ConstOne; 134 135 Value *var = codegen(e->var, Ty); 136 return Builder.CreateMul(ConstOne, var); 137 } 138 139 Value *ClastExpCodeGen::codegen(const clast_binary *e, Type *Ty) { 140 Value *LHS = codegen(e->LHS, Ty); 141 142 APInt RHS_AP = APInt_from_MPZ(e->RHS); 143 144 Value *RHS = ConstantInt::get(Builder.getContext(), RHS_AP); 145 RHS = Builder.CreateSExtOrBitCast(RHS, Ty); 146 147 switch (e->type) { 148 case clast_bin_mod: 149 return Builder.CreateSRem(LHS, RHS); 150 case clast_bin_fdiv: 151 { 152 // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d 153 Value *One = ConstantInt::get(Ty, 1); 154 Value *Zero = ConstantInt::get(Ty, 0); 155 Value *Sum1 = Builder.CreateSub(LHS, RHS); 156 Value *Sum2 = Builder.CreateAdd(Sum1, One); 157 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); 158 Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS); 159 return Builder.CreateSDiv(Dividend, RHS); 160 } 161 case clast_bin_cdiv: 162 { 163 // ceild(n,d) ((n < 0) ? n : (n + d - 1)) / d 164 Value *One = ConstantInt::get(Ty, 1); 165 Value *Zero = ConstantInt::get(Ty, 0); 166 Value *Sum1 = Builder.CreateAdd(LHS, RHS); 167 Value *Sum2 = Builder.CreateSub(Sum1, One); 168 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); 169 Value *Dividend = Builder.CreateSelect(isNegative, LHS, Sum2); 170 return Builder.CreateSDiv(Dividend, RHS); 171 } 172 case clast_bin_div: 173 return Builder.CreateSDiv(LHS, RHS); 174 }; 175 176 llvm_unreachable("Unknown clast binary expression type"); 177 } 178 179 Value *ClastExpCodeGen::codegen(const clast_reduction *r, Type *Ty) { 180 assert(( r->type == clast_red_min 181 || r->type == clast_red_max 182 || r->type == clast_red_sum) 183 && "Clast reduction type not supported"); 184 Value *old = codegen(r->elts[0], Ty); 185 186 for (int i=1; i < r->n; ++i) { 187 Value *exprValue = codegen(r->elts[i], Ty); 188 189 switch (r->type) { 190 case clast_red_min: 191 { 192 Value *cmp = Builder.CreateICmpSLT(old, exprValue); 193 old = Builder.CreateSelect(cmp, old, exprValue); 194 break; 195 } 196 case clast_red_max: 197 { 198 Value *cmp = Builder.CreateICmpSGT(old, exprValue); 199 old = Builder.CreateSelect(cmp, old, exprValue); 200 break; 201 } 202 case clast_red_sum: 203 old = Builder.CreateAdd(old, exprValue); 204 break; 205 } 206 } 207 208 return old; 209 } 210 211 ClastExpCodeGen::ClastExpCodeGen(IRBuilder<> &B, CharMapT &IVMap) 212 : Builder(B), IVS(IVMap) {} 213 214 Value *ClastExpCodeGen::codegen(const clast_expr *e, Type *Ty) { 215 switch(e->type) { 216 case clast_expr_name: 217 return codegen((const clast_name *)e, Ty); 218 case clast_expr_term: 219 return codegen((const clast_term *)e, Ty); 220 case clast_expr_bin: 221 return codegen((const clast_binary *)e, Ty); 222 case clast_expr_red: 223 return codegen((const clast_reduction *)e, Ty); 224 } 225 226 llvm_unreachable("Unknown clast expression!"); 227 } 228 229 class ClastStmtCodeGen { 230 public: 231 const std::vector<std::string> &getParallelLoops(); 232 233 private: 234 // The Scop we code generate. 235 Scop *S; 236 Pass *P; 237 238 // The Builder specifies the current location to code generate at. 239 IRBuilder<> &Builder; 240 241 // Map the Values from the old code to their counterparts in the new code. 242 ValueMapT ValueMap; 243 244 // clastVars maps from the textual representation of a clast variable to its 245 // current *Value. clast variables are scheduling variables, original 246 // induction variables or parameters. They are used either in loop bounds or 247 // to define the statement instance that is executed. 248 // 249 // for (s = 0; s < n + 3; ++i) 250 // for (t = s; t < m; ++j) 251 // Stmt(i = s + 3 * m, j = t); 252 // 253 // {s,t,i,j,n,m} is the set of clast variables in this clast. 254 CharMapT ClastVars; 255 256 // Codegenerator for clast expressions. 257 ClastExpCodeGen ExpGen; 258 259 // Do we currently generate parallel code? 260 bool parallelCodeGeneration; 261 262 std::vector<std::string> parallelLoops; 263 264 void codegen(const clast_assignment *a); 265 266 void codegen(const clast_assignment *a, ScopStmt *Statement, 267 unsigned Dimension, int vectorDim, 268 std::vector<ValueMapT> *VectorVMap = 0); 269 270 void codegenSubstitutions(const clast_stmt *Assignment, 271 ScopStmt *Statement, int vectorDim = 0, 272 std::vector<ValueMapT> *VectorVMap = 0); 273 274 void codegen(const clast_user_stmt *u, std::vector<Value*> *IVS = NULL, 275 const char *iterator = NULL, isl_set *scatteringDomain = 0); 276 277 void codegen(const clast_block *b); 278 279 /// @brief Create a classical sequential loop. 280 void codegenForSequential(const clast_for *f); 281 282 /// @brief Create OpenMP structure values. 283 /// 284 /// Create a list of values that has to be stored into the OpenMP subfuncition 285 /// structure. 286 SetVector<Value*> getOMPValues(const clast_stmt *Body); 287 288 /// @brief Update ClastVars and ValueMap according to a value map. 289 /// 290 /// @param VMap A map from old to new values. 291 void updateWithValueMap(OMPGenerator::ValueToValueMapTy &VMap); 292 293 /// @brief Create an OpenMP parallel for loop. 294 /// 295 /// This loop reflects a loop as if it would have been created by an OpenMP 296 /// statement. 297 void codegenForOpenMP(const clast_for *f); 298 299 #ifdef GPU_CODEGEN 300 /// @brief Create GPGPU device memory access values. 301 /// 302 /// Create a list of values that will be set to be parameters of the GPGPU 303 /// subfunction. These parameters represent device memory base addresses 304 /// and the size in bytes. 305 SetVector<Value*> getGPUValues(unsigned &OutputBytes); 306 307 /// @brief Create a GPU parallel for loop. 308 /// 309 /// This loop reflects a loop as if it would have been created by a GPU 310 /// statement. 311 void codegenForGPGPU(const clast_for *F); 312 313 /// @brief Get innermost for loop. 314 const clast_stmt *getScheduleInfo(const clast_for *F, 315 std::vector<int> &NumIters, 316 unsigned &LoopDepth, 317 unsigned &NonPLoopDepth); 318 #endif /* GPU_CODEGEN */ 319 320 /// @brief Check if a loop is parallel 321 /// 322 /// Detect if a clast_for loop can be executed in parallel. 323 /// 324 /// @param f The clast for loop to check. 325 /// 326 /// @return bool Returns true if the incoming clast_for statement can 327 /// execute in parallel. 328 bool isParallelFor(const clast_for *For); 329 330 bool isInnermostLoop(const clast_for *f); 331 332 /// @brief Get the number of loop iterations for this loop. 333 /// @param f The clast for loop to check. 334 int getNumberOfIterations(const clast_for *f); 335 336 /// @brief Create vector instructions for this loop. 337 void codegenForVector(const clast_for *f); 338 339 void codegen(const clast_for *f); 340 341 Value *codegen(const clast_equation *eq); 342 343 void codegen(const clast_guard *g); 344 345 void codegen(const clast_stmt *stmt); 346 347 void addParameters(const CloogNames *names); 348 349 IntegerType *getIntPtrTy(); 350 351 public: 352 void codegen(const clast_root *r); 353 354 ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P); 355 }; 356 } 357 358 IntegerType *ClastStmtCodeGen::getIntPtrTy() { 359 return P->getAnalysis<DataLayout>().getIntPtrType(Builder.getContext()); 360 } 361 362 const std::vector<std::string> &ClastStmtCodeGen::getParallelLoops() { 363 return parallelLoops; 364 } 365 366 void ClastStmtCodeGen::codegen(const clast_assignment *a) { 367 Value *V= ExpGen.codegen(a->RHS, getIntPtrTy()); 368 ClastVars[a->LHS] = V; 369 } 370 371 void ClastStmtCodeGen::codegen(const clast_assignment *A, ScopStmt *Stmt, 372 unsigned Dim, int VectorDim, 373 std::vector<ValueMapT> *VectorVMap) { 374 const PHINode *PN; 375 Value *RHS; 376 377 assert(!A->LHS && "Statement assignments do not have left hand side"); 378 379 PN = Stmt->getInductionVariableForDimension(Dim); 380 RHS = ExpGen.codegen(A->RHS, Builder.getInt64Ty()); 381 RHS = Builder.CreateTruncOrBitCast(RHS, PN->getType()); 382 383 if (VectorVMap) 384 (*VectorVMap)[VectorDim][PN] = RHS; 385 386 ValueMap[PN] = RHS; 387 } 388 389 void ClastStmtCodeGen::codegenSubstitutions(const clast_stmt *Assignment, 390 ScopStmt *Statement, int vectorDim, 391 std::vector<ValueMapT> *VectorVMap) { 392 int Dimension = 0; 393 394 while (Assignment) { 395 assert(CLAST_STMT_IS_A(Assignment, stmt_ass) 396 && "Substitions are expected to be assignments"); 397 codegen((const clast_assignment *)Assignment, Statement, Dimension, 398 vectorDim, VectorVMap); 399 Assignment = Assignment->next; 400 Dimension++; 401 } 402 } 403 404 void ClastStmtCodeGen::codegen(const clast_user_stmt *u, 405 std::vector<Value*> *IVS , const char *iterator, 406 isl_set *Domain) { 407 ScopStmt *Statement = (ScopStmt *)u->statement->usr; 408 409 if (u->substitutions) 410 codegenSubstitutions(u->substitutions, Statement); 411 412 int VectorDimensions = IVS ? IVS->size() : 1; 413 414 if (VectorDimensions == 1) { 415 BlockGenerator::generate(Builder, *Statement, ValueMap, P); 416 return; 417 } 418 419 VectorValueMapT VectorMap(VectorDimensions); 420 421 if (IVS) { 422 assert (u->substitutions && "Substitutions expected!"); 423 int i = 0; 424 for (std::vector<Value*>::iterator II = IVS->begin(), IE = IVS->end(); 425 II != IE; ++II) { 426 ClastVars[iterator] = *II; 427 codegenSubstitutions(u->substitutions, Statement, i, &VectorMap); 428 i++; 429 } 430 } 431 432 VectorBlockGenerator::generate(Builder, *Statement, VectorMap, Domain, P); 433 } 434 435 void ClastStmtCodeGen::codegen(const clast_block *b) { 436 if (b->body) 437 codegen(b->body); 438 } 439 440 void ClastStmtCodeGen::codegenForSequential(const clast_for *f) { 441 Value *LowerBound, *UpperBound, *IV, *Stride; 442 BasicBlock *AfterBB; 443 Type *IntPtrTy = getIntPtrTy(); 444 445 LowerBound = ExpGen.codegen(f->LB, IntPtrTy); 446 UpperBound = ExpGen.codegen(f->UB, IntPtrTy); 447 Stride = Builder.getInt(APInt_from_MPZ(f->stride)); 448 449 IV = createLoop(LowerBound, UpperBound, Stride, Builder, P, AfterBB, 450 CmpInst::ICMP_SLE); 451 452 // Add loop iv to symbols. 453 ClastVars[f->iterator] = IV; 454 455 if (f->body) 456 codegen(f->body); 457 458 // Loop is finished, so remove its iv from the live symbols. 459 ClastVars.erase(f->iterator); 460 Builder.SetInsertPoint(AfterBB->begin()); 461 } 462 463 // Helper class to determine all scalar parameters used in the basic blocks of a 464 // clast. Scalar parameters are scalar variables defined outside of the SCoP. 465 class ParameterVisitor : public ClastVisitor { 466 std::set<Value *> Values; 467 public: 468 ParameterVisitor() : ClastVisitor(), Values() { } 469 470 void visitUser(const clast_user_stmt *Stmt) { 471 const ScopStmt *S = static_cast<const ScopStmt *>(Stmt->statement->usr); 472 const BasicBlock *BB = S->getBasicBlock(); 473 474 // Check all the operands of instructions in the basic block. 475 for (BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); BI != BE; 476 ++BI) { 477 const Instruction &Inst = *BI; 478 for (Instruction::const_op_iterator II = Inst.op_begin(), 479 IE = Inst.op_end(); II != IE; ++II) { 480 Value *SrcVal = *II; 481 482 if (Instruction *OpInst = dyn_cast<Instruction>(SrcVal)) 483 if (S->getParent()->getRegion().contains(OpInst)) 484 continue; 485 486 if (isa<Instruction>(SrcVal) || isa<Argument>(SrcVal)) 487 Values.insert(SrcVal); 488 } 489 } 490 } 491 492 // Iterator to iterate over the values found. 493 typedef std::set<Value *>::const_iterator const_iterator; 494 inline const_iterator begin() const { return Values.begin(); } 495 inline const_iterator end() const { return Values.end(); } 496 }; 497 498 SetVector<Value*> ClastStmtCodeGen::getOMPValues(const clast_stmt *Body) { 499 SetVector<Value*> Values; 500 501 // The clast variables 502 for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); 503 I != E; I++) 504 Values.insert(I->second); 505 506 // Find the temporaries that are referenced in the clast statements' 507 // basic blocks but are not defined by these blocks (e.g., references 508 // to function arguments or temporaries defined before the start of 509 // the SCoP). 510 ParameterVisitor Params; 511 Params.visit(Body); 512 513 for (ParameterVisitor::const_iterator PI = Params.begin(), PE = Params.end(); 514 PI != PE; ++PI) { 515 Value *V = *PI; 516 Values.insert(V); 517 DEBUG(dbgs() << "Adding temporary for OMP copy-in: " << *V << "\n"); 518 } 519 520 return Values; 521 } 522 523 void ClastStmtCodeGen::updateWithValueMap( 524 OMPGenerator::ValueToValueMapTy &VMap) { 525 std::set<Value*> Inserted; 526 527 for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); 528 I != E; I++) { 529 ClastVars[I->first] = VMap[I->second]; 530 Inserted.insert(I->second); 531 } 532 533 for (OMPGenerator::ValueToValueMapTy::iterator I = VMap.begin(), 534 E = VMap.end(); I != E; ++I) { 535 if (Inserted.count(I->first)) 536 continue; 537 538 ValueMap[I->first] = I->second; 539 } 540 } 541 542 static void clearDomtree(Function *F, DominatorTree &DT) { 543 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 544 std::vector<BasicBlock*> Nodes; 545 for (po_iterator<DomTreeNode*> I = po_begin(N), E = po_end(N); I != E; ++I) 546 Nodes.push_back(I->getBlock()); 547 548 for (std::vector<BasicBlock*>::iterator I = Nodes.begin(), E = Nodes.end(); 549 I != E; ++I) 550 DT.eraseNode(*I); 551 } 552 553 void ClastStmtCodeGen::codegenForOpenMP(const clast_for *For) { 554 Value *Stride, *LB, *UB, *IV; 555 BasicBlock::iterator LoopBody; 556 IntegerType *IntPtrTy = getIntPtrTy(); 557 SetVector<Value*> Values; 558 OMPGenerator::ValueToValueMapTy VMap; 559 OMPGenerator OMPGen(Builder, P); 560 561 Stride = Builder.getInt(APInt_from_MPZ(For->stride)); 562 Stride = Builder.CreateSExtOrBitCast(Stride, IntPtrTy); 563 LB = ExpGen.codegen(For->LB, IntPtrTy); 564 UB = ExpGen.codegen(For->UB, IntPtrTy); 565 566 Values = getOMPValues(For->body); 567 568 IV = OMPGen.createParallelLoop(LB, UB, Stride, Values, VMap, &LoopBody); 569 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 570 Builder.SetInsertPoint(LoopBody); 571 572 // Save the current values. 573 const ValueMapT ValueMapCopy = ValueMap; 574 const CharMapT ClastVarsCopy = ClastVars; 575 576 updateWithValueMap(VMap); 577 ClastVars[For->iterator] = IV; 578 579 if (For->body) 580 codegen(For->body); 581 582 // Restore the original values. 583 ValueMap = ValueMapCopy; 584 ClastVars = ClastVarsCopy; 585 586 clearDomtree((*LoopBody).getParent()->getParent(), 587 P->getAnalysis<DominatorTree>()); 588 589 Builder.SetInsertPoint(AfterLoop); 590 } 591 592 #ifdef GPU_CODEGEN 593 static unsigned getArraySizeInBytes(const ArrayType *AT) { 594 unsigned Bytes = AT->getNumElements(); 595 if (const ArrayType *T = dyn_cast<ArrayType>(AT->getElementType())) 596 Bytes *= getArraySizeInBytes(T); 597 else 598 Bytes *= AT->getElementType()->getPrimitiveSizeInBits() / 8; 599 600 return Bytes; 601 } 602 603 SetVector<Value*> ClastStmtCodeGen::getGPUValues(unsigned &OutputBytes) { 604 SetVector<Value*> Values; 605 OutputBytes = 0; 606 607 // Record the memory reference base addresses. 608 for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { 609 ScopStmt *Stmt = *SI; 610 for (SmallVector<MemoryAccess*, 8>::iterator I = Stmt->memacc_begin(), 611 E = Stmt->memacc_end(); I != E; ++I) { 612 Value *BaseAddr = const_cast<Value*>((*I)->getBaseAddr()); 613 Values.insert((BaseAddr)); 614 615 // FIXME: we assume that there is one and only one array to be written 616 // in a SCoP. 617 int NumWrites = 0; 618 if ((*I)->isWrite()) { 619 ++NumWrites; 620 assert(NumWrites <= 1 && 621 "We support at most one array to be written in a SCoP."); 622 if (const PointerType * PT = 623 dyn_cast<PointerType>(BaseAddr->getType())) { 624 Type *T = PT->getArrayElementType(); 625 const ArrayType *ATy = dyn_cast<ArrayType>(T); 626 OutputBytes = getArraySizeInBytes(ATy); 627 } 628 } 629 } 630 } 631 632 return Values; 633 } 634 635 const clast_stmt *ClastStmtCodeGen::getScheduleInfo(const clast_for *F, 636 std::vector<int> &NumIters, 637 unsigned &LoopDepth, 638 unsigned &NonPLoopDepth) { 639 clast_stmt *Stmt = (clast_stmt *)F; 640 const clast_for *Result; 641 bool NonParaFlag = false; 642 LoopDepth = 0; 643 NonPLoopDepth = 0; 644 645 while (Stmt) { 646 if (CLAST_STMT_IS_A(Stmt, stmt_for)) { 647 const clast_for *T = (clast_for *) Stmt; 648 if (isParallelFor(T)) { 649 if (!NonParaFlag) { 650 NumIters.push_back(getNumberOfIterations(T)); 651 Result = T; 652 } 653 } else 654 NonParaFlag = true; 655 656 Stmt = T->body; 657 LoopDepth++; 658 continue; 659 } 660 Stmt = Stmt->next; 661 } 662 663 assert(NumIters.size() == 4 && 664 "The loops should be tiled into 4-depth parallel loops and an " 665 "innermost non-parallel one (if exist)."); 666 NonPLoopDepth = LoopDepth - NumIters.size(); 667 assert(NonPLoopDepth <= 1 668 && "We support only one innermost non-parallel loop currently."); 669 return (const clast_stmt *)Result->body; 670 } 671 672 void ClastStmtCodeGen::codegenForGPGPU(const clast_for *F) { 673 BasicBlock::iterator LoopBody; 674 SetVector<Value *> Values; 675 SetVector<Value *> IVS; 676 std::vector<int> NumIterations; 677 PTXGenerator::ValueToValueMapTy VMap; 678 679 assert(!GPUTriple.empty() 680 && "Target triple should be set properly for GPGPU code generation."); 681 PTXGenerator PTXGen(Builder, P, GPUTriple); 682 683 // Get original IVS and ScopStmt 684 unsigned TiledLoopDepth, NonPLoopDepth; 685 const clast_stmt *InnerStmt = getScheduleInfo(F, NumIterations, 686 TiledLoopDepth, NonPLoopDepth); 687 const clast_stmt *TmpStmt; 688 const clast_user_stmt *U; 689 const clast_for *InnerFor; 690 if (CLAST_STMT_IS_A(InnerStmt, stmt_for)) { 691 InnerFor = (const clast_for *)InnerStmt; 692 TmpStmt = InnerFor->body; 693 } else 694 TmpStmt = InnerStmt; 695 U = (const clast_user_stmt *) TmpStmt; 696 ScopStmt *Statement = (ScopStmt *) U->statement->usr; 697 for (unsigned i = 0; i < Statement->getNumIterators() - NonPLoopDepth; i++) { 698 const Value* IV = Statement->getInductionVariableForDimension(i); 699 IVS.insert(const_cast<Value *>(IV)); 700 } 701 702 unsigned OutBytes; 703 Values = getGPUValues(OutBytes); 704 PTXGen.setOutputBytes(OutBytes); 705 PTXGen.startGeneration(Values, IVS, VMap, &LoopBody); 706 707 BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); 708 Builder.SetInsertPoint(LoopBody); 709 710 BasicBlock *AfterBB = 0; 711 if (NonPLoopDepth) { 712 Value *LowerBound, *UpperBound, *IV, *Stride; 713 Type *IntPtrTy = getIntPtrTy(); 714 LowerBound = ExpGen.codegen(InnerFor->LB, IntPtrTy); 715 UpperBound = ExpGen.codegen(InnerFor->UB, IntPtrTy); 716 Stride = Builder.getInt(APInt_from_MPZ(InnerFor->stride)); 717 IV = createLoop(LowerBound, UpperBound, Stride, Builder, P, AfterBB); 718 const Value *OldIV_ = Statement->getInductionVariableForDimension(2); 719 Value *OldIV = const_cast<Value *>(OldIV_); 720 VMap.insert(std::make_pair<Value*, Value*>(OldIV, IV)); 721 } 722 723 // Preserve the current values. 724 const ValueMapT ValueMapCopy = ValueMap; 725 const CharMapT ClastVarsCopy = ClastVars; 726 updateWithVMap(VMap); 727 728 BlockGenerator::generate(Builder, *Statement, ValueMap, P); 729 730 // Restore the original values. 731 ValueMap = ValueMapCopy; 732 ClastVars = ClastVarsCopy; 733 734 if (AfterBB) 735 Builder.SetInsertPoint(AfterBB->begin()); 736 737 // FIXME: The replacement of the host base address with the parameter of ptx 738 // subfunction should have been done by updateWithValueMap. We use the 739 // following codes to avoid affecting other parts of Polly. This should be 740 // fixed later. 741 Function *FN = Builder.GetInsertBlock()->getParent(); 742 for (unsigned j = 0; j < Values.size(); j++) { 743 Value *baseAddr = Values[j]; 744 for (Function::iterator B = FN->begin(); B != FN->end(); ++B) { 745 for (BasicBlock::iterator I = B->begin(); I != B->end(); ++I) 746 I->replaceUsesOfWith(baseAddr, ValueMap[baseAddr]); 747 } 748 } 749 Builder.SetInsertPoint(AfterLoop); 750 PTXGen.setLaunchingParameters(NumIterations[0], NumIterations[1], 751 NumIterations[2], NumIterations[3]); 752 PTXGen.finishGeneration(FN); 753 } 754 #endif 755 756 bool ClastStmtCodeGen::isInnermostLoop(const clast_for *f) { 757 const clast_stmt *stmt = f->body; 758 759 while (stmt) { 760 if (!CLAST_STMT_IS_A(stmt, stmt_user)) 761 return false; 762 763 stmt = stmt->next; 764 } 765 766 return true; 767 } 768 769 int ClastStmtCodeGen::getNumberOfIterations(const clast_for *f) { 770 isl_set *loopDomain = isl_set_copy(isl_set_from_cloog_domain(f->domain)); 771 isl_set *tmp = isl_set_copy(loopDomain); 772 773 // Calculate a map similar to the identity map, but with the last input 774 // and output dimension not related. 775 // [i0, i1, i2, i3] -> [i0, i1, i2, o0] 776 isl_space *Space = isl_set_get_space(loopDomain); 777 Space = isl_space_drop_outputs(Space, 778 isl_set_dim(loopDomain, isl_dim_set) - 2, 1); 779 Space = isl_space_map_from_set(Space); 780 isl_map *identity = isl_map_identity(Space); 781 identity = isl_map_add_dims(identity, isl_dim_in, 1); 782 identity = isl_map_add_dims(identity, isl_dim_out, 1); 783 784 isl_map *map = isl_map_from_domain_and_range(tmp, loopDomain); 785 map = isl_map_intersect(map, identity); 786 787 isl_map *lexmax = isl_map_lexmax(isl_map_copy(map)); 788 isl_map *lexmin = isl_map_lexmin(map); 789 isl_map *sub = isl_map_sum(lexmax, isl_map_neg(lexmin)); 790 791 isl_set *elements = isl_map_range(sub); 792 793 if (!isl_set_is_singleton(elements)) { 794 isl_set_free(elements); 795 return -1; 796 } 797 798 isl_point *p = isl_set_sample_point(elements); 799 800 isl_int v; 801 isl_int_init(v); 802 isl_point_get_coordinate(p, isl_dim_set, isl_set_n_dim(loopDomain) - 1, &v); 803 int numberIterations = isl_int_get_si(v); 804 isl_int_clear(v); 805 isl_point_free(p); 806 807 return (numberIterations) / isl_int_get_si(f->stride) + 1; 808 } 809 810 void ClastStmtCodeGen::codegenForVector(const clast_for *F) { 811 DEBUG(dbgs() << "Vectorizing loop '" << F->iterator << "'\n";); 812 int VectorWidth = getNumberOfIterations(F); 813 814 Value *LB = ExpGen.codegen(F->LB, getIntPtrTy()); 815 816 APInt Stride = APInt_from_MPZ(F->stride); 817 IntegerType *LoopIVType = dyn_cast<IntegerType>(LB->getType()); 818 Stride = Stride.zext(LoopIVType->getBitWidth()); 819 Value *StrideValue = ConstantInt::get(LoopIVType, Stride); 820 821 std::vector<Value*> IVS(VectorWidth); 822 IVS[0] = LB; 823 824 for (int i = 1; i < VectorWidth; i++) 825 IVS[i] = Builder.CreateAdd(IVS[i-1], StrideValue, "p_vector_iv"); 826 827 isl_set *Domain = isl_set_from_cloog_domain(F->domain); 828 829 // Add loop iv to symbols. 830 ClastVars[F->iterator] = LB; 831 832 const clast_stmt *Stmt = F->body; 833 834 while (Stmt) { 835 codegen((const clast_user_stmt *)Stmt, &IVS, F->iterator, 836 isl_set_copy(Domain)); 837 Stmt = Stmt->next; 838 } 839 840 // Loop is finished, so remove its iv from the live symbols. 841 isl_set_free(Domain); 842 ClastVars.erase(F->iterator); 843 } 844 845 846 bool ClastStmtCodeGen::isParallelFor(const clast_for *f) { 847 isl_set *Domain = isl_set_from_cloog_domain(f->domain); 848 assert(Domain && "Cannot access domain of loop"); 849 850 Dependences &D = P->getAnalysis<Dependences>(); 851 852 return D.isParallelDimension(isl_set_copy(Domain), isl_set_n_dim(Domain)); 853 } 854 855 void ClastStmtCodeGen::codegen(const clast_for *f) { 856 bool Vector = PollyVectorizerChoice != VECTORIZER_NONE; 857 if ((Vector || OpenMP) && isParallelFor(f)) { 858 if (Vector && isInnermostLoop(f) && (-1 != getNumberOfIterations(f)) 859 && (getNumberOfIterations(f) <= 16)) { 860 codegenForVector(f); 861 return; 862 } 863 864 if (OpenMP && !parallelCodeGeneration) { 865 parallelCodeGeneration = true; 866 parallelLoops.push_back(f->iterator); 867 codegenForOpenMP(f); 868 parallelCodeGeneration = false; 869 return; 870 } 871 } 872 873 #ifdef GPU_CODEGEN 874 if (GPGPU && isParallelFor(f)) { 875 if (!parallelCodeGeneration) { 876 parallelCodeGeneration = true; 877 parallelLoops.push_back(f->iterator); 878 codegenForGPGPU(f); 879 parallelCodeGeneration = false; 880 return; 881 } 882 } 883 #endif 884 885 codegenForSequential(f); 886 } 887 888 Value *ClastStmtCodeGen::codegen(const clast_equation *eq) { 889 Value *LHS = ExpGen.codegen(eq->LHS, getIntPtrTy()); 890 Value *RHS = ExpGen.codegen(eq->RHS, getIntPtrTy()); 891 CmpInst::Predicate P; 892 893 if (eq->sign == 0) 894 P = ICmpInst::ICMP_EQ; 895 else if (eq->sign > 0) 896 P = ICmpInst::ICMP_SGE; 897 else 898 P = ICmpInst::ICMP_SLE; 899 900 return Builder.CreateICmp(P, LHS, RHS); 901 } 902 903 void ClastStmtCodeGen::codegen(const clast_guard *g) { 904 Function *F = Builder.GetInsertBlock()->getParent(); 905 LLVMContext &Context = F->getContext(); 906 907 BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), 908 Builder.GetInsertPoint(), P); 909 CondBB->setName("polly.cond"); 910 BasicBlock *MergeBB = SplitBlock(CondBB, CondBB->begin(), P); 911 MergeBB->setName("polly.merge"); 912 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); 913 914 DominatorTree &DT = P->getAnalysis<DominatorTree>(); 915 DT.addNewBlock(ThenBB, CondBB); 916 DT.changeImmediateDominator(MergeBB, CondBB); 917 918 CondBB->getTerminator()->eraseFromParent(); 919 920 Builder.SetInsertPoint(CondBB); 921 922 Value *Predicate = codegen(&(g->eq[0])); 923 924 for (int i = 1; i < g->n; ++i) { 925 Value *TmpPredicate = codegen(&(g->eq[i])); 926 Predicate = Builder.CreateAnd(Predicate, TmpPredicate); 927 } 928 929 Builder.CreateCondBr(Predicate, ThenBB, MergeBB); 930 Builder.SetInsertPoint(ThenBB); 931 Builder.CreateBr(MergeBB); 932 Builder.SetInsertPoint(ThenBB->begin()); 933 934 codegen(g->then); 935 936 Builder.SetInsertPoint(MergeBB->begin()); 937 } 938 939 void ClastStmtCodeGen::codegen(const clast_stmt *stmt) { 940 if (CLAST_STMT_IS_A(stmt, stmt_root)) 941 assert(false && "No second root statement expected"); 942 else if (CLAST_STMT_IS_A(stmt, stmt_ass)) 943 codegen((const clast_assignment *)stmt); 944 else if (CLAST_STMT_IS_A(stmt, stmt_user)) 945 codegen((const clast_user_stmt *)stmt); 946 else if (CLAST_STMT_IS_A(stmt, stmt_block)) 947 codegen((const clast_block *)stmt); 948 else if (CLAST_STMT_IS_A(stmt, stmt_for)) 949 codegen((const clast_for *)stmt); 950 else if (CLAST_STMT_IS_A(stmt, stmt_guard)) 951 codegen((const clast_guard *)stmt); 952 953 if (stmt->next) 954 codegen(stmt->next); 955 } 956 957 void ClastStmtCodeGen::addParameters(const CloogNames *names) { 958 SCEVExpander Rewriter(P->getAnalysis<ScalarEvolution>(), "polly"); 959 960 int i = 0; 961 for (Scop::param_iterator PI = S->param_begin(), PE = S->param_end(); 962 PI != PE; ++PI) { 963 assert(i < names->nb_parameters && "Not enough parameter names"); 964 965 const SCEV *Param = *PI; 966 Type *Ty = Param->getType(); 967 968 Instruction *insertLocation = --(Builder.GetInsertBlock()->end()); 969 Value *V = Rewriter.expandCodeFor(Param, Ty, insertLocation); 970 ClastVars[names->parameters[i]] = V; 971 972 ++i; 973 } 974 } 975 976 void ClastStmtCodeGen::codegen(const clast_root *r) { 977 addParameters(r->names); 978 979 parallelCodeGeneration = false; 980 981 const clast_stmt *stmt = (const clast_stmt*) r; 982 if (stmt->next) 983 codegen(stmt->next); 984 } 985 986 ClastStmtCodeGen::ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P) : 987 S(scop), P(P), Builder(B), ExpGen(Builder, ClastVars) {} 988 989 namespace { 990 class CodeGeneration : public ScopPass { 991 std::vector<std::string> ParallelLoops; 992 993 public: 994 static char ID; 995 996 CodeGeneration() : ScopPass(ID) {} 997 998 999 bool runOnScop(Scop &S) { 1000 ParallelLoops.clear(); 1001 1002 assert(S.getRegion().isSimple() && "Only simple regions are supported"); 1003 1004 BasicBlock *StartBlock = executeScopConditionally(S, this); 1005 1006 IRBuilder<> Builder(StartBlock->begin()); 1007 1008 ClastStmtCodeGen CodeGen(&S, Builder, this); 1009 CloogInfo &C = getAnalysis<CloogInfo>(); 1010 CodeGen.codegen(C.getClast()); 1011 1012 ParallelLoops.insert(ParallelLoops.begin(), 1013 CodeGen.getParallelLoops().begin(), 1014 CodeGen.getParallelLoops().end()); 1015 return true; 1016 } 1017 1018 virtual void printScop(raw_ostream &OS) const { 1019 for (std::vector<std::string>::const_iterator PI = ParallelLoops.begin(), 1020 PE = ParallelLoops.end(); PI != PE; ++PI) 1021 OS << "Parallel loop with iterator '" << *PI << "' generated\n"; 1022 } 1023 1024 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1025 AU.addRequired<CloogInfo>(); 1026 AU.addRequired<Dependences>(); 1027 AU.addRequired<DominatorTree>(); 1028 AU.addRequired<RegionInfo>(); 1029 AU.addRequired<ScalarEvolution>(); 1030 AU.addRequired<ScopDetection>(); 1031 AU.addRequired<ScopInfo>(); 1032 AU.addRequired<DataLayout>(); 1033 1034 AU.addPreserved<CloogInfo>(); 1035 AU.addPreserved<Dependences>(); 1036 1037 // FIXME: We do not create LoopInfo for the newly generated loops. 1038 AU.addPreserved<LoopInfo>(); 1039 AU.addPreserved<DominatorTree>(); 1040 AU.addPreserved<ScopDetection>(); 1041 AU.addPreserved<ScalarEvolution>(); 1042 1043 // FIXME: We do not yet add regions for the newly generated code to the 1044 // region tree. 1045 AU.addPreserved<RegionInfo>(); 1046 AU.addPreserved<TempScopInfo>(); 1047 AU.addPreserved<ScopInfo>(); 1048 AU.addPreservedID(IndependentBlocksID); 1049 } 1050 }; 1051 } 1052 1053 char CodeGeneration::ID = 1; 1054 1055 INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", 1056 "Polly - Create LLVM-IR from SCoPs", false, false) 1057 INITIALIZE_PASS_DEPENDENCY(CloogInfo) 1058 INITIALIZE_PASS_DEPENDENCY(Dependences) 1059 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 1060 INITIALIZE_PASS_DEPENDENCY(RegionInfo) 1061 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1062 INITIALIZE_PASS_DEPENDENCY(ScopDetection) 1063 INITIALIZE_PASS_DEPENDENCY(DataLayout) 1064 INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", 1065 "Polly - Create LLVM-IR from SCoPs", false, false) 1066 1067 Pass *polly::createCodeGenerationPass() { 1068 return new CodeGeneration(); 1069 } 1070 1071 #endif // CLOOG_FOUND 1072