1 //===- CodeGeneration.cpp - Code generate the Scops using ISL. ---------======//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The CodeGeneration pass takes a Scop created by ScopInfo and translates it
10 // back to LLVM-IR using the ISL code generator.
11 //
12 // The Scop describes the high level memory behavior of a control flow region.
13 // Transformation passes can update the schedule (execution order) of statements
14 // in the Scop. ISL is used to generate an abstract syntax tree that reflects
15 // the updated execution order. This clast is used to create new LLVM-IR that is
16 // computationally equivalent to the original control flow region, but executes
17 // its code in the new execution order defined by the changed schedule.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "polly/CodeGen/CodeGeneration.h"
22 #include "polly/CodeGen/IRBuilder.h"
23 #include "polly/CodeGen/IslAst.h"
24 #include "polly/CodeGen/IslNodeBuilder.h"
25 #include "polly/CodeGen/PerfMonitor.h"
26 #include "polly/CodeGen/Utils.h"
27 #include "polly/DependenceInfo.h"
28 #include "polly/LinkAllPasses.h"
29 #include "polly/Options.h"
30 #include "polly/ScopInfo.h"
31 #include "polly/Support/ScopHelper.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/RegionInfo.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/PassManager.h"
39 #include "llvm/IR/Verifier.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "isl/ast.h"
44 #include <cassert>
45 
46 using namespace llvm;
47 using namespace polly;
48 
49 #define DEBUG_TYPE "polly-codegen"
50 
51 static cl::opt<bool> Verify("polly-codegen-verify",
52                             cl::desc("Verify the function generated by Polly"),
53                             cl::Hidden, cl::init(false), cl::ZeroOrMore,
54                             cl::cat(PollyCategory));
55 
56 bool polly::PerfMonitoring;
57 
58 static cl::opt<bool, true>
59     XPerfMonitoring("polly-codegen-perf-monitoring",
60                     cl::desc("Add run-time performance monitoring"), cl::Hidden,
61                     cl::location(polly::PerfMonitoring), cl::init(false),
62                     cl::ZeroOrMore, cl::cat(PollyCategory));
63 
64 STATISTIC(ScopsProcessed, "Number of SCoP processed");
65 STATISTIC(CodegenedScops, "Number of successfully generated SCoPs");
66 STATISTIC(CodegenedAffineLoops,
67           "Number of original affine loops in SCoPs that have been generated");
68 STATISTIC(CodegenedBoxedLoops,
69           "Number of original boxed loops in SCoPs that have been generated");
70 
71 namespace polly {
72 
73 /// Mark a basic block unreachable.
74 ///
75 /// Marks the basic block @p Block unreachable by equipping it with an
76 /// UnreachableInst.
77 void markBlockUnreachable(BasicBlock &Block, PollyIRBuilder &Builder) {
78   auto *OrigTerminator = Block.getTerminator();
79   Builder.SetInsertPoint(OrigTerminator);
80   Builder.CreateUnreachable();
81   OrigTerminator->eraseFromParent();
82 }
83 } // namespace polly
84 
85 static void verifyGeneratedFunction(Scop &S, Function &F, IslAstInfo &AI) {
86   if (!Verify || !verifyFunction(F, &errs()))
87     return;
88 
89   LLVM_DEBUG({
90     errs() << "== ISL Codegen created an invalid function ==\n\n== The "
91               "SCoP ==\n";
92     errs() << S;
93     errs() << "\n== The isl AST ==\n";
94     AI.print(errs());
95     errs() << "\n== The invalid function ==\n";
96     F.print(errs());
97   });
98 
99   llvm_unreachable("Polly generated function could not be verified. Add "
100                    "-polly-codegen-verify=false to disable this assertion.");
101 }
102 
103 // CodeGeneration adds a lot of BBs without updating the RegionInfo
104 // We make all created BBs belong to the scop's parent region without any
105 // nested structure to keep the RegionInfo verifier happy.
106 static void fixRegionInfo(Function &F, Region &ParentRegion, RegionInfo &RI) {
107   for (BasicBlock &BB : F) {
108     if (RI.getRegionFor(&BB))
109       continue;
110 
111     RI.setRegionFor(&BB, &ParentRegion);
112   }
113 }
114 
115 /// Remove all lifetime markers (llvm.lifetime.start, llvm.lifetime.end) from
116 /// @R.
117 ///
118 /// CodeGeneration does not copy lifetime markers into the optimized SCoP,
119 /// which would leave the them only in the original path. This can transform
120 /// code such as
121 ///
122 ///     llvm.lifetime.start(%p)
123 ///     llvm.lifetime.end(%p)
124 ///
125 /// into
126 ///
127 ///     if (RTC) {
128 ///       // generated code
129 ///     } else {
130 ///       // original code
131 ///       llvm.lifetime.start(%p)
132 ///     }
133 ///     llvm.lifetime.end(%p)
134 ///
135 /// The current StackColoring algorithm cannot handle if some, but not all,
136 /// paths from the end marker to the entry block cross the start marker. Same
137 /// for start markers that do not always cross the end markers. We avoid any
138 /// issues by removing all lifetime markers, even from the original code.
139 ///
140 /// A better solution could be to hoist all llvm.lifetime.start to the split
141 /// node and all llvm.lifetime.end to the merge node, which should be
142 /// conservatively correct.
143 static void removeLifetimeMarkers(Region *R) {
144   for (auto *BB : R->blocks()) {
145     auto InstIt = BB->begin();
146     auto InstEnd = BB->end();
147 
148     while (InstIt != InstEnd) {
149       auto NextIt = InstIt;
150       ++NextIt;
151 
152       if (auto *IT = dyn_cast<IntrinsicInst>(&*InstIt)) {
153         switch (IT->getIntrinsicID()) {
154         case Intrinsic::lifetime_start:
155         case Intrinsic::lifetime_end:
156           BB->getInstList().erase(InstIt);
157           break;
158         default:
159           break;
160         }
161       }
162 
163       InstIt = NextIt;
164     }
165   }
166 }
167 
168 static bool CodeGen(Scop &S, IslAstInfo &AI, LoopInfo &LI, DominatorTree &DT,
169                     ScalarEvolution &SE, RegionInfo &RI) {
170   // Check whether IslAstInfo uses the same isl_ctx. Since -polly-codegen
171   // reports itself to preserve DependenceInfo and IslAstInfo, we might get
172   // those analysis that were computed by a different ScopInfo for a different
173   // Scop structure. When the ScopInfo/Scop object is freed, there is a high
174   // probability that the new ScopInfo/Scop object will be created at the same
175   // heap position with the same address. Comparing whether the Scop or ScopInfo
176   // address is the expected therefore is unreliable.
177   // Instead, we compare the address of the isl_ctx object. Both, DependenceInfo
178   // and IslAstInfo must hold a reference to the isl_ctx object to ensure it is
179   // not freed before the destruction of those analyses which might happen after
180   // the destruction of the Scop/ScopInfo they refer to.  Hence, the isl_ctx
181   // will not be freed and its space not reused as long there is a
182   // DependenceInfo or IslAstInfo around.
183   IslAst &Ast = AI.getIslAst();
184   if (Ast.getSharedIslCtx() != S.getSharedIslCtx()) {
185     LLVM_DEBUG(dbgs() << "Got an IstAst for a different Scop/isl_ctx\n");
186     return false;
187   }
188 
189   // Check if we created an isl_ast root node, otherwise exit.
190   isl_ast_node *AstRoot = Ast.getAst();
191   if (!AstRoot)
192     return false;
193 
194   // Collect statistics. Do it before we modify the IR to avoid having it any
195   // influence on the result.
196   auto ScopStats = S.getStatistics();
197   ScopsProcessed++;
198 
199   auto &DL = S.getFunction().getParent()->getDataLayout();
200   Region *R = &S.getRegion();
201   assert(!R->isTopLevelRegion() && "Top level regions are not supported");
202 
203   ScopAnnotator Annotator;
204 
205   simplifyRegion(R, &DT, &LI, &RI);
206   assert(R->isSimple());
207   BasicBlock *EnteringBB = S.getEnteringBlock();
208   assert(EnteringBB);
209   PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
210 
211   // Only build the run-time condition and parameters _after_ having
212   // introduced the conditional branch. This is important as the conditional
213   // branch will guard the original scop from new induction variables that
214   // the SCEVExpander may introduce while code generating the parameters and
215   // which may introduce scalar dependences that prevent us from correctly
216   // code generating this scop.
217   BBPair StartExitBlocks =
218       std::get<0>(executeScopConditionally(S, Builder.getTrue(), DT, RI, LI));
219   BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
220   BasicBlock *ExitBlock = std::get<1>(StartExitBlocks);
221 
222   removeLifetimeMarkers(R);
223   auto *SplitBlock = StartBlock->getSinglePredecessor();
224 
225   IslNodeBuilder NodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock);
226 
227   // All arrays must have their base pointers known before
228   // ScopAnnotator::buildAliasScopes.
229   NodeBuilder.allocateNewArrays(StartExitBlocks);
230   Annotator.buildAliasScopes(S);
231 
232   if (PerfMonitoring) {
233     PerfMonitor P(S, EnteringBB->getParent()->getParent());
234     P.initialize();
235     P.insertRegionStart(SplitBlock->getTerminator());
236 
237     BasicBlock *MergeBlock = ExitBlock->getUniqueSuccessor();
238     P.insertRegionEnd(MergeBlock->getTerminator());
239   }
240 
241   // First generate code for the hoisted invariant loads and transitively the
242   // parameters they reference. Afterwards, for the remaining parameters that
243   // might reference the hoisted loads. Finally, build the runtime check
244   // that might reference both hoisted loads as well as parameters.
245   // If the hoisting fails we have to bail and execute the original code.
246   Builder.SetInsertPoint(SplitBlock->getTerminator());
247   if (!NodeBuilder.preloadInvariantLoads()) {
248     // Patch the introduced branch condition to ensure that we always execute
249     // the original SCoP.
250     auto *FalseI1 = Builder.getFalse();
251     auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator();
252     SplitBBTerm->setOperand(0, FalseI1);
253 
254     // Since the other branch is hence ignored we mark it as unreachable and
255     // adjust the dominator tree accordingly.
256     auto *ExitingBlock = StartBlock->getUniqueSuccessor();
257     assert(ExitingBlock);
258     auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
259     assert(MergeBlock);
260     markBlockUnreachable(*StartBlock, Builder);
261     markBlockUnreachable(*ExitingBlock, Builder);
262     auto *ExitingBB = S.getExitingBlock();
263     assert(ExitingBB);
264     DT.changeImmediateDominator(MergeBlock, ExitingBB);
265     DT.eraseNode(ExitingBlock);
266 
267     isl_ast_node_free(AstRoot);
268   } else {
269     NodeBuilder.addParameters(S.getContext().release());
270     Value *RTC = NodeBuilder.createRTC(AI.getRunCondition());
271 
272     Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
273 
274     // Explicitly set the insert point to the end of the block to avoid that a
275     // split at the builder's current
276     // insert position would move the malloc calls to the wrong BasicBlock.
277     // Ideally we would just split the block during allocation of the new
278     // arrays, but this would break the assumption that there are no blocks
279     // between polly.start and polly.exiting (at this point).
280     Builder.SetInsertPoint(StartBlock->getTerminator());
281 
282     NodeBuilder.create(AstRoot);
283     NodeBuilder.finalize();
284     fixRegionInfo(*EnteringBB->getParent(), *R->getParent(), RI);
285 
286     CodegenedScops++;
287     CodegenedAffineLoops += ScopStats.NumAffineLoops;
288     CodegenedBoxedLoops += ScopStats.NumBoxedLoops;
289   }
290 
291   Function *F = EnteringBB->getParent();
292   verifyGeneratedFunction(S, *F, AI);
293   for (auto *SubF : NodeBuilder.getParallelSubfunctions())
294     verifyGeneratedFunction(S, *SubF, AI);
295 
296   // Mark the function such that we run additional cleanup passes on this
297   // function (e.g. mem2reg to rediscover phi nodes).
298   F->addFnAttr("polly-optimized");
299   return true;
300 }
301 
302 namespace {
303 
304 class CodeGeneration : public ScopPass {
305 public:
306   static char ID;
307 
308   /// The data layout used.
309   const DataLayout *DL;
310 
311   /// @name The analysis passes we need to generate code.
312   ///
313   ///{
314   LoopInfo *LI;
315   IslAstInfo *AI;
316   DominatorTree *DT;
317   ScalarEvolution *SE;
318   RegionInfo *RI;
319   ///}
320 
321   CodeGeneration() : ScopPass(ID) {}
322 
323   /// Generate LLVM-IR for the SCoP @p S.
324   bool runOnScop(Scop &S) override {
325     // Skip SCoPs in case they're already code-generated by PPCGCodeGeneration.
326     if (S.isToBeSkipped())
327       return false;
328 
329     AI = &getAnalysis<IslAstInfoWrapperPass>().getAI();
330     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
331     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
332     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
333     DL = &S.getFunction().getParent()->getDataLayout();
334     RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
335     return CodeGen(S, *AI, *LI, *DT, *SE, *RI);
336   }
337 
338   /// Register all analyses and transformation required.
339   void getAnalysisUsage(AnalysisUsage &AU) const override {
340     ScopPass::getAnalysisUsage(AU);
341 
342     AU.addRequired<DominatorTreeWrapperPass>();
343     AU.addRequired<IslAstInfoWrapperPass>();
344     AU.addRequired<RegionInfoPass>();
345     AU.addRequired<ScalarEvolutionWrapperPass>();
346     AU.addRequired<ScopDetectionWrapperPass>();
347     AU.addRequired<ScopInfoRegionPass>();
348     AU.addRequired<LoopInfoWrapperPass>();
349 
350     AU.addPreserved<DependenceInfo>();
351     AU.addPreserved<IslAstInfoWrapperPass>();
352 
353     // FIXME: We do not yet add regions for the newly generated code to the
354     //        region tree.
355   }
356 };
357 } // namespace
358 
359 PreservedAnalyses CodeGenerationPass::run(Scop &S, ScopAnalysisManager &SAM,
360                                           ScopStandardAnalysisResults &AR,
361                                           SPMUpdater &U) {
362   auto &AI = SAM.getResult<IslAstAnalysis>(S, AR);
363   if (CodeGen(S, AI, AR.LI, AR.DT, AR.SE, AR.RI)) {
364     U.invalidateScop(S);
365     return PreservedAnalyses::none();
366   }
367 
368   return PreservedAnalyses::all();
369 }
370 
371 char CodeGeneration::ID = 1;
372 
373 Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); }
374 
375 INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen",
376                       "Polly - Create LLVM-IR from SCoPs", false, false);
377 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
378 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
379 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
380 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
381 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
382 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
383 INITIALIZE_PASS_END(CodeGeneration, "polly-codegen",
384                     "Polly - Create LLVM-IR from SCoPs", false, false)
385