1 /* 2 * z_Windows_NT_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_wait_release.h" 19 20 /* This code is related to NtQuerySystemInformation() function. This function 21 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the 22 number of running threads in the system. */ 23 24 #include <ntsecapi.h> // UNICODE_STRING 25 #include <ntstatus.h> 26 27 enum SYSTEM_INFORMATION_CLASS { 28 SystemProcessInformation = 5 29 }; // SYSTEM_INFORMATION_CLASS 30 31 struct CLIENT_ID { 32 HANDLE UniqueProcess; 33 HANDLE UniqueThread; 34 }; // struct CLIENT_ID 35 36 enum THREAD_STATE { 37 StateInitialized, 38 StateReady, 39 StateRunning, 40 StateStandby, 41 StateTerminated, 42 StateWait, 43 StateTransition, 44 StateUnknown 45 }; // enum THREAD_STATE 46 47 struct VM_COUNTERS { 48 SIZE_T PeakVirtualSize; 49 SIZE_T VirtualSize; 50 ULONG PageFaultCount; 51 SIZE_T PeakWorkingSetSize; 52 SIZE_T WorkingSetSize; 53 SIZE_T QuotaPeakPagedPoolUsage; 54 SIZE_T QuotaPagedPoolUsage; 55 SIZE_T QuotaPeakNonPagedPoolUsage; 56 SIZE_T QuotaNonPagedPoolUsage; 57 SIZE_T PagefileUsage; 58 SIZE_T PeakPagefileUsage; 59 SIZE_T PrivatePageCount; 60 }; // struct VM_COUNTERS 61 62 struct SYSTEM_THREAD { 63 LARGE_INTEGER KernelTime; 64 LARGE_INTEGER UserTime; 65 LARGE_INTEGER CreateTime; 66 ULONG WaitTime; 67 LPVOID StartAddress; 68 CLIENT_ID ClientId; 69 DWORD Priority; 70 LONG BasePriority; 71 ULONG ContextSwitchCount; 72 THREAD_STATE State; 73 ULONG WaitReason; 74 }; // SYSTEM_THREAD 75 76 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0); 77 #if KMP_ARCH_X86 78 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28); 79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52); 80 #else 81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32); 82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68); 83 #endif 84 85 struct SYSTEM_PROCESS_INFORMATION { 86 ULONG NextEntryOffset; 87 ULONG NumberOfThreads; 88 LARGE_INTEGER Reserved[3]; 89 LARGE_INTEGER CreateTime; 90 LARGE_INTEGER UserTime; 91 LARGE_INTEGER KernelTime; 92 UNICODE_STRING ImageName; 93 DWORD BasePriority; 94 HANDLE ProcessId; 95 HANDLE ParentProcessId; 96 ULONG HandleCount; 97 ULONG Reserved2[2]; 98 VM_COUNTERS VMCounters; 99 IO_COUNTERS IOCounters; 100 SYSTEM_THREAD Threads[1]; 101 }; // SYSTEM_PROCESS_INFORMATION 102 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION; 103 104 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0); 105 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32); 106 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56); 107 #if KMP_ARCH_X86 108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68); 109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76); 110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88); 111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136); 112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184); 113 #else 114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80); 115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96); 116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112); 117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208); 118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256); 119 #endif 120 121 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS, 122 PVOID, ULONG, PULONG); 123 NtQuerySystemInformation_t NtQuerySystemInformation = NULL; 124 125 HMODULE ntdll = NULL; 126 127 /* End of NtQuerySystemInformation()-related code */ 128 129 static HMODULE kernel32 = NULL; 130 131 #if KMP_HANDLE_SIGNALS 132 typedef void (*sig_func_t)(int); 133 static sig_func_t __kmp_sighldrs[NSIG]; 134 static int __kmp_siginstalled[NSIG]; 135 #endif 136 137 #if KMP_USE_MONITOR 138 static HANDLE __kmp_monitor_ev; 139 #endif 140 static kmp_int64 __kmp_win32_time; 141 double __kmp_win32_tick; 142 143 int __kmp_init_runtime = FALSE; 144 CRITICAL_SECTION __kmp_win32_section; 145 146 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) { 147 InitializeCriticalSection(&mx->cs); 148 #if USE_ITT_BUILD 149 __kmp_itt_system_object_created(&mx->cs, "Critical Section"); 150 #endif /* USE_ITT_BUILD */ 151 } 152 153 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) { 154 DeleteCriticalSection(&mx->cs); 155 } 156 157 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) { 158 EnterCriticalSection(&mx->cs); 159 } 160 161 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) { 162 return TryEnterCriticalSection(&mx->cs); 163 } 164 165 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) { 166 LeaveCriticalSection(&mx->cs); 167 } 168 169 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) { 170 cv->waiters_count_ = 0; 171 cv->wait_generation_count_ = 0; 172 cv->release_count_ = 0; 173 174 /* Initialize the critical section */ 175 __kmp_win32_mutex_init(&cv->waiters_count_lock_); 176 177 /* Create a manual-reset event. */ 178 cv->event_ = CreateEvent(NULL, // no security 179 TRUE, // manual-reset 180 FALSE, // non-signaled initially 181 NULL); // unnamed 182 #if USE_ITT_BUILD 183 __kmp_itt_system_object_created(cv->event_, "Event"); 184 #endif /* USE_ITT_BUILD */ 185 } 186 187 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) { 188 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_); 189 __kmp_free_handle(cv->event_); 190 memset(cv, '\0', sizeof(*cv)); 191 } 192 193 /* TODO associate cv with a team instead of a thread so as to optimize 194 the case where we wake up a whole team */ 195 196 void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, 197 kmp_info_t *th, int need_decrease_load) { 198 int my_generation; 199 int last_waiter; 200 201 /* Avoid race conditions */ 202 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 203 204 /* Increment count of waiters */ 205 cv->waiters_count_++; 206 207 /* Store current generation in our activation record. */ 208 my_generation = cv->wait_generation_count_; 209 210 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 211 __kmp_win32_mutex_unlock(mx); 212 213 for (;;) { 214 int wait_done; 215 216 /* Wait until the event is signaled */ 217 WaitForSingleObject(cv->event_, INFINITE); 218 219 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 220 221 /* Exit the loop when the <cv->event_> is signaled and there are still 222 waiting threads from this <wait_generation> that haven't been released 223 from this wait yet. */ 224 wait_done = (cv->release_count_ > 0) && 225 (cv->wait_generation_count_ != my_generation); 226 227 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 228 229 /* there used to be a semicolon after the if statement, it looked like a 230 bug, so i removed it */ 231 if (wait_done) 232 break; 233 } 234 235 __kmp_win32_mutex_lock(mx); 236 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 237 238 cv->waiters_count_--; 239 cv->release_count_--; 240 241 last_waiter = (cv->release_count_ == 0); 242 243 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 244 245 if (last_waiter) { 246 /* We're the last waiter to be notified, so reset the manual event. */ 247 ResetEvent(cv->event_); 248 } 249 } 250 251 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) { 252 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 253 254 if (cv->waiters_count_ > 0) { 255 SetEvent(cv->event_); 256 /* Release all the threads in this generation. */ 257 258 cv->release_count_ = cv->waiters_count_; 259 260 /* Start a new generation. */ 261 cv->wait_generation_count_++; 262 } 263 264 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 265 } 266 267 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) { 268 __kmp_win32_cond_broadcast(cv); 269 } 270 271 void __kmp_enable(int new_state) { 272 if (__kmp_init_runtime) 273 LeaveCriticalSection(&__kmp_win32_section); 274 } 275 276 void __kmp_disable(int *old_state) { 277 *old_state = 0; 278 279 if (__kmp_init_runtime) 280 EnterCriticalSection(&__kmp_win32_section); 281 } 282 283 void __kmp_suspend_initialize(void) { /* do nothing */ 284 } 285 286 static void __kmp_suspend_initialize_thread(kmp_info_t *th) { 287 if (!TCR_4(th->th.th_suspend_init)) { 288 /* this means we haven't initialized the suspension pthread objects for this 289 thread in this instance of the process */ 290 __kmp_win32_cond_init(&th->th.th_suspend_cv); 291 __kmp_win32_mutex_init(&th->th.th_suspend_mx); 292 TCW_4(th->th.th_suspend_init, TRUE); 293 } 294 } 295 296 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 297 if (TCR_4(th->th.th_suspend_init)) { 298 /* this means we have initialize the suspension pthread objects for this 299 thread in this instance of the process */ 300 __kmp_win32_cond_destroy(&th->th.th_suspend_cv); 301 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx); 302 TCW_4(th->th.th_suspend_init, FALSE); 303 } 304 } 305 306 int __kmp_try_suspend_mx(kmp_info_t *th) { 307 return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx); 308 } 309 310 void __kmp_lock_suspend_mx(kmp_info_t *th) { 311 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 312 } 313 314 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 315 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 316 } 317 318 /* This routine puts the calling thread to sleep after setting the 319 sleep bit for the indicated flag variable to true. */ 320 template <class C> 321 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 322 kmp_info_t *th = __kmp_threads[th_gtid]; 323 int status; 324 typename C::flag_t old_spin; 325 326 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", 327 th_gtid, flag->get())); 328 329 __kmp_suspend_initialize_thread(th); 330 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 331 332 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's" 333 " loc(%p)\n", 334 th_gtid, flag->get())); 335 336 /* TODO: shouldn't this use release semantics to ensure that 337 __kmp_suspend_initialize_thread gets called first? */ 338 old_spin = flag->set_sleeping(); 339 #if OMP_50_ENABLED 340 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 341 __kmp_pause_status != kmp_soft_paused) { 342 flag->unset_sleeping(); 343 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 344 return; 345 } 346 #endif 347 348 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's" 349 " loc(%p)==%d\n", 350 th_gtid, flag->get(), *(flag->get()))); 351 352 if (flag->done_check_val(old_spin)) { 353 old_spin = flag->unset_sleeping(); 354 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 355 "for flag's loc(%p)\n", 356 th_gtid, flag->get())); 357 } else { 358 #ifdef DEBUG_SUSPEND 359 __kmp_suspend_count++; 360 #endif 361 /* Encapsulate in a loop as the documentation states that this may "with 362 low probability" return when the condition variable has not been signaled 363 or broadcast */ 364 int deactivated = FALSE; 365 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 366 while (flag->is_sleeping()) { 367 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 368 "kmp_win32_cond_wait()\n", 369 th_gtid)); 370 // Mark the thread as no longer active (only in the first iteration of the 371 // loop). 372 if (!deactivated) { 373 th->th.th_active = FALSE; 374 if (th->th.th_active_in_pool) { 375 th->th.th_active_in_pool = FALSE; 376 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 377 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 378 } 379 deactivated = TRUE; 380 381 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, 382 0); 383 } else { 384 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, 385 0); 386 } 387 388 #ifdef KMP_DEBUG 389 if (flag->is_sleeping()) { 390 KF_TRACE(100, 391 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 392 } 393 #endif /* KMP_DEBUG */ 394 395 } // while 396 397 // Mark the thread as active again (if it was previous marked as inactive) 398 if (deactivated) { 399 th->th.th_active = TRUE; 400 if (TCR_4(th->th.th_in_pool)) { 401 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 402 th->th.th_active_in_pool = TRUE; 403 } 404 } 405 } 406 407 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 408 409 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 410 } 411 412 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 413 __kmp_suspend_template(th_gtid, flag); 414 } 415 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 416 __kmp_suspend_template(th_gtid, flag); 417 } 418 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 419 __kmp_suspend_template(th_gtid, flag); 420 } 421 422 /* This routine signals the thread specified by target_gtid to wake up 423 after setting the sleep bit indicated by the flag argument to FALSE */ 424 template <class C> 425 static inline void __kmp_resume_template(int target_gtid, C *flag) { 426 kmp_info_t *th = __kmp_threads[target_gtid]; 427 int status; 428 429 #ifdef KMP_DEBUG 430 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 431 #endif 432 433 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 434 gtid, target_gtid)); 435 436 __kmp_suspend_initialize_thread(th); 437 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 438 439 if (!flag) { // coming from __kmp_null_resume_wrapper 440 flag = (C *)th->th.th_sleep_loc; 441 } 442 443 // First, check if the flag is null or its type has changed. If so, someone 444 // else woke it up. 445 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 446 // simply shows what 447 // flag was cast to 448 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 449 "awake: flag's loc(%p)\n", 450 gtid, target_gtid, NULL)); 451 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 452 return; 453 } else { 454 typename C::flag_t old_spin = flag->unset_sleeping(); 455 if (!flag->is_sleeping_val(old_spin)) { 456 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 457 "awake: flag's loc(%p): %u => %u\n", 458 gtid, target_gtid, flag->get(), old_spin, *(flag->get()))); 459 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 460 return; 461 } 462 } 463 TCW_PTR(th->th.th_sleep_loc, NULL); 464 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep " 465 "bit for flag's loc(%p)\n", 466 gtid, target_gtid, flag->get())); 467 468 __kmp_win32_cond_signal(&th->th.th_suspend_cv); 469 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 470 471 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 472 " for T#%d\n", 473 gtid, target_gtid)); 474 } 475 476 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 477 __kmp_resume_template(target_gtid, flag); 478 } 479 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 480 __kmp_resume_template(target_gtid, flag); 481 } 482 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 483 __kmp_resume_template(target_gtid, flag); 484 } 485 486 void __kmp_yield() { Sleep(0); } 487 488 void __kmp_gtid_set_specific(int gtid) { 489 if (__kmp_init_gtid) { 490 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, 491 __kmp_gtid_threadprivate_key)); 492 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1))) 493 KMP_FATAL(TLSSetValueFailed); 494 } else { 495 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 496 } 497 } 498 499 int __kmp_gtid_get_specific() { 500 int gtid; 501 if (!__kmp_init_gtid) { 502 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 503 "KMP_GTID_SHUTDOWN\n")); 504 return KMP_GTID_SHUTDOWN; 505 } 506 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key); 507 if (gtid == 0) { 508 gtid = KMP_GTID_DNE; 509 } else { 510 gtid--; 511 } 512 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 513 __kmp_gtid_threadprivate_key, gtid)); 514 return gtid; 515 } 516 517 void __kmp_affinity_bind_thread(int proc) { 518 if (__kmp_num_proc_groups > 1) { 519 // Form the GROUP_AFFINITY struct directly, rather than filling 520 // out a bit vector and calling __kmp_set_system_affinity(). 521 GROUP_AFFINITY ga; 522 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * 523 sizeof(DWORD_PTR)))); 524 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); 525 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); 526 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; 527 528 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); 529 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { 530 DWORD error = GetLastError(); 531 if (__kmp_affinity_verbose) { // AC: continue silently if not verbose 532 kmp_msg_t err_code = KMP_ERR(error); 533 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code, 534 __kmp_msg_null); 535 if (__kmp_generate_warnings == kmp_warnings_off) { 536 __kmp_str_free(&err_code.str); 537 } 538 } 539 } 540 } else { 541 kmp_affin_mask_t *mask; 542 KMP_CPU_ALLOC_ON_STACK(mask); 543 KMP_CPU_ZERO(mask); 544 KMP_CPU_SET(proc, mask); 545 __kmp_set_system_affinity(mask, TRUE); 546 KMP_CPU_FREE_FROM_STACK(mask); 547 } 548 } 549 550 void __kmp_affinity_determine_capable(const char *env_var) { 551 // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask(). 552 553 #if KMP_GROUP_AFFINITY 554 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR)); 555 #else 556 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR)); 557 #endif 558 559 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 560 "Windows* OS affinity interface functional (mask size = " 561 "%" KMP_SIZE_T_SPEC ").\n", 562 __kmp_affin_mask_size)); 563 } 564 565 double __kmp_read_cpu_time(void) { 566 FILETIME CreationTime, ExitTime, KernelTime, UserTime; 567 int status; 568 double cpu_time; 569 570 cpu_time = 0; 571 572 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, 573 &KernelTime, &UserTime); 574 575 if (status) { 576 double sec = 0; 577 578 sec += KernelTime.dwHighDateTime; 579 sec += UserTime.dwHighDateTime; 580 581 /* Shift left by 32 bits */ 582 sec *= (double)(1 << 16) * (double)(1 << 16); 583 584 sec += KernelTime.dwLowDateTime; 585 sec += UserTime.dwLowDateTime; 586 587 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; 588 } 589 590 return cpu_time; 591 } 592 593 int __kmp_read_system_info(struct kmp_sys_info *info) { 594 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ 595 info->minflt = 0; /* the number of page faults serviced without any I/O */ 596 info->majflt = 0; /* the number of page faults serviced that required I/O */ 597 info->nswap = 0; // the number of times a process was "swapped" out of memory 598 info->inblock = 0; // the number of times the file system had to perform input 599 info->oublock = 0; // number of times the file system had to perform output 600 info->nvcsw = 0; /* the number of times a context switch was voluntarily */ 601 info->nivcsw = 0; /* the number of times a context switch was forced */ 602 603 return 1; 604 } 605 606 void __kmp_runtime_initialize(void) { 607 SYSTEM_INFO info; 608 kmp_str_buf_t path; 609 UINT path_size; 610 611 if (__kmp_init_runtime) { 612 return; 613 } 614 615 #if KMP_DYNAMIC_LIB 616 /* Pin dynamic library for the lifetime of application */ 617 { 618 // First, turn off error message boxes 619 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS); 620 HMODULE h; 621 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | 622 GET_MODULE_HANDLE_EX_FLAG_PIN, 623 (LPCTSTR)&__kmp_serial_initialize, &h); 624 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); 625 SetErrorMode(err_mode); // Restore error mode 626 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n")); 627 } 628 #endif 629 630 InitializeCriticalSection(&__kmp_win32_section); 631 #if USE_ITT_BUILD 632 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section"); 633 #endif /* USE_ITT_BUILD */ 634 __kmp_initialize_system_tick(); 635 636 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 637 if (!__kmp_cpuinfo.initialized) { 638 __kmp_query_cpuid(&__kmp_cpuinfo); 639 } 640 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 641 642 /* Set up minimum number of threads to switch to TLS gtid */ 643 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 644 // Windows* OS, static library. 645 /* New thread may use stack space previously used by another thread, 646 currently terminated. On Windows* OS, in case of static linking, we do not 647 know the moment of thread termination, and our structures (__kmp_threads 648 and __kmp_root arrays) are still keep info about dead threads. This leads 649 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid 650 (by searching through stack addresses of all known threads) for 651 unregistered foreign tread. 652 653 Setting __kmp_tls_gtid_min to 0 workarounds this problem: 654 __kmp_get_global_thread_id() does not search through stacks, but get gtid 655 from TLS immediately. 656 --ln 657 */ 658 __kmp_tls_gtid_min = 0; 659 #else 660 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 661 #endif 662 663 /* for the static library */ 664 if (!__kmp_gtid_threadprivate_key) { 665 __kmp_gtid_threadprivate_key = TlsAlloc(); 666 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) { 667 KMP_FATAL(TLSOutOfIndexes); 668 } 669 } 670 671 // Load ntdll.dll. 672 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue 673 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We 674 have to specify full path to the library. */ 675 __kmp_str_buf_init(&path); 676 path_size = GetSystemDirectory(path.str, path.size); 677 KMP_DEBUG_ASSERT(path_size > 0); 678 if (path_size >= path.size) { 679 // Buffer is too short. Expand the buffer and try again. 680 __kmp_str_buf_reserve(&path, path_size); 681 path_size = GetSystemDirectory(path.str, path.size); 682 KMP_DEBUG_ASSERT(path_size > 0); 683 } 684 if (path_size > 0 && path_size < path.size) { 685 // Now we have system directory name in the buffer. 686 // Append backslash and name of dll to form full path, 687 path.used = path_size; 688 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll"); 689 690 // Now load ntdll using full path. 691 ntdll = GetModuleHandle(path.str); 692 } 693 694 KMP_DEBUG_ASSERT(ntdll != NULL); 695 if (ntdll != NULL) { 696 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress( 697 ntdll, "NtQuerySystemInformation"); 698 } 699 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL); 700 701 #if KMP_GROUP_AFFINITY 702 // Load kernel32.dll. 703 // Same caveat - must use full system path name. 704 if (path_size > 0 && path_size < path.size) { 705 // Truncate the buffer back to just the system path length, 706 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". 707 path.used = path_size; 708 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll"); 709 710 // Load kernel32.dll using full path. 711 kernel32 = GetModuleHandle(path.str); 712 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str)); 713 714 // Load the function pointers to kernel32.dll routines 715 // that may or may not exist on this system. 716 if (kernel32 != NULL) { 717 __kmp_GetActiveProcessorCount = 718 (kmp_GetActiveProcessorCount_t)GetProcAddress( 719 kernel32, "GetActiveProcessorCount"); 720 __kmp_GetActiveProcessorGroupCount = 721 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress( 722 kernel32, "GetActiveProcessorGroupCount"); 723 __kmp_GetThreadGroupAffinity = 724 (kmp_GetThreadGroupAffinity_t)GetProcAddress( 725 kernel32, "GetThreadGroupAffinity"); 726 __kmp_SetThreadGroupAffinity = 727 (kmp_SetThreadGroupAffinity_t)GetProcAddress( 728 kernel32, "SetThreadGroupAffinity"); 729 730 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount" 731 " = %p\n", 732 __kmp_GetActiveProcessorCount)); 733 KA_TRACE(10, ("__kmp_runtime_initialize: " 734 "__kmp_GetActiveProcessorGroupCount = %p\n", 735 __kmp_GetActiveProcessorGroupCount)); 736 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity" 737 " = %p\n", 738 __kmp_GetThreadGroupAffinity)); 739 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity" 740 " = %p\n", 741 __kmp_SetThreadGroupAffinity)); 742 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", 743 sizeof(kmp_affin_mask_t))); 744 745 // See if group affinity is supported on this system. 746 // If so, calculate the #groups and #procs. 747 // 748 // Group affinity was introduced with Windows* 7 OS and 749 // Windows* Server 2008 R2 OS. 750 if ((__kmp_GetActiveProcessorCount != NULL) && 751 (__kmp_GetActiveProcessorGroupCount != NULL) && 752 (__kmp_GetThreadGroupAffinity != NULL) && 753 (__kmp_SetThreadGroupAffinity != NULL) && 754 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) > 755 1)) { 756 // Calculate the total number of active OS procs. 757 int i; 758 759 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 760 " detected\n", 761 __kmp_num_proc_groups)); 762 763 __kmp_xproc = 0; 764 765 for (i = 0; i < __kmp_num_proc_groups; i++) { 766 DWORD size = __kmp_GetActiveProcessorCount(i); 767 __kmp_xproc += size; 768 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n", 769 i, size)); 770 } 771 } else { 772 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 773 " detected\n", 774 __kmp_num_proc_groups)); 775 } 776 } 777 } 778 if (__kmp_num_proc_groups <= 1) { 779 GetSystemInfo(&info); 780 __kmp_xproc = info.dwNumberOfProcessors; 781 } 782 #else 783 GetSystemInfo(&info); 784 __kmp_xproc = info.dwNumberOfProcessors; 785 #endif /* KMP_GROUP_AFFINITY */ 786 787 // If the OS said there were 0 procs, take a guess and use a value of 2. 788 // This is done for Linux* OS, also. Do we need error / warning? 789 if (__kmp_xproc <= 0) { 790 __kmp_xproc = 2; 791 } 792 793 KA_TRACE(5, 794 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc)); 795 796 __kmp_str_buf_free(&path); 797 798 #if USE_ITT_BUILD 799 __kmp_itt_initialize(); 800 #endif /* USE_ITT_BUILD */ 801 802 __kmp_init_runtime = TRUE; 803 } // __kmp_runtime_initialize 804 805 void __kmp_runtime_destroy(void) { 806 if (!__kmp_init_runtime) { 807 return; 808 } 809 810 #if USE_ITT_BUILD 811 __kmp_itt_destroy(); 812 #endif /* USE_ITT_BUILD */ 813 814 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ 815 /* due to the KX_TRACE() commands */ 816 KA_TRACE(40, ("__kmp_runtime_destroy\n")); 817 818 if (__kmp_gtid_threadprivate_key) { 819 TlsFree(__kmp_gtid_threadprivate_key); 820 __kmp_gtid_threadprivate_key = 0; 821 } 822 823 __kmp_affinity_uninitialize(); 824 DeleteCriticalSection(&__kmp_win32_section); 825 826 ntdll = NULL; 827 NtQuerySystemInformation = NULL; 828 829 #if KMP_ARCH_X86_64 830 kernel32 = NULL; 831 __kmp_GetActiveProcessorCount = NULL; 832 __kmp_GetActiveProcessorGroupCount = NULL; 833 __kmp_GetThreadGroupAffinity = NULL; 834 __kmp_SetThreadGroupAffinity = NULL; 835 #endif // KMP_ARCH_X86_64 836 837 __kmp_init_runtime = FALSE; 838 } 839 840 void __kmp_terminate_thread(int gtid) { 841 kmp_info_t *th = __kmp_threads[gtid]; 842 843 if (!th) 844 return; 845 846 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 847 848 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) { 849 /* It's OK, the thread may have exited already */ 850 } 851 __kmp_free_handle(th->th.th_info.ds.ds_thread); 852 } 853 854 void __kmp_clear_system_time(void) { 855 BOOL status; 856 LARGE_INTEGER time; 857 status = QueryPerformanceCounter(&time); 858 __kmp_win32_time = (kmp_int64)time.QuadPart; 859 } 860 861 void __kmp_initialize_system_tick(void) { 862 { 863 BOOL status; 864 LARGE_INTEGER freq; 865 866 status = QueryPerformanceFrequency(&freq); 867 if (!status) { 868 DWORD error = GetLastError(); 869 __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"), 870 KMP_ERR(error), __kmp_msg_null); 871 872 } else { 873 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart; 874 } 875 } 876 } 877 878 /* Calculate the elapsed wall clock time for the user */ 879 880 void __kmp_elapsed(double *t) { 881 BOOL status; 882 LARGE_INTEGER now; 883 status = QueryPerformanceCounter(&now); 884 *t = ((double)now.QuadPart) * __kmp_win32_tick; 885 } 886 887 /* Calculate the elapsed wall clock tick for the user */ 888 889 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; } 890 891 void __kmp_read_system_time(double *delta) { 892 if (delta != NULL) { 893 BOOL status; 894 LARGE_INTEGER now; 895 896 status = QueryPerformanceCounter(&now); 897 898 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) * 899 __kmp_win32_tick; 900 } 901 } 902 903 /* Return the current time stamp in nsec */ 904 kmp_uint64 __kmp_now_nsec() { 905 LARGE_INTEGER now; 906 QueryPerformanceCounter(&now); 907 return 1e9 * __kmp_win32_tick * now.QuadPart; 908 } 909 910 extern "C" 911 void *__stdcall __kmp_launch_worker(void *arg) { 912 volatile void *stack_data; 913 void *exit_val; 914 void *padding = 0; 915 kmp_info_t *this_thr = (kmp_info_t *)arg; 916 int gtid; 917 918 gtid = this_thr->th.th_info.ds.ds_gtid; 919 __kmp_gtid_set_specific(gtid); 920 #ifdef KMP_TDATA_GTID 921 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 922 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 923 "reference: http://support.microsoft.com/kb/118816" 924 //__kmp_gtid = gtid; 925 #endif 926 927 #if USE_ITT_BUILD 928 __kmp_itt_thread_name(gtid); 929 #endif /* USE_ITT_BUILD */ 930 931 __kmp_affinity_set_init_mask(gtid, FALSE); 932 933 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 934 // Set FP control regs to be a copy of the parallel initialization thread's. 935 __kmp_clear_x87_fpu_status_word(); 936 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 937 __kmp_load_mxcsr(&__kmp_init_mxcsr); 938 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 939 940 if (__kmp_stkoffset > 0 && gtid > 0) { 941 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 942 } 943 944 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 945 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 946 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 947 948 if (TCR_4(__kmp_gtid_mode) < 949 2) { // check stack only if it is used to get gtid 950 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); 951 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE); 952 __kmp_check_stack_overlap(this_thr); 953 } 954 KMP_MB(); 955 exit_val = __kmp_launch_thread(this_thr); 956 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 957 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 958 KMP_MB(); 959 return exit_val; 960 } 961 962 #if KMP_USE_MONITOR 963 /* The monitor thread controls all of the threads in the complex */ 964 965 void *__stdcall __kmp_launch_monitor(void *arg) { 966 DWORD wait_status; 967 kmp_thread_t monitor; 968 int status; 969 int interval; 970 kmp_info_t *this_thr = (kmp_info_t *)arg; 971 972 KMP_DEBUG_ASSERT(__kmp_init_monitor); 973 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started 974 // TODO: hide "2" in enum (like {true,false,started}) 975 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 976 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 977 978 KMP_MB(); /* Flush all pending memory write invalidates. */ 979 KA_TRACE(10, ("__kmp_launch_monitor: launched\n")); 980 981 monitor = GetCurrentThread(); 982 983 /* set thread priority */ 984 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST); 985 if (!status) { 986 DWORD error = GetLastError(); 987 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 988 } 989 990 /* register us as monitor */ 991 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 992 #ifdef KMP_TDATA_GTID 993 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 994 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 995 "reference: http://support.microsoft.com/kb/118816" 996 //__kmp_gtid = KMP_GTID_MONITOR; 997 #endif 998 999 #if USE_ITT_BUILD 1000 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore 1001 // monitor thread. 1002 #endif /* USE_ITT_BUILD */ 1003 1004 KMP_MB(); /* Flush all pending memory write invalidates. */ 1005 1006 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */ 1007 1008 while (!TCR_4(__kmp_global.g.g_done)) { 1009 /* This thread monitors the state of the system */ 1010 1011 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 1012 1013 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval); 1014 1015 if (wait_status == WAIT_TIMEOUT) { 1016 TCW_4(__kmp_global.g.g_time.dt.t_value, 1017 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 1018 } 1019 1020 KMP_MB(); /* Flush all pending memory write invalidates. */ 1021 } 1022 1023 KA_TRACE(10, ("__kmp_launch_monitor: finished\n")); 1024 1025 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL); 1026 if (!status) { 1027 DWORD error = GetLastError(); 1028 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1029 } 1030 1031 if (__kmp_global.g.g_abort != 0) { 1032 /* now we need to terminate the worker threads */ 1033 /* the value of t_abort is the signal we caught */ 1034 int gtid; 1035 1036 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n", 1037 (__kmp_global.g.g_abort))); 1038 1039 /* terminate the OpenMP worker threads */ 1040 /* TODO this is not valid for sibling threads!! 1041 * the uber master might not be 0 anymore.. */ 1042 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 1043 __kmp_terminate_thread(gtid); 1044 1045 __kmp_cleanup(); 1046 1047 Sleep(0); 1048 1049 KA_TRACE(10, 1050 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort)); 1051 1052 if (__kmp_global.g.g_abort > 0) { 1053 raise(__kmp_global.g.g_abort); 1054 } 1055 } 1056 1057 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1058 1059 KMP_MB(); 1060 return arg; 1061 } 1062 #endif 1063 1064 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 1065 kmp_thread_t handle; 1066 DWORD idThread; 1067 1068 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 1069 1070 th->th.th_info.ds.ds_gtid = gtid; 1071 1072 if (KMP_UBER_GTID(gtid)) { 1073 int stack_data; 1074 1075 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for 1076 other threads to use. Is it appropriate to just use GetCurrentThread? 1077 When should we close this handle? When unregistering the root? */ 1078 { 1079 BOOL rc; 1080 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), 1081 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, 1082 FALSE, DUPLICATE_SAME_ACCESS); 1083 KMP_ASSERT(rc); 1084 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, " 1085 "handle = %" KMP_UINTPTR_SPEC "\n", 1086 (LPVOID)th, th->th.th_info.ds.ds_thread)); 1087 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1088 } 1089 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid 1090 /* we will dynamically update the stack range if gtid_mode == 1 */ 1091 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 1092 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 1093 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 1094 __kmp_check_stack_overlap(th); 1095 } 1096 } else { 1097 KMP_MB(); /* Flush all pending memory write invalidates. */ 1098 1099 /* Set stack size for this thread now. */ 1100 KA_TRACE(10, 1101 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", 1102 stack_size)); 1103 1104 stack_size += gtid * __kmp_stkoffset; 1105 1106 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); 1107 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 1108 1109 KA_TRACE(10, 1110 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC 1111 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n", 1112 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1113 (LPVOID)th, &idThread)); 1114 1115 handle = CreateThread( 1116 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker, 1117 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1118 1119 KA_TRACE(10, 1120 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC 1121 " bytes, &__kmp_launch_worker = %p, th = %p, " 1122 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", 1123 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1124 (LPVOID)th, idThread, handle)); 1125 1126 if (handle == 0) { 1127 DWORD error = GetLastError(); 1128 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1129 } else { 1130 th->th.th_info.ds.ds_thread = handle; 1131 } 1132 1133 KMP_MB(); /* Flush all pending memory write invalidates. */ 1134 } 1135 1136 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 1137 } 1138 1139 int __kmp_still_running(kmp_info_t *th) { 1140 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0)); 1141 } 1142 1143 #if KMP_USE_MONITOR 1144 void __kmp_create_monitor(kmp_info_t *th) { 1145 kmp_thread_t handle; 1146 DWORD idThread; 1147 int ideal, new_ideal; 1148 1149 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 1150 // We don't need monitor thread in case of MAX_BLOCKTIME 1151 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 1152 "MAX blocktime\n")); 1153 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 1154 th->th.th_info.ds.ds_gtid = 0; 1155 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation 1156 return; 1157 } 1158 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 1159 1160 KMP_MB(); /* Flush all pending memory write invalidates. */ 1161 1162 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL); 1163 if (__kmp_monitor_ev == NULL) { 1164 DWORD error = GetLastError(); 1165 __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null); 1166 } 1167 #if USE_ITT_BUILD 1168 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event"); 1169 #endif /* USE_ITT_BUILD */ 1170 1171 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 1172 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 1173 1174 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how 1175 // to automatically expand stacksize based on CreateThread error code. 1176 if (__kmp_monitor_stksize == 0) { 1177 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 1178 } 1179 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 1180 __kmp_monitor_stksize = __kmp_sys_min_stksize; 1181 } 1182 1183 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", 1184 (int)__kmp_monitor_stksize)); 1185 1186 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 1187 1188 handle = 1189 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize, 1190 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th, 1191 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1192 if (handle == 0) { 1193 DWORD error = GetLastError(); 1194 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1195 } else 1196 th->th.th_info.ds.ds_thread = handle; 1197 1198 KMP_MB(); /* Flush all pending memory write invalidates. */ 1199 1200 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n", 1201 (void *)th->th.th_info.ds.ds_thread)); 1202 } 1203 #endif 1204 1205 /* Check to see if thread is still alive. 1206 NOTE: The ExitProcess(code) system call causes all threads to Terminate 1207 with a exit_val = code. Because of this we can not rely on exit_val having 1208 any particular value. So this routine may return STILL_ALIVE in exit_val 1209 even after the thread is dead. */ 1210 1211 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) { 1212 DWORD rc; 1213 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val); 1214 if (rc == 0) { 1215 DWORD error = GetLastError(); 1216 __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error), 1217 __kmp_msg_null); 1218 } 1219 return (*exit_val == STILL_ACTIVE); 1220 } 1221 1222 void __kmp_exit_thread(int exit_status) { 1223 ExitThread(exit_status); 1224 } // __kmp_exit_thread 1225 1226 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). 1227 static void __kmp_reap_common(kmp_info_t *th) { 1228 DWORD exit_val; 1229 1230 KMP_MB(); /* Flush all pending memory write invalidates. */ 1231 1232 KA_TRACE( 1233 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid)); 1234 1235 /* 2006-10-19: 1236 There are two opposite situations: 1237 1. Windows* OS keep thread alive after it resets ds_alive flag and 1238 exits from thread function. (For example, see C70770/Q394281 "unloading of 1239 dll based on OMP is very slow".) 1240 2. Windows* OS may kill thread before it resets ds_alive flag. 1241 1242 Right solution seems to be waiting for *either* thread termination *or* 1243 ds_alive resetting. */ 1244 { 1245 // TODO: This code is very similar to KMP_WAIT. Need to generalize 1246 // KMP_WAIT to cover this usage also. 1247 void *obj = NULL; 1248 kmp_uint32 spins; 1249 #if USE_ITT_BUILD 1250 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive); 1251 #endif /* USE_ITT_BUILD */ 1252 KMP_INIT_YIELD(spins); 1253 do { 1254 #if USE_ITT_BUILD 1255 KMP_FSYNC_SPIN_PREPARE(obj); 1256 #endif /* USE_ITT_BUILD */ 1257 __kmp_is_thread_alive(th, &exit_val); 1258 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 1259 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive)); 1260 #if USE_ITT_BUILD 1261 if (exit_val == STILL_ACTIVE) { 1262 KMP_FSYNC_CANCEL(obj); 1263 } else { 1264 KMP_FSYNC_SPIN_ACQUIRED(obj); 1265 } 1266 #endif /* USE_ITT_BUILD */ 1267 } 1268 1269 __kmp_free_handle(th->th.th_info.ds.ds_thread); 1270 1271 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate 1272 with a exit_val = code. Because of this we can not rely on exit_val having 1273 any particular value. */ 1274 if (exit_val == STILL_ACTIVE) { 1275 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n")); 1276 } else if ((void *)exit_val != (void *)th) { 1277 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n")); 1278 } 1279 1280 KA_TRACE(10, 1281 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC 1282 "\n", 1283 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread)); 1284 1285 th->th.th_info.ds.ds_thread = 0; 1286 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1287 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1288 th->th.th_info.ds.ds_thread_id = 0; 1289 1290 KMP_MB(); /* Flush all pending memory write invalidates. */ 1291 } 1292 1293 #if KMP_USE_MONITOR 1294 void __kmp_reap_monitor(kmp_info_t *th) { 1295 int status; 1296 1297 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n", 1298 (void *)th->th.th_info.ds.ds_thread)); 1299 1300 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1301 // If both tid and gtid are 0, it means the monitor did not ever start. 1302 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1303 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1304 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1305 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1306 return; 1307 } 1308 1309 KMP_MB(); /* Flush all pending memory write invalidates. */ 1310 1311 status = SetEvent(__kmp_monitor_ev); 1312 if (status == FALSE) { 1313 DWORD error = GetLastError(); 1314 __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null); 1315 } 1316 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n", 1317 th->th.th_info.ds.ds_gtid)); 1318 __kmp_reap_common(th); 1319 1320 __kmp_free_handle(__kmp_monitor_ev); 1321 1322 KMP_MB(); /* Flush all pending memory write invalidates. */ 1323 } 1324 #endif 1325 1326 void __kmp_reap_worker(kmp_info_t *th) { 1327 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n", 1328 th->th.th_info.ds.ds_gtid)); 1329 __kmp_reap_common(th); 1330 } 1331 1332 #if KMP_HANDLE_SIGNALS 1333 1334 static void __kmp_team_handler(int signo) { 1335 if (__kmp_global.g.g_abort == 0) { 1336 // Stage 1 signal handler, let's shut down all of the threads. 1337 if (__kmp_debug_buf) { 1338 __kmp_dump_debug_buffer(); 1339 } 1340 KMP_MB(); // Flush all pending memory write invalidates. 1341 TCW_4(__kmp_global.g.g_abort, signo); 1342 KMP_MB(); // Flush all pending memory write invalidates. 1343 TCW_4(__kmp_global.g.g_done, TRUE); 1344 KMP_MB(); // Flush all pending memory write invalidates. 1345 } 1346 } // __kmp_team_handler 1347 1348 static sig_func_t __kmp_signal(int signum, sig_func_t handler) { 1349 sig_func_t old = signal(signum, handler); 1350 if (old == SIG_ERR) { 1351 int error = errno; 1352 __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error), 1353 __kmp_msg_null); 1354 } 1355 return old; 1356 } 1357 1358 static void __kmp_install_one_handler(int sig, sig_func_t handler, 1359 int parallel_init) { 1360 sig_func_t old; 1361 KMP_MB(); /* Flush all pending memory write invalidates. */ 1362 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig)); 1363 if (parallel_init) { 1364 old = __kmp_signal(sig, handler); 1365 // SIG_DFL on Windows* OS in NULL or 0. 1366 if (old == __kmp_sighldrs[sig]) { 1367 __kmp_siginstalled[sig] = 1; 1368 } else { // Restore/keep user's handler if one previously installed. 1369 old = __kmp_signal(sig, old); 1370 } 1371 } else { 1372 // Save initial/system signal handlers to see if user handlers installed. 1373 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals 1374 // called once with parallel_init == TRUE. 1375 old = __kmp_signal(sig, SIG_DFL); 1376 __kmp_sighldrs[sig] = old; 1377 __kmp_signal(sig, old); 1378 } 1379 KMP_MB(); /* Flush all pending memory write invalidates. */ 1380 } // __kmp_install_one_handler 1381 1382 static void __kmp_remove_one_handler(int sig) { 1383 if (__kmp_siginstalled[sig]) { 1384 sig_func_t old; 1385 KMP_MB(); // Flush all pending memory write invalidates. 1386 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig)); 1387 old = __kmp_signal(sig, __kmp_sighldrs[sig]); 1388 if (old != __kmp_team_handler) { 1389 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1390 "restoring: sig=%d\n", 1391 sig)); 1392 old = __kmp_signal(sig, old); 1393 } 1394 __kmp_sighldrs[sig] = NULL; 1395 __kmp_siginstalled[sig] = 0; 1396 KMP_MB(); // Flush all pending memory write invalidates. 1397 } 1398 } // __kmp_remove_one_handler 1399 1400 void __kmp_install_signals(int parallel_init) { 1401 KB_TRACE(10, ("__kmp_install_signals: called\n")); 1402 if (!__kmp_handle_signals) { 1403 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - " 1404 "handlers not installed\n")); 1405 return; 1406 } 1407 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1408 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1409 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1410 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1411 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1412 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1413 } // __kmp_install_signals 1414 1415 void __kmp_remove_signals(void) { 1416 int sig; 1417 KB_TRACE(10, ("__kmp_remove_signals: called\n")); 1418 for (sig = 1; sig < NSIG; ++sig) { 1419 __kmp_remove_one_handler(sig); 1420 } 1421 } // __kmp_remove_signals 1422 1423 #endif // KMP_HANDLE_SIGNALS 1424 1425 /* Put the thread to sleep for a time period */ 1426 void __kmp_thread_sleep(int millis) { 1427 DWORD status; 1428 1429 status = SleepEx((DWORD)millis, FALSE); 1430 if (status) { 1431 DWORD error = GetLastError(); 1432 __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error), 1433 __kmp_msg_null); 1434 } 1435 } 1436 1437 // Determine whether the given address is mapped into the current address space. 1438 int __kmp_is_address_mapped(void *addr) { 1439 DWORD status; 1440 MEMORY_BASIC_INFORMATION lpBuffer; 1441 SIZE_T dwLength; 1442 1443 dwLength = sizeof(MEMORY_BASIC_INFORMATION); 1444 1445 status = VirtualQuery(addr, &lpBuffer, dwLength); 1446 1447 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) || 1448 ((lpBuffer.Protect == PAGE_NOACCESS) || 1449 (lpBuffer.Protect == PAGE_EXECUTE))); 1450 } 1451 1452 kmp_uint64 __kmp_hardware_timestamp(void) { 1453 kmp_uint64 r = 0; 1454 1455 QueryPerformanceCounter((LARGE_INTEGER *)&r); 1456 return r; 1457 } 1458 1459 /* Free handle and check the error code */ 1460 void __kmp_free_handle(kmp_thread_t tHandle) { 1461 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined 1462 * as HANDLE */ 1463 BOOL rc; 1464 rc = CloseHandle(tHandle); 1465 if (!rc) { 1466 DWORD error = GetLastError(); 1467 __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null); 1468 } 1469 } 1470 1471 int __kmp_get_load_balance(int max) { 1472 static ULONG glb_buff_size = 100 * 1024; 1473 1474 // Saved count of the running threads for the thread balance algortihm 1475 static int glb_running_threads = 0; 1476 static double glb_call_time = 0; /* Thread balance algorithm call time */ 1477 1478 int running_threads = 0; // Number of running threads in the system. 1479 NTSTATUS status = 0; 1480 ULONG buff_size = 0; 1481 ULONG info_size = 0; 1482 void *buffer = NULL; 1483 PSYSTEM_PROCESS_INFORMATION spi = NULL; 1484 int first_time = 1; 1485 1486 double call_time = 0.0; // start, finish; 1487 1488 __kmp_elapsed(&call_time); 1489 1490 if (glb_call_time && 1491 (call_time - glb_call_time < __kmp_load_balance_interval)) { 1492 running_threads = glb_running_threads; 1493 goto finish; 1494 } 1495 glb_call_time = call_time; 1496 1497 // Do not spend time on running algorithm if we have a permanent error. 1498 if (NtQuerySystemInformation == NULL) { 1499 running_threads = -1; 1500 goto finish; 1501 } 1502 1503 if (max <= 0) { 1504 max = INT_MAX; 1505 } 1506 1507 do { 1508 1509 if (first_time) { 1510 buff_size = glb_buff_size; 1511 } else { 1512 buff_size = 2 * buff_size; 1513 } 1514 1515 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size); 1516 if (buffer == NULL) { 1517 running_threads = -1; 1518 goto finish; 1519 } 1520 status = NtQuerySystemInformation(SystemProcessInformation, buffer, 1521 buff_size, &info_size); 1522 first_time = 0; 1523 1524 } while (status == STATUS_INFO_LENGTH_MISMATCH); 1525 glb_buff_size = buff_size; 1526 1527 #define CHECK(cond) \ 1528 { \ 1529 KMP_DEBUG_ASSERT(cond); \ 1530 if (!(cond)) { \ 1531 running_threads = -1; \ 1532 goto finish; \ 1533 } \ 1534 } 1535 1536 CHECK(buff_size >= info_size); 1537 spi = PSYSTEM_PROCESS_INFORMATION(buffer); 1538 for (;;) { 1539 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer); 1540 CHECK(0 <= offset && 1541 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size); 1542 HANDLE pid = spi->ProcessId; 1543 ULONG num = spi->NumberOfThreads; 1544 CHECK(num >= 1); 1545 size_t spi_size = 1546 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1); 1547 CHECK(offset + spi_size < 1548 info_size); // Make sure process info record fits the buffer. 1549 if (spi->NextEntryOffset != 0) { 1550 CHECK(spi_size <= 1551 spi->NextEntryOffset); // And do not overlap with the next record. 1552 } 1553 // pid == 0 corresponds to the System Idle Process. It always has running 1554 // threads on all cores. So, we don't consider the running threads of this 1555 // process. 1556 if (pid != 0) { 1557 for (int i = 0; i < num; ++i) { 1558 THREAD_STATE state = spi->Threads[i].State; 1559 // Count threads that have Ready or Running state. 1560 // !!! TODO: Why comment does not match the code??? 1561 if (state == StateRunning) { 1562 ++running_threads; 1563 // Stop counting running threads if the number is already greater than 1564 // the number of available cores 1565 if (running_threads >= max) { 1566 goto finish; 1567 } 1568 } 1569 } 1570 } 1571 if (spi->NextEntryOffset == 0) { 1572 break; 1573 } 1574 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset); 1575 } 1576 1577 #undef CHECK 1578 1579 finish: // Clean up and exit. 1580 1581 if (buffer != NULL) { 1582 KMP_INTERNAL_FREE(buffer); 1583 } 1584 1585 glb_running_threads = running_threads; 1586 1587 return running_threads; 1588 } //__kmp_get_load_balance() 1589