1 /*
2  * z_Windows_NT_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_wait_release.h"
19 
20 /* This code is related to NtQuerySystemInformation() function. This function
21    is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
22    number of running threads in the system. */
23 
24 #include <ntsecapi.h> // UNICODE_STRING
25 #include <ntstatus.h>
26 
27 enum SYSTEM_INFORMATION_CLASS {
28   SystemProcessInformation = 5
29 }; // SYSTEM_INFORMATION_CLASS
30 
31 struct CLIENT_ID {
32   HANDLE UniqueProcess;
33   HANDLE UniqueThread;
34 }; // struct CLIENT_ID
35 
36 enum THREAD_STATE {
37   StateInitialized,
38   StateReady,
39   StateRunning,
40   StateStandby,
41   StateTerminated,
42   StateWait,
43   StateTransition,
44   StateUnknown
45 }; // enum THREAD_STATE
46 
47 struct VM_COUNTERS {
48   SIZE_T PeakVirtualSize;
49   SIZE_T VirtualSize;
50   ULONG PageFaultCount;
51   SIZE_T PeakWorkingSetSize;
52   SIZE_T WorkingSetSize;
53   SIZE_T QuotaPeakPagedPoolUsage;
54   SIZE_T QuotaPagedPoolUsage;
55   SIZE_T QuotaPeakNonPagedPoolUsage;
56   SIZE_T QuotaNonPagedPoolUsage;
57   SIZE_T PagefileUsage;
58   SIZE_T PeakPagefileUsage;
59   SIZE_T PrivatePageCount;
60 }; // struct VM_COUNTERS
61 
62 struct SYSTEM_THREAD {
63   LARGE_INTEGER KernelTime;
64   LARGE_INTEGER UserTime;
65   LARGE_INTEGER CreateTime;
66   ULONG WaitTime;
67   LPVOID StartAddress;
68   CLIENT_ID ClientId;
69   DWORD Priority;
70   LONG BasePriority;
71   ULONG ContextSwitchCount;
72   THREAD_STATE State;
73   ULONG WaitReason;
74 }; // SYSTEM_THREAD
75 
76 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
77 #if KMP_ARCH_X86
78 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
80 #else
81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
83 #endif
84 
85 struct SYSTEM_PROCESS_INFORMATION {
86   ULONG NextEntryOffset;
87   ULONG NumberOfThreads;
88   LARGE_INTEGER Reserved[3];
89   LARGE_INTEGER CreateTime;
90   LARGE_INTEGER UserTime;
91   LARGE_INTEGER KernelTime;
92   UNICODE_STRING ImageName;
93   DWORD BasePriority;
94   HANDLE ProcessId;
95   HANDLE ParentProcessId;
96   ULONG HandleCount;
97   ULONG Reserved2[2];
98   VM_COUNTERS VMCounters;
99   IO_COUNTERS IOCounters;
100   SYSTEM_THREAD Threads[1];
101 }; // SYSTEM_PROCESS_INFORMATION
102 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
103 
104 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
105 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
106 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
107 #if KMP_ARCH_X86
108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
113 #else
114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
119 #endif
120 
121 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
122                                                     PVOID, ULONG, PULONG);
123 NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
124 
125 HMODULE ntdll = NULL;
126 
127 /* End of NtQuerySystemInformation()-related code */
128 
129 static HMODULE kernel32 = NULL;
130 
131 #if KMP_HANDLE_SIGNALS
132 typedef void (*sig_func_t)(int);
133 static sig_func_t __kmp_sighldrs[NSIG];
134 static int __kmp_siginstalled[NSIG];
135 #endif
136 
137 #if KMP_USE_MONITOR
138 static HANDLE __kmp_monitor_ev;
139 #endif
140 static kmp_int64 __kmp_win32_time;
141 double __kmp_win32_tick;
142 
143 int __kmp_init_runtime = FALSE;
144 CRITICAL_SECTION __kmp_win32_section;
145 
146 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
147   InitializeCriticalSection(&mx->cs);
148 #if USE_ITT_BUILD
149   __kmp_itt_system_object_created(&mx->cs, "Critical Section");
150 #endif /* USE_ITT_BUILD */
151 }
152 
153 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
154   DeleteCriticalSection(&mx->cs);
155 }
156 
157 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
158   EnterCriticalSection(&mx->cs);
159 }
160 
161 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
162   return TryEnterCriticalSection(&mx->cs);
163 }
164 
165 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
166   LeaveCriticalSection(&mx->cs);
167 }
168 
169 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
170   cv->waiters_count_ = 0;
171   cv->wait_generation_count_ = 0;
172   cv->release_count_ = 0;
173 
174   /* Initialize the critical section */
175   __kmp_win32_mutex_init(&cv->waiters_count_lock_);
176 
177   /* Create a manual-reset event. */
178   cv->event_ = CreateEvent(NULL, // no security
179                            TRUE, // manual-reset
180                            FALSE, // non-signaled initially
181                            NULL); // unnamed
182 #if USE_ITT_BUILD
183   __kmp_itt_system_object_created(cv->event_, "Event");
184 #endif /* USE_ITT_BUILD */
185 }
186 
187 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
188   __kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
189   __kmp_free_handle(cv->event_);
190   memset(cv, '\0', sizeof(*cv));
191 }
192 
193 /* TODO associate cv with a team instead of a thread so as to optimize
194    the case where we wake up a whole team */
195 
196 void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
197                            kmp_info_t *th, int need_decrease_load) {
198   int my_generation;
199   int last_waiter;
200 
201   /* Avoid race conditions */
202   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
203 
204   /* Increment count of waiters */
205   cv->waiters_count_++;
206 
207   /* Store current generation in our activation record. */
208   my_generation = cv->wait_generation_count_;
209 
210   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
211   __kmp_win32_mutex_unlock(mx);
212 
213   for (;;) {
214     int wait_done;
215 
216     /* Wait until the event is signaled */
217     WaitForSingleObject(cv->event_, INFINITE);
218 
219     __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
220 
221     /* Exit the loop when the <cv->event_> is signaled and there are still
222        waiting threads from this <wait_generation> that haven't been released
223        from this wait yet. */
224     wait_done = (cv->release_count_ > 0) &&
225                 (cv->wait_generation_count_ != my_generation);
226 
227     __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
228 
229     /* there used to be a semicolon after the if statement, it looked like a
230        bug, so i removed it */
231     if (wait_done)
232       break;
233   }
234 
235   __kmp_win32_mutex_lock(mx);
236   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
237 
238   cv->waiters_count_--;
239   cv->release_count_--;
240 
241   last_waiter = (cv->release_count_ == 0);
242 
243   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
244 
245   if (last_waiter) {
246     /* We're the last waiter to be notified, so reset the manual event. */
247     ResetEvent(cv->event_);
248   }
249 }
250 
251 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
252   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
253 
254   if (cv->waiters_count_ > 0) {
255     SetEvent(cv->event_);
256     /* Release all the threads in this generation. */
257 
258     cv->release_count_ = cv->waiters_count_;
259 
260     /* Start a new generation. */
261     cv->wait_generation_count_++;
262   }
263 
264   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
265 }
266 
267 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
268   __kmp_win32_cond_broadcast(cv);
269 }
270 
271 void __kmp_enable(int new_state) {
272   if (__kmp_init_runtime)
273     LeaveCriticalSection(&__kmp_win32_section);
274 }
275 
276 void __kmp_disable(int *old_state) {
277   *old_state = 0;
278 
279   if (__kmp_init_runtime)
280     EnterCriticalSection(&__kmp_win32_section);
281 }
282 
283 void __kmp_suspend_initialize(void) { /* do nothing */
284 }
285 
286 static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
287   if (!TCR_4(th->th.th_suspend_init)) {
288     /* this means we haven't initialized the suspension pthread objects for this
289        thread in this instance of the process */
290     __kmp_win32_cond_init(&th->th.th_suspend_cv);
291     __kmp_win32_mutex_init(&th->th.th_suspend_mx);
292     TCW_4(th->th.th_suspend_init, TRUE);
293   }
294 }
295 
296 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
297   if (TCR_4(th->th.th_suspend_init)) {
298     /* this means we have initialize the suspension pthread objects for this
299        thread in this instance of the process */
300     __kmp_win32_cond_destroy(&th->th.th_suspend_cv);
301     __kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
302     TCW_4(th->th.th_suspend_init, FALSE);
303   }
304 }
305 
306 int __kmp_try_suspend_mx(kmp_info_t *th) {
307   return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
308 }
309 
310 void __kmp_lock_suspend_mx(kmp_info_t *th) {
311   __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
312 }
313 
314 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
315   __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
316 }
317 
318 /* This routine puts the calling thread to sleep after setting the
319    sleep bit for the indicated flag variable to true. */
320 template <class C>
321 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
322   kmp_info_t *th = __kmp_threads[th_gtid];
323   int status;
324   typename C::flag_t old_spin;
325 
326   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
327                 th_gtid, flag->get()));
328 
329   __kmp_suspend_initialize_thread(th);
330   __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
331 
332   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
333                 " loc(%p)\n",
334                 th_gtid, flag->get()));
335 
336   /* TODO: shouldn't this use release semantics to ensure that
337      __kmp_suspend_initialize_thread gets called first? */
338   old_spin = flag->set_sleeping();
339 #if OMP_50_ENABLED
340   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
341       __kmp_pause_status != kmp_soft_paused) {
342     flag->unset_sleeping();
343     __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
344     return;
345   }
346 #endif
347 
348   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
349                " loc(%p)==%d\n",
350                th_gtid, flag->get(), *(flag->get())));
351 
352   if (flag->done_check_val(old_spin)) {
353     old_spin = flag->unset_sleeping();
354     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
355                  "for flag's loc(%p)\n",
356                  th_gtid, flag->get()));
357   } else {
358 #ifdef DEBUG_SUSPEND
359     __kmp_suspend_count++;
360 #endif
361     /* Encapsulate in a loop as the documentation states that this may "with
362        low probability" return when the condition variable has not been signaled
363        or broadcast */
364     int deactivated = FALSE;
365     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
366     while (flag->is_sleeping()) {
367       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
368                     "kmp_win32_cond_wait()\n",
369                     th_gtid));
370       // Mark the thread as no longer active (only in the first iteration of the
371       // loop).
372       if (!deactivated) {
373         th->th.th_active = FALSE;
374         if (th->th.th_active_in_pool) {
375           th->th.th_active_in_pool = FALSE;
376           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
377           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
378         }
379         deactivated = TRUE;
380 
381         __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0,
382                               0);
383       } else {
384         __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0,
385                               0);
386       }
387 
388 #ifdef KMP_DEBUG
389       if (flag->is_sleeping()) {
390         KF_TRACE(100,
391                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
392       }
393 #endif /* KMP_DEBUG */
394 
395     } // while
396 
397     // Mark the thread as active again (if it was previous marked as inactive)
398     if (deactivated) {
399       th->th.th_active = TRUE;
400       if (TCR_4(th->th.th_in_pool)) {
401         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
402         th->th.th_active_in_pool = TRUE;
403       }
404     }
405   }
406 
407   __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
408 
409   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
410 }
411 
412 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
413   __kmp_suspend_template(th_gtid, flag);
414 }
415 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
416   __kmp_suspend_template(th_gtid, flag);
417 }
418 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
419   __kmp_suspend_template(th_gtid, flag);
420 }
421 
422 /* This routine signals the thread specified by target_gtid to wake up
423    after setting the sleep bit indicated by the flag argument to FALSE */
424 template <class C>
425 static inline void __kmp_resume_template(int target_gtid, C *flag) {
426   kmp_info_t *th = __kmp_threads[target_gtid];
427   int status;
428 
429 #ifdef KMP_DEBUG
430   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
431 #endif
432 
433   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
434                 gtid, target_gtid));
435 
436   __kmp_suspend_initialize_thread(th);
437   __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
438 
439   if (!flag) { // coming from __kmp_null_resume_wrapper
440     flag = (C *)th->th.th_sleep_loc;
441   }
442 
443   // First, check if the flag is null or its type has changed. If so, someone
444   // else woke it up.
445   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
446     // simply shows what
447     // flag was cast to
448     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
449                  "awake: flag's loc(%p)\n",
450                  gtid, target_gtid, NULL));
451     __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
452     return;
453   } else {
454     typename C::flag_t old_spin = flag->unset_sleeping();
455     if (!flag->is_sleeping_val(old_spin)) {
456       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
457                    "awake: flag's loc(%p): %u => %u\n",
458                    gtid, target_gtid, flag->get(), old_spin, *(flag->get())));
459       __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
460       return;
461     }
462   }
463   TCW_PTR(th->th.th_sleep_loc, NULL);
464   KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
465                "bit for flag's loc(%p)\n",
466                gtid, target_gtid, flag->get()));
467 
468   __kmp_win32_cond_signal(&th->th.th_suspend_cv);
469   __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
470 
471   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
472                 " for T#%d\n",
473                 gtid, target_gtid));
474 }
475 
476 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
477   __kmp_resume_template(target_gtid, flag);
478 }
479 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
480   __kmp_resume_template(target_gtid, flag);
481 }
482 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
483   __kmp_resume_template(target_gtid, flag);
484 }
485 
486 void __kmp_yield() { Sleep(0); }
487 
488 void __kmp_gtid_set_specific(int gtid) {
489   if (__kmp_init_gtid) {
490     KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
491                   __kmp_gtid_threadprivate_key));
492     if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1)))
493       KMP_FATAL(TLSSetValueFailed);
494   } else {
495     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
496   }
497 }
498 
499 int __kmp_gtid_get_specific() {
500   int gtid;
501   if (!__kmp_init_gtid) {
502     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
503                   "KMP_GTID_SHUTDOWN\n"));
504     return KMP_GTID_SHUTDOWN;
505   }
506   gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
507   if (gtid == 0) {
508     gtid = KMP_GTID_DNE;
509   } else {
510     gtid--;
511   }
512   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
513                 __kmp_gtid_threadprivate_key, gtid));
514   return gtid;
515 }
516 
517 void __kmp_affinity_bind_thread(int proc) {
518   if (__kmp_num_proc_groups > 1) {
519     // Form the GROUP_AFFINITY struct directly, rather than filling
520     // out a bit vector and calling __kmp_set_system_affinity().
521     GROUP_AFFINITY ga;
522     KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
523                                              sizeof(DWORD_PTR))));
524     ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
525     ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
526     ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
527 
528     KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
529     if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
530       DWORD error = GetLastError();
531       if (__kmp_affinity_verbose) { // AC: continue silently if not verbose
532         kmp_msg_t err_code = KMP_ERR(error);
533         __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
534                   __kmp_msg_null);
535         if (__kmp_generate_warnings == kmp_warnings_off) {
536           __kmp_str_free(&err_code.str);
537         }
538       }
539     }
540   } else {
541     kmp_affin_mask_t *mask;
542     KMP_CPU_ALLOC_ON_STACK(mask);
543     KMP_CPU_ZERO(mask);
544     KMP_CPU_SET(proc, mask);
545     __kmp_set_system_affinity(mask, TRUE);
546     KMP_CPU_FREE_FROM_STACK(mask);
547   }
548 }
549 
550 void __kmp_affinity_determine_capable(const char *env_var) {
551 // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask().
552 
553 #if KMP_GROUP_AFFINITY
554   KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
555 #else
556   KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
557 #endif
558 
559   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
560                 "Windows* OS affinity interface functional (mask size = "
561                 "%" KMP_SIZE_T_SPEC ").\n",
562                 __kmp_affin_mask_size));
563 }
564 
565 double __kmp_read_cpu_time(void) {
566   FILETIME CreationTime, ExitTime, KernelTime, UserTime;
567   int status;
568   double cpu_time;
569 
570   cpu_time = 0;
571 
572   status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
573                            &KernelTime, &UserTime);
574 
575   if (status) {
576     double sec = 0;
577 
578     sec += KernelTime.dwHighDateTime;
579     sec += UserTime.dwHighDateTime;
580 
581     /* Shift left by 32 bits */
582     sec *= (double)(1 << 16) * (double)(1 << 16);
583 
584     sec += KernelTime.dwLowDateTime;
585     sec += UserTime.dwLowDateTime;
586 
587     cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
588   }
589 
590   return cpu_time;
591 }
592 
593 int __kmp_read_system_info(struct kmp_sys_info *info) {
594   info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
595   info->minflt = 0; /* the number of page faults serviced without any I/O */
596   info->majflt = 0; /* the number of page faults serviced that required I/O */
597   info->nswap = 0; // the number of times a process was "swapped" out of memory
598   info->inblock = 0; // the number of times the file system had to perform input
599   info->oublock = 0; // number of times the file system had to perform output
600   info->nvcsw = 0; /* the number of times a context switch was voluntarily */
601   info->nivcsw = 0; /* the number of times a context switch was forced */
602 
603   return 1;
604 }
605 
606 void __kmp_runtime_initialize(void) {
607   SYSTEM_INFO info;
608   kmp_str_buf_t path;
609   UINT path_size;
610 
611   if (__kmp_init_runtime) {
612     return;
613   }
614 
615 #if KMP_DYNAMIC_LIB
616   /* Pin dynamic library for the lifetime of application */
617   {
618     // First, turn off error message boxes
619     UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
620     HMODULE h;
621     BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
622                                      GET_MODULE_HANDLE_EX_FLAG_PIN,
623                                  (LPCTSTR)&__kmp_serial_initialize, &h);
624     KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
625     SetErrorMode(err_mode); // Restore error mode
626     KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
627   }
628 #endif
629 
630   InitializeCriticalSection(&__kmp_win32_section);
631 #if USE_ITT_BUILD
632   __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
633 #endif /* USE_ITT_BUILD */
634   __kmp_initialize_system_tick();
635 
636 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
637   if (!__kmp_cpuinfo.initialized) {
638     __kmp_query_cpuid(&__kmp_cpuinfo);
639   }
640 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
641 
642 /* Set up minimum number of threads to switch to TLS gtid */
643 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
644   // Windows* OS, static library.
645   /* New thread may use stack space previously used by another thread,
646      currently terminated. On Windows* OS, in case of static linking, we do not
647      know the moment of thread termination, and our structures (__kmp_threads
648      and __kmp_root arrays) are still keep info about dead threads. This leads
649      to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
650      (by searching through stack addresses of all known threads) for
651      unregistered foreign tread.
652 
653      Setting __kmp_tls_gtid_min to 0 workarounds this problem:
654      __kmp_get_global_thread_id() does not search through stacks, but get gtid
655      from TLS immediately.
656       --ln
657   */
658   __kmp_tls_gtid_min = 0;
659 #else
660   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
661 #endif
662 
663   /* for the static library */
664   if (!__kmp_gtid_threadprivate_key) {
665     __kmp_gtid_threadprivate_key = TlsAlloc();
666     if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
667       KMP_FATAL(TLSOutOfIndexes);
668     }
669   }
670 
671   // Load ntdll.dll.
672   /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
673      (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
674      have to specify full path to the library. */
675   __kmp_str_buf_init(&path);
676   path_size = GetSystemDirectory(path.str, path.size);
677   KMP_DEBUG_ASSERT(path_size > 0);
678   if (path_size >= path.size) {
679     // Buffer is too short.  Expand the buffer and try again.
680     __kmp_str_buf_reserve(&path, path_size);
681     path_size = GetSystemDirectory(path.str, path.size);
682     KMP_DEBUG_ASSERT(path_size > 0);
683   }
684   if (path_size > 0 && path_size < path.size) {
685     // Now we have system directory name in the buffer.
686     // Append backslash and name of dll to form full path,
687     path.used = path_size;
688     __kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
689 
690     // Now load ntdll using full path.
691     ntdll = GetModuleHandle(path.str);
692   }
693 
694   KMP_DEBUG_ASSERT(ntdll != NULL);
695   if (ntdll != NULL) {
696     NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
697         ntdll, "NtQuerySystemInformation");
698   }
699   KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
700 
701 #if KMP_GROUP_AFFINITY
702   // Load kernel32.dll.
703   // Same caveat - must use full system path name.
704   if (path_size > 0 && path_size < path.size) {
705     // Truncate the buffer back to just the system path length,
706     // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
707     path.used = path_size;
708     __kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
709 
710     // Load kernel32.dll using full path.
711     kernel32 = GetModuleHandle(path.str);
712     KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
713 
714     // Load the function pointers to kernel32.dll routines
715     // that may or may not exist on this system.
716     if (kernel32 != NULL) {
717       __kmp_GetActiveProcessorCount =
718           (kmp_GetActiveProcessorCount_t)GetProcAddress(
719               kernel32, "GetActiveProcessorCount");
720       __kmp_GetActiveProcessorGroupCount =
721           (kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
722               kernel32, "GetActiveProcessorGroupCount");
723       __kmp_GetThreadGroupAffinity =
724           (kmp_GetThreadGroupAffinity_t)GetProcAddress(
725               kernel32, "GetThreadGroupAffinity");
726       __kmp_SetThreadGroupAffinity =
727           (kmp_SetThreadGroupAffinity_t)GetProcAddress(
728               kernel32, "SetThreadGroupAffinity");
729 
730       KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
731                     " = %p\n",
732                     __kmp_GetActiveProcessorCount));
733       KA_TRACE(10, ("__kmp_runtime_initialize: "
734                     "__kmp_GetActiveProcessorGroupCount = %p\n",
735                     __kmp_GetActiveProcessorGroupCount));
736       KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
737                     " = %p\n",
738                     __kmp_GetThreadGroupAffinity));
739       KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
740                     " = %p\n",
741                     __kmp_SetThreadGroupAffinity));
742       KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
743                     sizeof(kmp_affin_mask_t)));
744 
745       // See if group affinity is supported on this system.
746       // If so, calculate the #groups and #procs.
747       //
748       // Group affinity was introduced with Windows* 7 OS and
749       // Windows* Server 2008 R2 OS.
750       if ((__kmp_GetActiveProcessorCount != NULL) &&
751           (__kmp_GetActiveProcessorGroupCount != NULL) &&
752           (__kmp_GetThreadGroupAffinity != NULL) &&
753           (__kmp_SetThreadGroupAffinity != NULL) &&
754           ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
755            1)) {
756         // Calculate the total number of active OS procs.
757         int i;
758 
759         KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
760                       " detected\n",
761                       __kmp_num_proc_groups));
762 
763         __kmp_xproc = 0;
764 
765         for (i = 0; i < __kmp_num_proc_groups; i++) {
766           DWORD size = __kmp_GetActiveProcessorCount(i);
767           __kmp_xproc += size;
768           KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
769                         i, size));
770         }
771       } else {
772         KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
773                       " detected\n",
774                       __kmp_num_proc_groups));
775       }
776     }
777   }
778   if (__kmp_num_proc_groups <= 1) {
779     GetSystemInfo(&info);
780     __kmp_xproc = info.dwNumberOfProcessors;
781   }
782 #else
783   GetSystemInfo(&info);
784   __kmp_xproc = info.dwNumberOfProcessors;
785 #endif /* KMP_GROUP_AFFINITY */
786 
787   // If the OS said there were 0 procs, take a guess and use a value of 2.
788   // This is done for Linux* OS, also.  Do we need error / warning?
789   if (__kmp_xproc <= 0) {
790     __kmp_xproc = 2;
791   }
792 
793   KA_TRACE(5,
794            ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
795 
796   __kmp_str_buf_free(&path);
797 
798 #if USE_ITT_BUILD
799   __kmp_itt_initialize();
800 #endif /* USE_ITT_BUILD */
801 
802   __kmp_init_runtime = TRUE;
803 } // __kmp_runtime_initialize
804 
805 void __kmp_runtime_destroy(void) {
806   if (!__kmp_init_runtime) {
807     return;
808   }
809 
810 #if USE_ITT_BUILD
811   __kmp_itt_destroy();
812 #endif /* USE_ITT_BUILD */
813 
814   /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
815   /* due to the KX_TRACE() commands */
816   KA_TRACE(40, ("__kmp_runtime_destroy\n"));
817 
818   if (__kmp_gtid_threadprivate_key) {
819     TlsFree(__kmp_gtid_threadprivate_key);
820     __kmp_gtid_threadprivate_key = 0;
821   }
822 
823   __kmp_affinity_uninitialize();
824   DeleteCriticalSection(&__kmp_win32_section);
825 
826   ntdll = NULL;
827   NtQuerySystemInformation = NULL;
828 
829 #if KMP_ARCH_X86_64
830   kernel32 = NULL;
831   __kmp_GetActiveProcessorCount = NULL;
832   __kmp_GetActiveProcessorGroupCount = NULL;
833   __kmp_GetThreadGroupAffinity = NULL;
834   __kmp_SetThreadGroupAffinity = NULL;
835 #endif // KMP_ARCH_X86_64
836 
837   __kmp_init_runtime = FALSE;
838 }
839 
840 void __kmp_terminate_thread(int gtid) {
841   kmp_info_t *th = __kmp_threads[gtid];
842 
843   if (!th)
844     return;
845 
846   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
847 
848   if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
849     /* It's OK, the thread may have exited already */
850   }
851   __kmp_free_handle(th->th.th_info.ds.ds_thread);
852 }
853 
854 void __kmp_clear_system_time(void) {
855   BOOL status;
856   LARGE_INTEGER time;
857   status = QueryPerformanceCounter(&time);
858   __kmp_win32_time = (kmp_int64)time.QuadPart;
859 }
860 
861 void __kmp_initialize_system_tick(void) {
862   {
863     BOOL status;
864     LARGE_INTEGER freq;
865 
866     status = QueryPerformanceFrequency(&freq);
867     if (!status) {
868       DWORD error = GetLastError();
869       __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
870                   KMP_ERR(error), __kmp_msg_null);
871 
872     } else {
873       __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
874     }
875   }
876 }
877 
878 /* Calculate the elapsed wall clock time for the user */
879 
880 void __kmp_elapsed(double *t) {
881   BOOL status;
882   LARGE_INTEGER now;
883   status = QueryPerformanceCounter(&now);
884   *t = ((double)now.QuadPart) * __kmp_win32_tick;
885 }
886 
887 /* Calculate the elapsed wall clock tick for the user */
888 
889 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
890 
891 void __kmp_read_system_time(double *delta) {
892   if (delta != NULL) {
893     BOOL status;
894     LARGE_INTEGER now;
895 
896     status = QueryPerformanceCounter(&now);
897 
898     *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
899              __kmp_win32_tick;
900   }
901 }
902 
903 /* Return the current time stamp in nsec */
904 kmp_uint64 __kmp_now_nsec() {
905   LARGE_INTEGER now;
906   QueryPerformanceCounter(&now);
907   return 1e9 * __kmp_win32_tick * now.QuadPart;
908 }
909 
910 extern "C"
911 void *__stdcall __kmp_launch_worker(void *arg) {
912   volatile void *stack_data;
913   void *exit_val;
914   void *padding = 0;
915   kmp_info_t *this_thr = (kmp_info_t *)arg;
916   int gtid;
917 
918   gtid = this_thr->th.th_info.ds.ds_gtid;
919   __kmp_gtid_set_specific(gtid);
920 #ifdef KMP_TDATA_GTID
921 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
922         "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
923         "reference: http://support.microsoft.com/kb/118816"
924 //__kmp_gtid = gtid;
925 #endif
926 
927 #if USE_ITT_BUILD
928   __kmp_itt_thread_name(gtid);
929 #endif /* USE_ITT_BUILD */
930 
931   __kmp_affinity_set_init_mask(gtid, FALSE);
932 
933 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
934   // Set FP control regs to be a copy of the parallel initialization thread's.
935   __kmp_clear_x87_fpu_status_word();
936   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
937   __kmp_load_mxcsr(&__kmp_init_mxcsr);
938 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
939 
940   if (__kmp_stkoffset > 0 && gtid > 0) {
941     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
942   }
943 
944   KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
945   this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
946   TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
947 
948   if (TCR_4(__kmp_gtid_mode) <
949       2) { // check stack only if it is used to get gtid
950     TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
951     KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
952     __kmp_check_stack_overlap(this_thr);
953   }
954   KMP_MB();
955   exit_val = __kmp_launch_thread(this_thr);
956   KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
957   TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
958   KMP_MB();
959   return exit_val;
960 }
961 
962 #if KMP_USE_MONITOR
963 /* The monitor thread controls all of the threads in the complex */
964 
965 void *__stdcall __kmp_launch_monitor(void *arg) {
966   DWORD wait_status;
967   kmp_thread_t monitor;
968   int status;
969   int interval;
970   kmp_info_t *this_thr = (kmp_info_t *)arg;
971 
972   KMP_DEBUG_ASSERT(__kmp_init_monitor);
973   TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
974   // TODO: hide "2" in enum (like {true,false,started})
975   this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
976   TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
977 
978   KMP_MB(); /* Flush all pending memory write invalidates.  */
979   KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
980 
981   monitor = GetCurrentThread();
982 
983   /* set thread priority */
984   status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
985   if (!status) {
986     DWORD error = GetLastError();
987     __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
988   }
989 
990   /* register us as monitor */
991   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
992 #ifdef KMP_TDATA_GTID
993 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
994         "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
995         "reference: http://support.microsoft.com/kb/118816"
996 //__kmp_gtid = KMP_GTID_MONITOR;
997 #endif
998 
999 #if USE_ITT_BUILD
1000   __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
1001 // monitor thread.
1002 #endif /* USE_ITT_BUILD */
1003 
1004   KMP_MB(); /* Flush all pending memory write invalidates.  */
1005 
1006   interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
1007 
1008   while (!TCR_4(__kmp_global.g.g_done)) {
1009     /*  This thread monitors the state of the system */
1010 
1011     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
1012 
1013     wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
1014 
1015     if (wait_status == WAIT_TIMEOUT) {
1016       TCW_4(__kmp_global.g.g_time.dt.t_value,
1017             TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
1018     }
1019 
1020     KMP_MB(); /* Flush all pending memory write invalidates.  */
1021   }
1022 
1023   KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1024 
1025   status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
1026   if (!status) {
1027     DWORD error = GetLastError();
1028     __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1029   }
1030 
1031   if (__kmp_global.g.g_abort != 0) {
1032     /* now we need to terminate the worker threads   */
1033     /* the value of t_abort is the signal we caught */
1034     int gtid;
1035 
1036     KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1037                   (__kmp_global.g.g_abort)));
1038 
1039     /* terminate the OpenMP worker threads */
1040     /* TODO this is not valid for sibling threads!!
1041      * the uber master might not be 0 anymore.. */
1042     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
1043       __kmp_terminate_thread(gtid);
1044 
1045     __kmp_cleanup();
1046 
1047     Sleep(0);
1048 
1049     KA_TRACE(10,
1050              ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
1051 
1052     if (__kmp_global.g.g_abort > 0) {
1053       raise(__kmp_global.g.g_abort);
1054     }
1055   }
1056 
1057   TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1058 
1059   KMP_MB();
1060   return arg;
1061 }
1062 #endif
1063 
1064 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
1065   kmp_thread_t handle;
1066   DWORD idThread;
1067 
1068   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
1069 
1070   th->th.th_info.ds.ds_gtid = gtid;
1071 
1072   if (KMP_UBER_GTID(gtid)) {
1073     int stack_data;
1074 
1075     /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1076        other threads to use. Is it appropriate to just use GetCurrentThread?
1077        When should we close this handle?  When unregistering the root? */
1078     {
1079       BOOL rc;
1080       rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1081                            GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
1082                            FALSE, DUPLICATE_SAME_ACCESS);
1083       KMP_ASSERT(rc);
1084       KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1085                     "handle = %" KMP_UINTPTR_SPEC "\n",
1086                     (LPVOID)th, th->th.th_info.ds.ds_thread));
1087       th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1088     }
1089     if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
1090       /* we will dynamically update the stack range if gtid_mode == 1 */
1091       TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
1092       TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
1093       TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
1094       __kmp_check_stack_overlap(th);
1095     }
1096   } else {
1097     KMP_MB(); /* Flush all pending memory write invalidates.  */
1098 
1099     /* Set stack size for this thread now. */
1100     KA_TRACE(10,
1101              ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
1102               stack_size));
1103 
1104     stack_size += gtid * __kmp_stkoffset;
1105 
1106     TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
1107     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
1108 
1109     KA_TRACE(10,
1110              ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1111               " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1112               (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1113               (LPVOID)th, &idThread));
1114 
1115     handle = CreateThread(
1116         NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
1117         (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1118 
1119     KA_TRACE(10,
1120              ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1121               " bytes, &__kmp_launch_worker = %p, th = %p, "
1122               "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
1123               (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1124               (LPVOID)th, idThread, handle));
1125 
1126     if (handle == 0) {
1127       DWORD error = GetLastError();
1128       __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1129     } else {
1130       th->th.th_info.ds.ds_thread = handle;
1131     }
1132 
1133     KMP_MB(); /* Flush all pending memory write invalidates.  */
1134   }
1135 
1136   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
1137 }
1138 
1139 int __kmp_still_running(kmp_info_t *th) {
1140   return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
1141 }
1142 
1143 #if KMP_USE_MONITOR
1144 void __kmp_create_monitor(kmp_info_t *th) {
1145   kmp_thread_t handle;
1146   DWORD idThread;
1147   int ideal, new_ideal;
1148 
1149   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
1150     // We don't need monitor thread in case of MAX_BLOCKTIME
1151     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1152                   "MAX blocktime\n"));
1153     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
1154     th->th.th_info.ds.ds_gtid = 0;
1155     TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
1156     return;
1157   }
1158   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1159 
1160   KMP_MB(); /* Flush all pending memory write invalidates.  */
1161 
1162   __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
1163   if (__kmp_monitor_ev == NULL) {
1164     DWORD error = GetLastError();
1165     __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
1166   }
1167 #if USE_ITT_BUILD
1168   __kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
1169 #endif /* USE_ITT_BUILD */
1170 
1171   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1172   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1173 
1174   // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1175   // to automatically expand stacksize based on CreateThread error code.
1176   if (__kmp_monitor_stksize == 0) {
1177     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1178   }
1179   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
1180     __kmp_monitor_stksize = __kmp_sys_min_stksize;
1181   }
1182 
1183   KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1184                 (int)__kmp_monitor_stksize));
1185 
1186   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
1187 
1188   handle =
1189       CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
1190                    (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
1191                    STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1192   if (handle == 0) {
1193     DWORD error = GetLastError();
1194     __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1195   } else
1196     th->th.th_info.ds.ds_thread = handle;
1197 
1198   KMP_MB(); /* Flush all pending memory write invalidates.  */
1199 
1200   KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1201                 (void *)th->th.th_info.ds.ds_thread));
1202 }
1203 #endif
1204 
1205 /* Check to see if thread is still alive.
1206    NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1207    with a exit_val = code.  Because of this we can not rely on exit_val having
1208    any particular value.  So this routine may return STILL_ALIVE in exit_val
1209    even after the thread is dead. */
1210 
1211 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
1212   DWORD rc;
1213   rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
1214   if (rc == 0) {
1215     DWORD error = GetLastError();
1216     __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
1217                 __kmp_msg_null);
1218   }
1219   return (*exit_val == STILL_ACTIVE);
1220 }
1221 
1222 void __kmp_exit_thread(int exit_status) {
1223   ExitThread(exit_status);
1224 } // __kmp_exit_thread
1225 
1226 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
1227 static void __kmp_reap_common(kmp_info_t *th) {
1228   DWORD exit_val;
1229 
1230   KMP_MB(); /* Flush all pending memory write invalidates.  */
1231 
1232   KA_TRACE(
1233       10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
1234 
1235   /* 2006-10-19:
1236      There are two opposite situations:
1237      1. Windows* OS keep thread alive after it resets ds_alive flag and
1238      exits from thread function. (For example, see C70770/Q394281 "unloading of
1239      dll based on OMP is very slow".)
1240      2. Windows* OS may kill thread before it resets ds_alive flag.
1241 
1242      Right solution seems to be waiting for *either* thread termination *or*
1243      ds_alive resetting. */
1244   {
1245     // TODO: This code is very similar to KMP_WAIT. Need to generalize
1246     // KMP_WAIT to cover this usage also.
1247     void *obj = NULL;
1248     kmp_uint32 spins;
1249 #if USE_ITT_BUILD
1250     KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
1251 #endif /* USE_ITT_BUILD */
1252     KMP_INIT_YIELD(spins);
1253     do {
1254 #if USE_ITT_BUILD
1255       KMP_FSYNC_SPIN_PREPARE(obj);
1256 #endif /* USE_ITT_BUILD */
1257       __kmp_is_thread_alive(th, &exit_val);
1258       KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
1259     } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
1260 #if USE_ITT_BUILD
1261     if (exit_val == STILL_ACTIVE) {
1262       KMP_FSYNC_CANCEL(obj);
1263     } else {
1264       KMP_FSYNC_SPIN_ACQUIRED(obj);
1265     }
1266 #endif /* USE_ITT_BUILD */
1267   }
1268 
1269   __kmp_free_handle(th->th.th_info.ds.ds_thread);
1270 
1271   /* NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1272      with a exit_val = code.  Because of this we can not rely on exit_val having
1273      any particular value. */
1274   if (exit_val == STILL_ACTIVE) {
1275     KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1276   } else if ((void *)exit_val != (void *)th) {
1277     KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1278   }
1279 
1280   KA_TRACE(10,
1281            ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1282             "\n",
1283             th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
1284 
1285   th->th.th_info.ds.ds_thread = 0;
1286   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1287   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1288   th->th.th_info.ds.ds_thread_id = 0;
1289 
1290   KMP_MB(); /* Flush all pending memory write invalidates.  */
1291 }
1292 
1293 #if KMP_USE_MONITOR
1294 void __kmp_reap_monitor(kmp_info_t *th) {
1295   int status;
1296 
1297   KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1298                 (void *)th->th.th_info.ds.ds_thread));
1299 
1300   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1301   // If both tid and gtid are 0, it means the monitor did not ever start.
1302   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1303   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1304   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1305     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1306     return;
1307   }
1308 
1309   KMP_MB(); /* Flush all pending memory write invalidates.  */
1310 
1311   status = SetEvent(__kmp_monitor_ev);
1312   if (status == FALSE) {
1313     DWORD error = GetLastError();
1314     __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
1315   }
1316   KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1317                 th->th.th_info.ds.ds_gtid));
1318   __kmp_reap_common(th);
1319 
1320   __kmp_free_handle(__kmp_monitor_ev);
1321 
1322   KMP_MB(); /* Flush all pending memory write invalidates.  */
1323 }
1324 #endif
1325 
1326 void __kmp_reap_worker(kmp_info_t *th) {
1327   KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1328                 th->th.th_info.ds.ds_gtid));
1329   __kmp_reap_common(th);
1330 }
1331 
1332 #if KMP_HANDLE_SIGNALS
1333 
1334 static void __kmp_team_handler(int signo) {
1335   if (__kmp_global.g.g_abort == 0) {
1336     // Stage 1 signal handler, let's shut down all of the threads.
1337     if (__kmp_debug_buf) {
1338       __kmp_dump_debug_buffer();
1339     }
1340     KMP_MB(); // Flush all pending memory write invalidates.
1341     TCW_4(__kmp_global.g.g_abort, signo);
1342     KMP_MB(); // Flush all pending memory write invalidates.
1343     TCW_4(__kmp_global.g.g_done, TRUE);
1344     KMP_MB(); // Flush all pending memory write invalidates.
1345   }
1346 } // __kmp_team_handler
1347 
1348 static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
1349   sig_func_t old = signal(signum, handler);
1350   if (old == SIG_ERR) {
1351     int error = errno;
1352     __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
1353                 __kmp_msg_null);
1354   }
1355   return old;
1356 }
1357 
1358 static void __kmp_install_one_handler(int sig, sig_func_t handler,
1359                                       int parallel_init) {
1360   sig_func_t old;
1361   KMP_MB(); /* Flush all pending memory write invalidates.  */
1362   KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
1363   if (parallel_init) {
1364     old = __kmp_signal(sig, handler);
1365     // SIG_DFL on Windows* OS in NULL or 0.
1366     if (old == __kmp_sighldrs[sig]) {
1367       __kmp_siginstalled[sig] = 1;
1368     } else { // Restore/keep user's handler if one previously installed.
1369       old = __kmp_signal(sig, old);
1370     }
1371   } else {
1372     // Save initial/system signal handlers to see if user handlers installed.
1373     // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1374     // called once with parallel_init == TRUE.
1375     old = __kmp_signal(sig, SIG_DFL);
1376     __kmp_sighldrs[sig] = old;
1377     __kmp_signal(sig, old);
1378   }
1379   KMP_MB(); /* Flush all pending memory write invalidates.  */
1380 } // __kmp_install_one_handler
1381 
1382 static void __kmp_remove_one_handler(int sig) {
1383   if (__kmp_siginstalled[sig]) {
1384     sig_func_t old;
1385     KMP_MB(); // Flush all pending memory write invalidates.
1386     KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
1387     old = __kmp_signal(sig, __kmp_sighldrs[sig]);
1388     if (old != __kmp_team_handler) {
1389       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1390                     "restoring: sig=%d\n",
1391                     sig));
1392       old = __kmp_signal(sig, old);
1393     }
1394     __kmp_sighldrs[sig] = NULL;
1395     __kmp_siginstalled[sig] = 0;
1396     KMP_MB(); // Flush all pending memory write invalidates.
1397   }
1398 } // __kmp_remove_one_handler
1399 
1400 void __kmp_install_signals(int parallel_init) {
1401   KB_TRACE(10, ("__kmp_install_signals: called\n"));
1402   if (!__kmp_handle_signals) {
1403     KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1404                   "handlers not installed\n"));
1405     return;
1406   }
1407   __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1408   __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1409   __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1410   __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1411   __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1412   __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1413 } // __kmp_install_signals
1414 
1415 void __kmp_remove_signals(void) {
1416   int sig;
1417   KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1418   for (sig = 1; sig < NSIG; ++sig) {
1419     __kmp_remove_one_handler(sig);
1420   }
1421 } // __kmp_remove_signals
1422 
1423 #endif // KMP_HANDLE_SIGNALS
1424 
1425 /* Put the thread to sleep for a time period */
1426 void __kmp_thread_sleep(int millis) {
1427   DWORD status;
1428 
1429   status = SleepEx((DWORD)millis, FALSE);
1430   if (status) {
1431     DWORD error = GetLastError();
1432     __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
1433                 __kmp_msg_null);
1434   }
1435 }
1436 
1437 // Determine whether the given address is mapped into the current address space.
1438 int __kmp_is_address_mapped(void *addr) {
1439   DWORD status;
1440   MEMORY_BASIC_INFORMATION lpBuffer;
1441   SIZE_T dwLength;
1442 
1443   dwLength = sizeof(MEMORY_BASIC_INFORMATION);
1444 
1445   status = VirtualQuery(addr, &lpBuffer, dwLength);
1446 
1447   return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
1448            ((lpBuffer.Protect == PAGE_NOACCESS) ||
1449             (lpBuffer.Protect == PAGE_EXECUTE)));
1450 }
1451 
1452 kmp_uint64 __kmp_hardware_timestamp(void) {
1453   kmp_uint64 r = 0;
1454 
1455   QueryPerformanceCounter((LARGE_INTEGER *)&r);
1456   return r;
1457 }
1458 
1459 /* Free handle and check the error code */
1460 void __kmp_free_handle(kmp_thread_t tHandle) {
1461   /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1462    * as HANDLE */
1463   BOOL rc;
1464   rc = CloseHandle(tHandle);
1465   if (!rc) {
1466     DWORD error = GetLastError();
1467     __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
1468   }
1469 }
1470 
1471 int __kmp_get_load_balance(int max) {
1472   static ULONG glb_buff_size = 100 * 1024;
1473 
1474   // Saved count of the running threads for the thread balance algortihm
1475   static int glb_running_threads = 0;
1476   static double glb_call_time = 0; /* Thread balance algorithm call time */
1477 
1478   int running_threads = 0; // Number of running threads in the system.
1479   NTSTATUS status = 0;
1480   ULONG buff_size = 0;
1481   ULONG info_size = 0;
1482   void *buffer = NULL;
1483   PSYSTEM_PROCESS_INFORMATION spi = NULL;
1484   int first_time = 1;
1485 
1486   double call_time = 0.0; // start, finish;
1487 
1488   __kmp_elapsed(&call_time);
1489 
1490   if (glb_call_time &&
1491       (call_time - glb_call_time < __kmp_load_balance_interval)) {
1492     running_threads = glb_running_threads;
1493     goto finish;
1494   }
1495   glb_call_time = call_time;
1496 
1497   // Do not spend time on running algorithm if we have a permanent error.
1498   if (NtQuerySystemInformation == NULL) {
1499     running_threads = -1;
1500     goto finish;
1501   }
1502 
1503   if (max <= 0) {
1504     max = INT_MAX;
1505   }
1506 
1507   do {
1508 
1509     if (first_time) {
1510       buff_size = glb_buff_size;
1511     } else {
1512       buff_size = 2 * buff_size;
1513     }
1514 
1515     buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
1516     if (buffer == NULL) {
1517       running_threads = -1;
1518       goto finish;
1519     }
1520     status = NtQuerySystemInformation(SystemProcessInformation, buffer,
1521                                       buff_size, &info_size);
1522     first_time = 0;
1523 
1524   } while (status == STATUS_INFO_LENGTH_MISMATCH);
1525   glb_buff_size = buff_size;
1526 
1527 #define CHECK(cond)                                                            \
1528   {                                                                            \
1529     KMP_DEBUG_ASSERT(cond);                                                    \
1530     if (!(cond)) {                                                             \
1531       running_threads = -1;                                                    \
1532       goto finish;                                                             \
1533     }                                                                          \
1534   }
1535 
1536   CHECK(buff_size >= info_size);
1537   spi = PSYSTEM_PROCESS_INFORMATION(buffer);
1538   for (;;) {
1539     ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
1540     CHECK(0 <= offset &&
1541           offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
1542     HANDLE pid = spi->ProcessId;
1543     ULONG num = spi->NumberOfThreads;
1544     CHECK(num >= 1);
1545     size_t spi_size =
1546         sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
1547     CHECK(offset + spi_size <
1548           info_size); // Make sure process info record fits the buffer.
1549     if (spi->NextEntryOffset != 0) {
1550       CHECK(spi_size <=
1551             spi->NextEntryOffset); // And do not overlap with the next record.
1552     }
1553     // pid == 0 corresponds to the System Idle Process. It always has running
1554     // threads on all cores. So, we don't consider the running threads of this
1555     // process.
1556     if (pid != 0) {
1557       for (int i = 0; i < num; ++i) {
1558         THREAD_STATE state = spi->Threads[i].State;
1559         // Count threads that have Ready or Running state.
1560         // !!! TODO: Why comment does not match the code???
1561         if (state == StateRunning) {
1562           ++running_threads;
1563           // Stop counting running threads if the number is already greater than
1564           // the number of available cores
1565           if (running_threads >= max) {
1566             goto finish;
1567           }
1568         }
1569       }
1570     }
1571     if (spi->NextEntryOffset == 0) {
1572       break;
1573     }
1574     spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
1575   }
1576 
1577 #undef CHECK
1578 
1579 finish: // Clean up and exit.
1580 
1581   if (buffer != NULL) {
1582     KMP_INTERNAL_FREE(buffer);
1583   }
1584 
1585   glb_running_threads = running_threads;
1586 
1587   return running_threads;
1588 } //__kmp_get_load_balance()
1589