1 /* 2 * z_Windows_NT_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_wait_release.h" 19 20 /* This code is related to NtQuerySystemInformation() function. This function 21 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the 22 number of running threads in the system. */ 23 24 #include <ntsecapi.h> // UNICODE_STRING 25 #include <ntstatus.h> 26 27 enum SYSTEM_INFORMATION_CLASS { 28 SystemProcessInformation = 5 29 }; // SYSTEM_INFORMATION_CLASS 30 31 struct CLIENT_ID { 32 HANDLE UniqueProcess; 33 HANDLE UniqueThread; 34 }; // struct CLIENT_ID 35 36 enum THREAD_STATE { 37 StateInitialized, 38 StateReady, 39 StateRunning, 40 StateStandby, 41 StateTerminated, 42 StateWait, 43 StateTransition, 44 StateUnknown 45 }; // enum THREAD_STATE 46 47 struct VM_COUNTERS { 48 SIZE_T PeakVirtualSize; 49 SIZE_T VirtualSize; 50 ULONG PageFaultCount; 51 SIZE_T PeakWorkingSetSize; 52 SIZE_T WorkingSetSize; 53 SIZE_T QuotaPeakPagedPoolUsage; 54 SIZE_T QuotaPagedPoolUsage; 55 SIZE_T QuotaPeakNonPagedPoolUsage; 56 SIZE_T QuotaNonPagedPoolUsage; 57 SIZE_T PagefileUsage; 58 SIZE_T PeakPagefileUsage; 59 SIZE_T PrivatePageCount; 60 }; // struct VM_COUNTERS 61 62 struct SYSTEM_THREAD { 63 LARGE_INTEGER KernelTime; 64 LARGE_INTEGER UserTime; 65 LARGE_INTEGER CreateTime; 66 ULONG WaitTime; 67 LPVOID StartAddress; 68 CLIENT_ID ClientId; 69 DWORD Priority; 70 LONG BasePriority; 71 ULONG ContextSwitchCount; 72 THREAD_STATE State; 73 ULONG WaitReason; 74 }; // SYSTEM_THREAD 75 76 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0); 77 #if KMP_ARCH_X86 78 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28); 79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52); 80 #else 81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32); 82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68); 83 #endif 84 85 struct SYSTEM_PROCESS_INFORMATION { 86 ULONG NextEntryOffset; 87 ULONG NumberOfThreads; 88 LARGE_INTEGER Reserved[3]; 89 LARGE_INTEGER CreateTime; 90 LARGE_INTEGER UserTime; 91 LARGE_INTEGER KernelTime; 92 UNICODE_STRING ImageName; 93 DWORD BasePriority; 94 HANDLE ProcessId; 95 HANDLE ParentProcessId; 96 ULONG HandleCount; 97 ULONG Reserved2[2]; 98 VM_COUNTERS VMCounters; 99 IO_COUNTERS IOCounters; 100 SYSTEM_THREAD Threads[1]; 101 }; // SYSTEM_PROCESS_INFORMATION 102 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION; 103 104 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0); 105 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32); 106 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56); 107 #if KMP_ARCH_X86 108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68); 109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76); 110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88); 111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136); 112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184); 113 #else 114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80); 115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96); 116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112); 117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208); 118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256); 119 #endif 120 121 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS, 122 PVOID, ULONG, PULONG); 123 NtQuerySystemInformation_t NtQuerySystemInformation = NULL; 124 125 HMODULE ntdll = NULL; 126 127 /* End of NtQuerySystemInformation()-related code */ 128 129 static HMODULE kernel32 = NULL; 130 131 #if KMP_HANDLE_SIGNALS 132 typedef void (*sig_func_t)(int); 133 static sig_func_t __kmp_sighldrs[NSIG]; 134 static int __kmp_siginstalled[NSIG]; 135 #endif 136 137 #if KMP_USE_MONITOR 138 static HANDLE __kmp_monitor_ev; 139 #endif 140 static kmp_int64 __kmp_win32_time; 141 double __kmp_win32_tick; 142 143 int __kmp_init_runtime = FALSE; 144 CRITICAL_SECTION __kmp_win32_section; 145 146 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) { 147 InitializeCriticalSection(&mx->cs); 148 #if USE_ITT_BUILD 149 __kmp_itt_system_object_created(&mx->cs, "Critical Section"); 150 #endif /* USE_ITT_BUILD */ 151 } 152 153 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) { 154 DeleteCriticalSection(&mx->cs); 155 } 156 157 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) { 158 EnterCriticalSection(&mx->cs); 159 } 160 161 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) { 162 return TryEnterCriticalSection(&mx->cs); 163 } 164 165 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) { 166 LeaveCriticalSection(&mx->cs); 167 } 168 169 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) { 170 cv->waiters_count_ = 0; 171 cv->wait_generation_count_ = 0; 172 cv->release_count_ = 0; 173 174 /* Initialize the critical section */ 175 __kmp_win32_mutex_init(&cv->waiters_count_lock_); 176 177 /* Create a manual-reset event. */ 178 cv->event_ = CreateEvent(NULL, // no security 179 TRUE, // manual-reset 180 FALSE, // non-signaled initially 181 NULL); // unnamed 182 #if USE_ITT_BUILD 183 __kmp_itt_system_object_created(cv->event_, "Event"); 184 #endif /* USE_ITT_BUILD */ 185 } 186 187 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) { 188 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_); 189 __kmp_free_handle(cv->event_); 190 memset(cv, '\0', sizeof(*cv)); 191 } 192 193 /* TODO associate cv with a team instead of a thread so as to optimize 194 the case where we wake up a whole team */ 195 196 template <class C> 197 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, 198 kmp_info_t *th, C *flag) { 199 int my_generation; 200 int last_waiter; 201 202 /* Avoid race conditions */ 203 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 204 205 /* Increment count of waiters */ 206 cv->waiters_count_++; 207 208 /* Store current generation in our activation record. */ 209 my_generation = cv->wait_generation_count_; 210 211 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 212 __kmp_win32_mutex_unlock(mx); 213 214 for (;;) { 215 int wait_done = 0; 216 DWORD res, timeout = 5000; // just tried to quess an appropriate number 217 /* Wait until the event is signaled */ 218 res = WaitForSingleObject(cv->event_, timeout); 219 220 if (res == WAIT_OBJECT_0) { 221 // event signaled 222 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 223 /* Exit the loop when the <cv->event_> is signaled and there are still 224 waiting threads from this <wait_generation> that haven't been released 225 from this wait yet. */ 226 wait_done = (cv->release_count_ > 0) && 227 (cv->wait_generation_count_ != my_generation); 228 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 229 } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) { 230 // check if the flag and cv counters are in consistent state 231 // as MS sent us debug dump whith inconsistent state of data 232 __kmp_win32_mutex_lock(mx); 233 typename C::flag_t old_f = flag->set_sleeping(); 234 if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) { 235 __kmp_win32_mutex_unlock(mx); 236 continue; 237 } 238 // condition fulfilled, exiting 239 old_f = flag->unset_sleeping(); 240 KMP_DEBUG_ASSERT(old_f & KMP_BARRIER_SLEEP_STATE); 241 TCW_PTR(th->th.th_sleep_loc, NULL); 242 KF_TRACE(50, 243 ("__kmp_win32_cond_wait: exiting, condition " 244 "fulfilled: flag's loc(%p): %u => %u\n", 245 flag->get(), (unsigned int)old_f, (unsigned int)flag->load())); 246 247 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 248 KMP_DEBUG_ASSERT(cv->waiters_count_ > 0); 249 cv->release_count_ = cv->waiters_count_; 250 cv->wait_generation_count_++; 251 wait_done = 1; 252 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 253 254 __kmp_win32_mutex_unlock(mx); 255 } 256 /* there used to be a semicolon after the if statement, it looked like a 257 bug, so i removed it */ 258 if (wait_done) 259 break; 260 } 261 262 __kmp_win32_mutex_lock(mx); 263 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 264 265 cv->waiters_count_--; 266 cv->release_count_--; 267 268 last_waiter = (cv->release_count_ == 0); 269 270 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 271 272 if (last_waiter) { 273 /* We're the last waiter to be notified, so reset the manual event. */ 274 ResetEvent(cv->event_); 275 } 276 } 277 278 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) { 279 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 280 281 if (cv->waiters_count_ > 0) { 282 SetEvent(cv->event_); 283 /* Release all the threads in this generation. */ 284 285 cv->release_count_ = cv->waiters_count_; 286 287 /* Start a new generation. */ 288 cv->wait_generation_count_++; 289 } 290 291 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 292 } 293 294 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) { 295 __kmp_win32_cond_broadcast(cv); 296 } 297 298 void __kmp_enable(int new_state) { 299 if (__kmp_init_runtime) 300 LeaveCriticalSection(&__kmp_win32_section); 301 } 302 303 void __kmp_disable(int *old_state) { 304 *old_state = 0; 305 306 if (__kmp_init_runtime) 307 EnterCriticalSection(&__kmp_win32_section); 308 } 309 310 void __kmp_suspend_initialize(void) { /* do nothing */ 311 } 312 313 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 314 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init); 315 int new_value = TRUE; 316 // Return if already initialized 317 if (old_value == new_value) 318 return; 319 // Wait, then return if being initialized 320 if (old_value == -1 || 321 !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) { 322 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) { 323 KMP_CPU_PAUSE(); 324 } 325 } else { 326 // Claim to be the initializer and do initializations 327 __kmp_win32_cond_init(&th->th.th_suspend_cv); 328 __kmp_win32_mutex_init(&th->th.th_suspend_mx); 329 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value); 330 } 331 } 332 333 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 334 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) { 335 /* this means we have initialize the suspension pthread objects for this 336 thread in this instance of the process */ 337 __kmp_win32_cond_destroy(&th->th.th_suspend_cv); 338 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx); 339 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE); 340 } 341 } 342 343 int __kmp_try_suspend_mx(kmp_info_t *th) { 344 return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx); 345 } 346 347 void __kmp_lock_suspend_mx(kmp_info_t *th) { 348 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 349 } 350 351 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 352 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 353 } 354 355 /* This routine puts the calling thread to sleep after setting the 356 sleep bit for the indicated flag variable to true. */ 357 template <class C> 358 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 359 kmp_info_t *th = __kmp_threads[th_gtid]; 360 int status; 361 typename C::flag_t old_spin; 362 363 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", 364 th_gtid, flag->get())); 365 366 __kmp_suspend_initialize_thread(th); 367 __kmp_lock_suspend_mx(th); 368 369 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's" 370 " loc(%p)\n", 371 th_gtid, flag->get())); 372 373 /* TODO: shouldn't this use release semantics to ensure that 374 __kmp_suspend_initialize_thread gets called first? */ 375 old_spin = flag->set_sleeping(); 376 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 377 __kmp_pause_status != kmp_soft_paused) { 378 flag->unset_sleeping(); 379 __kmp_unlock_suspend_mx(th); 380 return; 381 } 382 383 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's" 384 " loc(%p)==%u\n", 385 th_gtid, flag->get(), (unsigned int)flag->load())); 386 387 if (flag->done_check_val(old_spin)) { 388 old_spin = flag->unset_sleeping(); 389 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 390 "for flag's loc(%p)\n", 391 th_gtid, flag->get())); 392 } else { 393 #ifdef DEBUG_SUSPEND 394 __kmp_suspend_count++; 395 #endif 396 /* Encapsulate in a loop as the documentation states that this may "with 397 low probability" return when the condition variable has not been signaled 398 or broadcast */ 399 int deactivated = FALSE; 400 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 401 while (flag->is_sleeping()) { 402 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 403 "kmp_win32_cond_wait()\n", 404 th_gtid)); 405 // Mark the thread as no longer active (only in the first iteration of the 406 // loop). 407 if (!deactivated) { 408 th->th.th_active = FALSE; 409 if (th->th.th_active_in_pool) { 410 th->th.th_active_in_pool = FALSE; 411 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 412 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 413 } 414 deactivated = TRUE; 415 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, 416 flag); 417 } else { 418 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, 419 flag); 420 } 421 422 #ifdef KMP_DEBUG 423 if (flag->is_sleeping()) { 424 KF_TRACE(100, 425 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 426 } 427 #endif /* KMP_DEBUG */ 428 429 } // while 430 431 // Mark the thread as active again (if it was previous marked as inactive) 432 if (deactivated) { 433 th->th.th_active = TRUE; 434 if (TCR_4(th->th.th_in_pool)) { 435 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 436 th->th.th_active_in_pool = TRUE; 437 } 438 } 439 } 440 441 __kmp_unlock_suspend_mx(th); 442 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 443 } 444 445 template <bool C, bool S> 446 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 447 __kmp_suspend_template(th_gtid, flag); 448 } 449 template <bool C, bool S> 450 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 451 __kmp_suspend_template(th_gtid, flag); 452 } 453 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 454 __kmp_suspend_template(th_gtid, flag); 455 } 456 457 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 458 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 459 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 460 461 /* This routine signals the thread specified by target_gtid to wake up 462 after setting the sleep bit indicated by the flag argument to FALSE */ 463 template <class C> 464 static inline void __kmp_resume_template(int target_gtid, C *flag) { 465 kmp_info_t *th = __kmp_threads[target_gtid]; 466 int status; 467 468 #ifdef KMP_DEBUG 469 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 470 #endif 471 472 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 473 gtid, target_gtid)); 474 475 __kmp_suspend_initialize_thread(th); 476 __kmp_lock_suspend_mx(th); 477 478 if (!flag) { // coming from __kmp_null_resume_wrapper 479 flag = (C *)th->th.th_sleep_loc; 480 } 481 482 // First, check if the flag is null or its type has changed. If so, someone 483 // else woke it up. 484 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 485 // simply shows what 486 // flag was cast to 487 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 488 "awake: flag's loc(%p)\n", 489 gtid, target_gtid, NULL)); 490 __kmp_unlock_suspend_mx(th); 491 return; 492 } else { 493 typename C::flag_t old_spin = flag->unset_sleeping(); 494 if (!flag->is_sleeping_val(old_spin)) { 495 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 496 "awake: flag's loc(%p): %u => %u\n", 497 gtid, target_gtid, flag->get(), (unsigned int)old_spin, 498 (unsigned int)flag->load())); 499 __kmp_unlock_suspend_mx(th); 500 return; 501 } 502 } 503 TCW_PTR(th->th.th_sleep_loc, NULL); 504 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep " 505 "bit for flag's loc(%p)\n", 506 gtid, target_gtid, flag->get())); 507 508 __kmp_win32_cond_signal(&th->th.th_suspend_cv); 509 __kmp_unlock_suspend_mx(th); 510 511 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 512 " for T#%d\n", 513 gtid, target_gtid)); 514 } 515 516 template <bool C, bool S> 517 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 518 __kmp_resume_template(target_gtid, flag); 519 } 520 template <bool C, bool S> 521 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 522 __kmp_resume_template(target_gtid, flag); 523 } 524 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 525 __kmp_resume_template(target_gtid, flag); 526 } 527 528 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 529 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 530 531 void __kmp_yield() { Sleep(0); } 532 533 void __kmp_gtid_set_specific(int gtid) { 534 if (__kmp_init_gtid) { 535 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, 536 __kmp_gtid_threadprivate_key)); 537 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1))) 538 KMP_FATAL(TLSSetValueFailed); 539 } else { 540 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 541 } 542 } 543 544 int __kmp_gtid_get_specific() { 545 int gtid; 546 if (!__kmp_init_gtid) { 547 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 548 "KMP_GTID_SHUTDOWN\n")); 549 return KMP_GTID_SHUTDOWN; 550 } 551 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key); 552 if (gtid == 0) { 553 gtid = KMP_GTID_DNE; 554 } else { 555 gtid--; 556 } 557 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 558 __kmp_gtid_threadprivate_key, gtid)); 559 return gtid; 560 } 561 562 void __kmp_affinity_bind_thread(int proc) { 563 if (__kmp_num_proc_groups > 1) { 564 // Form the GROUP_AFFINITY struct directly, rather than filling 565 // out a bit vector and calling __kmp_set_system_affinity(). 566 GROUP_AFFINITY ga; 567 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * 568 sizeof(DWORD_PTR)))); 569 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); 570 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); 571 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; 572 573 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); 574 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { 575 DWORD error = GetLastError(); 576 if (__kmp_affinity_verbose) { // AC: continue silently if not verbose 577 kmp_msg_t err_code = KMP_ERR(error); 578 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code, 579 __kmp_msg_null); 580 if (__kmp_generate_warnings == kmp_warnings_off) { 581 __kmp_str_free(&err_code.str); 582 } 583 } 584 } 585 } else { 586 kmp_affin_mask_t *mask; 587 KMP_CPU_ALLOC_ON_STACK(mask); 588 KMP_CPU_ZERO(mask); 589 KMP_CPU_SET(proc, mask); 590 __kmp_set_system_affinity(mask, TRUE); 591 KMP_CPU_FREE_FROM_STACK(mask); 592 } 593 } 594 595 void __kmp_affinity_determine_capable(const char *env_var) { 596 // All versions of Windows* OS (since Win '95) support 597 // SetThreadAffinityMask(). 598 599 #if KMP_GROUP_AFFINITY 600 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR)); 601 #else 602 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR)); 603 #endif 604 605 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 606 "Windows* OS affinity interface functional (mask size = " 607 "%" KMP_SIZE_T_SPEC ").\n", 608 __kmp_affin_mask_size)); 609 } 610 611 double __kmp_read_cpu_time(void) { 612 FILETIME CreationTime, ExitTime, KernelTime, UserTime; 613 int status; 614 double cpu_time; 615 616 cpu_time = 0; 617 618 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, 619 &KernelTime, &UserTime); 620 621 if (status) { 622 double sec = 0; 623 624 sec += KernelTime.dwHighDateTime; 625 sec += UserTime.dwHighDateTime; 626 627 /* Shift left by 32 bits */ 628 sec *= (double)(1 << 16) * (double)(1 << 16); 629 630 sec += KernelTime.dwLowDateTime; 631 sec += UserTime.dwLowDateTime; 632 633 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; 634 } 635 636 return cpu_time; 637 } 638 639 int __kmp_read_system_info(struct kmp_sys_info *info) { 640 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ 641 info->minflt = 0; /* the number of page faults serviced without any I/O */ 642 info->majflt = 0; /* the number of page faults serviced that required I/O */ 643 info->nswap = 0; // the number of times a process was "swapped" out of memory 644 info->inblock = 0; // the number of times the file system had to perform input 645 info->oublock = 0; // number of times the file system had to perform output 646 info->nvcsw = 0; /* the number of times a context switch was voluntarily */ 647 info->nivcsw = 0; /* the number of times a context switch was forced */ 648 649 return 1; 650 } 651 652 void __kmp_runtime_initialize(void) { 653 SYSTEM_INFO info; 654 kmp_str_buf_t path; 655 UINT path_size; 656 657 if (__kmp_init_runtime) { 658 return; 659 } 660 661 #if KMP_DYNAMIC_LIB 662 /* Pin dynamic library for the lifetime of application */ 663 { 664 // First, turn off error message boxes 665 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS); 666 HMODULE h; 667 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | 668 GET_MODULE_HANDLE_EX_FLAG_PIN, 669 (LPCTSTR)&__kmp_serial_initialize, &h); 670 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); 671 SetErrorMode(err_mode); // Restore error mode 672 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n")); 673 } 674 #endif 675 676 InitializeCriticalSection(&__kmp_win32_section); 677 #if USE_ITT_BUILD 678 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section"); 679 #endif /* USE_ITT_BUILD */ 680 __kmp_initialize_system_tick(); 681 682 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 683 if (!__kmp_cpuinfo.initialized) { 684 __kmp_query_cpuid(&__kmp_cpuinfo); 685 } 686 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 687 688 /* Set up minimum number of threads to switch to TLS gtid */ 689 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 690 // Windows* OS, static library. 691 /* New thread may use stack space previously used by another thread, 692 currently terminated. On Windows* OS, in case of static linking, we do not 693 know the moment of thread termination, and our structures (__kmp_threads 694 and __kmp_root arrays) are still keep info about dead threads. This leads 695 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid 696 (by searching through stack addresses of all known threads) for 697 unregistered foreign tread. 698 699 Setting __kmp_tls_gtid_min to 0 workarounds this problem: 700 __kmp_get_global_thread_id() does not search through stacks, but get gtid 701 from TLS immediately. 702 --ln 703 */ 704 __kmp_tls_gtid_min = 0; 705 #else 706 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 707 #endif 708 709 /* for the static library */ 710 if (!__kmp_gtid_threadprivate_key) { 711 __kmp_gtid_threadprivate_key = TlsAlloc(); 712 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) { 713 KMP_FATAL(TLSOutOfIndexes); 714 } 715 } 716 717 // Load ntdll.dll. 718 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue 719 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We 720 have to specify full path to the library. */ 721 __kmp_str_buf_init(&path); 722 path_size = GetSystemDirectory(path.str, path.size); 723 KMP_DEBUG_ASSERT(path_size > 0); 724 if (path_size >= path.size) { 725 // Buffer is too short. Expand the buffer and try again. 726 __kmp_str_buf_reserve(&path, path_size); 727 path_size = GetSystemDirectory(path.str, path.size); 728 KMP_DEBUG_ASSERT(path_size > 0); 729 } 730 if (path_size > 0 && path_size < path.size) { 731 // Now we have system directory name in the buffer. 732 // Append backslash and name of dll to form full path, 733 path.used = path_size; 734 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll"); 735 736 // Now load ntdll using full path. 737 ntdll = GetModuleHandle(path.str); 738 } 739 740 KMP_DEBUG_ASSERT(ntdll != NULL); 741 if (ntdll != NULL) { 742 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress( 743 ntdll, "NtQuerySystemInformation"); 744 } 745 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL); 746 747 #if KMP_GROUP_AFFINITY 748 // Load kernel32.dll. 749 // Same caveat - must use full system path name. 750 if (path_size > 0 && path_size < path.size) { 751 // Truncate the buffer back to just the system path length, 752 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". 753 path.used = path_size; 754 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll"); 755 756 // Load kernel32.dll using full path. 757 kernel32 = GetModuleHandle(path.str); 758 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str)); 759 760 // Load the function pointers to kernel32.dll routines 761 // that may or may not exist on this system. 762 if (kernel32 != NULL) { 763 __kmp_GetActiveProcessorCount = 764 (kmp_GetActiveProcessorCount_t)GetProcAddress( 765 kernel32, "GetActiveProcessorCount"); 766 __kmp_GetActiveProcessorGroupCount = 767 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress( 768 kernel32, "GetActiveProcessorGroupCount"); 769 __kmp_GetThreadGroupAffinity = 770 (kmp_GetThreadGroupAffinity_t)GetProcAddress( 771 kernel32, "GetThreadGroupAffinity"); 772 __kmp_SetThreadGroupAffinity = 773 (kmp_SetThreadGroupAffinity_t)GetProcAddress( 774 kernel32, "SetThreadGroupAffinity"); 775 776 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount" 777 " = %p\n", 778 __kmp_GetActiveProcessorCount)); 779 KA_TRACE(10, ("__kmp_runtime_initialize: " 780 "__kmp_GetActiveProcessorGroupCount = %p\n", 781 __kmp_GetActiveProcessorGroupCount)); 782 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity" 783 " = %p\n", 784 __kmp_GetThreadGroupAffinity)); 785 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity" 786 " = %p\n", 787 __kmp_SetThreadGroupAffinity)); 788 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", 789 sizeof(kmp_affin_mask_t))); 790 791 // See if group affinity is supported on this system. 792 // If so, calculate the #groups and #procs. 793 // 794 // Group affinity was introduced with Windows* 7 OS and 795 // Windows* Server 2008 R2 OS. 796 if ((__kmp_GetActiveProcessorCount != NULL) && 797 (__kmp_GetActiveProcessorGroupCount != NULL) && 798 (__kmp_GetThreadGroupAffinity != NULL) && 799 (__kmp_SetThreadGroupAffinity != NULL) && 800 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) > 801 1)) { 802 // Calculate the total number of active OS procs. 803 int i; 804 805 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 806 " detected\n", 807 __kmp_num_proc_groups)); 808 809 __kmp_xproc = 0; 810 811 for (i = 0; i < __kmp_num_proc_groups; i++) { 812 DWORD size = __kmp_GetActiveProcessorCount(i); 813 __kmp_xproc += size; 814 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n", 815 i, size)); 816 } 817 } else { 818 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 819 " detected\n", 820 __kmp_num_proc_groups)); 821 } 822 } 823 } 824 if (__kmp_num_proc_groups <= 1) { 825 GetSystemInfo(&info); 826 __kmp_xproc = info.dwNumberOfProcessors; 827 } 828 #else 829 GetSystemInfo(&info); 830 __kmp_xproc = info.dwNumberOfProcessors; 831 #endif /* KMP_GROUP_AFFINITY */ 832 833 // If the OS said there were 0 procs, take a guess and use a value of 2. 834 // This is done for Linux* OS, also. Do we need error / warning? 835 if (__kmp_xproc <= 0) { 836 __kmp_xproc = 2; 837 } 838 839 KA_TRACE(5, 840 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc)); 841 842 __kmp_str_buf_free(&path); 843 844 #if USE_ITT_BUILD 845 __kmp_itt_initialize(); 846 #endif /* USE_ITT_BUILD */ 847 848 __kmp_init_runtime = TRUE; 849 } // __kmp_runtime_initialize 850 851 void __kmp_runtime_destroy(void) { 852 if (!__kmp_init_runtime) { 853 return; 854 } 855 856 #if USE_ITT_BUILD 857 __kmp_itt_destroy(); 858 #endif /* USE_ITT_BUILD */ 859 860 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ 861 /* due to the KX_TRACE() commands */ 862 KA_TRACE(40, ("__kmp_runtime_destroy\n")); 863 864 if (__kmp_gtid_threadprivate_key) { 865 TlsFree(__kmp_gtid_threadprivate_key); 866 __kmp_gtid_threadprivate_key = 0; 867 } 868 869 __kmp_affinity_uninitialize(); 870 DeleteCriticalSection(&__kmp_win32_section); 871 872 ntdll = NULL; 873 NtQuerySystemInformation = NULL; 874 875 #if KMP_ARCH_X86_64 876 kernel32 = NULL; 877 __kmp_GetActiveProcessorCount = NULL; 878 __kmp_GetActiveProcessorGroupCount = NULL; 879 __kmp_GetThreadGroupAffinity = NULL; 880 __kmp_SetThreadGroupAffinity = NULL; 881 #endif // KMP_ARCH_X86_64 882 883 __kmp_init_runtime = FALSE; 884 } 885 886 void __kmp_terminate_thread(int gtid) { 887 kmp_info_t *th = __kmp_threads[gtid]; 888 889 if (!th) 890 return; 891 892 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 893 894 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) { 895 /* It's OK, the thread may have exited already */ 896 } 897 __kmp_free_handle(th->th.th_info.ds.ds_thread); 898 } 899 900 void __kmp_clear_system_time(void) { 901 BOOL status; 902 LARGE_INTEGER time; 903 status = QueryPerformanceCounter(&time); 904 __kmp_win32_time = (kmp_int64)time.QuadPart; 905 } 906 907 void __kmp_initialize_system_tick(void) { 908 { 909 BOOL status; 910 LARGE_INTEGER freq; 911 912 status = QueryPerformanceFrequency(&freq); 913 if (!status) { 914 DWORD error = GetLastError(); 915 __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"), 916 KMP_ERR(error), __kmp_msg_null); 917 918 } else { 919 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart; 920 } 921 } 922 } 923 924 /* Calculate the elapsed wall clock time for the user */ 925 926 void __kmp_elapsed(double *t) { 927 BOOL status; 928 LARGE_INTEGER now; 929 status = QueryPerformanceCounter(&now); 930 *t = ((double)now.QuadPart) * __kmp_win32_tick; 931 } 932 933 /* Calculate the elapsed wall clock tick for the user */ 934 935 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; } 936 937 void __kmp_read_system_time(double *delta) { 938 if (delta != NULL) { 939 BOOL status; 940 LARGE_INTEGER now; 941 942 status = QueryPerformanceCounter(&now); 943 944 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) * 945 __kmp_win32_tick; 946 } 947 } 948 949 /* Return the current time stamp in nsec */ 950 kmp_uint64 __kmp_now_nsec() { 951 LARGE_INTEGER now; 952 QueryPerformanceCounter(&now); 953 return 1e9 * __kmp_win32_tick * now.QuadPart; 954 } 955 956 extern "C" void *__stdcall __kmp_launch_worker(void *arg) { 957 volatile void *stack_data; 958 void *exit_val; 959 void *padding = 0; 960 kmp_info_t *this_thr = (kmp_info_t *)arg; 961 int gtid; 962 963 gtid = this_thr->th.th_info.ds.ds_gtid; 964 __kmp_gtid_set_specific(gtid); 965 #ifdef KMP_TDATA_GTID 966 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 967 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 968 "reference: http://support.microsoft.com/kb/118816" 969 //__kmp_gtid = gtid; 970 #endif 971 972 #if USE_ITT_BUILD 973 __kmp_itt_thread_name(gtid); 974 #endif /* USE_ITT_BUILD */ 975 976 __kmp_affinity_set_init_mask(gtid, FALSE); 977 978 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 979 // Set FP control regs to be a copy of the parallel initialization thread's. 980 __kmp_clear_x87_fpu_status_word(); 981 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 982 __kmp_load_mxcsr(&__kmp_init_mxcsr); 983 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 984 985 if (__kmp_stkoffset > 0 && gtid > 0) { 986 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 987 } 988 989 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 990 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 991 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 992 993 if (TCR_4(__kmp_gtid_mode) < 994 2) { // check stack only if it is used to get gtid 995 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); 996 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE); 997 __kmp_check_stack_overlap(this_thr); 998 } 999 KMP_MB(); 1000 exit_val = __kmp_launch_thread(this_thr); 1001 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 1002 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1003 KMP_MB(); 1004 return exit_val; 1005 } 1006 1007 #if KMP_USE_MONITOR 1008 /* The monitor thread controls all of the threads in the complex */ 1009 1010 void *__stdcall __kmp_launch_monitor(void *arg) { 1011 DWORD wait_status; 1012 kmp_thread_t monitor; 1013 int status; 1014 int interval; 1015 kmp_info_t *this_thr = (kmp_info_t *)arg; 1016 1017 KMP_DEBUG_ASSERT(__kmp_init_monitor); 1018 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started 1019 // TODO: hide "2" in enum (like {true,false,started}) 1020 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1021 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 1022 1023 KMP_MB(); /* Flush all pending memory write invalidates. */ 1024 KA_TRACE(10, ("__kmp_launch_monitor: launched\n")); 1025 1026 monitor = GetCurrentThread(); 1027 1028 /* set thread priority */ 1029 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST); 1030 if (!status) { 1031 DWORD error = GetLastError(); 1032 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1033 } 1034 1035 /* register us as monitor */ 1036 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 1037 #ifdef KMP_TDATA_GTID 1038 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 1039 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 1040 "reference: http://support.microsoft.com/kb/118816" 1041 //__kmp_gtid = KMP_GTID_MONITOR; 1042 #endif 1043 1044 #if USE_ITT_BUILD 1045 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore 1046 // monitor thread. 1047 #endif /* USE_ITT_BUILD */ 1048 1049 KMP_MB(); /* Flush all pending memory write invalidates. */ 1050 1051 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */ 1052 1053 while (!TCR_4(__kmp_global.g.g_done)) { 1054 /* This thread monitors the state of the system */ 1055 1056 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 1057 1058 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval); 1059 1060 if (wait_status == WAIT_TIMEOUT) { 1061 TCW_4(__kmp_global.g.g_time.dt.t_value, 1062 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 1063 } 1064 1065 KMP_MB(); /* Flush all pending memory write invalidates. */ 1066 } 1067 1068 KA_TRACE(10, ("__kmp_launch_monitor: finished\n")); 1069 1070 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL); 1071 if (!status) { 1072 DWORD error = GetLastError(); 1073 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1074 } 1075 1076 if (__kmp_global.g.g_abort != 0) { 1077 /* now we need to terminate the worker threads */ 1078 /* the value of t_abort is the signal we caught */ 1079 int gtid; 1080 1081 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n", 1082 (__kmp_global.g.g_abort))); 1083 1084 /* terminate the OpenMP worker threads */ 1085 /* TODO this is not valid for sibling threads!! 1086 * the uber master might not be 0 anymore.. */ 1087 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 1088 __kmp_terminate_thread(gtid); 1089 1090 __kmp_cleanup(); 1091 1092 Sleep(0); 1093 1094 KA_TRACE(10, 1095 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort)); 1096 1097 if (__kmp_global.g.g_abort > 0) { 1098 raise(__kmp_global.g.g_abort); 1099 } 1100 } 1101 1102 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1103 1104 KMP_MB(); 1105 return arg; 1106 } 1107 #endif 1108 1109 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 1110 kmp_thread_t handle; 1111 DWORD idThread; 1112 1113 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 1114 1115 th->th.th_info.ds.ds_gtid = gtid; 1116 1117 if (KMP_UBER_GTID(gtid)) { 1118 int stack_data; 1119 1120 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for 1121 other threads to use. Is it appropriate to just use GetCurrentThread? 1122 When should we close this handle? When unregistering the root? */ 1123 { 1124 BOOL rc; 1125 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), 1126 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, 1127 FALSE, DUPLICATE_SAME_ACCESS); 1128 KMP_ASSERT(rc); 1129 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, " 1130 "handle = %" KMP_UINTPTR_SPEC "\n", 1131 (LPVOID)th, th->th.th_info.ds.ds_thread)); 1132 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1133 } 1134 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid 1135 /* we will dynamically update the stack range if gtid_mode == 1 */ 1136 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 1137 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 1138 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 1139 __kmp_check_stack_overlap(th); 1140 } 1141 } else { 1142 KMP_MB(); /* Flush all pending memory write invalidates. */ 1143 1144 /* Set stack size for this thread now. */ 1145 KA_TRACE(10, 1146 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", 1147 stack_size)); 1148 1149 stack_size += gtid * __kmp_stkoffset; 1150 1151 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); 1152 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 1153 1154 KA_TRACE(10, 1155 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC 1156 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n", 1157 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1158 (LPVOID)th, &idThread)); 1159 1160 handle = CreateThread( 1161 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker, 1162 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1163 1164 KA_TRACE(10, 1165 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC 1166 " bytes, &__kmp_launch_worker = %p, th = %p, " 1167 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", 1168 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1169 (LPVOID)th, idThread, handle)); 1170 1171 if (handle == 0) { 1172 DWORD error = GetLastError(); 1173 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1174 } else { 1175 th->th.th_info.ds.ds_thread = handle; 1176 } 1177 1178 KMP_MB(); /* Flush all pending memory write invalidates. */ 1179 } 1180 1181 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 1182 } 1183 1184 int __kmp_still_running(kmp_info_t *th) { 1185 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0)); 1186 } 1187 1188 #if KMP_USE_MONITOR 1189 void __kmp_create_monitor(kmp_info_t *th) { 1190 kmp_thread_t handle; 1191 DWORD idThread; 1192 int ideal, new_ideal; 1193 1194 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 1195 // We don't need monitor thread in case of MAX_BLOCKTIME 1196 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 1197 "MAX blocktime\n")); 1198 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 1199 th->th.th_info.ds.ds_gtid = 0; 1200 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation 1201 return; 1202 } 1203 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 1204 1205 KMP_MB(); /* Flush all pending memory write invalidates. */ 1206 1207 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL); 1208 if (__kmp_monitor_ev == NULL) { 1209 DWORD error = GetLastError(); 1210 __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null); 1211 } 1212 #if USE_ITT_BUILD 1213 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event"); 1214 #endif /* USE_ITT_BUILD */ 1215 1216 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 1217 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 1218 1219 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how 1220 // to automatically expand stacksize based on CreateThread error code. 1221 if (__kmp_monitor_stksize == 0) { 1222 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 1223 } 1224 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 1225 __kmp_monitor_stksize = __kmp_sys_min_stksize; 1226 } 1227 1228 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", 1229 (int)__kmp_monitor_stksize)); 1230 1231 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 1232 1233 handle = 1234 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize, 1235 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th, 1236 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1237 if (handle == 0) { 1238 DWORD error = GetLastError(); 1239 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1240 } else 1241 th->th.th_info.ds.ds_thread = handle; 1242 1243 KMP_MB(); /* Flush all pending memory write invalidates. */ 1244 1245 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n", 1246 (void *)th->th.th_info.ds.ds_thread)); 1247 } 1248 #endif 1249 1250 /* Check to see if thread is still alive. 1251 NOTE: The ExitProcess(code) system call causes all threads to Terminate 1252 with a exit_val = code. Because of this we can not rely on exit_val having 1253 any particular value. So this routine may return STILL_ALIVE in exit_val 1254 even after the thread is dead. */ 1255 1256 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) { 1257 DWORD rc; 1258 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val); 1259 if (rc == 0) { 1260 DWORD error = GetLastError(); 1261 __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error), 1262 __kmp_msg_null); 1263 } 1264 return (*exit_val == STILL_ACTIVE); 1265 } 1266 1267 void __kmp_exit_thread(int exit_status) { 1268 ExitThread(exit_status); 1269 } // __kmp_exit_thread 1270 1271 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). 1272 static void __kmp_reap_common(kmp_info_t *th) { 1273 DWORD exit_val; 1274 1275 KMP_MB(); /* Flush all pending memory write invalidates. */ 1276 1277 KA_TRACE( 1278 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid)); 1279 1280 /* 2006-10-19: 1281 There are two opposite situations: 1282 1. Windows* OS keep thread alive after it resets ds_alive flag and 1283 exits from thread function. (For example, see C70770/Q394281 "unloading of 1284 dll based on OMP is very slow".) 1285 2. Windows* OS may kill thread before it resets ds_alive flag. 1286 1287 Right solution seems to be waiting for *either* thread termination *or* 1288 ds_alive resetting. */ 1289 { 1290 // TODO: This code is very similar to KMP_WAIT. Need to generalize 1291 // KMP_WAIT to cover this usage also. 1292 void *obj = NULL; 1293 kmp_uint32 spins; 1294 #if USE_ITT_BUILD 1295 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive); 1296 #endif /* USE_ITT_BUILD */ 1297 KMP_INIT_YIELD(spins); 1298 do { 1299 #if USE_ITT_BUILD 1300 KMP_FSYNC_SPIN_PREPARE(obj); 1301 #endif /* USE_ITT_BUILD */ 1302 __kmp_is_thread_alive(th, &exit_val); 1303 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 1304 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive)); 1305 #if USE_ITT_BUILD 1306 if (exit_val == STILL_ACTIVE) { 1307 KMP_FSYNC_CANCEL(obj); 1308 } else { 1309 KMP_FSYNC_SPIN_ACQUIRED(obj); 1310 } 1311 #endif /* USE_ITT_BUILD */ 1312 } 1313 1314 __kmp_free_handle(th->th.th_info.ds.ds_thread); 1315 1316 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate 1317 with a exit_val = code. Because of this we can not rely on exit_val having 1318 any particular value. */ 1319 if (exit_val == STILL_ACTIVE) { 1320 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n")); 1321 } else if ((void *)exit_val != (void *)th) { 1322 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n")); 1323 } 1324 1325 KA_TRACE(10, 1326 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC 1327 "\n", 1328 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread)); 1329 1330 th->th.th_info.ds.ds_thread = 0; 1331 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1332 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1333 th->th.th_info.ds.ds_thread_id = 0; 1334 1335 KMP_MB(); /* Flush all pending memory write invalidates. */ 1336 } 1337 1338 #if KMP_USE_MONITOR 1339 void __kmp_reap_monitor(kmp_info_t *th) { 1340 int status; 1341 1342 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n", 1343 (void *)th->th.th_info.ds.ds_thread)); 1344 1345 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1346 // If both tid and gtid are 0, it means the monitor did not ever start. 1347 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1348 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1349 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1350 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1351 return; 1352 } 1353 1354 KMP_MB(); /* Flush all pending memory write invalidates. */ 1355 1356 status = SetEvent(__kmp_monitor_ev); 1357 if (status == FALSE) { 1358 DWORD error = GetLastError(); 1359 __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null); 1360 } 1361 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n", 1362 th->th.th_info.ds.ds_gtid)); 1363 __kmp_reap_common(th); 1364 1365 __kmp_free_handle(__kmp_monitor_ev); 1366 1367 KMP_MB(); /* Flush all pending memory write invalidates. */ 1368 } 1369 #endif 1370 1371 void __kmp_reap_worker(kmp_info_t *th) { 1372 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n", 1373 th->th.th_info.ds.ds_gtid)); 1374 __kmp_reap_common(th); 1375 } 1376 1377 #if KMP_HANDLE_SIGNALS 1378 1379 static void __kmp_team_handler(int signo) { 1380 if (__kmp_global.g.g_abort == 0) { 1381 // Stage 1 signal handler, let's shut down all of the threads. 1382 if (__kmp_debug_buf) { 1383 __kmp_dump_debug_buffer(); 1384 } 1385 KMP_MB(); // Flush all pending memory write invalidates. 1386 TCW_4(__kmp_global.g.g_abort, signo); 1387 KMP_MB(); // Flush all pending memory write invalidates. 1388 TCW_4(__kmp_global.g.g_done, TRUE); 1389 KMP_MB(); // Flush all pending memory write invalidates. 1390 } 1391 } // __kmp_team_handler 1392 1393 static sig_func_t __kmp_signal(int signum, sig_func_t handler) { 1394 sig_func_t old = signal(signum, handler); 1395 if (old == SIG_ERR) { 1396 int error = errno; 1397 __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error), 1398 __kmp_msg_null); 1399 } 1400 return old; 1401 } 1402 1403 static void __kmp_install_one_handler(int sig, sig_func_t handler, 1404 int parallel_init) { 1405 sig_func_t old; 1406 KMP_MB(); /* Flush all pending memory write invalidates. */ 1407 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig)); 1408 if (parallel_init) { 1409 old = __kmp_signal(sig, handler); 1410 // SIG_DFL on Windows* OS in NULL or 0. 1411 if (old == __kmp_sighldrs[sig]) { 1412 __kmp_siginstalled[sig] = 1; 1413 } else { // Restore/keep user's handler if one previously installed. 1414 old = __kmp_signal(sig, old); 1415 } 1416 } else { 1417 // Save initial/system signal handlers to see if user handlers installed. 1418 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals 1419 // called once with parallel_init == TRUE. 1420 old = __kmp_signal(sig, SIG_DFL); 1421 __kmp_sighldrs[sig] = old; 1422 __kmp_signal(sig, old); 1423 } 1424 KMP_MB(); /* Flush all pending memory write invalidates. */ 1425 } // __kmp_install_one_handler 1426 1427 static void __kmp_remove_one_handler(int sig) { 1428 if (__kmp_siginstalled[sig]) { 1429 sig_func_t old; 1430 KMP_MB(); // Flush all pending memory write invalidates. 1431 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig)); 1432 old = __kmp_signal(sig, __kmp_sighldrs[sig]); 1433 if (old != __kmp_team_handler) { 1434 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1435 "restoring: sig=%d\n", 1436 sig)); 1437 old = __kmp_signal(sig, old); 1438 } 1439 __kmp_sighldrs[sig] = NULL; 1440 __kmp_siginstalled[sig] = 0; 1441 KMP_MB(); // Flush all pending memory write invalidates. 1442 } 1443 } // __kmp_remove_one_handler 1444 1445 void __kmp_install_signals(int parallel_init) { 1446 KB_TRACE(10, ("__kmp_install_signals: called\n")); 1447 if (!__kmp_handle_signals) { 1448 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - " 1449 "handlers not installed\n")); 1450 return; 1451 } 1452 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1453 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1454 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1455 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1456 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1457 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1458 } // __kmp_install_signals 1459 1460 void __kmp_remove_signals(void) { 1461 int sig; 1462 KB_TRACE(10, ("__kmp_remove_signals: called\n")); 1463 for (sig = 1; sig < NSIG; ++sig) { 1464 __kmp_remove_one_handler(sig); 1465 } 1466 } // __kmp_remove_signals 1467 1468 #endif // KMP_HANDLE_SIGNALS 1469 1470 /* Put the thread to sleep for a time period */ 1471 void __kmp_thread_sleep(int millis) { 1472 DWORD status; 1473 1474 status = SleepEx((DWORD)millis, FALSE); 1475 if (status) { 1476 DWORD error = GetLastError(); 1477 __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error), 1478 __kmp_msg_null); 1479 } 1480 } 1481 1482 // Determine whether the given address is mapped into the current address space. 1483 int __kmp_is_address_mapped(void *addr) { 1484 DWORD status; 1485 MEMORY_BASIC_INFORMATION lpBuffer; 1486 SIZE_T dwLength; 1487 1488 dwLength = sizeof(MEMORY_BASIC_INFORMATION); 1489 1490 status = VirtualQuery(addr, &lpBuffer, dwLength); 1491 1492 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) || 1493 ((lpBuffer.Protect == PAGE_NOACCESS) || 1494 (lpBuffer.Protect == PAGE_EXECUTE))); 1495 } 1496 1497 kmp_uint64 __kmp_hardware_timestamp(void) { 1498 kmp_uint64 r = 0; 1499 1500 QueryPerformanceCounter((LARGE_INTEGER *)&r); 1501 return r; 1502 } 1503 1504 /* Free handle and check the error code */ 1505 void __kmp_free_handle(kmp_thread_t tHandle) { 1506 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined 1507 * as HANDLE */ 1508 BOOL rc; 1509 rc = CloseHandle(tHandle); 1510 if (!rc) { 1511 DWORD error = GetLastError(); 1512 __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null); 1513 } 1514 } 1515 1516 int __kmp_get_load_balance(int max) { 1517 static ULONG glb_buff_size = 100 * 1024; 1518 1519 // Saved count of the running threads for the thread balance algorithm 1520 static int glb_running_threads = 0; 1521 static double glb_call_time = 0; /* Thread balance algorithm call time */ 1522 1523 int running_threads = 0; // Number of running threads in the system. 1524 NTSTATUS status = 0; 1525 ULONG buff_size = 0; 1526 ULONG info_size = 0; 1527 void *buffer = NULL; 1528 PSYSTEM_PROCESS_INFORMATION spi = NULL; 1529 int first_time = 1; 1530 1531 double call_time = 0.0; // start, finish; 1532 1533 __kmp_elapsed(&call_time); 1534 1535 if (glb_call_time && 1536 (call_time - glb_call_time < __kmp_load_balance_interval)) { 1537 running_threads = glb_running_threads; 1538 goto finish; 1539 } 1540 glb_call_time = call_time; 1541 1542 // Do not spend time on running algorithm if we have a permanent error. 1543 if (NtQuerySystemInformation == NULL) { 1544 running_threads = -1; 1545 goto finish; 1546 } 1547 1548 if (max <= 0) { 1549 max = INT_MAX; 1550 } 1551 1552 do { 1553 1554 if (first_time) { 1555 buff_size = glb_buff_size; 1556 } else { 1557 buff_size = 2 * buff_size; 1558 } 1559 1560 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size); 1561 if (buffer == NULL) { 1562 running_threads = -1; 1563 goto finish; 1564 } 1565 status = NtQuerySystemInformation(SystemProcessInformation, buffer, 1566 buff_size, &info_size); 1567 first_time = 0; 1568 1569 } while (status == STATUS_INFO_LENGTH_MISMATCH); 1570 glb_buff_size = buff_size; 1571 1572 #define CHECK(cond) \ 1573 { \ 1574 KMP_DEBUG_ASSERT(cond); \ 1575 if (!(cond)) { \ 1576 running_threads = -1; \ 1577 goto finish; \ 1578 } \ 1579 } 1580 1581 CHECK(buff_size >= info_size); 1582 spi = PSYSTEM_PROCESS_INFORMATION(buffer); 1583 for (;;) { 1584 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer); 1585 CHECK(0 <= offset && 1586 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size); 1587 HANDLE pid = spi->ProcessId; 1588 ULONG num = spi->NumberOfThreads; 1589 CHECK(num >= 1); 1590 size_t spi_size = 1591 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1); 1592 CHECK(offset + spi_size < 1593 info_size); // Make sure process info record fits the buffer. 1594 if (spi->NextEntryOffset != 0) { 1595 CHECK(spi_size <= 1596 spi->NextEntryOffset); // And do not overlap with the next record. 1597 } 1598 // pid == 0 corresponds to the System Idle Process. It always has running 1599 // threads on all cores. So, we don't consider the running threads of this 1600 // process. 1601 if (pid != 0) { 1602 for (int i = 0; i < num; ++i) { 1603 THREAD_STATE state = spi->Threads[i].State; 1604 // Count threads that have Ready or Running state. 1605 // !!! TODO: Why comment does not match the code??? 1606 if (state == StateRunning) { 1607 ++running_threads; 1608 // Stop counting running threads if the number is already greater than 1609 // the number of available cores 1610 if (running_threads >= max) { 1611 goto finish; 1612 } 1613 } 1614 } 1615 } 1616 if (spi->NextEntryOffset == 0) { 1617 break; 1618 } 1619 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset); 1620 } 1621 1622 #undef CHECK 1623 1624 finish: // Clean up and exit. 1625 1626 if (buffer != NULL) { 1627 KMP_INTERNAL_FREE(buffer); 1628 } 1629 1630 glb_running_threads = running_threads; 1631 1632 return running_threads; 1633 } //__kmp_get_load_balance() 1634 1635 // Functions for hidden helper task 1636 void __kmp_hidden_helper_worker_thread_wait() { 1637 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1638 } 1639 1640 void __kmp_do_initialize_hidden_helper_threads() { 1641 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1642 } 1643 1644 void __kmp_hidden_helper_threads_initz_wait() { 1645 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1646 } 1647 1648 void __kmp_hidden_helper_initz_release() { 1649 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1650 } 1651 1652 void __kmp_hidden_helper_main_thread_wait() { 1653 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1654 } 1655 1656 void __kmp_hidden_helper_main_thread_release() { 1657 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1658 } 1659 1660 void __kmp_hidden_helper_worker_thread_signal() { 1661 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1662 } 1663 1664 void __kmp_hidden_helper_threads_deinitz_wait() { 1665 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1666 } 1667 1668 void __kmp_hidden_helper_threads_deinitz_release() { 1669 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1670 } 1671