1 /*
2  * z_Windows_NT_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_wait_release.h"
19 
20 /* This code is related to NtQuerySystemInformation() function. This function
21    is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
22    number of running threads in the system. */
23 
24 #include <ntsecapi.h> // UNICODE_STRING
25 #include <ntstatus.h>
26 
27 enum SYSTEM_INFORMATION_CLASS {
28   SystemProcessInformation = 5
29 }; // SYSTEM_INFORMATION_CLASS
30 
31 struct CLIENT_ID {
32   HANDLE UniqueProcess;
33   HANDLE UniqueThread;
34 }; // struct CLIENT_ID
35 
36 enum THREAD_STATE {
37   StateInitialized,
38   StateReady,
39   StateRunning,
40   StateStandby,
41   StateTerminated,
42   StateWait,
43   StateTransition,
44   StateUnknown
45 }; // enum THREAD_STATE
46 
47 struct VM_COUNTERS {
48   SIZE_T PeakVirtualSize;
49   SIZE_T VirtualSize;
50   ULONG PageFaultCount;
51   SIZE_T PeakWorkingSetSize;
52   SIZE_T WorkingSetSize;
53   SIZE_T QuotaPeakPagedPoolUsage;
54   SIZE_T QuotaPagedPoolUsage;
55   SIZE_T QuotaPeakNonPagedPoolUsage;
56   SIZE_T QuotaNonPagedPoolUsage;
57   SIZE_T PagefileUsage;
58   SIZE_T PeakPagefileUsage;
59   SIZE_T PrivatePageCount;
60 }; // struct VM_COUNTERS
61 
62 struct SYSTEM_THREAD {
63   LARGE_INTEGER KernelTime;
64   LARGE_INTEGER UserTime;
65   LARGE_INTEGER CreateTime;
66   ULONG WaitTime;
67   LPVOID StartAddress;
68   CLIENT_ID ClientId;
69   DWORD Priority;
70   LONG BasePriority;
71   ULONG ContextSwitchCount;
72   THREAD_STATE State;
73   ULONG WaitReason;
74 }; // SYSTEM_THREAD
75 
76 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
77 #if KMP_ARCH_X86
78 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
80 #else
81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
83 #endif
84 
85 struct SYSTEM_PROCESS_INFORMATION {
86   ULONG NextEntryOffset;
87   ULONG NumberOfThreads;
88   LARGE_INTEGER Reserved[3];
89   LARGE_INTEGER CreateTime;
90   LARGE_INTEGER UserTime;
91   LARGE_INTEGER KernelTime;
92   UNICODE_STRING ImageName;
93   DWORD BasePriority;
94   HANDLE ProcessId;
95   HANDLE ParentProcessId;
96   ULONG HandleCount;
97   ULONG Reserved2[2];
98   VM_COUNTERS VMCounters;
99   IO_COUNTERS IOCounters;
100   SYSTEM_THREAD Threads[1];
101 }; // SYSTEM_PROCESS_INFORMATION
102 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
103 
104 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
105 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
106 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
107 #if KMP_ARCH_X86
108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
113 #else
114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
119 #endif
120 
121 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
122                                                     PVOID, ULONG, PULONG);
123 NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
124 
125 HMODULE ntdll = NULL;
126 
127 /* End of NtQuerySystemInformation()-related code */
128 
129 static HMODULE kernel32 = NULL;
130 
131 #if KMP_HANDLE_SIGNALS
132 typedef void (*sig_func_t)(int);
133 static sig_func_t __kmp_sighldrs[NSIG];
134 static int __kmp_siginstalled[NSIG];
135 #endif
136 
137 #if KMP_USE_MONITOR
138 static HANDLE __kmp_monitor_ev;
139 #endif
140 static kmp_int64 __kmp_win32_time;
141 double __kmp_win32_tick;
142 
143 int __kmp_init_runtime = FALSE;
144 CRITICAL_SECTION __kmp_win32_section;
145 
146 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
147   InitializeCriticalSection(&mx->cs);
148 #if USE_ITT_BUILD
149   __kmp_itt_system_object_created(&mx->cs, "Critical Section");
150 #endif /* USE_ITT_BUILD */
151 }
152 
153 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
154   DeleteCriticalSection(&mx->cs);
155 }
156 
157 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
158   EnterCriticalSection(&mx->cs);
159 }
160 
161 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
162   return TryEnterCriticalSection(&mx->cs);
163 }
164 
165 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
166   LeaveCriticalSection(&mx->cs);
167 }
168 
169 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
170   cv->waiters_count_ = 0;
171   cv->wait_generation_count_ = 0;
172   cv->release_count_ = 0;
173 
174   /* Initialize the critical section */
175   __kmp_win32_mutex_init(&cv->waiters_count_lock_);
176 
177   /* Create a manual-reset event. */
178   cv->event_ = CreateEvent(NULL, // no security
179                            TRUE, // manual-reset
180                            FALSE, // non-signaled initially
181                            NULL); // unnamed
182 #if USE_ITT_BUILD
183   __kmp_itt_system_object_created(cv->event_, "Event");
184 #endif /* USE_ITT_BUILD */
185 }
186 
187 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
188   __kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
189   __kmp_free_handle(cv->event_);
190   memset(cv, '\0', sizeof(*cv));
191 }
192 
193 /* TODO associate cv with a team instead of a thread so as to optimize
194    the case where we wake up a whole team */
195 
196 template <class C>
197 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
198                                   kmp_info_t *th, C *flag) {
199   int my_generation;
200   int last_waiter;
201 
202   /* Avoid race conditions */
203   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
204 
205   /* Increment count of waiters */
206   cv->waiters_count_++;
207 
208   /* Store current generation in our activation record. */
209   my_generation = cv->wait_generation_count_;
210 
211   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
212   __kmp_win32_mutex_unlock(mx);
213 
214   for (;;) {
215     int wait_done = 0;
216     DWORD res, timeout = 5000; // just tried to quess an appropriate number
217     /* Wait until the event is signaled */
218     res = WaitForSingleObject(cv->event_, timeout);
219 
220     if (res == WAIT_OBJECT_0) {
221       // event signaled
222       __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
223       /* Exit the loop when the <cv->event_> is signaled and there are still
224          waiting threads from this <wait_generation> that haven't been released
225          from this wait yet. */
226       wait_done = (cv->release_count_ > 0) &&
227                   (cv->wait_generation_count_ != my_generation);
228       __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
229     } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) {
230       // check if the flag and cv counters are in consistent state
231       // as MS sent us debug dump whith inconsistent state of data
232       __kmp_win32_mutex_lock(mx);
233       typename C::flag_t old_f = flag->set_sleeping();
234       if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) {
235         __kmp_win32_mutex_unlock(mx);
236         continue;
237       }
238       // condition fulfilled, exiting
239       old_f = flag->unset_sleeping();
240       KMP_DEBUG_ASSERT(old_f & KMP_BARRIER_SLEEP_STATE);
241       TCW_PTR(th->th.th_sleep_loc, NULL);
242       KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition "
243                     "fulfilled: flag's loc(%p): %u => %u\n",
244                     flag->get(), old_f, *(flag->get())));
245 
246       __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
247       KMP_DEBUG_ASSERT(cv->waiters_count_ > 0);
248       cv->release_count_ = cv->waiters_count_;
249       cv->wait_generation_count_++;
250       wait_done = 1;
251       __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
252 
253       __kmp_win32_mutex_unlock(mx);
254     }
255     /* there used to be a semicolon after the if statement, it looked like a
256        bug, so i removed it */
257     if (wait_done)
258       break;
259   }
260 
261   __kmp_win32_mutex_lock(mx);
262   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
263 
264   cv->waiters_count_--;
265   cv->release_count_--;
266 
267   last_waiter = (cv->release_count_ == 0);
268 
269   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
270 
271   if (last_waiter) {
272     /* We're the last waiter to be notified, so reset the manual event. */
273     ResetEvent(cv->event_);
274   }
275 }
276 
277 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
278   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
279 
280   if (cv->waiters_count_ > 0) {
281     SetEvent(cv->event_);
282     /* Release all the threads in this generation. */
283 
284     cv->release_count_ = cv->waiters_count_;
285 
286     /* Start a new generation. */
287     cv->wait_generation_count_++;
288   }
289 
290   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
291 }
292 
293 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
294   __kmp_win32_cond_broadcast(cv);
295 }
296 
297 void __kmp_enable(int new_state) {
298   if (__kmp_init_runtime)
299     LeaveCriticalSection(&__kmp_win32_section);
300 }
301 
302 void __kmp_disable(int *old_state) {
303   *old_state = 0;
304 
305   if (__kmp_init_runtime)
306     EnterCriticalSection(&__kmp_win32_section);
307 }
308 
309 void __kmp_suspend_initialize(void) { /* do nothing */
310 }
311 
312 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
313   if (!TCR_4(th->th.th_suspend_init)) {
314     /* this means we haven't initialized the suspension pthread objects for this
315        thread in this instance of the process */
316     __kmp_win32_cond_init(&th->th.th_suspend_cv);
317     __kmp_win32_mutex_init(&th->th.th_suspend_mx);
318     TCW_4(th->th.th_suspend_init, TRUE);
319   }
320 }
321 
322 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
323   if (TCR_4(th->th.th_suspend_init)) {
324     /* this means we have initialize the suspension pthread objects for this
325        thread in this instance of the process */
326     __kmp_win32_cond_destroy(&th->th.th_suspend_cv);
327     __kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
328     TCW_4(th->th.th_suspend_init, FALSE);
329   }
330 }
331 
332 int __kmp_try_suspend_mx(kmp_info_t *th) {
333   return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
334 }
335 
336 void __kmp_lock_suspend_mx(kmp_info_t *th) {
337   __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
338 }
339 
340 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
341   __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
342 }
343 
344 /* This routine puts the calling thread to sleep after setting the
345    sleep bit for the indicated flag variable to true. */
346 template <class C>
347 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
348   kmp_info_t *th = __kmp_threads[th_gtid];
349   int status;
350   typename C::flag_t old_spin;
351 
352   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
353                 th_gtid, flag->get()));
354 
355   __kmp_suspend_initialize_thread(th);
356   __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
357 
358   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
359                 " loc(%p)\n",
360                 th_gtid, flag->get()));
361 
362   /* TODO: shouldn't this use release semantics to ensure that
363      __kmp_suspend_initialize_thread gets called first? */
364   old_spin = flag->set_sleeping();
365 #if OMP_50_ENABLED
366   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
367       __kmp_pause_status != kmp_soft_paused) {
368     flag->unset_sleeping();
369     __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
370     return;
371   }
372 #endif
373 
374   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
375                " loc(%p)==%d\n",
376                th_gtid, flag->get(), *(flag->get())));
377 
378   if (flag->done_check_val(old_spin)) {
379     old_spin = flag->unset_sleeping();
380     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
381                  "for flag's loc(%p)\n",
382                  th_gtid, flag->get()));
383   } else {
384 #ifdef DEBUG_SUSPEND
385     __kmp_suspend_count++;
386 #endif
387     /* Encapsulate in a loop as the documentation states that this may "with
388        low probability" return when the condition variable has not been signaled
389        or broadcast */
390     int deactivated = FALSE;
391     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
392     while (flag->is_sleeping()) {
393       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
394                     "kmp_win32_cond_wait()\n",
395                     th_gtid));
396       // Mark the thread as no longer active (only in the first iteration of the
397       // loop).
398       if (!deactivated) {
399         th->th.th_active = FALSE;
400         if (th->th.th_active_in_pool) {
401           th->th.th_active_in_pool = FALSE;
402           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
403           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
404         }
405         deactivated = TRUE;
406         __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
407                               flag);
408       } else {
409         __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
410                               flag);
411       }
412 
413 #ifdef KMP_DEBUG
414       if (flag->is_sleeping()) {
415         KF_TRACE(100,
416                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
417       }
418 #endif /* KMP_DEBUG */
419 
420     } // while
421 
422     // Mark the thread as active again (if it was previous marked as inactive)
423     if (deactivated) {
424       th->th.th_active = TRUE;
425       if (TCR_4(th->th.th_in_pool)) {
426         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
427         th->th.th_active_in_pool = TRUE;
428       }
429     }
430   }
431 
432   __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
433 
434   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
435 }
436 
437 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
438   __kmp_suspend_template(th_gtid, flag);
439 }
440 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
441   __kmp_suspend_template(th_gtid, flag);
442 }
443 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
444   __kmp_suspend_template(th_gtid, flag);
445 }
446 
447 /* This routine signals the thread specified by target_gtid to wake up
448    after setting the sleep bit indicated by the flag argument to FALSE */
449 template <class C>
450 static inline void __kmp_resume_template(int target_gtid, C *flag) {
451   kmp_info_t *th = __kmp_threads[target_gtid];
452   int status;
453 
454 #ifdef KMP_DEBUG
455   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
456 #endif
457 
458   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
459                 gtid, target_gtid));
460 
461   __kmp_suspend_initialize_thread(th);
462   __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
463 
464   if (!flag) { // coming from __kmp_null_resume_wrapper
465     flag = (C *)th->th.th_sleep_loc;
466   }
467 
468   // First, check if the flag is null or its type has changed. If so, someone
469   // else woke it up.
470   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
471     // simply shows what
472     // flag was cast to
473     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
474                  "awake: flag's loc(%p)\n",
475                  gtid, target_gtid, NULL));
476     __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
477     return;
478   } else {
479     typename C::flag_t old_spin = flag->unset_sleeping();
480     if (!flag->is_sleeping_val(old_spin)) {
481       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
482                    "awake: flag's loc(%p): %u => %u\n",
483                    gtid, target_gtid, flag->get(), old_spin, *(flag->get())));
484       __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
485       return;
486     }
487   }
488   TCW_PTR(th->th.th_sleep_loc, NULL);
489   KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
490                "bit for flag's loc(%p)\n",
491                gtid, target_gtid, flag->get()));
492 
493   __kmp_win32_cond_signal(&th->th.th_suspend_cv);
494   __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
495 
496   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
497                 " for T#%d\n",
498                 gtid, target_gtid));
499 }
500 
501 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
502   __kmp_resume_template(target_gtid, flag);
503 }
504 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
505   __kmp_resume_template(target_gtid, flag);
506 }
507 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
508   __kmp_resume_template(target_gtid, flag);
509 }
510 
511 void __kmp_yield() { Sleep(0); }
512 
513 void __kmp_gtid_set_specific(int gtid) {
514   if (__kmp_init_gtid) {
515     KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
516                   __kmp_gtid_threadprivate_key));
517     if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1)))
518       KMP_FATAL(TLSSetValueFailed);
519   } else {
520     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
521   }
522 }
523 
524 int __kmp_gtid_get_specific() {
525   int gtid;
526   if (!__kmp_init_gtid) {
527     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
528                   "KMP_GTID_SHUTDOWN\n"));
529     return KMP_GTID_SHUTDOWN;
530   }
531   gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
532   if (gtid == 0) {
533     gtid = KMP_GTID_DNE;
534   } else {
535     gtid--;
536   }
537   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
538                 __kmp_gtid_threadprivate_key, gtid));
539   return gtid;
540 }
541 
542 void __kmp_affinity_bind_thread(int proc) {
543   if (__kmp_num_proc_groups > 1) {
544     // Form the GROUP_AFFINITY struct directly, rather than filling
545     // out a bit vector and calling __kmp_set_system_affinity().
546     GROUP_AFFINITY ga;
547     KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
548                                              sizeof(DWORD_PTR))));
549     ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
550     ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
551     ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
552 
553     KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
554     if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
555       DWORD error = GetLastError();
556       if (__kmp_affinity_verbose) { // AC: continue silently if not verbose
557         kmp_msg_t err_code = KMP_ERR(error);
558         __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
559                   __kmp_msg_null);
560         if (__kmp_generate_warnings == kmp_warnings_off) {
561           __kmp_str_free(&err_code.str);
562         }
563       }
564     }
565   } else {
566     kmp_affin_mask_t *mask;
567     KMP_CPU_ALLOC_ON_STACK(mask);
568     KMP_CPU_ZERO(mask);
569     KMP_CPU_SET(proc, mask);
570     __kmp_set_system_affinity(mask, TRUE);
571     KMP_CPU_FREE_FROM_STACK(mask);
572   }
573 }
574 
575 void __kmp_affinity_determine_capable(const char *env_var) {
576 // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask().
577 
578 #if KMP_GROUP_AFFINITY
579   KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
580 #else
581   KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
582 #endif
583 
584   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
585                 "Windows* OS affinity interface functional (mask size = "
586                 "%" KMP_SIZE_T_SPEC ").\n",
587                 __kmp_affin_mask_size));
588 }
589 
590 double __kmp_read_cpu_time(void) {
591   FILETIME CreationTime, ExitTime, KernelTime, UserTime;
592   int status;
593   double cpu_time;
594 
595   cpu_time = 0;
596 
597   status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
598                            &KernelTime, &UserTime);
599 
600   if (status) {
601     double sec = 0;
602 
603     sec += KernelTime.dwHighDateTime;
604     sec += UserTime.dwHighDateTime;
605 
606     /* Shift left by 32 bits */
607     sec *= (double)(1 << 16) * (double)(1 << 16);
608 
609     sec += KernelTime.dwLowDateTime;
610     sec += UserTime.dwLowDateTime;
611 
612     cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
613   }
614 
615   return cpu_time;
616 }
617 
618 int __kmp_read_system_info(struct kmp_sys_info *info) {
619   info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
620   info->minflt = 0; /* the number of page faults serviced without any I/O */
621   info->majflt = 0; /* the number of page faults serviced that required I/O */
622   info->nswap = 0; // the number of times a process was "swapped" out of memory
623   info->inblock = 0; // the number of times the file system had to perform input
624   info->oublock = 0; // number of times the file system had to perform output
625   info->nvcsw = 0; /* the number of times a context switch was voluntarily */
626   info->nivcsw = 0; /* the number of times a context switch was forced */
627 
628   return 1;
629 }
630 
631 void __kmp_runtime_initialize(void) {
632   SYSTEM_INFO info;
633   kmp_str_buf_t path;
634   UINT path_size;
635 
636   if (__kmp_init_runtime) {
637     return;
638   }
639 
640 #if KMP_DYNAMIC_LIB
641   /* Pin dynamic library for the lifetime of application */
642   {
643     // First, turn off error message boxes
644     UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
645     HMODULE h;
646     BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
647                                      GET_MODULE_HANDLE_EX_FLAG_PIN,
648                                  (LPCTSTR)&__kmp_serial_initialize, &h);
649     KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
650     SetErrorMode(err_mode); // Restore error mode
651     KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
652   }
653 #endif
654 
655   InitializeCriticalSection(&__kmp_win32_section);
656 #if USE_ITT_BUILD
657   __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
658 #endif /* USE_ITT_BUILD */
659   __kmp_initialize_system_tick();
660 
661 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
662   if (!__kmp_cpuinfo.initialized) {
663     __kmp_query_cpuid(&__kmp_cpuinfo);
664   }
665 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
666 
667 /* Set up minimum number of threads to switch to TLS gtid */
668 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
669   // Windows* OS, static library.
670   /* New thread may use stack space previously used by another thread,
671      currently terminated. On Windows* OS, in case of static linking, we do not
672      know the moment of thread termination, and our structures (__kmp_threads
673      and __kmp_root arrays) are still keep info about dead threads. This leads
674      to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
675      (by searching through stack addresses of all known threads) for
676      unregistered foreign tread.
677 
678      Setting __kmp_tls_gtid_min to 0 workarounds this problem:
679      __kmp_get_global_thread_id() does not search through stacks, but get gtid
680      from TLS immediately.
681       --ln
682   */
683   __kmp_tls_gtid_min = 0;
684 #else
685   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
686 #endif
687 
688   /* for the static library */
689   if (!__kmp_gtid_threadprivate_key) {
690     __kmp_gtid_threadprivate_key = TlsAlloc();
691     if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
692       KMP_FATAL(TLSOutOfIndexes);
693     }
694   }
695 
696   // Load ntdll.dll.
697   /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
698      (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
699      have to specify full path to the library. */
700   __kmp_str_buf_init(&path);
701   path_size = GetSystemDirectory(path.str, path.size);
702   KMP_DEBUG_ASSERT(path_size > 0);
703   if (path_size >= path.size) {
704     // Buffer is too short.  Expand the buffer and try again.
705     __kmp_str_buf_reserve(&path, path_size);
706     path_size = GetSystemDirectory(path.str, path.size);
707     KMP_DEBUG_ASSERT(path_size > 0);
708   }
709   if (path_size > 0 && path_size < path.size) {
710     // Now we have system directory name in the buffer.
711     // Append backslash and name of dll to form full path,
712     path.used = path_size;
713     __kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
714 
715     // Now load ntdll using full path.
716     ntdll = GetModuleHandle(path.str);
717   }
718 
719   KMP_DEBUG_ASSERT(ntdll != NULL);
720   if (ntdll != NULL) {
721     NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
722         ntdll, "NtQuerySystemInformation");
723   }
724   KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
725 
726 #if KMP_GROUP_AFFINITY
727   // Load kernel32.dll.
728   // Same caveat - must use full system path name.
729   if (path_size > 0 && path_size < path.size) {
730     // Truncate the buffer back to just the system path length,
731     // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
732     path.used = path_size;
733     __kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
734 
735     // Load kernel32.dll using full path.
736     kernel32 = GetModuleHandle(path.str);
737     KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
738 
739     // Load the function pointers to kernel32.dll routines
740     // that may or may not exist on this system.
741     if (kernel32 != NULL) {
742       __kmp_GetActiveProcessorCount =
743           (kmp_GetActiveProcessorCount_t)GetProcAddress(
744               kernel32, "GetActiveProcessorCount");
745       __kmp_GetActiveProcessorGroupCount =
746           (kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
747               kernel32, "GetActiveProcessorGroupCount");
748       __kmp_GetThreadGroupAffinity =
749           (kmp_GetThreadGroupAffinity_t)GetProcAddress(
750               kernel32, "GetThreadGroupAffinity");
751       __kmp_SetThreadGroupAffinity =
752           (kmp_SetThreadGroupAffinity_t)GetProcAddress(
753               kernel32, "SetThreadGroupAffinity");
754 
755       KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
756                     " = %p\n",
757                     __kmp_GetActiveProcessorCount));
758       KA_TRACE(10, ("__kmp_runtime_initialize: "
759                     "__kmp_GetActiveProcessorGroupCount = %p\n",
760                     __kmp_GetActiveProcessorGroupCount));
761       KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
762                     " = %p\n",
763                     __kmp_GetThreadGroupAffinity));
764       KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
765                     " = %p\n",
766                     __kmp_SetThreadGroupAffinity));
767       KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
768                     sizeof(kmp_affin_mask_t)));
769 
770       // See if group affinity is supported on this system.
771       // If so, calculate the #groups and #procs.
772       //
773       // Group affinity was introduced with Windows* 7 OS and
774       // Windows* Server 2008 R2 OS.
775       if ((__kmp_GetActiveProcessorCount != NULL) &&
776           (__kmp_GetActiveProcessorGroupCount != NULL) &&
777           (__kmp_GetThreadGroupAffinity != NULL) &&
778           (__kmp_SetThreadGroupAffinity != NULL) &&
779           ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
780            1)) {
781         // Calculate the total number of active OS procs.
782         int i;
783 
784         KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
785                       " detected\n",
786                       __kmp_num_proc_groups));
787 
788         __kmp_xproc = 0;
789 
790         for (i = 0; i < __kmp_num_proc_groups; i++) {
791           DWORD size = __kmp_GetActiveProcessorCount(i);
792           __kmp_xproc += size;
793           KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
794                         i, size));
795         }
796       } else {
797         KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
798                       " detected\n",
799                       __kmp_num_proc_groups));
800       }
801     }
802   }
803   if (__kmp_num_proc_groups <= 1) {
804     GetSystemInfo(&info);
805     __kmp_xproc = info.dwNumberOfProcessors;
806   }
807 #else
808   GetSystemInfo(&info);
809   __kmp_xproc = info.dwNumberOfProcessors;
810 #endif /* KMP_GROUP_AFFINITY */
811 
812   // If the OS said there were 0 procs, take a guess and use a value of 2.
813   // This is done for Linux* OS, also.  Do we need error / warning?
814   if (__kmp_xproc <= 0) {
815     __kmp_xproc = 2;
816   }
817 
818   KA_TRACE(5,
819            ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
820 
821   __kmp_str_buf_free(&path);
822 
823 #if USE_ITT_BUILD
824   __kmp_itt_initialize();
825 #endif /* USE_ITT_BUILD */
826 
827   __kmp_init_runtime = TRUE;
828 } // __kmp_runtime_initialize
829 
830 void __kmp_runtime_destroy(void) {
831   if (!__kmp_init_runtime) {
832     return;
833   }
834 
835 #if USE_ITT_BUILD
836   __kmp_itt_destroy();
837 #endif /* USE_ITT_BUILD */
838 
839   /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
840   /* due to the KX_TRACE() commands */
841   KA_TRACE(40, ("__kmp_runtime_destroy\n"));
842 
843   if (__kmp_gtid_threadprivate_key) {
844     TlsFree(__kmp_gtid_threadprivate_key);
845     __kmp_gtid_threadprivate_key = 0;
846   }
847 
848   __kmp_affinity_uninitialize();
849   DeleteCriticalSection(&__kmp_win32_section);
850 
851   ntdll = NULL;
852   NtQuerySystemInformation = NULL;
853 
854 #if KMP_ARCH_X86_64
855   kernel32 = NULL;
856   __kmp_GetActiveProcessorCount = NULL;
857   __kmp_GetActiveProcessorGroupCount = NULL;
858   __kmp_GetThreadGroupAffinity = NULL;
859   __kmp_SetThreadGroupAffinity = NULL;
860 #endif // KMP_ARCH_X86_64
861 
862   __kmp_init_runtime = FALSE;
863 }
864 
865 void __kmp_terminate_thread(int gtid) {
866   kmp_info_t *th = __kmp_threads[gtid];
867 
868   if (!th)
869     return;
870 
871   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
872 
873   if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
874     /* It's OK, the thread may have exited already */
875   }
876   __kmp_free_handle(th->th.th_info.ds.ds_thread);
877 }
878 
879 void __kmp_clear_system_time(void) {
880   BOOL status;
881   LARGE_INTEGER time;
882   status = QueryPerformanceCounter(&time);
883   __kmp_win32_time = (kmp_int64)time.QuadPart;
884 }
885 
886 void __kmp_initialize_system_tick(void) {
887   {
888     BOOL status;
889     LARGE_INTEGER freq;
890 
891     status = QueryPerformanceFrequency(&freq);
892     if (!status) {
893       DWORD error = GetLastError();
894       __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
895                   KMP_ERR(error), __kmp_msg_null);
896 
897     } else {
898       __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
899     }
900   }
901 }
902 
903 /* Calculate the elapsed wall clock time for the user */
904 
905 void __kmp_elapsed(double *t) {
906   BOOL status;
907   LARGE_INTEGER now;
908   status = QueryPerformanceCounter(&now);
909   *t = ((double)now.QuadPart) * __kmp_win32_tick;
910 }
911 
912 /* Calculate the elapsed wall clock tick for the user */
913 
914 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
915 
916 void __kmp_read_system_time(double *delta) {
917   if (delta != NULL) {
918     BOOL status;
919     LARGE_INTEGER now;
920 
921     status = QueryPerformanceCounter(&now);
922 
923     *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
924              __kmp_win32_tick;
925   }
926 }
927 
928 /* Return the current time stamp in nsec */
929 kmp_uint64 __kmp_now_nsec() {
930   LARGE_INTEGER now;
931   QueryPerformanceCounter(&now);
932   return 1e9 * __kmp_win32_tick * now.QuadPart;
933 }
934 
935 extern "C"
936 void *__stdcall __kmp_launch_worker(void *arg) {
937   volatile void *stack_data;
938   void *exit_val;
939   void *padding = 0;
940   kmp_info_t *this_thr = (kmp_info_t *)arg;
941   int gtid;
942 
943   gtid = this_thr->th.th_info.ds.ds_gtid;
944   __kmp_gtid_set_specific(gtid);
945 #ifdef KMP_TDATA_GTID
946 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
947         "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
948         "reference: http://support.microsoft.com/kb/118816"
949 //__kmp_gtid = gtid;
950 #endif
951 
952 #if USE_ITT_BUILD
953   __kmp_itt_thread_name(gtid);
954 #endif /* USE_ITT_BUILD */
955 
956   __kmp_affinity_set_init_mask(gtid, FALSE);
957 
958 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
959   // Set FP control regs to be a copy of the parallel initialization thread's.
960   __kmp_clear_x87_fpu_status_word();
961   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
962   __kmp_load_mxcsr(&__kmp_init_mxcsr);
963 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
964 
965   if (__kmp_stkoffset > 0 && gtid > 0) {
966     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
967   }
968 
969   KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
970   this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
971   TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
972 
973   if (TCR_4(__kmp_gtid_mode) <
974       2) { // check stack only if it is used to get gtid
975     TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
976     KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
977     __kmp_check_stack_overlap(this_thr);
978   }
979   KMP_MB();
980   exit_val = __kmp_launch_thread(this_thr);
981   KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
982   TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
983   KMP_MB();
984   return exit_val;
985 }
986 
987 #if KMP_USE_MONITOR
988 /* The monitor thread controls all of the threads in the complex */
989 
990 void *__stdcall __kmp_launch_monitor(void *arg) {
991   DWORD wait_status;
992   kmp_thread_t monitor;
993   int status;
994   int interval;
995   kmp_info_t *this_thr = (kmp_info_t *)arg;
996 
997   KMP_DEBUG_ASSERT(__kmp_init_monitor);
998   TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
999   // TODO: hide "2" in enum (like {true,false,started})
1000   this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1001   TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1002 
1003   KMP_MB(); /* Flush all pending memory write invalidates.  */
1004   KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
1005 
1006   monitor = GetCurrentThread();
1007 
1008   /* set thread priority */
1009   status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
1010   if (!status) {
1011     DWORD error = GetLastError();
1012     __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1013   }
1014 
1015   /* register us as monitor */
1016   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
1017 #ifdef KMP_TDATA_GTID
1018 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1019         "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
1020         "reference: http://support.microsoft.com/kb/118816"
1021 //__kmp_gtid = KMP_GTID_MONITOR;
1022 #endif
1023 
1024 #if USE_ITT_BUILD
1025   __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
1026 // monitor thread.
1027 #endif /* USE_ITT_BUILD */
1028 
1029   KMP_MB(); /* Flush all pending memory write invalidates.  */
1030 
1031   interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
1032 
1033   while (!TCR_4(__kmp_global.g.g_done)) {
1034     /*  This thread monitors the state of the system */
1035 
1036     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
1037 
1038     wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
1039 
1040     if (wait_status == WAIT_TIMEOUT) {
1041       TCW_4(__kmp_global.g.g_time.dt.t_value,
1042             TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
1043     }
1044 
1045     KMP_MB(); /* Flush all pending memory write invalidates.  */
1046   }
1047 
1048   KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1049 
1050   status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
1051   if (!status) {
1052     DWORD error = GetLastError();
1053     __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1054   }
1055 
1056   if (__kmp_global.g.g_abort != 0) {
1057     /* now we need to terminate the worker threads   */
1058     /* the value of t_abort is the signal we caught */
1059     int gtid;
1060 
1061     KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1062                   (__kmp_global.g.g_abort)));
1063 
1064     /* terminate the OpenMP worker threads */
1065     /* TODO this is not valid for sibling threads!!
1066      * the uber master might not be 0 anymore.. */
1067     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
1068       __kmp_terminate_thread(gtid);
1069 
1070     __kmp_cleanup();
1071 
1072     Sleep(0);
1073 
1074     KA_TRACE(10,
1075              ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
1076 
1077     if (__kmp_global.g.g_abort > 0) {
1078       raise(__kmp_global.g.g_abort);
1079     }
1080   }
1081 
1082   TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1083 
1084   KMP_MB();
1085   return arg;
1086 }
1087 #endif
1088 
1089 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
1090   kmp_thread_t handle;
1091   DWORD idThread;
1092 
1093   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
1094 
1095   th->th.th_info.ds.ds_gtid = gtid;
1096 
1097   if (KMP_UBER_GTID(gtid)) {
1098     int stack_data;
1099 
1100     /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1101        other threads to use. Is it appropriate to just use GetCurrentThread?
1102        When should we close this handle?  When unregistering the root? */
1103     {
1104       BOOL rc;
1105       rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1106                            GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
1107                            FALSE, DUPLICATE_SAME_ACCESS);
1108       KMP_ASSERT(rc);
1109       KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1110                     "handle = %" KMP_UINTPTR_SPEC "\n",
1111                     (LPVOID)th, th->th.th_info.ds.ds_thread));
1112       th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1113     }
1114     if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
1115       /* we will dynamically update the stack range if gtid_mode == 1 */
1116       TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
1117       TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
1118       TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
1119       __kmp_check_stack_overlap(th);
1120     }
1121   } else {
1122     KMP_MB(); /* Flush all pending memory write invalidates.  */
1123 
1124     /* Set stack size for this thread now. */
1125     KA_TRACE(10,
1126              ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
1127               stack_size));
1128 
1129     stack_size += gtid * __kmp_stkoffset;
1130 
1131     TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
1132     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
1133 
1134     KA_TRACE(10,
1135              ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1136               " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1137               (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1138               (LPVOID)th, &idThread));
1139 
1140     handle = CreateThread(
1141         NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
1142         (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1143 
1144     KA_TRACE(10,
1145              ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1146               " bytes, &__kmp_launch_worker = %p, th = %p, "
1147               "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
1148               (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1149               (LPVOID)th, idThread, handle));
1150 
1151     if (handle == 0) {
1152       DWORD error = GetLastError();
1153       __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1154     } else {
1155       th->th.th_info.ds.ds_thread = handle;
1156     }
1157 
1158     KMP_MB(); /* Flush all pending memory write invalidates.  */
1159   }
1160 
1161   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
1162 }
1163 
1164 int __kmp_still_running(kmp_info_t *th) {
1165   return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
1166 }
1167 
1168 #if KMP_USE_MONITOR
1169 void __kmp_create_monitor(kmp_info_t *th) {
1170   kmp_thread_t handle;
1171   DWORD idThread;
1172   int ideal, new_ideal;
1173 
1174   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
1175     // We don't need monitor thread in case of MAX_BLOCKTIME
1176     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1177                   "MAX blocktime\n"));
1178     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
1179     th->th.th_info.ds.ds_gtid = 0;
1180     TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
1181     return;
1182   }
1183   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1184 
1185   KMP_MB(); /* Flush all pending memory write invalidates.  */
1186 
1187   __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
1188   if (__kmp_monitor_ev == NULL) {
1189     DWORD error = GetLastError();
1190     __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
1191   }
1192 #if USE_ITT_BUILD
1193   __kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
1194 #endif /* USE_ITT_BUILD */
1195 
1196   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1197   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1198 
1199   // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1200   // to automatically expand stacksize based on CreateThread error code.
1201   if (__kmp_monitor_stksize == 0) {
1202     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1203   }
1204   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
1205     __kmp_monitor_stksize = __kmp_sys_min_stksize;
1206   }
1207 
1208   KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1209                 (int)__kmp_monitor_stksize));
1210 
1211   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
1212 
1213   handle =
1214       CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
1215                    (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
1216                    STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1217   if (handle == 0) {
1218     DWORD error = GetLastError();
1219     __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1220   } else
1221     th->th.th_info.ds.ds_thread = handle;
1222 
1223   KMP_MB(); /* Flush all pending memory write invalidates.  */
1224 
1225   KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1226                 (void *)th->th.th_info.ds.ds_thread));
1227 }
1228 #endif
1229 
1230 /* Check to see if thread is still alive.
1231    NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1232    with a exit_val = code.  Because of this we can not rely on exit_val having
1233    any particular value.  So this routine may return STILL_ALIVE in exit_val
1234    even after the thread is dead. */
1235 
1236 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
1237   DWORD rc;
1238   rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
1239   if (rc == 0) {
1240     DWORD error = GetLastError();
1241     __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
1242                 __kmp_msg_null);
1243   }
1244   return (*exit_val == STILL_ACTIVE);
1245 }
1246 
1247 void __kmp_exit_thread(int exit_status) {
1248   ExitThread(exit_status);
1249 } // __kmp_exit_thread
1250 
1251 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
1252 static void __kmp_reap_common(kmp_info_t *th) {
1253   DWORD exit_val;
1254 
1255   KMP_MB(); /* Flush all pending memory write invalidates.  */
1256 
1257   KA_TRACE(
1258       10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
1259 
1260   /* 2006-10-19:
1261      There are two opposite situations:
1262      1. Windows* OS keep thread alive after it resets ds_alive flag and
1263      exits from thread function. (For example, see C70770/Q394281 "unloading of
1264      dll based on OMP is very slow".)
1265      2. Windows* OS may kill thread before it resets ds_alive flag.
1266 
1267      Right solution seems to be waiting for *either* thread termination *or*
1268      ds_alive resetting. */
1269   {
1270     // TODO: This code is very similar to KMP_WAIT. Need to generalize
1271     // KMP_WAIT to cover this usage also.
1272     void *obj = NULL;
1273     kmp_uint32 spins;
1274 #if USE_ITT_BUILD
1275     KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
1276 #endif /* USE_ITT_BUILD */
1277     KMP_INIT_YIELD(spins);
1278     do {
1279 #if USE_ITT_BUILD
1280       KMP_FSYNC_SPIN_PREPARE(obj);
1281 #endif /* USE_ITT_BUILD */
1282       __kmp_is_thread_alive(th, &exit_val);
1283       KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
1284     } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
1285 #if USE_ITT_BUILD
1286     if (exit_val == STILL_ACTIVE) {
1287       KMP_FSYNC_CANCEL(obj);
1288     } else {
1289       KMP_FSYNC_SPIN_ACQUIRED(obj);
1290     }
1291 #endif /* USE_ITT_BUILD */
1292   }
1293 
1294   __kmp_free_handle(th->th.th_info.ds.ds_thread);
1295 
1296   /* NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1297      with a exit_val = code.  Because of this we can not rely on exit_val having
1298      any particular value. */
1299   if (exit_val == STILL_ACTIVE) {
1300     KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1301   } else if ((void *)exit_val != (void *)th) {
1302     KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1303   }
1304 
1305   KA_TRACE(10,
1306            ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1307             "\n",
1308             th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
1309 
1310   th->th.th_info.ds.ds_thread = 0;
1311   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1312   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1313   th->th.th_info.ds.ds_thread_id = 0;
1314 
1315   KMP_MB(); /* Flush all pending memory write invalidates.  */
1316 }
1317 
1318 #if KMP_USE_MONITOR
1319 void __kmp_reap_monitor(kmp_info_t *th) {
1320   int status;
1321 
1322   KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1323                 (void *)th->th.th_info.ds.ds_thread));
1324 
1325   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1326   // If both tid and gtid are 0, it means the monitor did not ever start.
1327   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1328   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1329   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1330     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1331     return;
1332   }
1333 
1334   KMP_MB(); /* Flush all pending memory write invalidates.  */
1335 
1336   status = SetEvent(__kmp_monitor_ev);
1337   if (status == FALSE) {
1338     DWORD error = GetLastError();
1339     __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
1340   }
1341   KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1342                 th->th.th_info.ds.ds_gtid));
1343   __kmp_reap_common(th);
1344 
1345   __kmp_free_handle(__kmp_monitor_ev);
1346 
1347   KMP_MB(); /* Flush all pending memory write invalidates.  */
1348 }
1349 #endif
1350 
1351 void __kmp_reap_worker(kmp_info_t *th) {
1352   KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1353                 th->th.th_info.ds.ds_gtid));
1354   __kmp_reap_common(th);
1355 }
1356 
1357 #if KMP_HANDLE_SIGNALS
1358 
1359 static void __kmp_team_handler(int signo) {
1360   if (__kmp_global.g.g_abort == 0) {
1361     // Stage 1 signal handler, let's shut down all of the threads.
1362     if (__kmp_debug_buf) {
1363       __kmp_dump_debug_buffer();
1364     }
1365     KMP_MB(); // Flush all pending memory write invalidates.
1366     TCW_4(__kmp_global.g.g_abort, signo);
1367     KMP_MB(); // Flush all pending memory write invalidates.
1368     TCW_4(__kmp_global.g.g_done, TRUE);
1369     KMP_MB(); // Flush all pending memory write invalidates.
1370   }
1371 } // __kmp_team_handler
1372 
1373 static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
1374   sig_func_t old = signal(signum, handler);
1375   if (old == SIG_ERR) {
1376     int error = errno;
1377     __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
1378                 __kmp_msg_null);
1379   }
1380   return old;
1381 }
1382 
1383 static void __kmp_install_one_handler(int sig, sig_func_t handler,
1384                                       int parallel_init) {
1385   sig_func_t old;
1386   KMP_MB(); /* Flush all pending memory write invalidates.  */
1387   KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
1388   if (parallel_init) {
1389     old = __kmp_signal(sig, handler);
1390     // SIG_DFL on Windows* OS in NULL or 0.
1391     if (old == __kmp_sighldrs[sig]) {
1392       __kmp_siginstalled[sig] = 1;
1393     } else { // Restore/keep user's handler if one previously installed.
1394       old = __kmp_signal(sig, old);
1395     }
1396   } else {
1397     // Save initial/system signal handlers to see if user handlers installed.
1398     // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1399     // called once with parallel_init == TRUE.
1400     old = __kmp_signal(sig, SIG_DFL);
1401     __kmp_sighldrs[sig] = old;
1402     __kmp_signal(sig, old);
1403   }
1404   KMP_MB(); /* Flush all pending memory write invalidates.  */
1405 } // __kmp_install_one_handler
1406 
1407 static void __kmp_remove_one_handler(int sig) {
1408   if (__kmp_siginstalled[sig]) {
1409     sig_func_t old;
1410     KMP_MB(); // Flush all pending memory write invalidates.
1411     KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
1412     old = __kmp_signal(sig, __kmp_sighldrs[sig]);
1413     if (old != __kmp_team_handler) {
1414       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1415                     "restoring: sig=%d\n",
1416                     sig));
1417       old = __kmp_signal(sig, old);
1418     }
1419     __kmp_sighldrs[sig] = NULL;
1420     __kmp_siginstalled[sig] = 0;
1421     KMP_MB(); // Flush all pending memory write invalidates.
1422   }
1423 } // __kmp_remove_one_handler
1424 
1425 void __kmp_install_signals(int parallel_init) {
1426   KB_TRACE(10, ("__kmp_install_signals: called\n"));
1427   if (!__kmp_handle_signals) {
1428     KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1429                   "handlers not installed\n"));
1430     return;
1431   }
1432   __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1433   __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1434   __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1435   __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1436   __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1437   __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1438 } // __kmp_install_signals
1439 
1440 void __kmp_remove_signals(void) {
1441   int sig;
1442   KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1443   for (sig = 1; sig < NSIG; ++sig) {
1444     __kmp_remove_one_handler(sig);
1445   }
1446 } // __kmp_remove_signals
1447 
1448 #endif // KMP_HANDLE_SIGNALS
1449 
1450 /* Put the thread to sleep for a time period */
1451 void __kmp_thread_sleep(int millis) {
1452   DWORD status;
1453 
1454   status = SleepEx((DWORD)millis, FALSE);
1455   if (status) {
1456     DWORD error = GetLastError();
1457     __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
1458                 __kmp_msg_null);
1459   }
1460 }
1461 
1462 // Determine whether the given address is mapped into the current address space.
1463 int __kmp_is_address_mapped(void *addr) {
1464   DWORD status;
1465   MEMORY_BASIC_INFORMATION lpBuffer;
1466   SIZE_T dwLength;
1467 
1468   dwLength = sizeof(MEMORY_BASIC_INFORMATION);
1469 
1470   status = VirtualQuery(addr, &lpBuffer, dwLength);
1471 
1472   return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
1473            ((lpBuffer.Protect == PAGE_NOACCESS) ||
1474             (lpBuffer.Protect == PAGE_EXECUTE)));
1475 }
1476 
1477 kmp_uint64 __kmp_hardware_timestamp(void) {
1478   kmp_uint64 r = 0;
1479 
1480   QueryPerformanceCounter((LARGE_INTEGER *)&r);
1481   return r;
1482 }
1483 
1484 /* Free handle and check the error code */
1485 void __kmp_free_handle(kmp_thread_t tHandle) {
1486   /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1487    * as HANDLE */
1488   BOOL rc;
1489   rc = CloseHandle(tHandle);
1490   if (!rc) {
1491     DWORD error = GetLastError();
1492     __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
1493   }
1494 }
1495 
1496 int __kmp_get_load_balance(int max) {
1497   static ULONG glb_buff_size = 100 * 1024;
1498 
1499   // Saved count of the running threads for the thread balance algortihm
1500   static int glb_running_threads = 0;
1501   static double glb_call_time = 0; /* Thread balance algorithm call time */
1502 
1503   int running_threads = 0; // Number of running threads in the system.
1504   NTSTATUS status = 0;
1505   ULONG buff_size = 0;
1506   ULONG info_size = 0;
1507   void *buffer = NULL;
1508   PSYSTEM_PROCESS_INFORMATION spi = NULL;
1509   int first_time = 1;
1510 
1511   double call_time = 0.0; // start, finish;
1512 
1513   __kmp_elapsed(&call_time);
1514 
1515   if (glb_call_time &&
1516       (call_time - glb_call_time < __kmp_load_balance_interval)) {
1517     running_threads = glb_running_threads;
1518     goto finish;
1519   }
1520   glb_call_time = call_time;
1521 
1522   // Do not spend time on running algorithm if we have a permanent error.
1523   if (NtQuerySystemInformation == NULL) {
1524     running_threads = -1;
1525     goto finish;
1526   }
1527 
1528   if (max <= 0) {
1529     max = INT_MAX;
1530   }
1531 
1532   do {
1533 
1534     if (first_time) {
1535       buff_size = glb_buff_size;
1536     } else {
1537       buff_size = 2 * buff_size;
1538     }
1539 
1540     buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
1541     if (buffer == NULL) {
1542       running_threads = -1;
1543       goto finish;
1544     }
1545     status = NtQuerySystemInformation(SystemProcessInformation, buffer,
1546                                       buff_size, &info_size);
1547     first_time = 0;
1548 
1549   } while (status == STATUS_INFO_LENGTH_MISMATCH);
1550   glb_buff_size = buff_size;
1551 
1552 #define CHECK(cond)                                                            \
1553   {                                                                            \
1554     KMP_DEBUG_ASSERT(cond);                                                    \
1555     if (!(cond)) {                                                             \
1556       running_threads = -1;                                                    \
1557       goto finish;                                                             \
1558     }                                                                          \
1559   }
1560 
1561   CHECK(buff_size >= info_size);
1562   spi = PSYSTEM_PROCESS_INFORMATION(buffer);
1563   for (;;) {
1564     ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
1565     CHECK(0 <= offset &&
1566           offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
1567     HANDLE pid = spi->ProcessId;
1568     ULONG num = spi->NumberOfThreads;
1569     CHECK(num >= 1);
1570     size_t spi_size =
1571         sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
1572     CHECK(offset + spi_size <
1573           info_size); // Make sure process info record fits the buffer.
1574     if (spi->NextEntryOffset != 0) {
1575       CHECK(spi_size <=
1576             spi->NextEntryOffset); // And do not overlap with the next record.
1577     }
1578     // pid == 0 corresponds to the System Idle Process. It always has running
1579     // threads on all cores. So, we don't consider the running threads of this
1580     // process.
1581     if (pid != 0) {
1582       for (int i = 0; i < num; ++i) {
1583         THREAD_STATE state = spi->Threads[i].State;
1584         // Count threads that have Ready or Running state.
1585         // !!! TODO: Why comment does not match the code???
1586         if (state == StateRunning) {
1587           ++running_threads;
1588           // Stop counting running threads if the number is already greater than
1589           // the number of available cores
1590           if (running_threads >= max) {
1591             goto finish;
1592           }
1593         }
1594       }
1595     }
1596     if (spi->NextEntryOffset == 0) {
1597       break;
1598     }
1599     spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
1600   }
1601 
1602 #undef CHECK
1603 
1604 finish: // Clean up and exit.
1605 
1606   if (buffer != NULL) {
1607     KMP_INTERNAL_FREE(buffer);
1608   }
1609 
1610   glb_running_threads = running_threads;
1611 
1612   return running_threads;
1613 } //__kmp_get_load_balance()
1614