1 /* 2 * z_Windows_NT_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_wait_release.h" 19 20 /* This code is related to NtQuerySystemInformation() function. This function 21 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the 22 number of running threads in the system. */ 23 24 #include <ntsecapi.h> // UNICODE_STRING 25 #include <ntstatus.h> 26 27 enum SYSTEM_INFORMATION_CLASS { 28 SystemProcessInformation = 5 29 }; // SYSTEM_INFORMATION_CLASS 30 31 struct CLIENT_ID { 32 HANDLE UniqueProcess; 33 HANDLE UniqueThread; 34 }; // struct CLIENT_ID 35 36 enum THREAD_STATE { 37 StateInitialized, 38 StateReady, 39 StateRunning, 40 StateStandby, 41 StateTerminated, 42 StateWait, 43 StateTransition, 44 StateUnknown 45 }; // enum THREAD_STATE 46 47 struct VM_COUNTERS { 48 SIZE_T PeakVirtualSize; 49 SIZE_T VirtualSize; 50 ULONG PageFaultCount; 51 SIZE_T PeakWorkingSetSize; 52 SIZE_T WorkingSetSize; 53 SIZE_T QuotaPeakPagedPoolUsage; 54 SIZE_T QuotaPagedPoolUsage; 55 SIZE_T QuotaPeakNonPagedPoolUsage; 56 SIZE_T QuotaNonPagedPoolUsage; 57 SIZE_T PagefileUsage; 58 SIZE_T PeakPagefileUsage; 59 SIZE_T PrivatePageCount; 60 }; // struct VM_COUNTERS 61 62 struct SYSTEM_THREAD { 63 LARGE_INTEGER KernelTime; 64 LARGE_INTEGER UserTime; 65 LARGE_INTEGER CreateTime; 66 ULONG WaitTime; 67 LPVOID StartAddress; 68 CLIENT_ID ClientId; 69 DWORD Priority; 70 LONG BasePriority; 71 ULONG ContextSwitchCount; 72 THREAD_STATE State; 73 ULONG WaitReason; 74 }; // SYSTEM_THREAD 75 76 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0); 77 #if KMP_ARCH_X86 78 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28); 79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52); 80 #else 81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32); 82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68); 83 #endif 84 85 struct SYSTEM_PROCESS_INFORMATION { 86 ULONG NextEntryOffset; 87 ULONG NumberOfThreads; 88 LARGE_INTEGER Reserved[3]; 89 LARGE_INTEGER CreateTime; 90 LARGE_INTEGER UserTime; 91 LARGE_INTEGER KernelTime; 92 UNICODE_STRING ImageName; 93 DWORD BasePriority; 94 HANDLE ProcessId; 95 HANDLE ParentProcessId; 96 ULONG HandleCount; 97 ULONG Reserved2[2]; 98 VM_COUNTERS VMCounters; 99 IO_COUNTERS IOCounters; 100 SYSTEM_THREAD Threads[1]; 101 }; // SYSTEM_PROCESS_INFORMATION 102 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION; 103 104 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0); 105 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32); 106 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56); 107 #if KMP_ARCH_X86 108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68); 109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76); 110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88); 111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136); 112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184); 113 #else 114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80); 115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96); 116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112); 117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208); 118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256); 119 #endif 120 121 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS, 122 PVOID, ULONG, PULONG); 123 NtQuerySystemInformation_t NtQuerySystemInformation = NULL; 124 125 HMODULE ntdll = NULL; 126 127 /* End of NtQuerySystemInformation()-related code */ 128 129 static HMODULE kernel32 = NULL; 130 131 #if KMP_HANDLE_SIGNALS 132 typedef void (*sig_func_t)(int); 133 static sig_func_t __kmp_sighldrs[NSIG]; 134 static int __kmp_siginstalled[NSIG]; 135 #endif 136 137 #if KMP_USE_MONITOR 138 static HANDLE __kmp_monitor_ev; 139 #endif 140 static kmp_int64 __kmp_win32_time; 141 double __kmp_win32_tick; 142 143 int __kmp_init_runtime = FALSE; 144 CRITICAL_SECTION __kmp_win32_section; 145 146 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) { 147 InitializeCriticalSection(&mx->cs); 148 #if USE_ITT_BUILD 149 __kmp_itt_system_object_created(&mx->cs, "Critical Section"); 150 #endif /* USE_ITT_BUILD */ 151 } 152 153 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) { 154 DeleteCriticalSection(&mx->cs); 155 } 156 157 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) { 158 EnterCriticalSection(&mx->cs); 159 } 160 161 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) { 162 return TryEnterCriticalSection(&mx->cs); 163 } 164 165 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) { 166 LeaveCriticalSection(&mx->cs); 167 } 168 169 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) { 170 cv->waiters_count_ = 0; 171 cv->wait_generation_count_ = 0; 172 cv->release_count_ = 0; 173 174 /* Initialize the critical section */ 175 __kmp_win32_mutex_init(&cv->waiters_count_lock_); 176 177 /* Create a manual-reset event. */ 178 cv->event_ = CreateEvent(NULL, // no security 179 TRUE, // manual-reset 180 FALSE, // non-signaled initially 181 NULL); // unnamed 182 #if USE_ITT_BUILD 183 __kmp_itt_system_object_created(cv->event_, "Event"); 184 #endif /* USE_ITT_BUILD */ 185 } 186 187 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) { 188 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_); 189 __kmp_free_handle(cv->event_); 190 memset(cv, '\0', sizeof(*cv)); 191 } 192 193 /* TODO associate cv with a team instead of a thread so as to optimize 194 the case where we wake up a whole team */ 195 196 template <class C> 197 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, 198 kmp_info_t *th, C *flag) { 199 int my_generation; 200 int last_waiter; 201 202 /* Avoid race conditions */ 203 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 204 205 /* Increment count of waiters */ 206 cv->waiters_count_++; 207 208 /* Store current generation in our activation record. */ 209 my_generation = cv->wait_generation_count_; 210 211 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 212 __kmp_win32_mutex_unlock(mx); 213 214 for (;;) { 215 int wait_done = 0; 216 DWORD res, timeout = 5000; // just tried to quess an appropriate number 217 /* Wait until the event is signaled */ 218 res = WaitForSingleObject(cv->event_, timeout); 219 220 if (res == WAIT_OBJECT_0) { 221 // event signaled 222 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 223 /* Exit the loop when the <cv->event_> is signaled and there are still 224 waiting threads from this <wait_generation> that haven't been released 225 from this wait yet. */ 226 wait_done = (cv->release_count_ > 0) && 227 (cv->wait_generation_count_ != my_generation); 228 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 229 } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) { 230 // check if the flag and cv counters are in consistent state 231 // as MS sent us debug dump whith inconsistent state of data 232 __kmp_win32_mutex_lock(mx); 233 typename C::flag_t old_f = flag->set_sleeping(); 234 if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) { 235 __kmp_win32_mutex_unlock(mx); 236 continue; 237 } 238 // condition fulfilled, exiting 239 old_f = flag->unset_sleeping(); 240 KMP_DEBUG_ASSERT(old_f & KMP_BARRIER_SLEEP_STATE); 241 TCW_PTR(th->th.th_sleep_loc, NULL); 242 KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition " 243 "fulfilled: flag's loc(%p): %u => %u\n", 244 flag->get(), old_f, *(flag->get()))); 245 246 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 247 KMP_DEBUG_ASSERT(cv->waiters_count_ > 0); 248 cv->release_count_ = cv->waiters_count_; 249 cv->wait_generation_count_++; 250 wait_done = 1; 251 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 252 253 __kmp_win32_mutex_unlock(mx); 254 } 255 /* there used to be a semicolon after the if statement, it looked like a 256 bug, so i removed it */ 257 if (wait_done) 258 break; 259 } 260 261 __kmp_win32_mutex_lock(mx); 262 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 263 264 cv->waiters_count_--; 265 cv->release_count_--; 266 267 last_waiter = (cv->release_count_ == 0); 268 269 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 270 271 if (last_waiter) { 272 /* We're the last waiter to be notified, so reset the manual event. */ 273 ResetEvent(cv->event_); 274 } 275 } 276 277 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) { 278 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 279 280 if (cv->waiters_count_ > 0) { 281 SetEvent(cv->event_); 282 /* Release all the threads in this generation. */ 283 284 cv->release_count_ = cv->waiters_count_; 285 286 /* Start a new generation. */ 287 cv->wait_generation_count_++; 288 } 289 290 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 291 } 292 293 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) { 294 __kmp_win32_cond_broadcast(cv); 295 } 296 297 void __kmp_enable(int new_state) { 298 if (__kmp_init_runtime) 299 LeaveCriticalSection(&__kmp_win32_section); 300 } 301 302 void __kmp_disable(int *old_state) { 303 *old_state = 0; 304 305 if (__kmp_init_runtime) 306 EnterCriticalSection(&__kmp_win32_section); 307 } 308 309 void __kmp_suspend_initialize(void) { /* do nothing */ 310 } 311 312 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 313 if (!TCR_4(th->th.th_suspend_init)) { 314 /* this means we haven't initialized the suspension pthread objects for this 315 thread in this instance of the process */ 316 __kmp_win32_cond_init(&th->th.th_suspend_cv); 317 __kmp_win32_mutex_init(&th->th.th_suspend_mx); 318 TCW_4(th->th.th_suspend_init, TRUE); 319 } 320 } 321 322 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 323 if (TCR_4(th->th.th_suspend_init)) { 324 /* this means we have initialize the suspension pthread objects for this 325 thread in this instance of the process */ 326 __kmp_win32_cond_destroy(&th->th.th_suspend_cv); 327 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx); 328 TCW_4(th->th.th_suspend_init, FALSE); 329 } 330 } 331 332 int __kmp_try_suspend_mx(kmp_info_t *th) { 333 return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx); 334 } 335 336 void __kmp_lock_suspend_mx(kmp_info_t *th) { 337 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 338 } 339 340 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 341 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 342 } 343 344 /* This routine puts the calling thread to sleep after setting the 345 sleep bit for the indicated flag variable to true. */ 346 template <class C> 347 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 348 kmp_info_t *th = __kmp_threads[th_gtid]; 349 int status; 350 typename C::flag_t old_spin; 351 352 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", 353 th_gtid, flag->get())); 354 355 __kmp_suspend_initialize_thread(th); 356 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 357 358 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's" 359 " loc(%p)\n", 360 th_gtid, flag->get())); 361 362 /* TODO: shouldn't this use release semantics to ensure that 363 __kmp_suspend_initialize_thread gets called first? */ 364 old_spin = flag->set_sleeping(); 365 #if OMP_50_ENABLED 366 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 367 __kmp_pause_status != kmp_soft_paused) { 368 flag->unset_sleeping(); 369 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 370 return; 371 } 372 #endif 373 374 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's" 375 " loc(%p)==%d\n", 376 th_gtid, flag->get(), *(flag->get()))); 377 378 if (flag->done_check_val(old_spin)) { 379 old_spin = flag->unset_sleeping(); 380 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 381 "for flag's loc(%p)\n", 382 th_gtid, flag->get())); 383 } else { 384 #ifdef DEBUG_SUSPEND 385 __kmp_suspend_count++; 386 #endif 387 /* Encapsulate in a loop as the documentation states that this may "with 388 low probability" return when the condition variable has not been signaled 389 or broadcast */ 390 int deactivated = FALSE; 391 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 392 while (flag->is_sleeping()) { 393 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 394 "kmp_win32_cond_wait()\n", 395 th_gtid)); 396 // Mark the thread as no longer active (only in the first iteration of the 397 // loop). 398 if (!deactivated) { 399 th->th.th_active = FALSE; 400 if (th->th.th_active_in_pool) { 401 th->th.th_active_in_pool = FALSE; 402 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 403 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 404 } 405 deactivated = TRUE; 406 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, 407 flag); 408 } else { 409 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, 410 flag); 411 } 412 413 #ifdef KMP_DEBUG 414 if (flag->is_sleeping()) { 415 KF_TRACE(100, 416 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 417 } 418 #endif /* KMP_DEBUG */ 419 420 } // while 421 422 // Mark the thread as active again (if it was previous marked as inactive) 423 if (deactivated) { 424 th->th.th_active = TRUE; 425 if (TCR_4(th->th.th_in_pool)) { 426 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 427 th->th.th_active_in_pool = TRUE; 428 } 429 } 430 } 431 432 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 433 434 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 435 } 436 437 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 438 __kmp_suspend_template(th_gtid, flag); 439 } 440 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 441 __kmp_suspend_template(th_gtid, flag); 442 } 443 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 444 __kmp_suspend_template(th_gtid, flag); 445 } 446 447 /* This routine signals the thread specified by target_gtid to wake up 448 after setting the sleep bit indicated by the flag argument to FALSE */ 449 template <class C> 450 static inline void __kmp_resume_template(int target_gtid, C *flag) { 451 kmp_info_t *th = __kmp_threads[target_gtid]; 452 int status; 453 454 #ifdef KMP_DEBUG 455 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 456 #endif 457 458 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 459 gtid, target_gtid)); 460 461 __kmp_suspend_initialize_thread(th); 462 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 463 464 if (!flag) { // coming from __kmp_null_resume_wrapper 465 flag = (C *)th->th.th_sleep_loc; 466 } 467 468 // First, check if the flag is null or its type has changed. If so, someone 469 // else woke it up. 470 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 471 // simply shows what 472 // flag was cast to 473 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 474 "awake: flag's loc(%p)\n", 475 gtid, target_gtid, NULL)); 476 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 477 return; 478 } else { 479 typename C::flag_t old_spin = flag->unset_sleeping(); 480 if (!flag->is_sleeping_val(old_spin)) { 481 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 482 "awake: flag's loc(%p): %u => %u\n", 483 gtid, target_gtid, flag->get(), old_spin, *(flag->get()))); 484 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 485 return; 486 } 487 } 488 TCW_PTR(th->th.th_sleep_loc, NULL); 489 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep " 490 "bit for flag's loc(%p)\n", 491 gtid, target_gtid, flag->get())); 492 493 __kmp_win32_cond_signal(&th->th.th_suspend_cv); 494 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 495 496 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 497 " for T#%d\n", 498 gtid, target_gtid)); 499 } 500 501 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 502 __kmp_resume_template(target_gtid, flag); 503 } 504 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 505 __kmp_resume_template(target_gtid, flag); 506 } 507 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 508 __kmp_resume_template(target_gtid, flag); 509 } 510 511 void __kmp_yield() { Sleep(0); } 512 513 void __kmp_gtid_set_specific(int gtid) { 514 if (__kmp_init_gtid) { 515 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, 516 __kmp_gtid_threadprivate_key)); 517 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1))) 518 KMP_FATAL(TLSSetValueFailed); 519 } else { 520 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 521 } 522 } 523 524 int __kmp_gtid_get_specific() { 525 int gtid; 526 if (!__kmp_init_gtid) { 527 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 528 "KMP_GTID_SHUTDOWN\n")); 529 return KMP_GTID_SHUTDOWN; 530 } 531 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key); 532 if (gtid == 0) { 533 gtid = KMP_GTID_DNE; 534 } else { 535 gtid--; 536 } 537 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 538 __kmp_gtid_threadprivate_key, gtid)); 539 return gtid; 540 } 541 542 void __kmp_affinity_bind_thread(int proc) { 543 if (__kmp_num_proc_groups > 1) { 544 // Form the GROUP_AFFINITY struct directly, rather than filling 545 // out a bit vector and calling __kmp_set_system_affinity(). 546 GROUP_AFFINITY ga; 547 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * 548 sizeof(DWORD_PTR)))); 549 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); 550 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); 551 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; 552 553 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); 554 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { 555 DWORD error = GetLastError(); 556 if (__kmp_affinity_verbose) { // AC: continue silently if not verbose 557 kmp_msg_t err_code = KMP_ERR(error); 558 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code, 559 __kmp_msg_null); 560 if (__kmp_generate_warnings == kmp_warnings_off) { 561 __kmp_str_free(&err_code.str); 562 } 563 } 564 } 565 } else { 566 kmp_affin_mask_t *mask; 567 KMP_CPU_ALLOC_ON_STACK(mask); 568 KMP_CPU_ZERO(mask); 569 KMP_CPU_SET(proc, mask); 570 __kmp_set_system_affinity(mask, TRUE); 571 KMP_CPU_FREE_FROM_STACK(mask); 572 } 573 } 574 575 void __kmp_affinity_determine_capable(const char *env_var) { 576 // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask(). 577 578 #if KMP_GROUP_AFFINITY 579 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR)); 580 #else 581 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR)); 582 #endif 583 584 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 585 "Windows* OS affinity interface functional (mask size = " 586 "%" KMP_SIZE_T_SPEC ").\n", 587 __kmp_affin_mask_size)); 588 } 589 590 double __kmp_read_cpu_time(void) { 591 FILETIME CreationTime, ExitTime, KernelTime, UserTime; 592 int status; 593 double cpu_time; 594 595 cpu_time = 0; 596 597 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, 598 &KernelTime, &UserTime); 599 600 if (status) { 601 double sec = 0; 602 603 sec += KernelTime.dwHighDateTime; 604 sec += UserTime.dwHighDateTime; 605 606 /* Shift left by 32 bits */ 607 sec *= (double)(1 << 16) * (double)(1 << 16); 608 609 sec += KernelTime.dwLowDateTime; 610 sec += UserTime.dwLowDateTime; 611 612 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; 613 } 614 615 return cpu_time; 616 } 617 618 int __kmp_read_system_info(struct kmp_sys_info *info) { 619 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ 620 info->minflt = 0; /* the number of page faults serviced without any I/O */ 621 info->majflt = 0; /* the number of page faults serviced that required I/O */ 622 info->nswap = 0; // the number of times a process was "swapped" out of memory 623 info->inblock = 0; // the number of times the file system had to perform input 624 info->oublock = 0; // number of times the file system had to perform output 625 info->nvcsw = 0; /* the number of times a context switch was voluntarily */ 626 info->nivcsw = 0; /* the number of times a context switch was forced */ 627 628 return 1; 629 } 630 631 void __kmp_runtime_initialize(void) { 632 SYSTEM_INFO info; 633 kmp_str_buf_t path; 634 UINT path_size; 635 636 if (__kmp_init_runtime) { 637 return; 638 } 639 640 #if KMP_DYNAMIC_LIB 641 /* Pin dynamic library for the lifetime of application */ 642 { 643 // First, turn off error message boxes 644 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS); 645 HMODULE h; 646 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | 647 GET_MODULE_HANDLE_EX_FLAG_PIN, 648 (LPCTSTR)&__kmp_serial_initialize, &h); 649 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); 650 SetErrorMode(err_mode); // Restore error mode 651 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n")); 652 } 653 #endif 654 655 InitializeCriticalSection(&__kmp_win32_section); 656 #if USE_ITT_BUILD 657 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section"); 658 #endif /* USE_ITT_BUILD */ 659 __kmp_initialize_system_tick(); 660 661 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 662 if (!__kmp_cpuinfo.initialized) { 663 __kmp_query_cpuid(&__kmp_cpuinfo); 664 } 665 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 666 667 /* Set up minimum number of threads to switch to TLS gtid */ 668 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 669 // Windows* OS, static library. 670 /* New thread may use stack space previously used by another thread, 671 currently terminated. On Windows* OS, in case of static linking, we do not 672 know the moment of thread termination, and our structures (__kmp_threads 673 and __kmp_root arrays) are still keep info about dead threads. This leads 674 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid 675 (by searching through stack addresses of all known threads) for 676 unregistered foreign tread. 677 678 Setting __kmp_tls_gtid_min to 0 workarounds this problem: 679 __kmp_get_global_thread_id() does not search through stacks, but get gtid 680 from TLS immediately. 681 --ln 682 */ 683 __kmp_tls_gtid_min = 0; 684 #else 685 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 686 #endif 687 688 /* for the static library */ 689 if (!__kmp_gtid_threadprivate_key) { 690 __kmp_gtid_threadprivate_key = TlsAlloc(); 691 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) { 692 KMP_FATAL(TLSOutOfIndexes); 693 } 694 } 695 696 // Load ntdll.dll. 697 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue 698 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We 699 have to specify full path to the library. */ 700 __kmp_str_buf_init(&path); 701 path_size = GetSystemDirectory(path.str, path.size); 702 KMP_DEBUG_ASSERT(path_size > 0); 703 if (path_size >= path.size) { 704 // Buffer is too short. Expand the buffer and try again. 705 __kmp_str_buf_reserve(&path, path_size); 706 path_size = GetSystemDirectory(path.str, path.size); 707 KMP_DEBUG_ASSERT(path_size > 0); 708 } 709 if (path_size > 0 && path_size < path.size) { 710 // Now we have system directory name in the buffer. 711 // Append backslash and name of dll to form full path, 712 path.used = path_size; 713 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll"); 714 715 // Now load ntdll using full path. 716 ntdll = GetModuleHandle(path.str); 717 } 718 719 KMP_DEBUG_ASSERT(ntdll != NULL); 720 if (ntdll != NULL) { 721 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress( 722 ntdll, "NtQuerySystemInformation"); 723 } 724 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL); 725 726 #if KMP_GROUP_AFFINITY 727 // Load kernel32.dll. 728 // Same caveat - must use full system path name. 729 if (path_size > 0 && path_size < path.size) { 730 // Truncate the buffer back to just the system path length, 731 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". 732 path.used = path_size; 733 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll"); 734 735 // Load kernel32.dll using full path. 736 kernel32 = GetModuleHandle(path.str); 737 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str)); 738 739 // Load the function pointers to kernel32.dll routines 740 // that may or may not exist on this system. 741 if (kernel32 != NULL) { 742 __kmp_GetActiveProcessorCount = 743 (kmp_GetActiveProcessorCount_t)GetProcAddress( 744 kernel32, "GetActiveProcessorCount"); 745 __kmp_GetActiveProcessorGroupCount = 746 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress( 747 kernel32, "GetActiveProcessorGroupCount"); 748 __kmp_GetThreadGroupAffinity = 749 (kmp_GetThreadGroupAffinity_t)GetProcAddress( 750 kernel32, "GetThreadGroupAffinity"); 751 __kmp_SetThreadGroupAffinity = 752 (kmp_SetThreadGroupAffinity_t)GetProcAddress( 753 kernel32, "SetThreadGroupAffinity"); 754 755 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount" 756 " = %p\n", 757 __kmp_GetActiveProcessorCount)); 758 KA_TRACE(10, ("__kmp_runtime_initialize: " 759 "__kmp_GetActiveProcessorGroupCount = %p\n", 760 __kmp_GetActiveProcessorGroupCount)); 761 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity" 762 " = %p\n", 763 __kmp_GetThreadGroupAffinity)); 764 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity" 765 " = %p\n", 766 __kmp_SetThreadGroupAffinity)); 767 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", 768 sizeof(kmp_affin_mask_t))); 769 770 // See if group affinity is supported on this system. 771 // If so, calculate the #groups and #procs. 772 // 773 // Group affinity was introduced with Windows* 7 OS and 774 // Windows* Server 2008 R2 OS. 775 if ((__kmp_GetActiveProcessorCount != NULL) && 776 (__kmp_GetActiveProcessorGroupCount != NULL) && 777 (__kmp_GetThreadGroupAffinity != NULL) && 778 (__kmp_SetThreadGroupAffinity != NULL) && 779 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) > 780 1)) { 781 // Calculate the total number of active OS procs. 782 int i; 783 784 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 785 " detected\n", 786 __kmp_num_proc_groups)); 787 788 __kmp_xproc = 0; 789 790 for (i = 0; i < __kmp_num_proc_groups; i++) { 791 DWORD size = __kmp_GetActiveProcessorCount(i); 792 __kmp_xproc += size; 793 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n", 794 i, size)); 795 } 796 } else { 797 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 798 " detected\n", 799 __kmp_num_proc_groups)); 800 } 801 } 802 } 803 if (__kmp_num_proc_groups <= 1) { 804 GetSystemInfo(&info); 805 __kmp_xproc = info.dwNumberOfProcessors; 806 } 807 #else 808 GetSystemInfo(&info); 809 __kmp_xproc = info.dwNumberOfProcessors; 810 #endif /* KMP_GROUP_AFFINITY */ 811 812 // If the OS said there were 0 procs, take a guess and use a value of 2. 813 // This is done for Linux* OS, also. Do we need error / warning? 814 if (__kmp_xproc <= 0) { 815 __kmp_xproc = 2; 816 } 817 818 KA_TRACE(5, 819 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc)); 820 821 __kmp_str_buf_free(&path); 822 823 #if USE_ITT_BUILD 824 __kmp_itt_initialize(); 825 #endif /* USE_ITT_BUILD */ 826 827 __kmp_init_runtime = TRUE; 828 } // __kmp_runtime_initialize 829 830 void __kmp_runtime_destroy(void) { 831 if (!__kmp_init_runtime) { 832 return; 833 } 834 835 #if USE_ITT_BUILD 836 __kmp_itt_destroy(); 837 #endif /* USE_ITT_BUILD */ 838 839 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ 840 /* due to the KX_TRACE() commands */ 841 KA_TRACE(40, ("__kmp_runtime_destroy\n")); 842 843 if (__kmp_gtid_threadprivate_key) { 844 TlsFree(__kmp_gtid_threadprivate_key); 845 __kmp_gtid_threadprivate_key = 0; 846 } 847 848 __kmp_affinity_uninitialize(); 849 DeleteCriticalSection(&__kmp_win32_section); 850 851 ntdll = NULL; 852 NtQuerySystemInformation = NULL; 853 854 #if KMP_ARCH_X86_64 855 kernel32 = NULL; 856 __kmp_GetActiveProcessorCount = NULL; 857 __kmp_GetActiveProcessorGroupCount = NULL; 858 __kmp_GetThreadGroupAffinity = NULL; 859 __kmp_SetThreadGroupAffinity = NULL; 860 #endif // KMP_ARCH_X86_64 861 862 __kmp_init_runtime = FALSE; 863 } 864 865 void __kmp_terminate_thread(int gtid) { 866 kmp_info_t *th = __kmp_threads[gtid]; 867 868 if (!th) 869 return; 870 871 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 872 873 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) { 874 /* It's OK, the thread may have exited already */ 875 } 876 __kmp_free_handle(th->th.th_info.ds.ds_thread); 877 } 878 879 void __kmp_clear_system_time(void) { 880 BOOL status; 881 LARGE_INTEGER time; 882 status = QueryPerformanceCounter(&time); 883 __kmp_win32_time = (kmp_int64)time.QuadPart; 884 } 885 886 void __kmp_initialize_system_tick(void) { 887 { 888 BOOL status; 889 LARGE_INTEGER freq; 890 891 status = QueryPerformanceFrequency(&freq); 892 if (!status) { 893 DWORD error = GetLastError(); 894 __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"), 895 KMP_ERR(error), __kmp_msg_null); 896 897 } else { 898 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart; 899 } 900 } 901 } 902 903 /* Calculate the elapsed wall clock time for the user */ 904 905 void __kmp_elapsed(double *t) { 906 BOOL status; 907 LARGE_INTEGER now; 908 status = QueryPerformanceCounter(&now); 909 *t = ((double)now.QuadPart) * __kmp_win32_tick; 910 } 911 912 /* Calculate the elapsed wall clock tick for the user */ 913 914 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; } 915 916 void __kmp_read_system_time(double *delta) { 917 if (delta != NULL) { 918 BOOL status; 919 LARGE_INTEGER now; 920 921 status = QueryPerformanceCounter(&now); 922 923 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) * 924 __kmp_win32_tick; 925 } 926 } 927 928 /* Return the current time stamp in nsec */ 929 kmp_uint64 __kmp_now_nsec() { 930 LARGE_INTEGER now; 931 QueryPerformanceCounter(&now); 932 return 1e9 * __kmp_win32_tick * now.QuadPart; 933 } 934 935 extern "C" 936 void *__stdcall __kmp_launch_worker(void *arg) { 937 volatile void *stack_data; 938 void *exit_val; 939 void *padding = 0; 940 kmp_info_t *this_thr = (kmp_info_t *)arg; 941 int gtid; 942 943 gtid = this_thr->th.th_info.ds.ds_gtid; 944 __kmp_gtid_set_specific(gtid); 945 #ifdef KMP_TDATA_GTID 946 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 947 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 948 "reference: http://support.microsoft.com/kb/118816" 949 //__kmp_gtid = gtid; 950 #endif 951 952 #if USE_ITT_BUILD 953 __kmp_itt_thread_name(gtid); 954 #endif /* USE_ITT_BUILD */ 955 956 __kmp_affinity_set_init_mask(gtid, FALSE); 957 958 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 959 // Set FP control regs to be a copy of the parallel initialization thread's. 960 __kmp_clear_x87_fpu_status_word(); 961 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 962 __kmp_load_mxcsr(&__kmp_init_mxcsr); 963 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 964 965 if (__kmp_stkoffset > 0 && gtid > 0) { 966 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 967 } 968 969 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 970 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 971 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 972 973 if (TCR_4(__kmp_gtid_mode) < 974 2) { // check stack only if it is used to get gtid 975 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); 976 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE); 977 __kmp_check_stack_overlap(this_thr); 978 } 979 KMP_MB(); 980 exit_val = __kmp_launch_thread(this_thr); 981 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 982 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 983 KMP_MB(); 984 return exit_val; 985 } 986 987 #if KMP_USE_MONITOR 988 /* The monitor thread controls all of the threads in the complex */ 989 990 void *__stdcall __kmp_launch_monitor(void *arg) { 991 DWORD wait_status; 992 kmp_thread_t monitor; 993 int status; 994 int interval; 995 kmp_info_t *this_thr = (kmp_info_t *)arg; 996 997 KMP_DEBUG_ASSERT(__kmp_init_monitor); 998 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started 999 // TODO: hide "2" in enum (like {true,false,started}) 1000 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1001 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 1002 1003 KMP_MB(); /* Flush all pending memory write invalidates. */ 1004 KA_TRACE(10, ("__kmp_launch_monitor: launched\n")); 1005 1006 monitor = GetCurrentThread(); 1007 1008 /* set thread priority */ 1009 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST); 1010 if (!status) { 1011 DWORD error = GetLastError(); 1012 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1013 } 1014 1015 /* register us as monitor */ 1016 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 1017 #ifdef KMP_TDATA_GTID 1018 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 1019 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 1020 "reference: http://support.microsoft.com/kb/118816" 1021 //__kmp_gtid = KMP_GTID_MONITOR; 1022 #endif 1023 1024 #if USE_ITT_BUILD 1025 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore 1026 // monitor thread. 1027 #endif /* USE_ITT_BUILD */ 1028 1029 KMP_MB(); /* Flush all pending memory write invalidates. */ 1030 1031 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */ 1032 1033 while (!TCR_4(__kmp_global.g.g_done)) { 1034 /* This thread monitors the state of the system */ 1035 1036 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 1037 1038 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval); 1039 1040 if (wait_status == WAIT_TIMEOUT) { 1041 TCW_4(__kmp_global.g.g_time.dt.t_value, 1042 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 1043 } 1044 1045 KMP_MB(); /* Flush all pending memory write invalidates. */ 1046 } 1047 1048 KA_TRACE(10, ("__kmp_launch_monitor: finished\n")); 1049 1050 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL); 1051 if (!status) { 1052 DWORD error = GetLastError(); 1053 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1054 } 1055 1056 if (__kmp_global.g.g_abort != 0) { 1057 /* now we need to terminate the worker threads */ 1058 /* the value of t_abort is the signal we caught */ 1059 int gtid; 1060 1061 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n", 1062 (__kmp_global.g.g_abort))); 1063 1064 /* terminate the OpenMP worker threads */ 1065 /* TODO this is not valid for sibling threads!! 1066 * the uber master might not be 0 anymore.. */ 1067 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 1068 __kmp_terminate_thread(gtid); 1069 1070 __kmp_cleanup(); 1071 1072 Sleep(0); 1073 1074 KA_TRACE(10, 1075 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort)); 1076 1077 if (__kmp_global.g.g_abort > 0) { 1078 raise(__kmp_global.g.g_abort); 1079 } 1080 } 1081 1082 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1083 1084 KMP_MB(); 1085 return arg; 1086 } 1087 #endif 1088 1089 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 1090 kmp_thread_t handle; 1091 DWORD idThread; 1092 1093 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 1094 1095 th->th.th_info.ds.ds_gtid = gtid; 1096 1097 if (KMP_UBER_GTID(gtid)) { 1098 int stack_data; 1099 1100 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for 1101 other threads to use. Is it appropriate to just use GetCurrentThread? 1102 When should we close this handle? When unregistering the root? */ 1103 { 1104 BOOL rc; 1105 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), 1106 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, 1107 FALSE, DUPLICATE_SAME_ACCESS); 1108 KMP_ASSERT(rc); 1109 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, " 1110 "handle = %" KMP_UINTPTR_SPEC "\n", 1111 (LPVOID)th, th->th.th_info.ds.ds_thread)); 1112 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1113 } 1114 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid 1115 /* we will dynamically update the stack range if gtid_mode == 1 */ 1116 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 1117 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 1118 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 1119 __kmp_check_stack_overlap(th); 1120 } 1121 } else { 1122 KMP_MB(); /* Flush all pending memory write invalidates. */ 1123 1124 /* Set stack size for this thread now. */ 1125 KA_TRACE(10, 1126 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", 1127 stack_size)); 1128 1129 stack_size += gtid * __kmp_stkoffset; 1130 1131 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); 1132 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 1133 1134 KA_TRACE(10, 1135 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC 1136 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n", 1137 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1138 (LPVOID)th, &idThread)); 1139 1140 handle = CreateThread( 1141 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker, 1142 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1143 1144 KA_TRACE(10, 1145 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC 1146 " bytes, &__kmp_launch_worker = %p, th = %p, " 1147 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", 1148 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1149 (LPVOID)th, idThread, handle)); 1150 1151 if (handle == 0) { 1152 DWORD error = GetLastError(); 1153 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1154 } else { 1155 th->th.th_info.ds.ds_thread = handle; 1156 } 1157 1158 KMP_MB(); /* Flush all pending memory write invalidates. */ 1159 } 1160 1161 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 1162 } 1163 1164 int __kmp_still_running(kmp_info_t *th) { 1165 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0)); 1166 } 1167 1168 #if KMP_USE_MONITOR 1169 void __kmp_create_monitor(kmp_info_t *th) { 1170 kmp_thread_t handle; 1171 DWORD idThread; 1172 int ideal, new_ideal; 1173 1174 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 1175 // We don't need monitor thread in case of MAX_BLOCKTIME 1176 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 1177 "MAX blocktime\n")); 1178 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 1179 th->th.th_info.ds.ds_gtid = 0; 1180 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation 1181 return; 1182 } 1183 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 1184 1185 KMP_MB(); /* Flush all pending memory write invalidates. */ 1186 1187 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL); 1188 if (__kmp_monitor_ev == NULL) { 1189 DWORD error = GetLastError(); 1190 __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null); 1191 } 1192 #if USE_ITT_BUILD 1193 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event"); 1194 #endif /* USE_ITT_BUILD */ 1195 1196 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 1197 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 1198 1199 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how 1200 // to automatically expand stacksize based on CreateThread error code. 1201 if (__kmp_monitor_stksize == 0) { 1202 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 1203 } 1204 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 1205 __kmp_monitor_stksize = __kmp_sys_min_stksize; 1206 } 1207 1208 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", 1209 (int)__kmp_monitor_stksize)); 1210 1211 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 1212 1213 handle = 1214 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize, 1215 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th, 1216 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1217 if (handle == 0) { 1218 DWORD error = GetLastError(); 1219 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1220 } else 1221 th->th.th_info.ds.ds_thread = handle; 1222 1223 KMP_MB(); /* Flush all pending memory write invalidates. */ 1224 1225 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n", 1226 (void *)th->th.th_info.ds.ds_thread)); 1227 } 1228 #endif 1229 1230 /* Check to see if thread is still alive. 1231 NOTE: The ExitProcess(code) system call causes all threads to Terminate 1232 with a exit_val = code. Because of this we can not rely on exit_val having 1233 any particular value. So this routine may return STILL_ALIVE in exit_val 1234 even after the thread is dead. */ 1235 1236 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) { 1237 DWORD rc; 1238 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val); 1239 if (rc == 0) { 1240 DWORD error = GetLastError(); 1241 __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error), 1242 __kmp_msg_null); 1243 } 1244 return (*exit_val == STILL_ACTIVE); 1245 } 1246 1247 void __kmp_exit_thread(int exit_status) { 1248 ExitThread(exit_status); 1249 } // __kmp_exit_thread 1250 1251 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). 1252 static void __kmp_reap_common(kmp_info_t *th) { 1253 DWORD exit_val; 1254 1255 KMP_MB(); /* Flush all pending memory write invalidates. */ 1256 1257 KA_TRACE( 1258 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid)); 1259 1260 /* 2006-10-19: 1261 There are two opposite situations: 1262 1. Windows* OS keep thread alive after it resets ds_alive flag and 1263 exits from thread function. (For example, see C70770/Q394281 "unloading of 1264 dll based on OMP is very slow".) 1265 2. Windows* OS may kill thread before it resets ds_alive flag. 1266 1267 Right solution seems to be waiting for *either* thread termination *or* 1268 ds_alive resetting. */ 1269 { 1270 // TODO: This code is very similar to KMP_WAIT. Need to generalize 1271 // KMP_WAIT to cover this usage also. 1272 void *obj = NULL; 1273 kmp_uint32 spins; 1274 #if USE_ITT_BUILD 1275 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive); 1276 #endif /* USE_ITT_BUILD */ 1277 KMP_INIT_YIELD(spins); 1278 do { 1279 #if USE_ITT_BUILD 1280 KMP_FSYNC_SPIN_PREPARE(obj); 1281 #endif /* USE_ITT_BUILD */ 1282 __kmp_is_thread_alive(th, &exit_val); 1283 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 1284 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive)); 1285 #if USE_ITT_BUILD 1286 if (exit_val == STILL_ACTIVE) { 1287 KMP_FSYNC_CANCEL(obj); 1288 } else { 1289 KMP_FSYNC_SPIN_ACQUIRED(obj); 1290 } 1291 #endif /* USE_ITT_BUILD */ 1292 } 1293 1294 __kmp_free_handle(th->th.th_info.ds.ds_thread); 1295 1296 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate 1297 with a exit_val = code. Because of this we can not rely on exit_val having 1298 any particular value. */ 1299 if (exit_val == STILL_ACTIVE) { 1300 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n")); 1301 } else if ((void *)exit_val != (void *)th) { 1302 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n")); 1303 } 1304 1305 KA_TRACE(10, 1306 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC 1307 "\n", 1308 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread)); 1309 1310 th->th.th_info.ds.ds_thread = 0; 1311 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1312 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1313 th->th.th_info.ds.ds_thread_id = 0; 1314 1315 KMP_MB(); /* Flush all pending memory write invalidates. */ 1316 } 1317 1318 #if KMP_USE_MONITOR 1319 void __kmp_reap_monitor(kmp_info_t *th) { 1320 int status; 1321 1322 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n", 1323 (void *)th->th.th_info.ds.ds_thread)); 1324 1325 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1326 // If both tid and gtid are 0, it means the monitor did not ever start. 1327 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1328 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1329 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1330 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1331 return; 1332 } 1333 1334 KMP_MB(); /* Flush all pending memory write invalidates. */ 1335 1336 status = SetEvent(__kmp_monitor_ev); 1337 if (status == FALSE) { 1338 DWORD error = GetLastError(); 1339 __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null); 1340 } 1341 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n", 1342 th->th.th_info.ds.ds_gtid)); 1343 __kmp_reap_common(th); 1344 1345 __kmp_free_handle(__kmp_monitor_ev); 1346 1347 KMP_MB(); /* Flush all pending memory write invalidates. */ 1348 } 1349 #endif 1350 1351 void __kmp_reap_worker(kmp_info_t *th) { 1352 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n", 1353 th->th.th_info.ds.ds_gtid)); 1354 __kmp_reap_common(th); 1355 } 1356 1357 #if KMP_HANDLE_SIGNALS 1358 1359 static void __kmp_team_handler(int signo) { 1360 if (__kmp_global.g.g_abort == 0) { 1361 // Stage 1 signal handler, let's shut down all of the threads. 1362 if (__kmp_debug_buf) { 1363 __kmp_dump_debug_buffer(); 1364 } 1365 KMP_MB(); // Flush all pending memory write invalidates. 1366 TCW_4(__kmp_global.g.g_abort, signo); 1367 KMP_MB(); // Flush all pending memory write invalidates. 1368 TCW_4(__kmp_global.g.g_done, TRUE); 1369 KMP_MB(); // Flush all pending memory write invalidates. 1370 } 1371 } // __kmp_team_handler 1372 1373 static sig_func_t __kmp_signal(int signum, sig_func_t handler) { 1374 sig_func_t old = signal(signum, handler); 1375 if (old == SIG_ERR) { 1376 int error = errno; 1377 __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error), 1378 __kmp_msg_null); 1379 } 1380 return old; 1381 } 1382 1383 static void __kmp_install_one_handler(int sig, sig_func_t handler, 1384 int parallel_init) { 1385 sig_func_t old; 1386 KMP_MB(); /* Flush all pending memory write invalidates. */ 1387 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig)); 1388 if (parallel_init) { 1389 old = __kmp_signal(sig, handler); 1390 // SIG_DFL on Windows* OS in NULL or 0. 1391 if (old == __kmp_sighldrs[sig]) { 1392 __kmp_siginstalled[sig] = 1; 1393 } else { // Restore/keep user's handler if one previously installed. 1394 old = __kmp_signal(sig, old); 1395 } 1396 } else { 1397 // Save initial/system signal handlers to see if user handlers installed. 1398 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals 1399 // called once with parallel_init == TRUE. 1400 old = __kmp_signal(sig, SIG_DFL); 1401 __kmp_sighldrs[sig] = old; 1402 __kmp_signal(sig, old); 1403 } 1404 KMP_MB(); /* Flush all pending memory write invalidates. */ 1405 } // __kmp_install_one_handler 1406 1407 static void __kmp_remove_one_handler(int sig) { 1408 if (__kmp_siginstalled[sig]) { 1409 sig_func_t old; 1410 KMP_MB(); // Flush all pending memory write invalidates. 1411 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig)); 1412 old = __kmp_signal(sig, __kmp_sighldrs[sig]); 1413 if (old != __kmp_team_handler) { 1414 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1415 "restoring: sig=%d\n", 1416 sig)); 1417 old = __kmp_signal(sig, old); 1418 } 1419 __kmp_sighldrs[sig] = NULL; 1420 __kmp_siginstalled[sig] = 0; 1421 KMP_MB(); // Flush all pending memory write invalidates. 1422 } 1423 } // __kmp_remove_one_handler 1424 1425 void __kmp_install_signals(int parallel_init) { 1426 KB_TRACE(10, ("__kmp_install_signals: called\n")); 1427 if (!__kmp_handle_signals) { 1428 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - " 1429 "handlers not installed\n")); 1430 return; 1431 } 1432 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1433 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1434 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1435 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1436 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1437 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1438 } // __kmp_install_signals 1439 1440 void __kmp_remove_signals(void) { 1441 int sig; 1442 KB_TRACE(10, ("__kmp_remove_signals: called\n")); 1443 for (sig = 1; sig < NSIG; ++sig) { 1444 __kmp_remove_one_handler(sig); 1445 } 1446 } // __kmp_remove_signals 1447 1448 #endif // KMP_HANDLE_SIGNALS 1449 1450 /* Put the thread to sleep for a time period */ 1451 void __kmp_thread_sleep(int millis) { 1452 DWORD status; 1453 1454 status = SleepEx((DWORD)millis, FALSE); 1455 if (status) { 1456 DWORD error = GetLastError(); 1457 __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error), 1458 __kmp_msg_null); 1459 } 1460 } 1461 1462 // Determine whether the given address is mapped into the current address space. 1463 int __kmp_is_address_mapped(void *addr) { 1464 DWORD status; 1465 MEMORY_BASIC_INFORMATION lpBuffer; 1466 SIZE_T dwLength; 1467 1468 dwLength = sizeof(MEMORY_BASIC_INFORMATION); 1469 1470 status = VirtualQuery(addr, &lpBuffer, dwLength); 1471 1472 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) || 1473 ((lpBuffer.Protect == PAGE_NOACCESS) || 1474 (lpBuffer.Protect == PAGE_EXECUTE))); 1475 } 1476 1477 kmp_uint64 __kmp_hardware_timestamp(void) { 1478 kmp_uint64 r = 0; 1479 1480 QueryPerformanceCounter((LARGE_INTEGER *)&r); 1481 return r; 1482 } 1483 1484 /* Free handle and check the error code */ 1485 void __kmp_free_handle(kmp_thread_t tHandle) { 1486 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined 1487 * as HANDLE */ 1488 BOOL rc; 1489 rc = CloseHandle(tHandle); 1490 if (!rc) { 1491 DWORD error = GetLastError(); 1492 __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null); 1493 } 1494 } 1495 1496 int __kmp_get_load_balance(int max) { 1497 static ULONG glb_buff_size = 100 * 1024; 1498 1499 // Saved count of the running threads for the thread balance algortihm 1500 static int glb_running_threads = 0; 1501 static double glb_call_time = 0; /* Thread balance algorithm call time */ 1502 1503 int running_threads = 0; // Number of running threads in the system. 1504 NTSTATUS status = 0; 1505 ULONG buff_size = 0; 1506 ULONG info_size = 0; 1507 void *buffer = NULL; 1508 PSYSTEM_PROCESS_INFORMATION spi = NULL; 1509 int first_time = 1; 1510 1511 double call_time = 0.0; // start, finish; 1512 1513 __kmp_elapsed(&call_time); 1514 1515 if (glb_call_time && 1516 (call_time - glb_call_time < __kmp_load_balance_interval)) { 1517 running_threads = glb_running_threads; 1518 goto finish; 1519 } 1520 glb_call_time = call_time; 1521 1522 // Do not spend time on running algorithm if we have a permanent error. 1523 if (NtQuerySystemInformation == NULL) { 1524 running_threads = -1; 1525 goto finish; 1526 } 1527 1528 if (max <= 0) { 1529 max = INT_MAX; 1530 } 1531 1532 do { 1533 1534 if (first_time) { 1535 buff_size = glb_buff_size; 1536 } else { 1537 buff_size = 2 * buff_size; 1538 } 1539 1540 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size); 1541 if (buffer == NULL) { 1542 running_threads = -1; 1543 goto finish; 1544 } 1545 status = NtQuerySystemInformation(SystemProcessInformation, buffer, 1546 buff_size, &info_size); 1547 first_time = 0; 1548 1549 } while (status == STATUS_INFO_LENGTH_MISMATCH); 1550 glb_buff_size = buff_size; 1551 1552 #define CHECK(cond) \ 1553 { \ 1554 KMP_DEBUG_ASSERT(cond); \ 1555 if (!(cond)) { \ 1556 running_threads = -1; \ 1557 goto finish; \ 1558 } \ 1559 } 1560 1561 CHECK(buff_size >= info_size); 1562 spi = PSYSTEM_PROCESS_INFORMATION(buffer); 1563 for (;;) { 1564 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer); 1565 CHECK(0 <= offset && 1566 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size); 1567 HANDLE pid = spi->ProcessId; 1568 ULONG num = spi->NumberOfThreads; 1569 CHECK(num >= 1); 1570 size_t spi_size = 1571 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1); 1572 CHECK(offset + spi_size < 1573 info_size); // Make sure process info record fits the buffer. 1574 if (spi->NextEntryOffset != 0) { 1575 CHECK(spi_size <= 1576 spi->NextEntryOffset); // And do not overlap with the next record. 1577 } 1578 // pid == 0 corresponds to the System Idle Process. It always has running 1579 // threads on all cores. So, we don't consider the running threads of this 1580 // process. 1581 if (pid != 0) { 1582 for (int i = 0; i < num; ++i) { 1583 THREAD_STATE state = spi->Threads[i].State; 1584 // Count threads that have Ready or Running state. 1585 // !!! TODO: Why comment does not match the code??? 1586 if (state == StateRunning) { 1587 ++running_threads; 1588 // Stop counting running threads if the number is already greater than 1589 // the number of available cores 1590 if (running_threads >= max) { 1591 goto finish; 1592 } 1593 } 1594 } 1595 } 1596 if (spi->NextEntryOffset == 0) { 1597 break; 1598 } 1599 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset); 1600 } 1601 1602 #undef CHECK 1603 1604 finish: // Clean up and exit. 1605 1606 if (buffer != NULL) { 1607 KMP_INTERNAL_FREE(buffer); 1608 } 1609 1610 glb_running_threads = running_threads; 1611 1612 return running_threads; 1613 } //__kmp_get_load_balance() 1614