1 /* 2 * z_Windows_NT_util.cpp -- platform specific routines. 3 */ 4 5 6 //===----------------------------------------------------------------------===// 7 // 8 // The LLVM Compiler Infrastructure 9 // 10 // This file is dual licensed under the MIT and the University of Illinois Open 11 // Source Licenses. See LICENSE.txt for details. 12 // 13 //===----------------------------------------------------------------------===// 14 15 16 #include "kmp.h" 17 #include "kmp_affinity.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_wait_release.h" 22 23 /* This code is related to NtQuerySystemInformation() function. This function 24 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the 25 number of running threads in the system. */ 26 27 #include <ntsecapi.h> // UNICODE_STRING 28 #include <ntstatus.h> 29 30 enum SYSTEM_INFORMATION_CLASS { 31 SystemProcessInformation = 5 32 }; // SYSTEM_INFORMATION_CLASS 33 34 struct CLIENT_ID { 35 HANDLE UniqueProcess; 36 HANDLE UniqueThread; 37 }; // struct CLIENT_ID 38 39 enum THREAD_STATE { 40 StateInitialized, 41 StateReady, 42 StateRunning, 43 StateStandby, 44 StateTerminated, 45 StateWait, 46 StateTransition, 47 StateUnknown 48 }; // enum THREAD_STATE 49 50 struct VM_COUNTERS { 51 SIZE_T PeakVirtualSize; 52 SIZE_T VirtualSize; 53 ULONG PageFaultCount; 54 SIZE_T PeakWorkingSetSize; 55 SIZE_T WorkingSetSize; 56 SIZE_T QuotaPeakPagedPoolUsage; 57 SIZE_T QuotaPagedPoolUsage; 58 SIZE_T QuotaPeakNonPagedPoolUsage; 59 SIZE_T QuotaNonPagedPoolUsage; 60 SIZE_T PagefileUsage; 61 SIZE_T PeakPagefileUsage; 62 SIZE_T PrivatePageCount; 63 }; // struct VM_COUNTERS 64 65 struct SYSTEM_THREAD { 66 LARGE_INTEGER KernelTime; 67 LARGE_INTEGER UserTime; 68 LARGE_INTEGER CreateTime; 69 ULONG WaitTime; 70 LPVOID StartAddress; 71 CLIENT_ID ClientId; 72 DWORD Priority; 73 LONG BasePriority; 74 ULONG ContextSwitchCount; 75 THREAD_STATE State; 76 ULONG WaitReason; 77 }; // SYSTEM_THREAD 78 79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0); 80 #if KMP_ARCH_X86 81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28); 82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52); 83 #else 84 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32); 85 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68); 86 #endif 87 88 struct SYSTEM_PROCESS_INFORMATION { 89 ULONG NextEntryOffset; 90 ULONG NumberOfThreads; 91 LARGE_INTEGER Reserved[3]; 92 LARGE_INTEGER CreateTime; 93 LARGE_INTEGER UserTime; 94 LARGE_INTEGER KernelTime; 95 UNICODE_STRING ImageName; 96 DWORD BasePriority; 97 HANDLE ProcessId; 98 HANDLE ParentProcessId; 99 ULONG HandleCount; 100 ULONG Reserved2[2]; 101 VM_COUNTERS VMCounters; 102 IO_COUNTERS IOCounters; 103 SYSTEM_THREAD Threads[1]; 104 }; // SYSTEM_PROCESS_INFORMATION 105 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION; 106 107 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0); 108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32); 109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56); 110 #if KMP_ARCH_X86 111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68); 112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76); 113 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88); 114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136); 115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184); 116 #else 117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80); 118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96); 119 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112); 120 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208); 121 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256); 122 #endif 123 124 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS, 125 PVOID, ULONG, PULONG); 126 NtQuerySystemInformation_t NtQuerySystemInformation = NULL; 127 128 HMODULE ntdll = NULL; 129 130 /* End of NtQuerySystemInformation()-related code */ 131 132 static HMODULE kernel32 = NULL; 133 134 #if KMP_HANDLE_SIGNALS 135 typedef void (*sig_func_t)(int); 136 static sig_func_t __kmp_sighldrs[NSIG]; 137 static int __kmp_siginstalled[NSIG]; 138 #endif 139 140 #if KMP_USE_MONITOR 141 static HANDLE __kmp_monitor_ev; 142 #endif 143 static kmp_int64 __kmp_win32_time; 144 double __kmp_win32_tick; 145 146 int __kmp_init_runtime = FALSE; 147 CRITICAL_SECTION __kmp_win32_section; 148 149 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) { 150 InitializeCriticalSection(&mx->cs); 151 #if USE_ITT_BUILD 152 __kmp_itt_system_object_created(&mx->cs, "Critical Section"); 153 #endif /* USE_ITT_BUILD */ 154 } 155 156 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) { 157 DeleteCriticalSection(&mx->cs); 158 } 159 160 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) { 161 EnterCriticalSection(&mx->cs); 162 } 163 164 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) { 165 LeaveCriticalSection(&mx->cs); 166 } 167 168 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) { 169 cv->waiters_count_ = 0; 170 cv->wait_generation_count_ = 0; 171 cv->release_count_ = 0; 172 173 /* Initialize the critical section */ 174 __kmp_win32_mutex_init(&cv->waiters_count_lock_); 175 176 /* Create a manual-reset event. */ 177 cv->event_ = CreateEvent(NULL, // no security 178 TRUE, // manual-reset 179 FALSE, // non-signaled initially 180 NULL); // unnamed 181 #if USE_ITT_BUILD 182 __kmp_itt_system_object_created(cv->event_, "Event"); 183 #endif /* USE_ITT_BUILD */ 184 } 185 186 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) { 187 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_); 188 __kmp_free_handle(cv->event_); 189 memset(cv, '\0', sizeof(*cv)); 190 } 191 192 /* TODO associate cv with a team instead of a thread so as to optimize 193 the case where we wake up a whole team */ 194 195 void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, 196 kmp_info_t *th, int need_decrease_load) { 197 int my_generation; 198 int last_waiter; 199 200 /* Avoid race conditions */ 201 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 202 203 /* Increment count of waiters */ 204 cv->waiters_count_++; 205 206 /* Store current generation in our activation record. */ 207 my_generation = cv->wait_generation_count_; 208 209 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 210 __kmp_win32_mutex_unlock(mx); 211 212 for (;;) { 213 int wait_done; 214 215 /* Wait until the event is signaled */ 216 WaitForSingleObject(cv->event_, INFINITE); 217 218 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 219 220 /* Exit the loop when the <cv->event_> is signaled and there are still 221 waiting threads from this <wait_generation> that haven't been released 222 from this wait yet. */ 223 wait_done = (cv->release_count_ > 0) && 224 (cv->wait_generation_count_ != my_generation); 225 226 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 227 228 /* there used to be a semicolon after the if statement, it looked like a 229 bug, so i removed it */ 230 if (wait_done) 231 break; 232 } 233 234 __kmp_win32_mutex_lock(mx); 235 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 236 237 cv->waiters_count_--; 238 cv->release_count_--; 239 240 last_waiter = (cv->release_count_ == 0); 241 242 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 243 244 if (last_waiter) { 245 /* We're the last waiter to be notified, so reset the manual event. */ 246 ResetEvent(cv->event_); 247 } 248 } 249 250 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) { 251 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 252 253 if (cv->waiters_count_ > 0) { 254 SetEvent(cv->event_); 255 /* Release all the threads in this generation. */ 256 257 cv->release_count_ = cv->waiters_count_; 258 259 /* Start a new generation. */ 260 cv->wait_generation_count_++; 261 } 262 263 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 264 } 265 266 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) { 267 __kmp_win32_cond_broadcast(cv); 268 } 269 270 void __kmp_enable(int new_state) { 271 if (__kmp_init_runtime) 272 LeaveCriticalSection(&__kmp_win32_section); 273 } 274 275 void __kmp_disable(int *old_state) { 276 *old_state = 0; 277 278 if (__kmp_init_runtime) 279 EnterCriticalSection(&__kmp_win32_section); 280 } 281 282 void __kmp_suspend_initialize(void) { /* do nothing */ 283 } 284 285 static void __kmp_suspend_initialize_thread(kmp_info_t *th) { 286 if (!TCR_4(th->th.th_suspend_init)) { 287 /* this means we haven't initialized the suspension pthread objects for this 288 thread in this instance of the process */ 289 __kmp_win32_cond_init(&th->th.th_suspend_cv); 290 __kmp_win32_mutex_init(&th->th.th_suspend_mx); 291 TCW_4(th->th.th_suspend_init, TRUE); 292 } 293 } 294 295 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 296 if (TCR_4(th->th.th_suspend_init)) { 297 /* this means we have initialize the suspension pthread objects for this 298 thread in this instance of the process */ 299 __kmp_win32_cond_destroy(&th->th.th_suspend_cv); 300 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx); 301 TCW_4(th->th.th_suspend_init, FALSE); 302 } 303 } 304 305 /* This routine puts the calling thread to sleep after setting the 306 sleep bit for the indicated flag variable to true. */ 307 template <class C> 308 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 309 kmp_info_t *th = __kmp_threads[th_gtid]; 310 int status; 311 typename C::flag_t old_spin; 312 313 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", 314 th_gtid, flag->get())); 315 316 __kmp_suspend_initialize_thread(th); 317 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 318 319 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's" 320 " loc(%p)\n", 321 th_gtid, flag->get())); 322 323 /* TODO: shouldn't this use release semantics to ensure that 324 __kmp_suspend_initialize_thread gets called first? */ 325 old_spin = flag->set_sleeping(); 326 327 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's" 328 " loc(%p)==%d\n", 329 th_gtid, flag->get(), *(flag->get()))); 330 331 if (flag->done_check_val(old_spin)) { 332 old_spin = flag->unset_sleeping(); 333 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 334 "for flag's loc(%p)\n", 335 th_gtid, flag->get())); 336 } else { 337 #ifdef DEBUG_SUSPEND 338 __kmp_suspend_count++; 339 #endif 340 /* Encapsulate in a loop as the documentation states that this may "with 341 low probability" return when the condition variable has not been signaled 342 or broadcast */ 343 int deactivated = FALSE; 344 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 345 while (flag->is_sleeping()) { 346 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 347 "kmp_win32_cond_wait()\n", 348 th_gtid)); 349 // Mark the thread as no longer active (only in the first iteration of the 350 // loop). 351 if (!deactivated) { 352 th->th.th_active = FALSE; 353 if (th->th.th_active_in_pool) { 354 th->th.th_active_in_pool = FALSE; 355 KMP_TEST_THEN_DEC32((kmp_int32 *)&__kmp_thread_pool_active_nth); 356 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 357 } 358 deactivated = TRUE; 359 360 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, 361 0); 362 } else { 363 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, 364 0); 365 } 366 367 #ifdef KMP_DEBUG 368 if (flag->is_sleeping()) { 369 KF_TRACE(100, 370 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 371 } 372 #endif /* KMP_DEBUG */ 373 374 } // while 375 376 // Mark the thread as active again (if it was previous marked as inactive) 377 if (deactivated) { 378 th->th.th_active = TRUE; 379 if (TCR_4(th->th.th_in_pool)) { 380 KMP_TEST_THEN_INC32((kmp_int32 *)&__kmp_thread_pool_active_nth); 381 th->th.th_active_in_pool = TRUE; 382 } 383 } 384 } 385 386 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 387 388 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 389 } 390 391 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 392 __kmp_suspend_template(th_gtid, flag); 393 } 394 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 395 __kmp_suspend_template(th_gtid, flag); 396 } 397 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 398 __kmp_suspend_template(th_gtid, flag); 399 } 400 401 /* This routine signals the thread specified by target_gtid to wake up 402 after setting the sleep bit indicated by the flag argument to FALSE */ 403 template <class C> 404 static inline void __kmp_resume_template(int target_gtid, C *flag) { 405 kmp_info_t *th = __kmp_threads[target_gtid]; 406 int status; 407 408 #ifdef KMP_DEBUG 409 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 410 #endif 411 412 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 413 gtid, target_gtid)); 414 415 __kmp_suspend_initialize_thread(th); 416 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 417 418 if (!flag) { // coming from __kmp_null_resume_wrapper 419 flag = (C *)th->th.th_sleep_loc; 420 } 421 422 // First, check if the flag is null or its type has changed. If so, someone 423 // else woke it up. 424 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 425 // simply shows what 426 // flag was cast to 427 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 428 "awake: flag's loc(%p)\n", 429 gtid, target_gtid, NULL)); 430 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 431 return; 432 } else { 433 typename C::flag_t old_spin = flag->unset_sleeping(); 434 if (!flag->is_sleeping_val(old_spin)) { 435 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 436 "awake: flag's loc(%p): %u => %u\n", 437 gtid, target_gtid, flag->get(), old_spin, *(flag->get()))); 438 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 439 return; 440 } 441 } 442 TCW_PTR(th->th.th_sleep_loc, NULL); 443 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep " 444 "bit for flag's loc(%p)\n", 445 gtid, target_gtid, flag->get())); 446 447 __kmp_win32_cond_signal(&th->th.th_suspend_cv); 448 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 449 450 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 451 " for T#%d\n", 452 gtid, target_gtid)); 453 } 454 455 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 456 __kmp_resume_template(target_gtid, flag); 457 } 458 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 459 __kmp_resume_template(target_gtid, flag); 460 } 461 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 462 __kmp_resume_template(target_gtid, flag); 463 } 464 465 void __kmp_yield(int cond) { 466 if (cond) 467 Sleep(0); 468 } 469 470 void __kmp_gtid_set_specific(int gtid) { 471 if (__kmp_init_gtid) { 472 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, 473 __kmp_gtid_threadprivate_key)); 474 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1))) 475 KMP_FATAL(TLSSetValueFailed); 476 } else { 477 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 478 } 479 } 480 481 int __kmp_gtid_get_specific() { 482 int gtid; 483 if (!__kmp_init_gtid) { 484 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 485 "KMP_GTID_SHUTDOWN\n")); 486 return KMP_GTID_SHUTDOWN; 487 } 488 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key); 489 if (gtid == 0) { 490 gtid = KMP_GTID_DNE; 491 } else { 492 gtid--; 493 } 494 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 495 __kmp_gtid_threadprivate_key, gtid)); 496 return gtid; 497 } 498 499 void __kmp_affinity_bind_thread(int proc) { 500 if (__kmp_num_proc_groups > 1) { 501 // Form the GROUP_AFFINITY struct directly, rather than filling 502 // out a bit vector and calling __kmp_set_system_affinity(). 503 GROUP_AFFINITY ga; 504 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * 505 sizeof(DWORD_PTR)))); 506 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); 507 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); 508 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; 509 510 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); 511 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { 512 DWORD error = GetLastError(); 513 if (__kmp_affinity_verbose) { // AC: continue silently if not verbose 514 kmp_msg_t err_code = KMP_ERR(error); 515 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code, 516 __kmp_msg_null); 517 if (__kmp_generate_warnings == kmp_warnings_off) { 518 __kmp_str_free(&err_code.str); 519 } 520 } 521 } 522 } else { 523 kmp_affin_mask_t *mask; 524 KMP_CPU_ALLOC_ON_STACK(mask); 525 KMP_CPU_ZERO(mask); 526 KMP_CPU_SET(proc, mask); 527 __kmp_set_system_affinity(mask, TRUE); 528 KMP_CPU_FREE_FROM_STACK(mask); 529 } 530 } 531 532 void __kmp_affinity_determine_capable(const char *env_var) { 533 // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask(). 534 535 #if KMP_GROUP_AFFINITY 536 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR)); 537 #else 538 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR)); 539 #endif 540 541 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 542 "Windows* OS affinity interface functional (mask size = " 543 "%" KMP_SIZE_T_SPEC ").\n", 544 __kmp_affin_mask_size)); 545 } 546 547 double __kmp_read_cpu_time(void) { 548 FILETIME CreationTime, ExitTime, KernelTime, UserTime; 549 int status; 550 double cpu_time; 551 552 cpu_time = 0; 553 554 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, 555 &KernelTime, &UserTime); 556 557 if (status) { 558 double sec = 0; 559 560 sec += KernelTime.dwHighDateTime; 561 sec += UserTime.dwHighDateTime; 562 563 /* Shift left by 32 bits */ 564 sec *= (double)(1 << 16) * (double)(1 << 16); 565 566 sec += KernelTime.dwLowDateTime; 567 sec += UserTime.dwLowDateTime; 568 569 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; 570 } 571 572 return cpu_time; 573 } 574 575 int __kmp_read_system_info(struct kmp_sys_info *info) { 576 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ 577 info->minflt = 0; /* the number of page faults serviced without any I/O */ 578 info->majflt = 0; /* the number of page faults serviced that required I/O */ 579 info->nswap = 0; // the number of times a process was "swapped" out of memory 580 info->inblock = 0; // the number of times the file system had to perform input 581 info->oublock = 0; // number of times the file system had to perform output 582 info->nvcsw = 0; /* the number of times a context switch was voluntarily */ 583 info->nivcsw = 0; /* the number of times a context switch was forced */ 584 585 return 1; 586 } 587 588 void __kmp_runtime_initialize(void) { 589 SYSTEM_INFO info; 590 kmp_str_buf_t path; 591 UINT path_size; 592 593 if (__kmp_init_runtime) { 594 return; 595 }; 596 597 #if KMP_DYNAMIC_LIB 598 /* Pin dynamic library for the lifetime of application */ 599 { 600 // First, turn off error message boxes 601 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS); 602 HMODULE h; 603 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | 604 GET_MODULE_HANDLE_EX_FLAG_PIN, 605 (LPCTSTR)&__kmp_serial_initialize, &h); 606 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); 607 SetErrorMode(err_mode); // Restore error mode 608 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n")); 609 } 610 #endif 611 612 InitializeCriticalSection(&__kmp_win32_section); 613 #if USE_ITT_BUILD 614 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section"); 615 #endif /* USE_ITT_BUILD */ 616 __kmp_initialize_system_tick(); 617 618 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 619 if (!__kmp_cpuinfo.initialized) { 620 __kmp_query_cpuid(&__kmp_cpuinfo); 621 }; // if 622 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 623 624 /* Set up minimum number of threads to switch to TLS gtid */ 625 #if KMP_OS_WINDOWS && !defined KMP_DYNAMIC_LIB 626 // Windows* OS, static library. 627 /* New thread may use stack space previously used by another thread, 628 currently terminated. On Windows* OS, in case of static linking, we do not 629 know the moment of thread termination, and our structures (__kmp_threads 630 and __kmp_root arrays) are still keep info about dead threads. This leads 631 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid 632 (by searching through stack addresses of all known threads) for 633 unregistered foreign tread. 634 635 Setting __kmp_tls_gtid_min to 0 workarounds this problem: 636 __kmp_get_global_thread_id() does not search through stacks, but get gtid 637 from TLS immediately. 638 --ln 639 */ 640 __kmp_tls_gtid_min = 0; 641 #else 642 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 643 #endif 644 645 /* for the static library */ 646 if (!__kmp_gtid_threadprivate_key) { 647 __kmp_gtid_threadprivate_key = TlsAlloc(); 648 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) { 649 KMP_FATAL(TLSOutOfIndexes); 650 } 651 } 652 653 // Load ntdll.dll. 654 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue 655 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We 656 have to specify full path to the library. */ 657 __kmp_str_buf_init(&path); 658 path_size = GetSystemDirectory(path.str, path.size); 659 KMP_DEBUG_ASSERT(path_size > 0); 660 if (path_size >= path.size) { 661 // Buffer is too short. Expand the buffer and try again. 662 __kmp_str_buf_reserve(&path, path_size); 663 path_size = GetSystemDirectory(path.str, path.size); 664 KMP_DEBUG_ASSERT(path_size > 0); 665 }; // if 666 if (path_size > 0 && path_size < path.size) { 667 // Now we have system directory name in the buffer. 668 // Append backslash and name of dll to form full path, 669 path.used = path_size; 670 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll"); 671 672 // Now load ntdll using full path. 673 ntdll = GetModuleHandle(path.str); 674 } 675 676 KMP_DEBUG_ASSERT(ntdll != NULL); 677 if (ntdll != NULL) { 678 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress( 679 ntdll, "NtQuerySystemInformation"); 680 } 681 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL); 682 683 #if KMP_GROUP_AFFINITY 684 // Load kernel32.dll. 685 // Same caveat - must use full system path name. 686 if (path_size > 0 && path_size < path.size) { 687 // Truncate the buffer back to just the system path length, 688 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". 689 path.used = path_size; 690 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll"); 691 692 // Load kernel32.dll using full path. 693 kernel32 = GetModuleHandle(path.str); 694 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str)); 695 696 // Load the function pointers to kernel32.dll routines 697 // that may or may not exist on this system. 698 if (kernel32 != NULL) { 699 __kmp_GetActiveProcessorCount = 700 (kmp_GetActiveProcessorCount_t)GetProcAddress( 701 kernel32, "GetActiveProcessorCount"); 702 __kmp_GetActiveProcessorGroupCount = 703 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress( 704 kernel32, "GetActiveProcessorGroupCount"); 705 __kmp_GetThreadGroupAffinity = 706 (kmp_GetThreadGroupAffinity_t)GetProcAddress( 707 kernel32, "GetThreadGroupAffinity"); 708 __kmp_SetThreadGroupAffinity = 709 (kmp_SetThreadGroupAffinity_t)GetProcAddress( 710 kernel32, "SetThreadGroupAffinity"); 711 712 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount" 713 " = %p\n", 714 __kmp_GetActiveProcessorCount)); 715 KA_TRACE(10, ("__kmp_runtime_initialize: " 716 "__kmp_GetActiveProcessorGroupCount = %p\n", 717 __kmp_GetActiveProcessorGroupCount)); 718 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity" 719 " = %p\n", 720 __kmp_GetThreadGroupAffinity)); 721 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity" 722 " = %p\n", 723 __kmp_SetThreadGroupAffinity)); 724 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", 725 sizeof(kmp_affin_mask_t))); 726 727 // See if group affinity is supported on this system. 728 // If so, calculate the #groups and #procs. 729 // 730 // Group affinity was introduced with Windows* 7 OS and 731 // Windows* Server 2008 R2 OS. 732 if ((__kmp_GetActiveProcessorCount != NULL) && 733 (__kmp_GetActiveProcessorGroupCount != NULL) && 734 (__kmp_GetThreadGroupAffinity != NULL) && 735 (__kmp_SetThreadGroupAffinity != NULL) && 736 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) > 737 1)) { 738 // Calculate the total number of active OS procs. 739 int i; 740 741 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 742 " detected\n", 743 __kmp_num_proc_groups)); 744 745 __kmp_xproc = 0; 746 747 for (i = 0; i < __kmp_num_proc_groups; i++) { 748 DWORD size = __kmp_GetActiveProcessorCount(i); 749 __kmp_xproc += size; 750 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n", 751 i, size)); 752 } 753 } else { 754 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 755 " detected\n", 756 __kmp_num_proc_groups)); 757 } 758 } 759 } 760 if (__kmp_num_proc_groups <= 1) { 761 GetSystemInfo(&info); 762 __kmp_xproc = info.dwNumberOfProcessors; 763 } 764 #else 765 GetSystemInfo(&info); 766 __kmp_xproc = info.dwNumberOfProcessors; 767 #endif /* KMP_GROUP_AFFINITY */ 768 769 // If the OS said there were 0 procs, take a guess and use a value of 2. 770 // This is done for Linux* OS, also. Do we need error / warning? 771 if (__kmp_xproc <= 0) { 772 __kmp_xproc = 2; 773 } 774 775 KA_TRACE(5, 776 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc)); 777 778 __kmp_str_buf_free(&path); 779 780 #if USE_ITT_BUILD 781 __kmp_itt_initialize(); 782 #endif /* USE_ITT_BUILD */ 783 784 __kmp_init_runtime = TRUE; 785 } // __kmp_runtime_initialize 786 787 void __kmp_runtime_destroy(void) { 788 if (!__kmp_init_runtime) { 789 return; 790 } 791 792 #if USE_ITT_BUILD 793 __kmp_itt_destroy(); 794 #endif /* USE_ITT_BUILD */ 795 796 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ 797 /* due to the KX_TRACE() commands */ 798 KA_TRACE(40, ("__kmp_runtime_destroy\n")); 799 800 if (__kmp_gtid_threadprivate_key) { 801 TlsFree(__kmp_gtid_threadprivate_key); 802 __kmp_gtid_threadprivate_key = 0; 803 } 804 805 __kmp_affinity_uninitialize(); 806 DeleteCriticalSection(&__kmp_win32_section); 807 808 ntdll = NULL; 809 NtQuerySystemInformation = NULL; 810 811 #if KMP_ARCH_X86_64 812 kernel32 = NULL; 813 __kmp_GetActiveProcessorCount = NULL; 814 __kmp_GetActiveProcessorGroupCount = NULL; 815 __kmp_GetThreadGroupAffinity = NULL; 816 __kmp_SetThreadGroupAffinity = NULL; 817 #endif // KMP_ARCH_X86_64 818 819 __kmp_init_runtime = FALSE; 820 } 821 822 void __kmp_terminate_thread(int gtid) { 823 kmp_info_t *th = __kmp_threads[gtid]; 824 825 if (!th) 826 return; 827 828 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 829 830 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) { 831 /* It's OK, the thread may have exited already */ 832 } 833 __kmp_free_handle(th->th.th_info.ds.ds_thread); 834 } 835 836 void __kmp_clear_system_time(void) { 837 BOOL status; 838 LARGE_INTEGER time; 839 status = QueryPerformanceCounter(&time); 840 __kmp_win32_time = (kmp_int64)time.QuadPart; 841 } 842 843 void __kmp_initialize_system_tick(void) { 844 { 845 BOOL status; 846 LARGE_INTEGER freq; 847 848 status = QueryPerformanceFrequency(&freq); 849 if (!status) { 850 DWORD error = GetLastError(); 851 __kmp_msg(kmp_ms_fatal, 852 KMP_MSG(FunctionError, "QueryPerformanceFrequency()"), 853 KMP_ERR(error), __kmp_msg_null); 854 855 } else { 856 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart; 857 } 858 } 859 } 860 861 /* Calculate the elapsed wall clock time for the user */ 862 863 void __kmp_elapsed(double *t) { 864 BOOL status; 865 LARGE_INTEGER now; 866 status = QueryPerformanceCounter(&now); 867 *t = ((double)now.QuadPart) * __kmp_win32_tick; 868 } 869 870 /* Calculate the elapsed wall clock tick for the user */ 871 872 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; } 873 874 void __kmp_read_system_time(double *delta) { 875 if (delta != NULL) { 876 BOOL status; 877 LARGE_INTEGER now; 878 879 status = QueryPerformanceCounter(&now); 880 881 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) * 882 __kmp_win32_tick; 883 } 884 } 885 886 /* Return the current time stamp in nsec */ 887 kmp_uint64 __kmp_now_nsec() { 888 LARGE_INTEGER now; 889 QueryPerformanceCounter(&now); 890 return 1e9 * __kmp_win32_tick * now.QuadPart; 891 } 892 893 void *__stdcall __kmp_launch_worker(void *arg) { 894 volatile void *stack_data; 895 void *exit_val; 896 void *padding = 0; 897 kmp_info_t *this_thr = (kmp_info_t *)arg; 898 int gtid; 899 900 gtid = this_thr->th.th_info.ds.ds_gtid; 901 __kmp_gtid_set_specific(gtid); 902 #ifdef KMP_TDATA_GTID 903 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 904 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 905 "reference: http://support.microsoft.com/kb/118816" 906 //__kmp_gtid = gtid; 907 #endif 908 909 #if USE_ITT_BUILD 910 __kmp_itt_thread_name(gtid); 911 #endif /* USE_ITT_BUILD */ 912 913 __kmp_affinity_set_init_mask(gtid, FALSE); 914 915 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 916 // Set FP control regs to be a copy of the parallel initialization thread's. 917 __kmp_clear_x87_fpu_status_word(); 918 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 919 __kmp_load_mxcsr(&__kmp_init_mxcsr); 920 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 921 922 if (__kmp_stkoffset > 0 && gtid > 0) { 923 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 924 } 925 926 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 927 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 928 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 929 930 if (TCR_4(__kmp_gtid_mode) < 931 2) { // check stack only if it is used to get gtid 932 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); 933 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE); 934 __kmp_check_stack_overlap(this_thr); 935 } 936 KMP_MB(); 937 exit_val = __kmp_launch_thread(this_thr); 938 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 939 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 940 KMP_MB(); 941 return exit_val; 942 } 943 944 #if KMP_USE_MONITOR 945 /* The monitor thread controls all of the threads in the complex */ 946 947 void *__stdcall __kmp_launch_monitor(void *arg) { 948 DWORD wait_status; 949 kmp_thread_t monitor; 950 int status; 951 int interval; 952 kmp_info_t *this_thr = (kmp_info_t *)arg; 953 954 KMP_DEBUG_ASSERT(__kmp_init_monitor); 955 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started 956 // TODO: hide "2" in enum (like {true,false,started}) 957 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 958 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 959 960 KMP_MB(); /* Flush all pending memory write invalidates. */ 961 KA_TRACE(10, ("__kmp_launch_monitor: launched\n")); 962 963 monitor = GetCurrentThread(); 964 965 /* set thread priority */ 966 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST); 967 if (!status) { 968 DWORD error = GetLastError(); 969 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetThreadPriority), KMP_ERR(error), 970 __kmp_msg_null); 971 } 972 973 /* register us as monitor */ 974 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 975 #ifdef KMP_TDATA_GTID 976 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 977 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 978 "reference: http://support.microsoft.com/kb/118816" 979 //__kmp_gtid = KMP_GTID_MONITOR; 980 #endif 981 982 #if USE_ITT_BUILD 983 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore 984 // monitor thread. 985 #endif /* USE_ITT_BUILD */ 986 987 KMP_MB(); /* Flush all pending memory write invalidates. */ 988 989 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */ 990 991 while (!TCR_4(__kmp_global.g.g_done)) { 992 /* This thread monitors the state of the system */ 993 994 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 995 996 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval); 997 998 if (wait_status == WAIT_TIMEOUT) { 999 TCW_4(__kmp_global.g.g_time.dt.t_value, 1000 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 1001 } 1002 1003 KMP_MB(); /* Flush all pending memory write invalidates. */ 1004 } 1005 1006 KA_TRACE(10, ("__kmp_launch_monitor: finished\n")); 1007 1008 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL); 1009 if (!status) { 1010 DWORD error = GetLastError(); 1011 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetThreadPriority), KMP_ERR(error), 1012 __kmp_msg_null); 1013 } 1014 1015 if (__kmp_global.g.g_abort != 0) { 1016 /* now we need to terminate the worker threads */ 1017 /* the value of t_abort is the signal we caught */ 1018 int gtid; 1019 1020 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n", 1021 (__kmp_global.g.g_abort))); 1022 1023 /* terminate the OpenMP worker threads */ 1024 /* TODO this is not valid for sibling threads!! 1025 * the uber master might not be 0 anymore.. */ 1026 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 1027 __kmp_terminate_thread(gtid); 1028 1029 __kmp_cleanup(); 1030 1031 Sleep(0); 1032 1033 KA_TRACE(10, 1034 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort)); 1035 1036 if (__kmp_global.g.g_abort > 0) { 1037 raise(__kmp_global.g.g_abort); 1038 } 1039 } 1040 1041 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1042 1043 KMP_MB(); 1044 return arg; 1045 } 1046 #endif 1047 1048 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 1049 kmp_thread_t handle; 1050 DWORD idThread; 1051 1052 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 1053 1054 th->th.th_info.ds.ds_gtid = gtid; 1055 1056 if (KMP_UBER_GTID(gtid)) { 1057 int stack_data; 1058 1059 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for 1060 other threads to use. Is it appropriate to just use GetCurrentThread? 1061 When should we close this handle? When unregistering the root? */ 1062 { 1063 BOOL rc; 1064 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), 1065 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, 1066 FALSE, DUPLICATE_SAME_ACCESS); 1067 KMP_ASSERT(rc); 1068 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, " 1069 "handle = %" KMP_UINTPTR_SPEC "\n", 1070 (LPVOID)th, th->th.th_info.ds.ds_thread)); 1071 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1072 } 1073 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid 1074 /* we will dynamically update the stack range if gtid_mode == 1 */ 1075 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 1076 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 1077 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 1078 __kmp_check_stack_overlap(th); 1079 } 1080 } else { 1081 KMP_MB(); /* Flush all pending memory write invalidates. */ 1082 1083 /* Set stack size for this thread now. */ 1084 KA_TRACE(10, 1085 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", 1086 stack_size)); 1087 1088 stack_size += gtid * __kmp_stkoffset; 1089 1090 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); 1091 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 1092 1093 KA_TRACE(10, 1094 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC 1095 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n", 1096 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1097 (LPVOID)th, &idThread)); 1098 1099 handle = CreateThread( 1100 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker, 1101 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1102 1103 KA_TRACE(10, 1104 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC 1105 " bytes, &__kmp_launch_worker = %p, th = %p, " 1106 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", 1107 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1108 (LPVOID)th, idThread, handle)); 1109 1110 if (handle == 0) { 1111 DWORD error = GetLastError(); 1112 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantCreateThread), KMP_ERR(error), 1113 __kmp_msg_null); 1114 } else { 1115 th->th.th_info.ds.ds_thread = handle; 1116 } 1117 1118 KMP_MB(); /* Flush all pending memory write invalidates. */ 1119 } 1120 1121 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 1122 } 1123 1124 int __kmp_still_running(kmp_info_t *th) { 1125 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0)); 1126 } 1127 1128 #if KMP_USE_MONITOR 1129 void __kmp_create_monitor(kmp_info_t *th) { 1130 kmp_thread_t handle; 1131 DWORD idThread; 1132 int ideal, new_ideal; 1133 1134 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 1135 // We don't need monitor thread in case of MAX_BLOCKTIME 1136 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 1137 "MAX blocktime\n")); 1138 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 1139 th->th.th_info.ds.ds_gtid = 0; 1140 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation 1141 return; 1142 } 1143 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 1144 1145 KMP_MB(); /* Flush all pending memory write invalidates. */ 1146 1147 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL); 1148 if (__kmp_monitor_ev == NULL) { 1149 DWORD error = GetLastError(); 1150 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantCreateEvent), KMP_ERR(error), 1151 __kmp_msg_null); 1152 }; // if 1153 #if USE_ITT_BUILD 1154 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event"); 1155 #endif /* USE_ITT_BUILD */ 1156 1157 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 1158 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 1159 1160 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how 1161 // to automatically expand stacksize based on CreateThread error code. 1162 if (__kmp_monitor_stksize == 0) { 1163 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 1164 } 1165 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 1166 __kmp_monitor_stksize = __kmp_sys_min_stksize; 1167 } 1168 1169 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", 1170 (int)__kmp_monitor_stksize)); 1171 1172 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 1173 1174 handle = 1175 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize, 1176 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th, 1177 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1178 if (handle == 0) { 1179 DWORD error = GetLastError(); 1180 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantCreateThread), KMP_ERR(error), 1181 __kmp_msg_null); 1182 } else 1183 th->th.th_info.ds.ds_thread = handle; 1184 1185 KMP_MB(); /* Flush all pending memory write invalidates. */ 1186 1187 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n", 1188 (void *)th->th.th_info.ds.ds_thread)); 1189 } 1190 #endif 1191 1192 /* Check to see if thread is still alive. 1193 NOTE: The ExitProcess(code) system call causes all threads to Terminate 1194 with a exit_val = code. Because of this we can not rely on exit_val having 1195 any particular value. So this routine may return STILL_ALIVE in exit_val 1196 even after the thread is dead. */ 1197 1198 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) { 1199 DWORD rc; 1200 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val); 1201 if (rc == 0) { 1202 DWORD error = GetLastError(); 1203 __kmp_msg(kmp_ms_fatal, KMP_MSG(FunctionError, "GetExitCodeThread()"), 1204 KMP_ERR(error), __kmp_msg_null); 1205 }; // if 1206 return (*exit_val == STILL_ACTIVE); 1207 } 1208 1209 void __kmp_exit_thread(int exit_status) { 1210 ExitThread(exit_status); 1211 } // __kmp_exit_thread 1212 1213 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). 1214 static void __kmp_reap_common(kmp_info_t *th) { 1215 DWORD exit_val; 1216 1217 KMP_MB(); /* Flush all pending memory write invalidates. */ 1218 1219 KA_TRACE( 1220 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid)); 1221 1222 /* 2006-10-19: 1223 There are two opposite situations: 1224 1. Windows* OS keep thread alive after it resets ds_alive flag and 1225 exits from thread function. (For example, see C70770/Q394281 "unloading of 1226 dll based on OMP is very slow".) 1227 2. Windows* OS may kill thread before it resets ds_alive flag. 1228 1229 Right solution seems to be waiting for *either* thread termination *or* 1230 ds_alive resetting. */ 1231 { 1232 // TODO: This code is very similar to KMP_WAIT_YIELD. Need to generalize 1233 // KMP_WAIT_YIELD to cover this usage also. 1234 void *obj = NULL; 1235 register kmp_uint32 spins; 1236 #if USE_ITT_BUILD 1237 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive); 1238 #endif /* USE_ITT_BUILD */ 1239 KMP_INIT_YIELD(spins); 1240 do { 1241 #if USE_ITT_BUILD 1242 KMP_FSYNC_SPIN_PREPARE(obj); 1243 #endif /* USE_ITT_BUILD */ 1244 __kmp_is_thread_alive(th, &exit_val); 1245 KMP_YIELD(TCR_4(__kmp_nth) > __kmp_avail_proc); 1246 KMP_YIELD_SPIN(spins); 1247 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive)); 1248 #if USE_ITT_BUILD 1249 if (exit_val == STILL_ACTIVE) { 1250 KMP_FSYNC_CANCEL(obj); 1251 } else { 1252 KMP_FSYNC_SPIN_ACQUIRED(obj); 1253 }; // if 1254 #endif /* USE_ITT_BUILD */ 1255 } 1256 1257 __kmp_free_handle(th->th.th_info.ds.ds_thread); 1258 1259 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate 1260 with a exit_val = code. Because of this we can not rely on exit_val having 1261 any particular value. */ 1262 if (exit_val == STILL_ACTIVE) { 1263 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n")); 1264 } else if ((void *)exit_val != (void *)th) { 1265 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n")); 1266 }; // if 1267 1268 KA_TRACE(10, 1269 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC 1270 "\n", 1271 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread)); 1272 1273 th->th.th_info.ds.ds_thread = 0; 1274 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1275 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1276 th->th.th_info.ds.ds_thread_id = 0; 1277 1278 KMP_MB(); /* Flush all pending memory write invalidates. */ 1279 } 1280 1281 #if KMP_USE_MONITOR 1282 void __kmp_reap_monitor(kmp_info_t *th) { 1283 int status; 1284 1285 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n", 1286 (void *)th->th.th_info.ds.ds_thread)); 1287 1288 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1289 // If both tid and gtid are 0, it means the monitor did not ever start. 1290 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1291 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1292 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1293 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1294 return; 1295 }; // if 1296 1297 KMP_MB(); /* Flush all pending memory write invalidates. */ 1298 1299 status = SetEvent(__kmp_monitor_ev); 1300 if (status == FALSE) { 1301 DWORD error = GetLastError(); 1302 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetEvent), KMP_ERR(error), 1303 __kmp_msg_null); 1304 } 1305 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n", 1306 th->th.th_info.ds.ds_gtid)); 1307 __kmp_reap_common(th); 1308 1309 __kmp_free_handle(__kmp_monitor_ev); 1310 1311 KMP_MB(); /* Flush all pending memory write invalidates. */ 1312 } 1313 #endif 1314 1315 void __kmp_reap_worker(kmp_info_t *th) { 1316 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n", 1317 th->th.th_info.ds.ds_gtid)); 1318 __kmp_reap_common(th); 1319 } 1320 1321 #if KMP_HANDLE_SIGNALS 1322 1323 static void __kmp_team_handler(int signo) { 1324 if (__kmp_global.g.g_abort == 0) { 1325 // Stage 1 signal handler, let's shut down all of the threads. 1326 if (__kmp_debug_buf) { 1327 __kmp_dump_debug_buffer(); 1328 }; // if 1329 KMP_MB(); // Flush all pending memory write invalidates. 1330 TCW_4(__kmp_global.g.g_abort, signo); 1331 KMP_MB(); // Flush all pending memory write invalidates. 1332 TCW_4(__kmp_global.g.g_done, TRUE); 1333 KMP_MB(); // Flush all pending memory write invalidates. 1334 } 1335 } // __kmp_team_handler 1336 1337 static sig_func_t __kmp_signal(int signum, sig_func_t handler) { 1338 sig_func_t old = signal(signum, handler); 1339 if (old == SIG_ERR) { 1340 int error = errno; 1341 __kmp_msg(kmp_ms_fatal, KMP_MSG(FunctionError, "signal"), KMP_ERR(error), 1342 __kmp_msg_null); 1343 }; // if 1344 return old; 1345 } 1346 1347 static void __kmp_install_one_handler(int sig, sig_func_t handler, 1348 int parallel_init) { 1349 sig_func_t old; 1350 KMP_MB(); /* Flush all pending memory write invalidates. */ 1351 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig)); 1352 if (parallel_init) { 1353 old = __kmp_signal(sig, handler); 1354 // SIG_DFL on Windows* OS in NULL or 0. 1355 if (old == __kmp_sighldrs[sig]) { 1356 __kmp_siginstalled[sig] = 1; 1357 } else { // Restore/keep user's handler if one previously installed. 1358 old = __kmp_signal(sig, old); 1359 }; // if 1360 } else { 1361 // Save initial/system signal handlers to see if user handlers installed. 1362 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals 1363 // called once with parallel_init == TRUE. 1364 old = __kmp_signal(sig, SIG_DFL); 1365 __kmp_sighldrs[sig] = old; 1366 __kmp_signal(sig, old); 1367 }; // if 1368 KMP_MB(); /* Flush all pending memory write invalidates. */ 1369 } // __kmp_install_one_handler 1370 1371 static void __kmp_remove_one_handler(int sig) { 1372 if (__kmp_siginstalled[sig]) { 1373 sig_func_t old; 1374 KMP_MB(); // Flush all pending memory write invalidates. 1375 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig)); 1376 old = __kmp_signal(sig, __kmp_sighldrs[sig]); 1377 if (old != __kmp_team_handler) { 1378 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1379 "restoring: sig=%d\n", 1380 sig)); 1381 old = __kmp_signal(sig, old); 1382 }; // if 1383 __kmp_sighldrs[sig] = NULL; 1384 __kmp_siginstalled[sig] = 0; 1385 KMP_MB(); // Flush all pending memory write invalidates. 1386 }; // if 1387 } // __kmp_remove_one_handler 1388 1389 void __kmp_install_signals(int parallel_init) { 1390 KB_TRACE(10, ("__kmp_install_signals: called\n")); 1391 if (!__kmp_handle_signals) { 1392 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - " 1393 "handlers not installed\n")); 1394 return; 1395 }; // if 1396 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1397 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1398 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1399 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1400 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1401 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1402 } // __kmp_install_signals 1403 1404 void __kmp_remove_signals(void) { 1405 int sig; 1406 KB_TRACE(10, ("__kmp_remove_signals: called\n")); 1407 for (sig = 1; sig < NSIG; ++sig) { 1408 __kmp_remove_one_handler(sig); 1409 }; // for sig 1410 } // __kmp_remove_signals 1411 1412 #endif // KMP_HANDLE_SIGNALS 1413 1414 /* Put the thread to sleep for a time period */ 1415 void __kmp_thread_sleep(int millis) { 1416 DWORD status; 1417 1418 status = SleepEx((DWORD)millis, FALSE); 1419 if (status) { 1420 DWORD error = GetLastError(); 1421 __kmp_msg(kmp_ms_fatal, KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error), 1422 __kmp_msg_null); 1423 } 1424 } 1425 1426 // Determine whether the given address is mapped into the current address space. 1427 int __kmp_is_address_mapped(void *addr) { 1428 DWORD status; 1429 MEMORY_BASIC_INFORMATION lpBuffer; 1430 SIZE_T dwLength; 1431 1432 dwLength = sizeof(MEMORY_BASIC_INFORMATION); 1433 1434 status = VirtualQuery(addr, &lpBuffer, dwLength); 1435 1436 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) || 1437 ((lpBuffer.Protect == PAGE_NOACCESS) || 1438 (lpBuffer.Protect == PAGE_EXECUTE))); 1439 } 1440 1441 kmp_uint64 __kmp_hardware_timestamp(void) { 1442 kmp_uint64 r = 0; 1443 1444 QueryPerformanceCounter((LARGE_INTEGER *)&r); 1445 return r; 1446 } 1447 1448 /* Free handle and check the error code */ 1449 void __kmp_free_handle(kmp_thread_t tHandle) { 1450 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined 1451 * as HANDLE */ 1452 BOOL rc; 1453 rc = CloseHandle(tHandle); 1454 if (!rc) { 1455 DWORD error = GetLastError(); 1456 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantCloseHandle), KMP_ERR(error), 1457 __kmp_msg_null); 1458 } 1459 } 1460 1461 int __kmp_get_load_balance(int max) { 1462 static ULONG glb_buff_size = 100 * 1024; 1463 1464 // Saved count of the running threads for the thread balance algortihm 1465 static int glb_running_threads = 0; 1466 static double glb_call_time = 0; /* Thread balance algorithm call time */ 1467 1468 int running_threads = 0; // Number of running threads in the system. 1469 NTSTATUS status = 0; 1470 ULONG buff_size = 0; 1471 ULONG info_size = 0; 1472 void *buffer = NULL; 1473 PSYSTEM_PROCESS_INFORMATION spi = NULL; 1474 int first_time = 1; 1475 1476 double call_time = 0.0; // start, finish; 1477 1478 __kmp_elapsed(&call_time); 1479 1480 if (glb_call_time && 1481 (call_time - glb_call_time < __kmp_load_balance_interval)) { 1482 running_threads = glb_running_threads; 1483 goto finish; 1484 } 1485 glb_call_time = call_time; 1486 1487 // Do not spend time on running algorithm if we have a permanent error. 1488 if (NtQuerySystemInformation == NULL) { 1489 running_threads = -1; 1490 goto finish; 1491 }; // if 1492 1493 if (max <= 0) { 1494 max = INT_MAX; 1495 }; // if 1496 1497 do { 1498 1499 if (first_time) { 1500 buff_size = glb_buff_size; 1501 } else { 1502 buff_size = 2 * buff_size; 1503 } 1504 1505 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size); 1506 if (buffer == NULL) { 1507 running_threads = -1; 1508 goto finish; 1509 }; // if 1510 status = NtQuerySystemInformation(SystemProcessInformation, buffer, 1511 buff_size, &info_size); 1512 first_time = 0; 1513 1514 } while (status == STATUS_INFO_LENGTH_MISMATCH); 1515 glb_buff_size = buff_size; 1516 1517 #define CHECK(cond) \ 1518 { \ 1519 KMP_DEBUG_ASSERT(cond); \ 1520 if (!(cond)) { \ 1521 running_threads = -1; \ 1522 goto finish; \ 1523 } \ 1524 } 1525 1526 CHECK(buff_size >= info_size); 1527 spi = PSYSTEM_PROCESS_INFORMATION(buffer); 1528 for (;;) { 1529 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer); 1530 CHECK(0 <= offset && 1531 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size); 1532 HANDLE pid = spi->ProcessId; 1533 ULONG num = spi->NumberOfThreads; 1534 CHECK(num >= 1); 1535 size_t spi_size = 1536 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1); 1537 CHECK(offset + spi_size < 1538 info_size); // Make sure process info record fits the buffer. 1539 if (spi->NextEntryOffset != 0) { 1540 CHECK(spi_size <= 1541 spi->NextEntryOffset); // And do not overlap with the next record. 1542 }; // if 1543 // pid == 0 corresponds to the System Idle Process. It always has running 1544 // threads on all cores. So, we don't consider the running threads of this 1545 // process. 1546 if (pid != 0) { 1547 for (int i = 0; i < num; ++i) { 1548 THREAD_STATE state = spi->Threads[i].State; 1549 // Count threads that have Ready or Running state. 1550 // !!! TODO: Why comment does not match the code??? 1551 if (state == StateRunning) { 1552 ++running_threads; 1553 // Stop counting running threads if the number is already greater than 1554 // the number of available cores 1555 if (running_threads >= max) { 1556 goto finish; 1557 } 1558 } // if 1559 }; // for i 1560 } // if 1561 if (spi->NextEntryOffset == 0) { 1562 break; 1563 }; // if 1564 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset); 1565 }; // forever 1566 1567 #undef CHECK 1568 1569 finish: // Clean up and exit. 1570 1571 if (buffer != NULL) { 1572 KMP_INTERNAL_FREE(buffer); 1573 }; // if 1574 1575 glb_running_threads = running_threads; 1576 1577 return running_threads; 1578 } //__kmp_get_load_balance() 1579