1 /*
2  * z_Windows_NT_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 //                     The LLVM Compiler Infrastructure
8 //
9 // This file is dual licensed under the MIT and the University of Illinois Open
10 // Source Licenses. See LICENSE.txt for details.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "kmp.h"
15 #include "kmp_affinity.h"
16 #include "kmp_i18n.h"
17 #include "kmp_io.h"
18 #include "kmp_itt.h"
19 #include "kmp_wait_release.h"
20 
21 /* This code is related to NtQuerySystemInformation() function. This function
22    is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
23    number of running threads in the system. */
24 
25 #include <ntsecapi.h> // UNICODE_STRING
26 #include <ntstatus.h>
27 
28 enum SYSTEM_INFORMATION_CLASS {
29   SystemProcessInformation = 5
30 }; // SYSTEM_INFORMATION_CLASS
31 
32 struct CLIENT_ID {
33   HANDLE UniqueProcess;
34   HANDLE UniqueThread;
35 }; // struct CLIENT_ID
36 
37 enum THREAD_STATE {
38   StateInitialized,
39   StateReady,
40   StateRunning,
41   StateStandby,
42   StateTerminated,
43   StateWait,
44   StateTransition,
45   StateUnknown
46 }; // enum THREAD_STATE
47 
48 struct VM_COUNTERS {
49   SIZE_T PeakVirtualSize;
50   SIZE_T VirtualSize;
51   ULONG PageFaultCount;
52   SIZE_T PeakWorkingSetSize;
53   SIZE_T WorkingSetSize;
54   SIZE_T QuotaPeakPagedPoolUsage;
55   SIZE_T QuotaPagedPoolUsage;
56   SIZE_T QuotaPeakNonPagedPoolUsage;
57   SIZE_T QuotaNonPagedPoolUsage;
58   SIZE_T PagefileUsage;
59   SIZE_T PeakPagefileUsage;
60   SIZE_T PrivatePageCount;
61 }; // struct VM_COUNTERS
62 
63 struct SYSTEM_THREAD {
64   LARGE_INTEGER KernelTime;
65   LARGE_INTEGER UserTime;
66   LARGE_INTEGER CreateTime;
67   ULONG WaitTime;
68   LPVOID StartAddress;
69   CLIENT_ID ClientId;
70   DWORD Priority;
71   LONG BasePriority;
72   ULONG ContextSwitchCount;
73   THREAD_STATE State;
74   ULONG WaitReason;
75 }; // SYSTEM_THREAD
76 
77 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
78 #if KMP_ARCH_X86
79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
80 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
81 #else
82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
83 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
84 #endif
85 
86 struct SYSTEM_PROCESS_INFORMATION {
87   ULONG NextEntryOffset;
88   ULONG NumberOfThreads;
89   LARGE_INTEGER Reserved[3];
90   LARGE_INTEGER CreateTime;
91   LARGE_INTEGER UserTime;
92   LARGE_INTEGER KernelTime;
93   UNICODE_STRING ImageName;
94   DWORD BasePriority;
95   HANDLE ProcessId;
96   HANDLE ParentProcessId;
97   ULONG HandleCount;
98   ULONG Reserved2[2];
99   VM_COUNTERS VMCounters;
100   IO_COUNTERS IOCounters;
101   SYSTEM_THREAD Threads[1];
102 }; // SYSTEM_PROCESS_INFORMATION
103 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
104 
105 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
106 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
107 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
108 #if KMP_ARCH_X86
109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
113 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
114 #else
115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
119 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
120 #endif
121 
122 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
123                                                     PVOID, ULONG, PULONG);
124 NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
125 
126 HMODULE ntdll = NULL;
127 
128 /* End of NtQuerySystemInformation()-related code */
129 
130 static HMODULE kernel32 = NULL;
131 
132 #if KMP_HANDLE_SIGNALS
133 typedef void (*sig_func_t)(int);
134 static sig_func_t __kmp_sighldrs[NSIG];
135 static int __kmp_siginstalled[NSIG];
136 #endif
137 
138 #if KMP_USE_MONITOR
139 static HANDLE __kmp_monitor_ev;
140 #endif
141 static kmp_int64 __kmp_win32_time;
142 double __kmp_win32_tick;
143 
144 int __kmp_init_runtime = FALSE;
145 CRITICAL_SECTION __kmp_win32_section;
146 
147 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
148   InitializeCriticalSection(&mx->cs);
149 #if USE_ITT_BUILD
150   __kmp_itt_system_object_created(&mx->cs, "Critical Section");
151 #endif /* USE_ITT_BUILD */
152 }
153 
154 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
155   DeleteCriticalSection(&mx->cs);
156 }
157 
158 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
159   EnterCriticalSection(&mx->cs);
160 }
161 
162 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
163   LeaveCriticalSection(&mx->cs);
164 }
165 
166 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
167   cv->waiters_count_ = 0;
168   cv->wait_generation_count_ = 0;
169   cv->release_count_ = 0;
170 
171   /* Initialize the critical section */
172   __kmp_win32_mutex_init(&cv->waiters_count_lock_);
173 
174   /* Create a manual-reset event. */
175   cv->event_ = CreateEvent(NULL, // no security
176                            TRUE, // manual-reset
177                            FALSE, // non-signaled initially
178                            NULL); // unnamed
179 #if USE_ITT_BUILD
180   __kmp_itt_system_object_created(cv->event_, "Event");
181 #endif /* USE_ITT_BUILD */
182 }
183 
184 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
185   __kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
186   __kmp_free_handle(cv->event_);
187   memset(cv, '\0', sizeof(*cv));
188 }
189 
190 /* TODO associate cv with a team instead of a thread so as to optimize
191    the case where we wake up a whole team */
192 
193 void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
194                            kmp_info_t *th, int need_decrease_load) {
195   int my_generation;
196   int last_waiter;
197 
198   /* Avoid race conditions */
199   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
200 
201   /* Increment count of waiters */
202   cv->waiters_count_++;
203 
204   /* Store current generation in our activation record. */
205   my_generation = cv->wait_generation_count_;
206 
207   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
208   __kmp_win32_mutex_unlock(mx);
209 
210   for (;;) {
211     int wait_done;
212 
213     /* Wait until the event is signaled */
214     WaitForSingleObject(cv->event_, INFINITE);
215 
216     __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
217 
218     /* Exit the loop when the <cv->event_> is signaled and there are still
219        waiting threads from this <wait_generation> that haven't been released
220        from this wait yet. */
221     wait_done = (cv->release_count_ > 0) &&
222                 (cv->wait_generation_count_ != my_generation);
223 
224     __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
225 
226     /* there used to be a semicolon after the if statement, it looked like a
227        bug, so i removed it */
228     if (wait_done)
229       break;
230   }
231 
232   __kmp_win32_mutex_lock(mx);
233   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
234 
235   cv->waiters_count_--;
236   cv->release_count_--;
237 
238   last_waiter = (cv->release_count_ == 0);
239 
240   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
241 
242   if (last_waiter) {
243     /* We're the last waiter to be notified, so reset the manual event. */
244     ResetEvent(cv->event_);
245   }
246 }
247 
248 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
249   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
250 
251   if (cv->waiters_count_ > 0) {
252     SetEvent(cv->event_);
253     /* Release all the threads in this generation. */
254 
255     cv->release_count_ = cv->waiters_count_;
256 
257     /* Start a new generation. */
258     cv->wait_generation_count_++;
259   }
260 
261   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
262 }
263 
264 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
265   __kmp_win32_cond_broadcast(cv);
266 }
267 
268 void __kmp_enable(int new_state) {
269   if (__kmp_init_runtime)
270     LeaveCriticalSection(&__kmp_win32_section);
271 }
272 
273 void __kmp_disable(int *old_state) {
274   *old_state = 0;
275 
276   if (__kmp_init_runtime)
277     EnterCriticalSection(&__kmp_win32_section);
278 }
279 
280 void __kmp_suspend_initialize(void) { /* do nothing */
281 }
282 
283 static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
284   if (!TCR_4(th->th.th_suspend_init)) {
285     /* this means we haven't initialized the suspension pthread objects for this
286        thread in this instance of the process */
287     __kmp_win32_cond_init(&th->th.th_suspend_cv);
288     __kmp_win32_mutex_init(&th->th.th_suspend_mx);
289     TCW_4(th->th.th_suspend_init, TRUE);
290   }
291 }
292 
293 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
294   if (TCR_4(th->th.th_suspend_init)) {
295     /* this means we have initialize the suspension pthread objects for this
296        thread in this instance of the process */
297     __kmp_win32_cond_destroy(&th->th.th_suspend_cv);
298     __kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
299     TCW_4(th->th.th_suspend_init, FALSE);
300   }
301 }
302 
303 /* This routine puts the calling thread to sleep after setting the
304    sleep bit for the indicated flag variable to true. */
305 template <class C>
306 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
307   kmp_info_t *th = __kmp_threads[th_gtid];
308   int status;
309   typename C::flag_t old_spin;
310 
311   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
312                 th_gtid, flag->get()));
313 
314   __kmp_suspend_initialize_thread(th);
315   __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
316 
317   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
318                 " loc(%p)\n",
319                 th_gtid, flag->get()));
320 
321   /* TODO: shouldn't this use release semantics to ensure that
322      __kmp_suspend_initialize_thread gets called first? */
323   old_spin = flag->set_sleeping();
324 
325   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
326                " loc(%p)==%d\n",
327                th_gtid, flag->get(), *(flag->get())));
328 
329   if (flag->done_check_val(old_spin)) {
330     old_spin = flag->unset_sleeping();
331     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
332                  "for flag's loc(%p)\n",
333                  th_gtid, flag->get()));
334   } else {
335 #ifdef DEBUG_SUSPEND
336     __kmp_suspend_count++;
337 #endif
338     /* Encapsulate in a loop as the documentation states that this may "with
339        low probability" return when the condition variable has not been signaled
340        or broadcast */
341     int deactivated = FALSE;
342     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
343     while (flag->is_sleeping()) {
344       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
345                     "kmp_win32_cond_wait()\n",
346                     th_gtid));
347       // Mark the thread as no longer active (only in the first iteration of the
348       // loop).
349       if (!deactivated) {
350         th->th.th_active = FALSE;
351         if (th->th.th_active_in_pool) {
352           th->th.th_active_in_pool = FALSE;
353           KMP_TEST_THEN_DEC32((kmp_int32 *)&__kmp_thread_pool_active_nth);
354           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
355         }
356         deactivated = TRUE;
357 
358         __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0,
359                               0);
360       } else {
361         __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0,
362                               0);
363       }
364 
365 #ifdef KMP_DEBUG
366       if (flag->is_sleeping()) {
367         KF_TRACE(100,
368                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
369       }
370 #endif /* KMP_DEBUG */
371 
372     } // while
373 
374     // Mark the thread as active again (if it was previous marked as inactive)
375     if (deactivated) {
376       th->th.th_active = TRUE;
377       if (TCR_4(th->th.th_in_pool)) {
378         KMP_TEST_THEN_INC32((kmp_int32 *)&__kmp_thread_pool_active_nth);
379         th->th.th_active_in_pool = TRUE;
380       }
381     }
382   }
383 
384   __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
385 
386   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
387 }
388 
389 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
390   __kmp_suspend_template(th_gtid, flag);
391 }
392 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
393   __kmp_suspend_template(th_gtid, flag);
394 }
395 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
396   __kmp_suspend_template(th_gtid, flag);
397 }
398 
399 /* This routine signals the thread specified by target_gtid to wake up
400    after setting the sleep bit indicated by the flag argument to FALSE */
401 template <class C>
402 static inline void __kmp_resume_template(int target_gtid, C *flag) {
403   kmp_info_t *th = __kmp_threads[target_gtid];
404   int status;
405 
406 #ifdef KMP_DEBUG
407   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
408 #endif
409 
410   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
411                 gtid, target_gtid));
412 
413   __kmp_suspend_initialize_thread(th);
414   __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
415 
416   if (!flag) { // coming from __kmp_null_resume_wrapper
417     flag = (C *)th->th.th_sleep_loc;
418   }
419 
420   // First, check if the flag is null or its type has changed. If so, someone
421   // else woke it up.
422   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
423     // simply shows what
424     // flag was cast to
425     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
426                  "awake: flag's loc(%p)\n",
427                  gtid, target_gtid, NULL));
428     __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
429     return;
430   } else {
431     typename C::flag_t old_spin = flag->unset_sleeping();
432     if (!flag->is_sleeping_val(old_spin)) {
433       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
434                    "awake: flag's loc(%p): %u => %u\n",
435                    gtid, target_gtid, flag->get(), old_spin, *(flag->get())));
436       __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
437       return;
438     }
439   }
440   TCW_PTR(th->th.th_sleep_loc, NULL);
441   KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
442                "bit for flag's loc(%p)\n",
443                gtid, target_gtid, flag->get()));
444 
445   __kmp_win32_cond_signal(&th->th.th_suspend_cv);
446   __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
447 
448   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
449                 " for T#%d\n",
450                 gtid, target_gtid));
451 }
452 
453 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
454   __kmp_resume_template(target_gtid, flag);
455 }
456 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
457   __kmp_resume_template(target_gtid, flag);
458 }
459 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
460   __kmp_resume_template(target_gtid, flag);
461 }
462 
463 void __kmp_yield(int cond) {
464   if (cond)
465     Sleep(0);
466 }
467 
468 void __kmp_gtid_set_specific(int gtid) {
469   if (__kmp_init_gtid) {
470     KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
471                   __kmp_gtid_threadprivate_key));
472     if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1)))
473       KMP_FATAL(TLSSetValueFailed);
474   } else {
475     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
476   }
477 }
478 
479 int __kmp_gtid_get_specific() {
480   int gtid;
481   if (!__kmp_init_gtid) {
482     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
483                   "KMP_GTID_SHUTDOWN\n"));
484     return KMP_GTID_SHUTDOWN;
485   }
486   gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
487   if (gtid == 0) {
488     gtid = KMP_GTID_DNE;
489   } else {
490     gtid--;
491   }
492   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
493                 __kmp_gtid_threadprivate_key, gtid));
494   return gtid;
495 }
496 
497 void __kmp_affinity_bind_thread(int proc) {
498   if (__kmp_num_proc_groups > 1) {
499     // Form the GROUP_AFFINITY struct directly, rather than filling
500     // out a bit vector and calling __kmp_set_system_affinity().
501     GROUP_AFFINITY ga;
502     KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
503                                              sizeof(DWORD_PTR))));
504     ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
505     ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
506     ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
507 
508     KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
509     if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
510       DWORD error = GetLastError();
511       if (__kmp_affinity_verbose) { // AC: continue silently if not verbose
512         kmp_msg_t err_code = KMP_ERR(error);
513         __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
514                   __kmp_msg_null);
515         if (__kmp_generate_warnings == kmp_warnings_off) {
516           __kmp_str_free(&err_code.str);
517         }
518       }
519     }
520   } else {
521     kmp_affin_mask_t *mask;
522     KMP_CPU_ALLOC_ON_STACK(mask);
523     KMP_CPU_ZERO(mask);
524     KMP_CPU_SET(proc, mask);
525     __kmp_set_system_affinity(mask, TRUE);
526     KMP_CPU_FREE_FROM_STACK(mask);
527   }
528 }
529 
530 void __kmp_affinity_determine_capable(const char *env_var) {
531 // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask().
532 
533 #if KMP_GROUP_AFFINITY
534   KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
535 #else
536   KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
537 #endif
538 
539   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
540                 "Windows* OS affinity interface functional (mask size = "
541                 "%" KMP_SIZE_T_SPEC ").\n",
542                 __kmp_affin_mask_size));
543 }
544 
545 double __kmp_read_cpu_time(void) {
546   FILETIME CreationTime, ExitTime, KernelTime, UserTime;
547   int status;
548   double cpu_time;
549 
550   cpu_time = 0;
551 
552   status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
553                            &KernelTime, &UserTime);
554 
555   if (status) {
556     double sec = 0;
557 
558     sec += KernelTime.dwHighDateTime;
559     sec += UserTime.dwHighDateTime;
560 
561     /* Shift left by 32 bits */
562     sec *= (double)(1 << 16) * (double)(1 << 16);
563 
564     sec += KernelTime.dwLowDateTime;
565     sec += UserTime.dwLowDateTime;
566 
567     cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
568   }
569 
570   return cpu_time;
571 }
572 
573 int __kmp_read_system_info(struct kmp_sys_info *info) {
574   info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
575   info->minflt = 0; /* the number of page faults serviced without any I/O */
576   info->majflt = 0; /* the number of page faults serviced that required I/O */
577   info->nswap = 0; // the number of times a process was "swapped" out of memory
578   info->inblock = 0; // the number of times the file system had to perform input
579   info->oublock = 0; // number of times the file system had to perform output
580   info->nvcsw = 0; /* the number of times a context switch was voluntarily */
581   info->nivcsw = 0; /* the number of times a context switch was forced */
582 
583   return 1;
584 }
585 
586 void __kmp_runtime_initialize(void) {
587   SYSTEM_INFO info;
588   kmp_str_buf_t path;
589   UINT path_size;
590 
591   if (__kmp_init_runtime) {
592     return;
593   }
594 
595 #if KMP_DYNAMIC_LIB
596   /* Pin dynamic library for the lifetime of application */
597   {
598     // First, turn off error message boxes
599     UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
600     HMODULE h;
601     BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
602                                      GET_MODULE_HANDLE_EX_FLAG_PIN,
603                                  (LPCTSTR)&__kmp_serial_initialize, &h);
604     KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
605     SetErrorMode(err_mode); // Restore error mode
606     KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
607   }
608 #endif
609 
610   InitializeCriticalSection(&__kmp_win32_section);
611 #if USE_ITT_BUILD
612   __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
613 #endif /* USE_ITT_BUILD */
614   __kmp_initialize_system_tick();
615 
616 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
617   if (!__kmp_cpuinfo.initialized) {
618     __kmp_query_cpuid(&__kmp_cpuinfo);
619   }
620 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
621 
622 /* Set up minimum number of threads to switch to TLS gtid */
623 #if KMP_OS_WINDOWS && !defined KMP_DYNAMIC_LIB
624   // Windows* OS, static library.
625   /* New thread may use stack space previously used by another thread,
626      currently terminated. On Windows* OS, in case of static linking, we do not
627      know the moment of thread termination, and our structures (__kmp_threads
628      and __kmp_root arrays) are still keep info about dead threads. This leads
629      to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
630      (by searching through stack addresses of all known threads) for
631      unregistered foreign tread.
632 
633      Setting __kmp_tls_gtid_min to 0 workarounds this problem:
634      __kmp_get_global_thread_id() does not search through stacks, but get gtid
635      from TLS immediately.
636       --ln
637   */
638   __kmp_tls_gtid_min = 0;
639 #else
640   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
641 #endif
642 
643   /* for the static library */
644   if (!__kmp_gtid_threadprivate_key) {
645     __kmp_gtid_threadprivate_key = TlsAlloc();
646     if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
647       KMP_FATAL(TLSOutOfIndexes);
648     }
649   }
650 
651   // Load ntdll.dll.
652   /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
653      (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
654      have to specify full path to the library. */
655   __kmp_str_buf_init(&path);
656   path_size = GetSystemDirectory(path.str, path.size);
657   KMP_DEBUG_ASSERT(path_size > 0);
658   if (path_size >= path.size) {
659     // Buffer is too short.  Expand the buffer and try again.
660     __kmp_str_buf_reserve(&path, path_size);
661     path_size = GetSystemDirectory(path.str, path.size);
662     KMP_DEBUG_ASSERT(path_size > 0);
663   }
664   if (path_size > 0 && path_size < path.size) {
665     // Now we have system directory name in the buffer.
666     // Append backslash and name of dll to form full path,
667     path.used = path_size;
668     __kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
669 
670     // Now load ntdll using full path.
671     ntdll = GetModuleHandle(path.str);
672   }
673 
674   KMP_DEBUG_ASSERT(ntdll != NULL);
675   if (ntdll != NULL) {
676     NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
677         ntdll, "NtQuerySystemInformation");
678   }
679   KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
680 
681 #if KMP_GROUP_AFFINITY
682   // Load kernel32.dll.
683   // Same caveat - must use full system path name.
684   if (path_size > 0 && path_size < path.size) {
685     // Truncate the buffer back to just the system path length,
686     // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
687     path.used = path_size;
688     __kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
689 
690     // Load kernel32.dll using full path.
691     kernel32 = GetModuleHandle(path.str);
692     KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
693 
694     // Load the function pointers to kernel32.dll routines
695     // that may or may not exist on this system.
696     if (kernel32 != NULL) {
697       __kmp_GetActiveProcessorCount =
698           (kmp_GetActiveProcessorCount_t)GetProcAddress(
699               kernel32, "GetActiveProcessorCount");
700       __kmp_GetActiveProcessorGroupCount =
701           (kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
702               kernel32, "GetActiveProcessorGroupCount");
703       __kmp_GetThreadGroupAffinity =
704           (kmp_GetThreadGroupAffinity_t)GetProcAddress(
705               kernel32, "GetThreadGroupAffinity");
706       __kmp_SetThreadGroupAffinity =
707           (kmp_SetThreadGroupAffinity_t)GetProcAddress(
708               kernel32, "SetThreadGroupAffinity");
709 
710       KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
711                     " = %p\n",
712                     __kmp_GetActiveProcessorCount));
713       KA_TRACE(10, ("__kmp_runtime_initialize: "
714                     "__kmp_GetActiveProcessorGroupCount = %p\n",
715                     __kmp_GetActiveProcessorGroupCount));
716       KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
717                     " = %p\n",
718                     __kmp_GetThreadGroupAffinity));
719       KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
720                     " = %p\n",
721                     __kmp_SetThreadGroupAffinity));
722       KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
723                     sizeof(kmp_affin_mask_t)));
724 
725       // See if group affinity is supported on this system.
726       // If so, calculate the #groups and #procs.
727       //
728       // Group affinity was introduced with Windows* 7 OS and
729       // Windows* Server 2008 R2 OS.
730       if ((__kmp_GetActiveProcessorCount != NULL) &&
731           (__kmp_GetActiveProcessorGroupCount != NULL) &&
732           (__kmp_GetThreadGroupAffinity != NULL) &&
733           (__kmp_SetThreadGroupAffinity != NULL) &&
734           ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
735            1)) {
736         // Calculate the total number of active OS procs.
737         int i;
738 
739         KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
740                       " detected\n",
741                       __kmp_num_proc_groups));
742 
743         __kmp_xproc = 0;
744 
745         for (i = 0; i < __kmp_num_proc_groups; i++) {
746           DWORD size = __kmp_GetActiveProcessorCount(i);
747           __kmp_xproc += size;
748           KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
749                         i, size));
750         }
751       } else {
752         KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
753                       " detected\n",
754                       __kmp_num_proc_groups));
755       }
756     }
757   }
758   if (__kmp_num_proc_groups <= 1) {
759     GetSystemInfo(&info);
760     __kmp_xproc = info.dwNumberOfProcessors;
761   }
762 #else
763   GetSystemInfo(&info);
764   __kmp_xproc = info.dwNumberOfProcessors;
765 #endif /* KMP_GROUP_AFFINITY */
766 
767   // If the OS said there were 0 procs, take a guess and use a value of 2.
768   // This is done for Linux* OS, also.  Do we need error / warning?
769   if (__kmp_xproc <= 0) {
770     __kmp_xproc = 2;
771   }
772 
773   KA_TRACE(5,
774            ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
775 
776   __kmp_str_buf_free(&path);
777 
778 #if USE_ITT_BUILD
779   __kmp_itt_initialize();
780 #endif /* USE_ITT_BUILD */
781 
782   __kmp_init_runtime = TRUE;
783 } // __kmp_runtime_initialize
784 
785 void __kmp_runtime_destroy(void) {
786   if (!__kmp_init_runtime) {
787     return;
788   }
789 
790 #if USE_ITT_BUILD
791   __kmp_itt_destroy();
792 #endif /* USE_ITT_BUILD */
793 
794   /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
795   /* due to the KX_TRACE() commands */
796   KA_TRACE(40, ("__kmp_runtime_destroy\n"));
797 
798   if (__kmp_gtid_threadprivate_key) {
799     TlsFree(__kmp_gtid_threadprivate_key);
800     __kmp_gtid_threadprivate_key = 0;
801   }
802 
803   __kmp_affinity_uninitialize();
804   DeleteCriticalSection(&__kmp_win32_section);
805 
806   ntdll = NULL;
807   NtQuerySystemInformation = NULL;
808 
809 #if KMP_ARCH_X86_64
810   kernel32 = NULL;
811   __kmp_GetActiveProcessorCount = NULL;
812   __kmp_GetActiveProcessorGroupCount = NULL;
813   __kmp_GetThreadGroupAffinity = NULL;
814   __kmp_SetThreadGroupAffinity = NULL;
815 #endif // KMP_ARCH_X86_64
816 
817   __kmp_init_runtime = FALSE;
818 }
819 
820 void __kmp_terminate_thread(int gtid) {
821   kmp_info_t *th = __kmp_threads[gtid];
822 
823   if (!th)
824     return;
825 
826   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
827 
828   if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
829     /* It's OK, the thread may have exited already */
830   }
831   __kmp_free_handle(th->th.th_info.ds.ds_thread);
832 }
833 
834 void __kmp_clear_system_time(void) {
835   BOOL status;
836   LARGE_INTEGER time;
837   status = QueryPerformanceCounter(&time);
838   __kmp_win32_time = (kmp_int64)time.QuadPart;
839 }
840 
841 void __kmp_initialize_system_tick(void) {
842   {
843     BOOL status;
844     LARGE_INTEGER freq;
845 
846     status = QueryPerformanceFrequency(&freq);
847     if (!status) {
848       DWORD error = GetLastError();
849       __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
850                   KMP_ERR(error), __kmp_msg_null);
851 
852     } else {
853       __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
854     }
855   }
856 }
857 
858 /* Calculate the elapsed wall clock time for the user */
859 
860 void __kmp_elapsed(double *t) {
861   BOOL status;
862   LARGE_INTEGER now;
863   status = QueryPerformanceCounter(&now);
864   *t = ((double)now.QuadPart) * __kmp_win32_tick;
865 }
866 
867 /* Calculate the elapsed wall clock tick for the user */
868 
869 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
870 
871 void __kmp_read_system_time(double *delta) {
872   if (delta != NULL) {
873     BOOL status;
874     LARGE_INTEGER now;
875 
876     status = QueryPerformanceCounter(&now);
877 
878     *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
879              __kmp_win32_tick;
880   }
881 }
882 
883 /* Return the current time stamp in nsec */
884 kmp_uint64 __kmp_now_nsec() {
885   LARGE_INTEGER now;
886   QueryPerformanceCounter(&now);
887   return 1e9 * __kmp_win32_tick * now.QuadPart;
888 }
889 
890 void *__stdcall __kmp_launch_worker(void *arg) {
891   volatile void *stack_data;
892   void *exit_val;
893   void *padding = 0;
894   kmp_info_t *this_thr = (kmp_info_t *)arg;
895   int gtid;
896 
897   gtid = this_thr->th.th_info.ds.ds_gtid;
898   __kmp_gtid_set_specific(gtid);
899 #ifdef KMP_TDATA_GTID
900 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
901         "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
902         "reference: http://support.microsoft.com/kb/118816"
903 //__kmp_gtid = gtid;
904 #endif
905 
906 #if USE_ITT_BUILD
907   __kmp_itt_thread_name(gtid);
908 #endif /* USE_ITT_BUILD */
909 
910   __kmp_affinity_set_init_mask(gtid, FALSE);
911 
912 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
913   // Set FP control regs to be a copy of the parallel initialization thread's.
914   __kmp_clear_x87_fpu_status_word();
915   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
916   __kmp_load_mxcsr(&__kmp_init_mxcsr);
917 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
918 
919   if (__kmp_stkoffset > 0 && gtid > 0) {
920     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
921   }
922 
923   KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
924   this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
925   TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
926 
927   if (TCR_4(__kmp_gtid_mode) <
928       2) { // check stack only if it is used to get gtid
929     TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
930     KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
931     __kmp_check_stack_overlap(this_thr);
932   }
933   KMP_MB();
934   exit_val = __kmp_launch_thread(this_thr);
935   KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
936   TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
937   KMP_MB();
938   return exit_val;
939 }
940 
941 #if KMP_USE_MONITOR
942 /* The monitor thread controls all of the threads in the complex */
943 
944 void *__stdcall __kmp_launch_monitor(void *arg) {
945   DWORD wait_status;
946   kmp_thread_t monitor;
947   int status;
948   int interval;
949   kmp_info_t *this_thr = (kmp_info_t *)arg;
950 
951   KMP_DEBUG_ASSERT(__kmp_init_monitor);
952   TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
953   // TODO: hide "2" in enum (like {true,false,started})
954   this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
955   TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
956 
957   KMP_MB(); /* Flush all pending memory write invalidates.  */
958   KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
959 
960   monitor = GetCurrentThread();
961 
962   /* set thread priority */
963   status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
964   if (!status) {
965     DWORD error = GetLastError();
966     __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
967   }
968 
969   /* register us as monitor */
970   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
971 #ifdef KMP_TDATA_GTID
972 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
973         "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
974         "reference: http://support.microsoft.com/kb/118816"
975 //__kmp_gtid = KMP_GTID_MONITOR;
976 #endif
977 
978 #if USE_ITT_BUILD
979   __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
980 // monitor thread.
981 #endif /* USE_ITT_BUILD */
982 
983   KMP_MB(); /* Flush all pending memory write invalidates.  */
984 
985   interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
986 
987   while (!TCR_4(__kmp_global.g.g_done)) {
988     /*  This thread monitors the state of the system */
989 
990     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
991 
992     wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
993 
994     if (wait_status == WAIT_TIMEOUT) {
995       TCW_4(__kmp_global.g.g_time.dt.t_value,
996             TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
997     }
998 
999     KMP_MB(); /* Flush all pending memory write invalidates.  */
1000   }
1001 
1002   KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1003 
1004   status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
1005   if (!status) {
1006     DWORD error = GetLastError();
1007     __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1008   }
1009 
1010   if (__kmp_global.g.g_abort != 0) {
1011     /* now we need to terminate the worker threads   */
1012     /* the value of t_abort is the signal we caught */
1013     int gtid;
1014 
1015     KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1016                   (__kmp_global.g.g_abort)));
1017 
1018     /* terminate the OpenMP worker threads */
1019     /* TODO this is not valid for sibling threads!!
1020      * the uber master might not be 0 anymore.. */
1021     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
1022       __kmp_terminate_thread(gtid);
1023 
1024     __kmp_cleanup();
1025 
1026     Sleep(0);
1027 
1028     KA_TRACE(10,
1029              ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
1030 
1031     if (__kmp_global.g.g_abort > 0) {
1032       raise(__kmp_global.g.g_abort);
1033     }
1034   }
1035 
1036   TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1037 
1038   KMP_MB();
1039   return arg;
1040 }
1041 #endif
1042 
1043 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
1044   kmp_thread_t handle;
1045   DWORD idThread;
1046 
1047   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
1048 
1049   th->th.th_info.ds.ds_gtid = gtid;
1050 
1051   if (KMP_UBER_GTID(gtid)) {
1052     int stack_data;
1053 
1054     /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1055        other threads to use. Is it appropriate to just use GetCurrentThread?
1056        When should we close this handle?  When unregistering the root? */
1057     {
1058       BOOL rc;
1059       rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1060                            GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
1061                            FALSE, DUPLICATE_SAME_ACCESS);
1062       KMP_ASSERT(rc);
1063       KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1064                     "handle = %" KMP_UINTPTR_SPEC "\n",
1065                     (LPVOID)th, th->th.th_info.ds.ds_thread));
1066       th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1067     }
1068     if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
1069       /* we will dynamically update the stack range if gtid_mode == 1 */
1070       TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
1071       TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
1072       TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
1073       __kmp_check_stack_overlap(th);
1074     }
1075   } else {
1076     KMP_MB(); /* Flush all pending memory write invalidates.  */
1077 
1078     /* Set stack size for this thread now. */
1079     KA_TRACE(10,
1080              ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
1081               stack_size));
1082 
1083     stack_size += gtid * __kmp_stkoffset;
1084 
1085     TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
1086     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
1087 
1088     KA_TRACE(10,
1089              ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1090               " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1091               (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1092               (LPVOID)th, &idThread));
1093 
1094     handle = CreateThread(
1095         NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
1096         (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1097 
1098     KA_TRACE(10,
1099              ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1100               " bytes, &__kmp_launch_worker = %p, th = %p, "
1101               "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
1102               (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1103               (LPVOID)th, idThread, handle));
1104 
1105     if (handle == 0) {
1106       DWORD error = GetLastError();
1107       __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1108     } else {
1109       th->th.th_info.ds.ds_thread = handle;
1110     }
1111 
1112     KMP_MB(); /* Flush all pending memory write invalidates.  */
1113   }
1114 
1115   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
1116 }
1117 
1118 int __kmp_still_running(kmp_info_t *th) {
1119   return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
1120 }
1121 
1122 #if KMP_USE_MONITOR
1123 void __kmp_create_monitor(kmp_info_t *th) {
1124   kmp_thread_t handle;
1125   DWORD idThread;
1126   int ideal, new_ideal;
1127 
1128   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
1129     // We don't need monitor thread in case of MAX_BLOCKTIME
1130     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1131                   "MAX blocktime\n"));
1132     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
1133     th->th.th_info.ds.ds_gtid = 0;
1134     TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
1135     return;
1136   }
1137   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1138 
1139   KMP_MB(); /* Flush all pending memory write invalidates.  */
1140 
1141   __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
1142   if (__kmp_monitor_ev == NULL) {
1143     DWORD error = GetLastError();
1144     __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
1145   }
1146 #if USE_ITT_BUILD
1147   __kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
1148 #endif /* USE_ITT_BUILD */
1149 
1150   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1151   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1152 
1153   // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1154   // to automatically expand stacksize based on CreateThread error code.
1155   if (__kmp_monitor_stksize == 0) {
1156     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1157   }
1158   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
1159     __kmp_monitor_stksize = __kmp_sys_min_stksize;
1160   }
1161 
1162   KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1163                 (int)__kmp_monitor_stksize));
1164 
1165   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
1166 
1167   handle =
1168       CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
1169                    (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
1170                    STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1171   if (handle == 0) {
1172     DWORD error = GetLastError();
1173     __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1174   } else
1175     th->th.th_info.ds.ds_thread = handle;
1176 
1177   KMP_MB(); /* Flush all pending memory write invalidates.  */
1178 
1179   KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1180                 (void *)th->th.th_info.ds.ds_thread));
1181 }
1182 #endif
1183 
1184 /* Check to see if thread is still alive.
1185    NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1186    with a exit_val = code.  Because of this we can not rely on exit_val having
1187    any particular value.  So this routine may return STILL_ALIVE in exit_val
1188    even after the thread is dead. */
1189 
1190 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
1191   DWORD rc;
1192   rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
1193   if (rc == 0) {
1194     DWORD error = GetLastError();
1195     __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
1196                 __kmp_msg_null);
1197   }
1198   return (*exit_val == STILL_ACTIVE);
1199 }
1200 
1201 void __kmp_exit_thread(int exit_status) {
1202   ExitThread(exit_status);
1203 } // __kmp_exit_thread
1204 
1205 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
1206 static void __kmp_reap_common(kmp_info_t *th) {
1207   DWORD exit_val;
1208 
1209   KMP_MB(); /* Flush all pending memory write invalidates.  */
1210 
1211   KA_TRACE(
1212       10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
1213 
1214   /* 2006-10-19:
1215      There are two opposite situations:
1216      1. Windows* OS keep thread alive after it resets ds_alive flag and
1217      exits from thread function. (For example, see C70770/Q394281 "unloading of
1218      dll based on OMP is very slow".)
1219      2. Windows* OS may kill thread before it resets ds_alive flag.
1220 
1221      Right solution seems to be waiting for *either* thread termination *or*
1222      ds_alive resetting. */
1223   {
1224     // TODO: This code is very similar to KMP_WAIT_YIELD. Need to generalize
1225     // KMP_WAIT_YIELD to cover this usage also.
1226     void *obj = NULL;
1227     kmp_uint32 spins;
1228 #if USE_ITT_BUILD
1229     KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
1230 #endif /* USE_ITT_BUILD */
1231     KMP_INIT_YIELD(spins);
1232     do {
1233 #if USE_ITT_BUILD
1234       KMP_FSYNC_SPIN_PREPARE(obj);
1235 #endif /* USE_ITT_BUILD */
1236       __kmp_is_thread_alive(th, &exit_val);
1237       KMP_YIELD(TCR_4(__kmp_nth) > __kmp_avail_proc);
1238       KMP_YIELD_SPIN(spins);
1239     } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
1240 #if USE_ITT_BUILD
1241     if (exit_val == STILL_ACTIVE) {
1242       KMP_FSYNC_CANCEL(obj);
1243     } else {
1244       KMP_FSYNC_SPIN_ACQUIRED(obj);
1245     }
1246 #endif /* USE_ITT_BUILD */
1247   }
1248 
1249   __kmp_free_handle(th->th.th_info.ds.ds_thread);
1250 
1251   /* NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1252      with a exit_val = code.  Because of this we can not rely on exit_val having
1253      any particular value. */
1254   if (exit_val == STILL_ACTIVE) {
1255     KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1256   } else if ((void *)exit_val != (void *)th) {
1257     KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1258   }
1259 
1260   KA_TRACE(10,
1261            ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1262             "\n",
1263             th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
1264 
1265   th->th.th_info.ds.ds_thread = 0;
1266   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1267   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1268   th->th.th_info.ds.ds_thread_id = 0;
1269 
1270   KMP_MB(); /* Flush all pending memory write invalidates.  */
1271 }
1272 
1273 #if KMP_USE_MONITOR
1274 void __kmp_reap_monitor(kmp_info_t *th) {
1275   int status;
1276 
1277   KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1278                 (void *)th->th.th_info.ds.ds_thread));
1279 
1280   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1281   // If both tid and gtid are 0, it means the monitor did not ever start.
1282   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1283   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1284   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1285     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1286     return;
1287   }
1288 
1289   KMP_MB(); /* Flush all pending memory write invalidates.  */
1290 
1291   status = SetEvent(__kmp_monitor_ev);
1292   if (status == FALSE) {
1293     DWORD error = GetLastError();
1294     __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
1295   }
1296   KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1297                 th->th.th_info.ds.ds_gtid));
1298   __kmp_reap_common(th);
1299 
1300   __kmp_free_handle(__kmp_monitor_ev);
1301 
1302   KMP_MB(); /* Flush all pending memory write invalidates.  */
1303 }
1304 #endif
1305 
1306 void __kmp_reap_worker(kmp_info_t *th) {
1307   KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1308                 th->th.th_info.ds.ds_gtid));
1309   __kmp_reap_common(th);
1310 }
1311 
1312 #if KMP_HANDLE_SIGNALS
1313 
1314 static void __kmp_team_handler(int signo) {
1315   if (__kmp_global.g.g_abort == 0) {
1316     // Stage 1 signal handler, let's shut down all of the threads.
1317     if (__kmp_debug_buf) {
1318       __kmp_dump_debug_buffer();
1319     }
1320     KMP_MB(); // Flush all pending memory write invalidates.
1321     TCW_4(__kmp_global.g.g_abort, signo);
1322     KMP_MB(); // Flush all pending memory write invalidates.
1323     TCW_4(__kmp_global.g.g_done, TRUE);
1324     KMP_MB(); // Flush all pending memory write invalidates.
1325   }
1326 } // __kmp_team_handler
1327 
1328 static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
1329   sig_func_t old = signal(signum, handler);
1330   if (old == SIG_ERR) {
1331     int error = errno;
1332     __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
1333                 __kmp_msg_null);
1334   }
1335   return old;
1336 }
1337 
1338 static void __kmp_install_one_handler(int sig, sig_func_t handler,
1339                                       int parallel_init) {
1340   sig_func_t old;
1341   KMP_MB(); /* Flush all pending memory write invalidates.  */
1342   KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
1343   if (parallel_init) {
1344     old = __kmp_signal(sig, handler);
1345     // SIG_DFL on Windows* OS in NULL or 0.
1346     if (old == __kmp_sighldrs[sig]) {
1347       __kmp_siginstalled[sig] = 1;
1348     } else { // Restore/keep user's handler if one previously installed.
1349       old = __kmp_signal(sig, old);
1350     }
1351   } else {
1352     // Save initial/system signal handlers to see if user handlers installed.
1353     // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1354     // called once with parallel_init == TRUE.
1355     old = __kmp_signal(sig, SIG_DFL);
1356     __kmp_sighldrs[sig] = old;
1357     __kmp_signal(sig, old);
1358   }
1359   KMP_MB(); /* Flush all pending memory write invalidates.  */
1360 } // __kmp_install_one_handler
1361 
1362 static void __kmp_remove_one_handler(int sig) {
1363   if (__kmp_siginstalled[sig]) {
1364     sig_func_t old;
1365     KMP_MB(); // Flush all pending memory write invalidates.
1366     KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
1367     old = __kmp_signal(sig, __kmp_sighldrs[sig]);
1368     if (old != __kmp_team_handler) {
1369       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1370                     "restoring: sig=%d\n",
1371                     sig));
1372       old = __kmp_signal(sig, old);
1373     }
1374     __kmp_sighldrs[sig] = NULL;
1375     __kmp_siginstalled[sig] = 0;
1376     KMP_MB(); // Flush all pending memory write invalidates.
1377   }
1378 } // __kmp_remove_one_handler
1379 
1380 void __kmp_install_signals(int parallel_init) {
1381   KB_TRACE(10, ("__kmp_install_signals: called\n"));
1382   if (!__kmp_handle_signals) {
1383     KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1384                   "handlers not installed\n"));
1385     return;
1386   }
1387   __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1388   __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1389   __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1390   __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1391   __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1392   __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1393 } // __kmp_install_signals
1394 
1395 void __kmp_remove_signals(void) {
1396   int sig;
1397   KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1398   for (sig = 1; sig < NSIG; ++sig) {
1399     __kmp_remove_one_handler(sig);
1400   }
1401 } // __kmp_remove_signals
1402 
1403 #endif // KMP_HANDLE_SIGNALS
1404 
1405 /* Put the thread to sleep for a time period */
1406 void __kmp_thread_sleep(int millis) {
1407   DWORD status;
1408 
1409   status = SleepEx((DWORD)millis, FALSE);
1410   if (status) {
1411     DWORD error = GetLastError();
1412     __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
1413                 __kmp_msg_null);
1414   }
1415 }
1416 
1417 // Determine whether the given address is mapped into the current address space.
1418 int __kmp_is_address_mapped(void *addr) {
1419   DWORD status;
1420   MEMORY_BASIC_INFORMATION lpBuffer;
1421   SIZE_T dwLength;
1422 
1423   dwLength = sizeof(MEMORY_BASIC_INFORMATION);
1424 
1425   status = VirtualQuery(addr, &lpBuffer, dwLength);
1426 
1427   return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
1428            ((lpBuffer.Protect == PAGE_NOACCESS) ||
1429             (lpBuffer.Protect == PAGE_EXECUTE)));
1430 }
1431 
1432 kmp_uint64 __kmp_hardware_timestamp(void) {
1433   kmp_uint64 r = 0;
1434 
1435   QueryPerformanceCounter((LARGE_INTEGER *)&r);
1436   return r;
1437 }
1438 
1439 /* Free handle and check the error code */
1440 void __kmp_free_handle(kmp_thread_t tHandle) {
1441   /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1442    * as HANDLE */
1443   BOOL rc;
1444   rc = CloseHandle(tHandle);
1445   if (!rc) {
1446     DWORD error = GetLastError();
1447     __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
1448   }
1449 }
1450 
1451 int __kmp_get_load_balance(int max) {
1452   static ULONG glb_buff_size = 100 * 1024;
1453 
1454   // Saved count of the running threads for the thread balance algortihm
1455   static int glb_running_threads = 0;
1456   static double glb_call_time = 0; /* Thread balance algorithm call time */
1457 
1458   int running_threads = 0; // Number of running threads in the system.
1459   NTSTATUS status = 0;
1460   ULONG buff_size = 0;
1461   ULONG info_size = 0;
1462   void *buffer = NULL;
1463   PSYSTEM_PROCESS_INFORMATION spi = NULL;
1464   int first_time = 1;
1465 
1466   double call_time = 0.0; // start, finish;
1467 
1468   __kmp_elapsed(&call_time);
1469 
1470   if (glb_call_time &&
1471       (call_time - glb_call_time < __kmp_load_balance_interval)) {
1472     running_threads = glb_running_threads;
1473     goto finish;
1474   }
1475   glb_call_time = call_time;
1476 
1477   // Do not spend time on running algorithm if we have a permanent error.
1478   if (NtQuerySystemInformation == NULL) {
1479     running_threads = -1;
1480     goto finish;
1481   }
1482 
1483   if (max <= 0) {
1484     max = INT_MAX;
1485   }
1486 
1487   do {
1488 
1489     if (first_time) {
1490       buff_size = glb_buff_size;
1491     } else {
1492       buff_size = 2 * buff_size;
1493     }
1494 
1495     buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
1496     if (buffer == NULL) {
1497       running_threads = -1;
1498       goto finish;
1499     }
1500     status = NtQuerySystemInformation(SystemProcessInformation, buffer,
1501                                       buff_size, &info_size);
1502     first_time = 0;
1503 
1504   } while (status == STATUS_INFO_LENGTH_MISMATCH);
1505   glb_buff_size = buff_size;
1506 
1507 #define CHECK(cond)                                                            \
1508   {                                                                            \
1509     KMP_DEBUG_ASSERT(cond);                                                    \
1510     if (!(cond)) {                                                             \
1511       running_threads = -1;                                                    \
1512       goto finish;                                                             \
1513     }                                                                          \
1514   }
1515 
1516   CHECK(buff_size >= info_size);
1517   spi = PSYSTEM_PROCESS_INFORMATION(buffer);
1518   for (;;) {
1519     ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
1520     CHECK(0 <= offset &&
1521           offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
1522     HANDLE pid = spi->ProcessId;
1523     ULONG num = spi->NumberOfThreads;
1524     CHECK(num >= 1);
1525     size_t spi_size =
1526         sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
1527     CHECK(offset + spi_size <
1528           info_size); // Make sure process info record fits the buffer.
1529     if (spi->NextEntryOffset != 0) {
1530       CHECK(spi_size <=
1531             spi->NextEntryOffset); // And do not overlap with the next record.
1532     }
1533     // pid == 0 corresponds to the System Idle Process. It always has running
1534     // threads on all cores. So, we don't consider the running threads of this
1535     // process.
1536     if (pid != 0) {
1537       for (int i = 0; i < num; ++i) {
1538         THREAD_STATE state = spi->Threads[i].State;
1539         // Count threads that have Ready or Running state.
1540         // !!! TODO: Why comment does not match the code???
1541         if (state == StateRunning) {
1542           ++running_threads;
1543           // Stop counting running threads if the number is already greater than
1544           // the number of available cores
1545           if (running_threads >= max) {
1546             goto finish;
1547           }
1548         }
1549       }
1550     }
1551     if (spi->NextEntryOffset == 0) {
1552       break;
1553     }
1554     spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
1555   }
1556 
1557 #undef CHECK
1558 
1559 finish: // Clean up and exit.
1560 
1561   if (buffer != NULL) {
1562     KMP_INTERNAL_FREE(buffer);
1563   }
1564 
1565   glb_running_threads = running_threads;
1566 
1567   return running_threads;
1568 } //__kmp_get_load_balance()
1569