1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 //                     The LLVM Compiler Infrastructure
8 //
9 // This file is dual licensed under the MIT and the University of Illinois Open
10 // Source Licenses. See LICENSE.txt for details.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "kmp.h"
15 #include "kmp_affinity.h"
16 #include "kmp_i18n.h"
17 #include "kmp_io.h"
18 #include "kmp_itt.h"
19 #include "kmp_lock.h"
20 #include "kmp_stats.h"
21 #include "kmp_str.h"
22 #include "kmp_wait_release.h"
23 #include "kmp_wrapper_getpid.h"
24 
25 #if !KMP_OS_FREEBSD && !KMP_OS_NETBSD
26 #include <alloca.h>
27 #endif
28 #include <math.h> // HUGE_VAL.
29 #include <sys/resource.h>
30 #include <sys/syscall.h>
31 #include <sys/time.h>
32 #include <sys/times.h>
33 #include <unistd.h>
34 
35 #if KMP_OS_LINUX && !KMP_OS_CNK
36 #include <sys/sysinfo.h>
37 #if KMP_USE_FUTEX
38 // We should really include <futex.h>, but that causes compatibility problems on
39 // different Linux* OS distributions that either require that you include (or
40 // break when you try to include) <pci/types.h>. Since all we need is the two
41 // macros below (which are part of the kernel ABI, so can't change) we just
42 // define the constants here and don't include <futex.h>
43 #ifndef FUTEX_WAIT
44 #define FUTEX_WAIT 0
45 #endif
46 #ifndef FUTEX_WAKE
47 #define FUTEX_WAKE 1
48 #endif
49 #endif
50 #elif KMP_OS_DARWIN
51 #include <mach/mach.h>
52 #include <sys/sysctl.h>
53 #elif KMP_OS_FREEBSD
54 #include <pthread_np.h>
55 #endif
56 
57 #include <ctype.h>
58 #include <dirent.h>
59 #include <fcntl.h>
60 
61 #include "tsan_annotations.h"
62 
63 struct kmp_sys_timer {
64   struct timespec start;
65 };
66 
67 // Convert timespec to nanoseconds.
68 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
69 
70 static struct kmp_sys_timer __kmp_sys_timer_data;
71 
72 #if KMP_HANDLE_SIGNALS
73 typedef void (*sig_func_t)(int);
74 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
75 static sigset_t __kmp_sigset;
76 #endif
77 
78 static int __kmp_init_runtime = FALSE;
79 
80 static int __kmp_fork_count = 0;
81 
82 static pthread_condattr_t __kmp_suspend_cond_attr;
83 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
84 
85 static kmp_cond_align_t __kmp_wait_cv;
86 static kmp_mutex_align_t __kmp_wait_mx;
87 
88 kmp_uint64 __kmp_ticks_per_msec = 1000000;
89 
90 #ifdef DEBUG_SUSPEND
91 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
92   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
93                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
94                cond->c_cond.__c_waiting);
95 }
96 #endif
97 
98 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
99 
100 /* Affinity support */
101 
102 void __kmp_affinity_bind_thread(int which) {
103   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
104               "Illegal set affinity operation when not capable");
105 
106   kmp_affin_mask_t *mask;
107   KMP_CPU_ALLOC_ON_STACK(mask);
108   KMP_CPU_ZERO(mask);
109   KMP_CPU_SET(which, mask);
110   __kmp_set_system_affinity(mask, TRUE);
111   KMP_CPU_FREE_FROM_STACK(mask);
112 }
113 
114 /* Determine if we can access affinity functionality on this version of
115  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
116  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
117 void __kmp_affinity_determine_capable(const char *env_var) {
118 // Check and see if the OS supports thread affinity.
119 
120 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
121 
122   int gCode;
123   int sCode;
124   unsigned char *buf;
125   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
126 
127   // If Linux* OS:
128   // If the syscall fails or returns a suggestion for the size,
129   // then we don't have to search for an appropriate size.
130   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
131   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
132                 "initial getaffinity call returned %d errno = %d\n",
133                 gCode, errno));
134 
135   // if ((gCode < 0) && (errno == ENOSYS))
136   if (gCode < 0) {
137     // System call not supported
138     if (__kmp_affinity_verbose ||
139         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
140          (__kmp_affinity_type != affinity_default) &&
141          (__kmp_affinity_type != affinity_disabled))) {
142       int error = errno;
143       kmp_msg_t err_code = KMP_ERR(error);
144       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
145                 err_code, __kmp_msg_null);
146       if (__kmp_generate_warnings == kmp_warnings_off) {
147         __kmp_str_free(&err_code.str);
148       }
149     }
150     KMP_AFFINITY_DISABLE();
151     KMP_INTERNAL_FREE(buf);
152     return;
153   }
154   if (gCode > 0) { // Linux* OS only
155     // The optimal situation: the OS returns the size of the buffer it expects.
156     //
157     // A verification of correct behavior is that Isetaffinity on a NULL
158     // buffer with the same size fails with errno set to EFAULT.
159     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
160     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
161                   "setaffinity for mask size %d returned %d errno = %d\n",
162                   gCode, sCode, errno));
163     if (sCode < 0) {
164       if (errno == ENOSYS) {
165         if (__kmp_affinity_verbose ||
166             (__kmp_affinity_warnings &&
167              (__kmp_affinity_type != affinity_none) &&
168              (__kmp_affinity_type != affinity_default) &&
169              (__kmp_affinity_type != affinity_disabled))) {
170           int error = errno;
171           kmp_msg_t err_code = KMP_ERR(error);
172           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
173                     err_code, __kmp_msg_null);
174           if (__kmp_generate_warnings == kmp_warnings_off) {
175             __kmp_str_free(&err_code.str);
176           }
177         }
178         KMP_AFFINITY_DISABLE();
179         KMP_INTERNAL_FREE(buf);
180       }
181       if (errno == EFAULT) {
182         KMP_AFFINITY_ENABLE(gCode);
183         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
184                       "affinity supported (mask size %d)\n",
185                       (int)__kmp_affin_mask_size));
186         KMP_INTERNAL_FREE(buf);
187         return;
188       }
189     }
190   }
191 
192   // Call the getaffinity system call repeatedly with increasing set sizes
193   // until we succeed, or reach an upper bound on the search.
194   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
195                 "searching for proper set size\n"));
196   int size;
197   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
198     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
199     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
200                   "getaffinity for mask size %d returned %d errno = %d\n",
201                   size, gCode, errno));
202 
203     if (gCode < 0) {
204       if (errno == ENOSYS) {
205         // We shouldn't get here
206         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
207                       "inconsistent OS call behavior: errno == ENOSYS for mask "
208                       "size %d\n",
209                       size));
210         if (__kmp_affinity_verbose ||
211             (__kmp_affinity_warnings &&
212              (__kmp_affinity_type != affinity_none) &&
213              (__kmp_affinity_type != affinity_default) &&
214              (__kmp_affinity_type != affinity_disabled))) {
215           int error = errno;
216           kmp_msg_t err_code = KMP_ERR(error);
217           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
218                     err_code, __kmp_msg_null);
219           if (__kmp_generate_warnings == kmp_warnings_off) {
220             __kmp_str_free(&err_code.str);
221           }
222         }
223         KMP_AFFINITY_DISABLE();
224         KMP_INTERNAL_FREE(buf);
225         return;
226       }
227       continue;
228     }
229 
230     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
231     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
232                   "setaffinity for mask size %d returned %d errno = %d\n",
233                   gCode, sCode, errno));
234     if (sCode < 0) {
235       if (errno == ENOSYS) { // Linux* OS only
236         // We shouldn't get here
237         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
238                       "inconsistent OS call behavior: errno == ENOSYS for mask "
239                       "size %d\n",
240                       size));
241         if (__kmp_affinity_verbose ||
242             (__kmp_affinity_warnings &&
243              (__kmp_affinity_type != affinity_none) &&
244              (__kmp_affinity_type != affinity_default) &&
245              (__kmp_affinity_type != affinity_disabled))) {
246           int error = errno;
247           kmp_msg_t err_code = KMP_ERR(error);
248           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
249                     err_code, __kmp_msg_null);
250           if (__kmp_generate_warnings == kmp_warnings_off) {
251             __kmp_str_free(&err_code.str);
252           }
253         }
254         KMP_AFFINITY_DISABLE();
255         KMP_INTERNAL_FREE(buf);
256         return;
257       }
258       if (errno == EFAULT) {
259         KMP_AFFINITY_ENABLE(gCode);
260         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
261                       "affinity supported (mask size %d)\n",
262                       (int)__kmp_affin_mask_size));
263         KMP_INTERNAL_FREE(buf);
264         return;
265       }
266     }
267   }
268   // save uncaught error code
269   // int error = errno;
270   KMP_INTERNAL_FREE(buf);
271   // restore uncaught error code, will be printed at the next KMP_WARNING below
272   // errno = error;
273 
274   // Affinity is not supported
275   KMP_AFFINITY_DISABLE();
276   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
277                 "cannot determine mask size - affinity not supported\n"));
278   if (__kmp_affinity_verbose ||
279       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
280        (__kmp_affinity_type != affinity_default) &&
281        (__kmp_affinity_type != affinity_disabled))) {
282     KMP_WARNING(AffCantGetMaskSize, env_var);
283   }
284 }
285 
286 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
287 
288 #if KMP_USE_FUTEX
289 
290 int __kmp_futex_determine_capable() {
291   int loc = 0;
292   int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
293   int retval = (rc == 0) || (errno != ENOSYS);
294 
295   KA_TRACE(10,
296            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
297   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
298                 retval ? "" : " not"));
299 
300   return retval;
301 }
302 
303 #endif // KMP_USE_FUTEX
304 
305 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
306 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
307    use compare_and_store for these routines */
308 
309 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
310   kmp_int8 old_value, new_value;
311 
312   old_value = TCR_1(*p);
313   new_value = old_value | d;
314 
315   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
316     KMP_CPU_PAUSE();
317     old_value = TCR_1(*p);
318     new_value = old_value | d;
319   }
320   return old_value;
321 }
322 
323 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
324   kmp_int8 old_value, new_value;
325 
326   old_value = TCR_1(*p);
327   new_value = old_value & d;
328 
329   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
330     KMP_CPU_PAUSE();
331     old_value = TCR_1(*p);
332     new_value = old_value & d;
333   }
334   return old_value;
335 }
336 
337 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
338   kmp_uint32 old_value, new_value;
339 
340   old_value = TCR_4(*p);
341   new_value = old_value | d;
342 
343   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
344     KMP_CPU_PAUSE();
345     old_value = TCR_4(*p);
346     new_value = old_value | d;
347   }
348   return old_value;
349 }
350 
351 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
352   kmp_uint32 old_value, new_value;
353 
354   old_value = TCR_4(*p);
355   new_value = old_value & d;
356 
357   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
358     KMP_CPU_PAUSE();
359     old_value = TCR_4(*p);
360     new_value = old_value & d;
361   }
362   return old_value;
363 }
364 
365 #if KMP_ARCH_X86
366 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
367   kmp_int8 old_value, new_value;
368 
369   old_value = TCR_1(*p);
370   new_value = old_value + d;
371 
372   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
373     KMP_CPU_PAUSE();
374     old_value = TCR_1(*p);
375     new_value = old_value + d;
376   }
377   return old_value;
378 }
379 
380 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
381   kmp_int64 old_value, new_value;
382 
383   old_value = TCR_8(*p);
384   new_value = old_value + d;
385 
386   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
387     KMP_CPU_PAUSE();
388     old_value = TCR_8(*p);
389     new_value = old_value + d;
390   }
391   return old_value;
392 }
393 #endif /* KMP_ARCH_X86 */
394 
395 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
396   kmp_uint64 old_value, new_value;
397 
398   old_value = TCR_8(*p);
399   new_value = old_value | d;
400   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
401     KMP_CPU_PAUSE();
402     old_value = TCR_8(*p);
403     new_value = old_value | d;
404   }
405   return old_value;
406 }
407 
408 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
409   kmp_uint64 old_value, new_value;
410 
411   old_value = TCR_8(*p);
412   new_value = old_value & d;
413   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
414     KMP_CPU_PAUSE();
415     old_value = TCR_8(*p);
416     new_value = old_value & d;
417   }
418   return old_value;
419 }
420 
421 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
422 
423 void __kmp_terminate_thread(int gtid) {
424   int status;
425   kmp_info_t *th = __kmp_threads[gtid];
426 
427   if (!th)
428     return;
429 
430 #ifdef KMP_CANCEL_THREADS
431   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
432   status = pthread_cancel(th->th.th_info.ds.ds_thread);
433   if (status != 0 && status != ESRCH) {
434     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
435                 __kmp_msg_null);
436   }
437 #endif
438   __kmp_yield(TRUE);
439 } //
440 
441 /* Set thread stack info according to values returned by pthread_getattr_np().
442    If values are unreasonable, assume call failed and use incremental stack
443    refinement method instead. Returns TRUE if the stack parameters could be
444    determined exactly, FALSE if incremental refinement is necessary. */
445 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
446   int stack_data;
447 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
448   /* Linux* OS only -- no pthread_getattr_np support on OS X* */
449   pthread_attr_t attr;
450   int status;
451   size_t size = 0;
452   void *addr = 0;
453 
454   /* Always do incremental stack refinement for ubermaster threads since the
455      initial thread stack range can be reduced by sibling thread creation so
456      pthread_attr_getstack may cause thread gtid aliasing */
457   if (!KMP_UBER_GTID(gtid)) {
458 
459     /* Fetch the real thread attributes */
460     status = pthread_attr_init(&attr);
461     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
462 #if KMP_OS_FREEBSD || KMP_OS_NETBSD
463     status = pthread_attr_get_np(pthread_self(), &attr);
464     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
465 #else
466     status = pthread_getattr_np(pthread_self(), &attr);
467     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
468 #endif
469     status = pthread_attr_getstack(&attr, &addr, &size);
470     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
471     KA_TRACE(60,
472              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
473               " %lu, low addr: %p\n",
474               gtid, size, addr));
475     status = pthread_attr_destroy(&attr);
476     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
477   }
478 
479   if (size != 0 && addr != 0) { // was stack parameter determination successful?
480     /* Store the correct base and size */
481     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
482     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
483     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
484     return TRUE;
485   }
486 #endif /* KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD */
487   /* Use incremental refinement starting from initial conservative estimate */
488   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
489   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
490   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
491   return FALSE;
492 }
493 
494 static void *__kmp_launch_worker(void *thr) {
495   int status, old_type, old_state;
496 #ifdef KMP_BLOCK_SIGNALS
497   sigset_t new_set, old_set;
498 #endif /* KMP_BLOCK_SIGNALS */
499   void *exit_val;
500 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
501   void *volatile padding = 0;
502 #endif
503   int gtid;
504 
505   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
506   __kmp_gtid_set_specific(gtid);
507 #ifdef KMP_TDATA_GTID
508   __kmp_gtid = gtid;
509 #endif
510 #if KMP_STATS_ENABLED
511   // set thread local index to point to thread-specific stats
512   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
513   __kmp_stats_thread_ptr->startLife();
514   KMP_SET_THREAD_STATE(IDLE);
515   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
516 #endif
517 
518 #if USE_ITT_BUILD
519   __kmp_itt_thread_name(gtid);
520 #endif /* USE_ITT_BUILD */
521 
522 #if KMP_AFFINITY_SUPPORTED
523   __kmp_affinity_set_init_mask(gtid, FALSE);
524 #endif
525 
526 #ifdef KMP_CANCEL_THREADS
527   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
528   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
529   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
530   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
531   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
532 #endif
533 
534 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
535   // Set FP control regs to be a copy of the parallel initialization thread's.
536   __kmp_clear_x87_fpu_status_word();
537   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
538   __kmp_load_mxcsr(&__kmp_init_mxcsr);
539 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
540 
541 #ifdef KMP_BLOCK_SIGNALS
542   status = sigfillset(&new_set);
543   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
544   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
545   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
546 #endif /* KMP_BLOCK_SIGNALS */
547 
548 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
549   if (__kmp_stkoffset > 0 && gtid > 0) {
550     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
551   }
552 #endif
553 
554   KMP_MB();
555   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
556 
557   __kmp_check_stack_overlap((kmp_info_t *)thr);
558 
559   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
560 
561 #ifdef KMP_BLOCK_SIGNALS
562   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
563   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
564 #endif /* KMP_BLOCK_SIGNALS */
565 
566   return exit_val;
567 }
568 
569 #if KMP_USE_MONITOR
570 /* The monitor thread controls all of the threads in the complex */
571 
572 static void *__kmp_launch_monitor(void *thr) {
573   int status, old_type, old_state;
574 #ifdef KMP_BLOCK_SIGNALS
575   sigset_t new_set;
576 #endif /* KMP_BLOCK_SIGNALS */
577   struct timespec interval;
578   int yield_count;
579   int yield_cycles = 0;
580 
581   KMP_MB(); /* Flush all pending memory write invalidates.  */
582 
583   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
584 
585   /* register us as the monitor thread */
586   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
587 #ifdef KMP_TDATA_GTID
588   __kmp_gtid = KMP_GTID_MONITOR;
589 #endif
590 
591   KMP_MB();
592 
593 #if USE_ITT_BUILD
594   // Instruct Intel(R) Threading Tools to ignore monitor thread.
595   __kmp_itt_thread_ignore();
596 #endif /* USE_ITT_BUILD */
597 
598   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
599                        (kmp_info_t *)thr);
600 
601   __kmp_check_stack_overlap((kmp_info_t *)thr);
602 
603 #ifdef KMP_CANCEL_THREADS
604   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
605   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
606   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
607   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
608   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
609 #endif
610 
611 #if KMP_REAL_TIME_FIX
612   // This is a potential fix which allows application with real-time scheduling
613   // policy work. However, decision about the fix is not made yet, so it is
614   // disabled by default.
615   { // Are program started with real-time scheduling policy?
616     int sched = sched_getscheduler(0);
617     if (sched == SCHED_FIFO || sched == SCHED_RR) {
618       // Yes, we are a part of real-time application. Try to increase the
619       // priority of the monitor.
620       struct sched_param param;
621       int max_priority = sched_get_priority_max(sched);
622       int rc;
623       KMP_WARNING(RealTimeSchedNotSupported);
624       sched_getparam(0, &param);
625       if (param.sched_priority < max_priority) {
626         param.sched_priority += 1;
627         rc = sched_setscheduler(0, sched, &param);
628         if (rc != 0) {
629           int error = errno;
630           kmp_msg_t err_code = KMP_ERR(error);
631           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
632                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
633           if (__kmp_generate_warnings == kmp_warnings_off) {
634             __kmp_str_free(&err_code.str);
635           }
636         }
637       } else {
638         // We cannot abort here, because number of CPUs may be enough for all
639         // the threads, including the monitor thread, so application could
640         // potentially work...
641         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
642                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
643                   __kmp_msg_null);
644       }
645     }
646     // AC: free thread that waits for monitor started
647     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
648   }
649 #endif // KMP_REAL_TIME_FIX
650 
651   KMP_MB(); /* Flush all pending memory write invalidates.  */
652 
653   if (__kmp_monitor_wakeups == 1) {
654     interval.tv_sec = 1;
655     interval.tv_nsec = 0;
656   } else {
657     interval.tv_sec = 0;
658     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
659   }
660 
661   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
662 
663   if (__kmp_yield_cycle) {
664     __kmp_yielding_on = 0; /* Start out with yielding shut off */
665     yield_count = __kmp_yield_off_count;
666   } else {
667     __kmp_yielding_on = 1; /* Yielding is on permanently */
668   }
669 
670   while (!TCR_4(__kmp_global.g.g_done)) {
671     struct timespec now;
672     struct timeval tval;
673 
674     /*  This thread monitors the state of the system */
675 
676     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
677 
678     status = gettimeofday(&tval, NULL);
679     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
680     TIMEVAL_TO_TIMESPEC(&tval, &now);
681 
682     now.tv_sec += interval.tv_sec;
683     now.tv_nsec += interval.tv_nsec;
684 
685     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
686       now.tv_sec += 1;
687       now.tv_nsec -= KMP_NSEC_PER_SEC;
688     }
689 
690     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
691     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
692     // AC: the monitor should not fall asleep if g_done has been set
693     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
694       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
695                                       &__kmp_wait_mx.m_mutex, &now);
696       if (status != 0) {
697         if (status != ETIMEDOUT && status != EINTR) {
698           KMP_SYSFAIL("pthread_cond_timedwait", status);
699         }
700       }
701     }
702     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
703     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
704 
705     if (__kmp_yield_cycle) {
706       yield_cycles++;
707       if ((yield_cycles % yield_count) == 0) {
708         if (__kmp_yielding_on) {
709           __kmp_yielding_on = 0; /* Turn it off now */
710           yield_count = __kmp_yield_off_count;
711         } else {
712           __kmp_yielding_on = 1; /* Turn it on now */
713           yield_count = __kmp_yield_on_count;
714         }
715         yield_cycles = 0;
716       }
717     } else {
718       __kmp_yielding_on = 1;
719     }
720 
721     TCW_4(__kmp_global.g.g_time.dt.t_value,
722           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
723 
724     KMP_MB(); /* Flush all pending memory write invalidates.  */
725   }
726 
727   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
728 
729 #ifdef KMP_BLOCK_SIGNALS
730   status = sigfillset(&new_set);
731   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
732   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
733   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
734 #endif /* KMP_BLOCK_SIGNALS */
735 
736   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
737 
738   if (__kmp_global.g.g_abort != 0) {
739     /* now we need to terminate the worker threads  */
740     /* the value of t_abort is the signal we caught */
741 
742     int gtid;
743 
744     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
745                   __kmp_global.g.g_abort));
746 
747     /* terminate the OpenMP worker threads */
748     /* TODO this is not valid for sibling threads!!
749      * the uber master might not be 0 anymore.. */
750     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
751       __kmp_terminate_thread(gtid);
752 
753     __kmp_cleanup();
754 
755     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
756                   __kmp_global.g.g_abort));
757 
758     if (__kmp_global.g.g_abort > 0)
759       raise(__kmp_global.g.g_abort);
760   }
761 
762   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
763 
764   return thr;
765 }
766 #endif // KMP_USE_MONITOR
767 
768 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
769   pthread_t handle;
770   pthread_attr_t thread_attr;
771   int status;
772 
773   th->th.th_info.ds.ds_gtid = gtid;
774 
775 #if KMP_STATS_ENABLED
776   // sets up worker thread stats
777   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
778 
779   // th->th.th_stats is used to transfer thread-specific stats-pointer to
780   // __kmp_launch_worker. So when thread is created (goes into
781   // __kmp_launch_worker) it will set its thread local pointer to
782   // th->th.th_stats
783   if (!KMP_UBER_GTID(gtid)) {
784     th->th.th_stats = __kmp_stats_list->push_back(gtid);
785   } else {
786     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
787     // so set the th->th.th_stats field to it.
788     th->th.th_stats = __kmp_stats_thread_ptr;
789   }
790   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
791 
792 #endif // KMP_STATS_ENABLED
793 
794   if (KMP_UBER_GTID(gtid)) {
795     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
796     th->th.th_info.ds.ds_thread = pthread_self();
797     __kmp_set_stack_info(gtid, th);
798     __kmp_check_stack_overlap(th);
799     return;
800   }
801 
802   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
803 
804   KMP_MB(); /* Flush all pending memory write invalidates.  */
805 
806 #ifdef KMP_THREAD_ATTR
807   status = pthread_attr_init(&thread_attr);
808   if (status != 0) {
809     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
810   }
811   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
812   if (status != 0) {
813     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
814   }
815 
816   /* Set stack size for this thread now.
817      The multiple of 2 is there because on some machines, requesting an unusual
818      stacksize causes the thread to have an offset before the dummy alloca()
819      takes place to create the offset.  Since we want the user to have a
820      sufficient stacksize AND support a stack offset, we alloca() twice the
821      offset so that the upcoming alloca() does not eliminate any premade offset,
822      and also gives the user the stack space they requested for all threads */
823   stack_size += gtid * __kmp_stkoffset * 2;
824 
825   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
826                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
827                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
828 
829 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
830   status = pthread_attr_setstacksize(&thread_attr, stack_size);
831 #ifdef KMP_BACKUP_STKSIZE
832   if (status != 0) {
833     if (!__kmp_env_stksize) {
834       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
835       __kmp_stksize = KMP_BACKUP_STKSIZE;
836       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
837                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
838                     "bytes\n",
839                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
840       status = pthread_attr_setstacksize(&thread_attr, stack_size);
841     }
842   }
843 #endif /* KMP_BACKUP_STKSIZE */
844   if (status != 0) {
845     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
846                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
847   }
848 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
849 
850 #endif /* KMP_THREAD_ATTR */
851 
852   status =
853       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
854   if (status != 0 || !handle) { // ??? Why do we check handle??
855 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
856     if (status == EINVAL) {
857       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
858                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
859     }
860     if (status == ENOMEM) {
861       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
862                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
863     }
864 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
865     if (status == EAGAIN) {
866       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
867                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
868     }
869     KMP_SYSFAIL("pthread_create", status);
870   }
871 
872   th->th.th_info.ds.ds_thread = handle;
873 
874 #ifdef KMP_THREAD_ATTR
875   status = pthread_attr_destroy(&thread_attr);
876   if (status) {
877     kmp_msg_t err_code = KMP_ERR(status);
878     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
879               __kmp_msg_null);
880     if (__kmp_generate_warnings == kmp_warnings_off) {
881       __kmp_str_free(&err_code.str);
882     }
883   }
884 #endif /* KMP_THREAD_ATTR */
885 
886   KMP_MB(); /* Flush all pending memory write invalidates.  */
887 
888   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
889 
890 } // __kmp_create_worker
891 
892 #if KMP_USE_MONITOR
893 void __kmp_create_monitor(kmp_info_t *th) {
894   pthread_t handle;
895   pthread_attr_t thread_attr;
896   size_t size;
897   int status;
898   int auto_adj_size = FALSE;
899 
900   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
901     // We don't need monitor thread in case of MAX_BLOCKTIME
902     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
903                   "MAX blocktime\n"));
904     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
905     th->th.th_info.ds.ds_gtid = 0;
906     return;
907   }
908   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
909 
910   KMP_MB(); /* Flush all pending memory write invalidates.  */
911 
912   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
913   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
914 #if KMP_REAL_TIME_FIX
915   TCW_4(__kmp_global.g.g_time.dt.t_value,
916         -1); // Will use it for synchronization a bit later.
917 #else
918   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
919 #endif // KMP_REAL_TIME_FIX
920 
921 #ifdef KMP_THREAD_ATTR
922   if (__kmp_monitor_stksize == 0) {
923     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
924     auto_adj_size = TRUE;
925   }
926   status = pthread_attr_init(&thread_attr);
927   if (status != 0) {
928     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
929   }
930   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
931   if (status != 0) {
932     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
933   }
934 
935 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
936   status = pthread_attr_getstacksize(&thread_attr, &size);
937   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
938 #else
939   size = __kmp_sys_min_stksize;
940 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
941 #endif /* KMP_THREAD_ATTR */
942 
943   if (__kmp_monitor_stksize == 0) {
944     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
945   }
946   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
947     __kmp_monitor_stksize = __kmp_sys_min_stksize;
948   }
949 
950   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
951                 "requested stacksize = %lu bytes\n",
952                 size, __kmp_monitor_stksize));
953 
954 retry:
955 
956 /* Set stack size for this thread now. */
957 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
958   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
959                 __kmp_monitor_stksize));
960   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
961   if (status != 0) {
962     if (auto_adj_size) {
963       __kmp_monitor_stksize *= 2;
964       goto retry;
965     }
966     kmp_msg_t err_code = KMP_ERR(status);
967     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
968               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
969               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
970     if (__kmp_generate_warnings == kmp_warnings_off) {
971       __kmp_str_free(&err_code.str);
972     }
973   }
974 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
975 
976   status =
977       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
978 
979   if (status != 0) {
980 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
981     if (status == EINVAL) {
982       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
983         __kmp_monitor_stksize *= 2;
984         goto retry;
985       }
986       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
987                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
988                   __kmp_msg_null);
989     }
990     if (status == ENOMEM) {
991       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
992                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
993                   __kmp_msg_null);
994     }
995 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
996     if (status == EAGAIN) {
997       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
998                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
999     }
1000     KMP_SYSFAIL("pthread_create", status);
1001   }
1002 
1003   th->th.th_info.ds.ds_thread = handle;
1004 
1005 #if KMP_REAL_TIME_FIX
1006   // Wait for the monitor thread is really started and set its *priority*.
1007   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1008                    sizeof(__kmp_global.g.g_time.dt.t_value));
1009   __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value,
1010                      -1, &__kmp_neq_4, NULL);
1011 #endif // KMP_REAL_TIME_FIX
1012 
1013 #ifdef KMP_THREAD_ATTR
1014   status = pthread_attr_destroy(&thread_attr);
1015   if (status != 0) {
1016     kmp_msg_t err_code = KMP_ERR(status);
1017     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1018               __kmp_msg_null);
1019     if (__kmp_generate_warnings == kmp_warnings_off) {
1020       __kmp_str_free(&err_code.str);
1021     }
1022   }
1023 #endif
1024 
1025   KMP_MB(); /* Flush all pending memory write invalidates.  */
1026 
1027   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1028                 th->th.th_info.ds.ds_thread));
1029 
1030 } // __kmp_create_monitor
1031 #endif // KMP_USE_MONITOR
1032 
1033 void __kmp_exit_thread(int exit_status) {
1034   pthread_exit((void *)(intptr_t)exit_status);
1035 } // __kmp_exit_thread
1036 
1037 #if KMP_USE_MONITOR
1038 void __kmp_resume_monitor();
1039 
1040 void __kmp_reap_monitor(kmp_info_t *th) {
1041   int status;
1042   void *exit_val;
1043 
1044   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1045                 " %#.8lx\n",
1046                 th->th.th_info.ds.ds_thread));
1047 
1048   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1049   // If both tid and gtid are 0, it means the monitor did not ever start.
1050   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1051   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1052   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1053     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1054     return;
1055   }
1056 
1057   KMP_MB(); /* Flush all pending memory write invalidates.  */
1058 
1059   /* First, check to see whether the monitor thread exists to wake it up. This
1060      is to avoid performance problem when the monitor sleeps during
1061      blocktime-size interval */
1062 
1063   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1064   if (status != ESRCH) {
1065     __kmp_resume_monitor(); // Wake up the monitor thread
1066   }
1067   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1068   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1069   if (exit_val != th) {
1070     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1071   }
1072 
1073   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1074   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1075 
1076   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1077                 " %#.8lx\n",
1078                 th->th.th_info.ds.ds_thread));
1079 
1080   KMP_MB(); /* Flush all pending memory write invalidates.  */
1081 }
1082 #endif // KMP_USE_MONITOR
1083 
1084 void __kmp_reap_worker(kmp_info_t *th) {
1085   int status;
1086   void *exit_val;
1087 
1088   KMP_MB(); /* Flush all pending memory write invalidates.  */
1089 
1090   KA_TRACE(
1091       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1092 
1093   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1094 #ifdef KMP_DEBUG
1095   /* Don't expose these to the user until we understand when they trigger */
1096   if (status != 0) {
1097     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1098   }
1099   if (exit_val != th) {
1100     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1101                   "exit_val = %p\n",
1102                   th->th.th_info.ds.ds_gtid, exit_val));
1103   }
1104 #endif /* KMP_DEBUG */
1105 
1106   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1107                 th->th.th_info.ds.ds_gtid));
1108 
1109   KMP_MB(); /* Flush all pending memory write invalidates.  */
1110 }
1111 
1112 #if KMP_HANDLE_SIGNALS
1113 
1114 static void __kmp_null_handler(int signo) {
1115   //  Do nothing, for doing SIG_IGN-type actions.
1116 } // __kmp_null_handler
1117 
1118 static void __kmp_team_handler(int signo) {
1119   if (__kmp_global.g.g_abort == 0) {
1120 /* Stage 1 signal handler, let's shut down all of the threads */
1121 #ifdef KMP_DEBUG
1122     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1123 #endif
1124     switch (signo) {
1125     case SIGHUP:
1126     case SIGINT:
1127     case SIGQUIT:
1128     case SIGILL:
1129     case SIGABRT:
1130     case SIGFPE:
1131     case SIGBUS:
1132     case SIGSEGV:
1133 #ifdef SIGSYS
1134     case SIGSYS:
1135 #endif
1136     case SIGTERM:
1137       if (__kmp_debug_buf) {
1138         __kmp_dump_debug_buffer();
1139       }
1140       KMP_MB(); // Flush all pending memory write invalidates.
1141       TCW_4(__kmp_global.g.g_abort, signo);
1142       KMP_MB(); // Flush all pending memory write invalidates.
1143       TCW_4(__kmp_global.g.g_done, TRUE);
1144       KMP_MB(); // Flush all pending memory write invalidates.
1145       break;
1146     default:
1147 #ifdef KMP_DEBUG
1148       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1149 #endif
1150       break;
1151     }
1152   }
1153 } // __kmp_team_handler
1154 
1155 static void __kmp_sigaction(int signum, const struct sigaction *act,
1156                             struct sigaction *oldact) {
1157   int rc = sigaction(signum, act, oldact);
1158   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1159 }
1160 
1161 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1162                                       int parallel_init) {
1163   KMP_MB(); // Flush all pending memory write invalidates.
1164   KB_TRACE(60,
1165            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1166   if (parallel_init) {
1167     struct sigaction new_action;
1168     struct sigaction old_action;
1169     new_action.sa_handler = handler_func;
1170     new_action.sa_flags = 0;
1171     sigfillset(&new_action.sa_mask);
1172     __kmp_sigaction(sig, &new_action, &old_action);
1173     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1174       sigaddset(&__kmp_sigset, sig);
1175     } else {
1176       // Restore/keep user's handler if one previously installed.
1177       __kmp_sigaction(sig, &old_action, NULL);
1178     }
1179   } else {
1180     // Save initial/system signal handlers to see if user handlers installed.
1181     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1182   }
1183   KMP_MB(); // Flush all pending memory write invalidates.
1184 } // __kmp_install_one_handler
1185 
1186 static void __kmp_remove_one_handler(int sig) {
1187   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1188   if (sigismember(&__kmp_sigset, sig)) {
1189     struct sigaction old;
1190     KMP_MB(); // Flush all pending memory write invalidates.
1191     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1192     if ((old.sa_handler != __kmp_team_handler) &&
1193         (old.sa_handler != __kmp_null_handler)) {
1194       // Restore the users signal handler.
1195       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1196                     "restoring: sig=%d\n",
1197                     sig));
1198       __kmp_sigaction(sig, &old, NULL);
1199     }
1200     sigdelset(&__kmp_sigset, sig);
1201     KMP_MB(); // Flush all pending memory write invalidates.
1202   }
1203 } // __kmp_remove_one_handler
1204 
1205 void __kmp_install_signals(int parallel_init) {
1206   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1207   if (__kmp_handle_signals || !parallel_init) {
1208     // If ! parallel_init, we do not install handlers, just save original
1209     // handlers. Let us do it even __handle_signals is 0.
1210     sigemptyset(&__kmp_sigset);
1211     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1212     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1213     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1214     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1215     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1216     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1217     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1218     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1219 #ifdef SIGSYS
1220     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1221 #endif // SIGSYS
1222     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1223 #ifdef SIGPIPE
1224     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1225 #endif // SIGPIPE
1226   }
1227 } // __kmp_install_signals
1228 
1229 void __kmp_remove_signals(void) {
1230   int sig;
1231   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1232   for (sig = 1; sig < NSIG; ++sig) {
1233     __kmp_remove_one_handler(sig);
1234   }
1235 } // __kmp_remove_signals
1236 
1237 #endif // KMP_HANDLE_SIGNALS
1238 
1239 void __kmp_enable(int new_state) {
1240 #ifdef KMP_CANCEL_THREADS
1241   int status, old_state;
1242   status = pthread_setcancelstate(new_state, &old_state);
1243   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1244   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1245 #endif
1246 }
1247 
1248 void __kmp_disable(int *old_state) {
1249 #ifdef KMP_CANCEL_THREADS
1250   int status;
1251   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1252   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1253 #endif
1254 }
1255 
1256 static void __kmp_atfork_prepare(void) {
1257   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1258   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1259 }
1260 
1261 static void __kmp_atfork_parent(void) {
1262   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1263   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1264 }
1265 
1266 /* Reset the library so execution in the child starts "all over again" with
1267    clean data structures in initial states.  Don't worry about freeing memory
1268    allocated by parent, just abandon it to be safe. */
1269 static void __kmp_atfork_child(void) {
1270   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1271   /* TODO make sure this is done right for nested/sibling */
1272   // ATT:  Memory leaks are here? TODO: Check it and fix.
1273   /* KMP_ASSERT( 0 ); */
1274 
1275   ++__kmp_fork_count;
1276 
1277 #if KMP_AFFINITY_SUPPORTED
1278 #if KMP_OS_LINUX
1279   // reset the affinity in the child to the initial thread
1280   // affinity in the parent
1281   kmp_set_thread_affinity_mask_initial();
1282 #endif
1283   // Set default not to bind threads tightly in the child (we’re expecting
1284   // over-subscription after the fork and this can improve things for
1285   // scripting languages that use OpenMP inside process-parallel code).
1286   __kmp_affinity_type = affinity_none;
1287 #if OMP_40_ENABLED
1288   if (__kmp_nested_proc_bind.bind_types != NULL) {
1289     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1290   }
1291 #endif // OMP_40_ENABLED
1292 #endif // KMP_AFFINITY_SUPPORTED
1293 
1294   __kmp_init_runtime = FALSE;
1295 #if KMP_USE_MONITOR
1296   __kmp_init_monitor = 0;
1297 #endif
1298   __kmp_init_parallel = FALSE;
1299   __kmp_init_middle = FALSE;
1300   __kmp_init_serial = FALSE;
1301   TCW_4(__kmp_init_gtid, FALSE);
1302   __kmp_init_common = FALSE;
1303 
1304   TCW_4(__kmp_init_user_locks, FALSE);
1305 #if !KMP_USE_DYNAMIC_LOCK
1306   __kmp_user_lock_table.used = 1;
1307   __kmp_user_lock_table.allocated = 0;
1308   __kmp_user_lock_table.table = NULL;
1309   __kmp_lock_blocks = NULL;
1310 #endif
1311 
1312   __kmp_all_nth = 0;
1313   TCW_4(__kmp_nth, 0);
1314 
1315   __kmp_thread_pool = NULL;
1316   __kmp_thread_pool_insert_pt = NULL;
1317   __kmp_team_pool = NULL;
1318 
1319   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1320      here so threadprivate doesn't use stale data */
1321   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1322                 __kmp_threadpriv_cache_list));
1323 
1324   while (__kmp_threadpriv_cache_list != NULL) {
1325 
1326     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1327       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1328                     &(*__kmp_threadpriv_cache_list->addr)));
1329 
1330       *__kmp_threadpriv_cache_list->addr = NULL;
1331     }
1332     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1333   }
1334 
1335   __kmp_init_runtime = FALSE;
1336 
1337   /* reset statically initialized locks */
1338   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1339   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1340   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1341   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1342 
1343 #if USE_ITT_BUILD
1344   __kmp_itt_reset(); // reset ITT's global state
1345 #endif /* USE_ITT_BUILD */
1346 
1347   /* This is necessary to make sure no stale data is left around */
1348   /* AC: customers complain that we use unsafe routines in the atfork
1349      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1350      in dynamic_link when check the presence of shared tbbmalloc library.
1351      Suggestion is to make the library initialization lazier, similar
1352      to what done for __kmpc_begin(). */
1353   // TODO: synchronize all static initializations with regular library
1354   //       startup; look at kmp_global.cpp and etc.
1355   //__kmp_internal_begin ();
1356 }
1357 
1358 void __kmp_register_atfork(void) {
1359   if (__kmp_need_register_atfork) {
1360     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1361                                 __kmp_atfork_child);
1362     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1363     __kmp_need_register_atfork = FALSE;
1364   }
1365 }
1366 
1367 void __kmp_suspend_initialize(void) {
1368   int status;
1369   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1370   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1371   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1372   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1373 }
1374 
1375 static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1376   ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1377   if (th->th.th_suspend_init_count <= __kmp_fork_count) {
1378     /* this means we haven't initialized the suspension pthread objects for this
1379        thread in this instance of the process */
1380     int status;
1381     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1382                                &__kmp_suspend_cond_attr);
1383     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1384     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1385                                 &__kmp_suspend_mutex_attr);
1386     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1387     *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1;
1388     ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1389   }
1390 }
1391 
1392 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1393   if (th->th.th_suspend_init_count > __kmp_fork_count) {
1394     /* this means we have initialize the suspension pthread objects for this
1395        thread in this instance of the process */
1396     int status;
1397 
1398     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1399     if (status != 0 && status != EBUSY) {
1400       KMP_SYSFAIL("pthread_cond_destroy", status);
1401     }
1402     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1403     if (status != 0 && status != EBUSY) {
1404       KMP_SYSFAIL("pthread_mutex_destroy", status);
1405     }
1406     --th->th.th_suspend_init_count;
1407     KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count);
1408   }
1409 }
1410 
1411 /* This routine puts the calling thread to sleep after setting the
1412    sleep bit for the indicated flag variable to true. */
1413 template <class C>
1414 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1415   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1416   kmp_info_t *th = __kmp_threads[th_gtid];
1417   int status;
1418   typename C::flag_t old_spin;
1419 
1420   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1421                 flag->get()));
1422 
1423   __kmp_suspend_initialize_thread(th);
1424 
1425   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1426   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1427 
1428   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1429                 th_gtid, flag->get()));
1430 
1431   /* TODO: shouldn't this use release semantics to ensure that
1432      __kmp_suspend_initialize_thread gets called first? */
1433   old_spin = flag->set_sleeping();
1434 
1435   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1436                " was %x\n",
1437                th_gtid, flag->get(), flag->load(), old_spin));
1438 
1439   if (flag->done_check_val(old_spin)) {
1440     old_spin = flag->unset_sleeping();
1441     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1442                  "for spin(%p)\n",
1443                  th_gtid, flag->get()));
1444   } else {
1445     /* Encapsulate in a loop as the documentation states that this may
1446        "with low probability" return when the condition variable has
1447        not been signaled or broadcast */
1448     int deactivated = FALSE;
1449     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1450 
1451     while (flag->is_sleeping()) {
1452 #ifdef DEBUG_SUSPEND
1453       char buffer[128];
1454       __kmp_suspend_count++;
1455       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1456       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1457                    buffer);
1458 #endif
1459       // Mark the thread as no longer active (only in the first iteration of the
1460       // loop).
1461       if (!deactivated) {
1462         th->th.th_active = FALSE;
1463         if (th->th.th_active_in_pool) {
1464           th->th.th_active_in_pool = FALSE;
1465           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1466           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1467         }
1468         deactivated = TRUE;
1469       }
1470 
1471 #if USE_SUSPEND_TIMEOUT
1472       struct timespec now;
1473       struct timeval tval;
1474       int msecs;
1475 
1476       status = gettimeofday(&tval, NULL);
1477       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1478       TIMEVAL_TO_TIMESPEC(&tval, &now);
1479 
1480       msecs = (4 * __kmp_dflt_blocktime) + 200;
1481       now.tv_sec += msecs / 1000;
1482       now.tv_nsec += (msecs % 1000) * 1000;
1483 
1484       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1485                     "pthread_cond_timedwait\n",
1486                     th_gtid));
1487       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1488                                       &th->th.th_suspend_mx.m_mutex, &now);
1489 #else
1490       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1491                     " pthread_cond_wait\n",
1492                     th_gtid));
1493       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1494                                  &th->th.th_suspend_mx.m_mutex);
1495 #endif
1496 
1497       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1498         KMP_SYSFAIL("pthread_cond_wait", status);
1499       }
1500 #ifdef KMP_DEBUG
1501       if (status == ETIMEDOUT) {
1502         if (flag->is_sleeping()) {
1503           KF_TRACE(100,
1504                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1505         } else {
1506           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1507                        "not set!\n",
1508                        th_gtid));
1509         }
1510       } else if (flag->is_sleeping()) {
1511         KF_TRACE(100,
1512                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1513       }
1514 #endif
1515     } // while
1516 
1517     // Mark the thread as active again (if it was previous marked as inactive)
1518     if (deactivated) {
1519       th->th.th_active = TRUE;
1520       if (TCR_4(th->th.th_in_pool)) {
1521         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1522         th->th.th_active_in_pool = TRUE;
1523       }
1524     }
1525   }
1526 #ifdef DEBUG_SUSPEND
1527   {
1528     char buffer[128];
1529     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1530     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1531                  buffer);
1532   }
1533 #endif
1534 
1535   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1536   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1537   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1538 }
1539 
1540 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1541   __kmp_suspend_template(th_gtid, flag);
1542 }
1543 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1544   __kmp_suspend_template(th_gtid, flag);
1545 }
1546 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1547   __kmp_suspend_template(th_gtid, flag);
1548 }
1549 
1550 /* This routine signals the thread specified by target_gtid to wake up
1551    after setting the sleep bit indicated by the flag argument to FALSE.
1552    The target thread must already have called __kmp_suspend_template() */
1553 template <class C>
1554 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1555   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1556   kmp_info_t *th = __kmp_threads[target_gtid];
1557   int status;
1558 
1559 #ifdef KMP_DEBUG
1560   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1561 #endif
1562 
1563   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1564                 gtid, target_gtid));
1565   KMP_DEBUG_ASSERT(gtid != target_gtid);
1566 
1567   __kmp_suspend_initialize_thread(th);
1568 
1569   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1570   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1571 
1572   if (!flag) { // coming from __kmp_null_resume_wrapper
1573     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1574   }
1575 
1576   // First, check if the flag is null or its type has changed. If so, someone
1577   // else woke it up.
1578   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1579     // simply shows what
1580     // flag was cast to
1581     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1582                  "awake: flag(%p)\n",
1583                  gtid, target_gtid, NULL));
1584     status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1585     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1586     return;
1587   } else { // if multiple threads are sleeping, flag should be internally
1588     // referring to a specific thread here
1589     typename C::flag_t old_spin = flag->unset_sleeping();
1590     if (!flag->is_sleeping_val(old_spin)) {
1591       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1592                    "awake: flag(%p): "
1593                    "%u => %u\n",
1594                    gtid, target_gtid, flag->get(), old_spin, flag->load()));
1595       status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1596       KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1597       return;
1598     }
1599     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1600                  "sleep bit for flag's loc(%p): "
1601                  "%u => %u\n",
1602                  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1603   }
1604   TCW_PTR(th->th.th_sleep_loc, NULL);
1605 
1606 #ifdef DEBUG_SUSPEND
1607   {
1608     char buffer[128];
1609     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1610     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1611                  target_gtid, buffer);
1612   }
1613 #endif
1614   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1615   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1616   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1617   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1618   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1619                 " for T#%d\n",
1620                 gtid, target_gtid));
1621 }
1622 
1623 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1624   __kmp_resume_template(target_gtid, flag);
1625 }
1626 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1627   __kmp_resume_template(target_gtid, flag);
1628 }
1629 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1630   __kmp_resume_template(target_gtid, flag);
1631 }
1632 
1633 #if KMP_USE_MONITOR
1634 void __kmp_resume_monitor() {
1635   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1636   int status;
1637 #ifdef KMP_DEBUG
1638   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1639   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1640                 KMP_GTID_MONITOR));
1641   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1642 #endif
1643   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1644   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1645 #ifdef DEBUG_SUSPEND
1646   {
1647     char buffer[128];
1648     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1649     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1650                  KMP_GTID_MONITOR, buffer);
1651   }
1652 #endif
1653   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1654   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1655   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1656   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1657   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1658                 " for T#%d\n",
1659                 gtid, KMP_GTID_MONITOR));
1660 }
1661 #endif // KMP_USE_MONITOR
1662 
1663 void __kmp_yield(int cond) {
1664   if (!cond)
1665     return;
1666 #if KMP_USE_MONITOR
1667   if (!__kmp_yielding_on)
1668     return;
1669 #else
1670   if (__kmp_yield_cycle && !KMP_YIELD_NOW())
1671     return;
1672 #endif
1673   sched_yield();
1674 }
1675 
1676 void __kmp_gtid_set_specific(int gtid) {
1677   if (__kmp_init_gtid) {
1678     int status;
1679     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1680                                  (void *)(intptr_t)(gtid + 1));
1681     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1682   } else {
1683     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1684   }
1685 }
1686 
1687 int __kmp_gtid_get_specific() {
1688   int gtid;
1689   if (!__kmp_init_gtid) {
1690     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1691                   "KMP_GTID_SHUTDOWN\n"));
1692     return KMP_GTID_SHUTDOWN;
1693   }
1694   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1695   if (gtid == 0) {
1696     gtid = KMP_GTID_DNE;
1697   } else {
1698     gtid--;
1699   }
1700   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1701                 __kmp_gtid_threadprivate_key, gtid));
1702   return gtid;
1703 }
1704 
1705 double __kmp_read_cpu_time(void) {
1706   /*clock_t   t;*/
1707   struct tms buffer;
1708 
1709   /*t =*/times(&buffer);
1710 
1711   return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1712 }
1713 
1714 int __kmp_read_system_info(struct kmp_sys_info *info) {
1715   int status;
1716   struct rusage r_usage;
1717 
1718   memset(info, 0, sizeof(*info));
1719 
1720   status = getrusage(RUSAGE_SELF, &r_usage);
1721   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1722 
1723   // The maximum resident set size utilized (in kilobytes)
1724   info->maxrss = r_usage.ru_maxrss;
1725   // The number of page faults serviced without any I/O
1726   info->minflt = r_usage.ru_minflt;
1727   // The number of page faults serviced that required I/O
1728   info->majflt = r_usage.ru_majflt;
1729   // The number of times a process was "swapped" out of memory
1730   info->nswap = r_usage.ru_nswap;
1731   // The number of times the file system had to perform input
1732   info->inblock = r_usage.ru_inblock;
1733   // The number of times the file system had to perform output
1734   info->oublock = r_usage.ru_oublock;
1735   // The number of times a context switch was voluntarily
1736   info->nvcsw = r_usage.ru_nvcsw;
1737   // The number of times a context switch was forced
1738   info->nivcsw = r_usage.ru_nivcsw;
1739 
1740   return (status != 0);
1741 }
1742 
1743 void __kmp_read_system_time(double *delta) {
1744   double t_ns;
1745   struct timeval tval;
1746   struct timespec stop;
1747   int status;
1748 
1749   status = gettimeofday(&tval, NULL);
1750   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1751   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1752   t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1753   *delta = (t_ns * 1e-9);
1754 }
1755 
1756 void __kmp_clear_system_time(void) {
1757   struct timeval tval;
1758   int status;
1759   status = gettimeofday(&tval, NULL);
1760   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1761   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1762 }
1763 
1764 static int __kmp_get_xproc(void) {
1765 
1766   int r = 0;
1767 
1768 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
1769 
1770   r = sysconf(_SC_NPROCESSORS_ONLN);
1771 
1772 #elif KMP_OS_DARWIN
1773 
1774   // Bug C77011 High "OpenMP Threads and number of active cores".
1775 
1776   // Find the number of available CPUs.
1777   kern_return_t rc;
1778   host_basic_info_data_t info;
1779   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1780   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1781   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1782     // Cannot use KA_TRACE() here because this code works before trace support
1783     // is initialized.
1784     r = info.avail_cpus;
1785   } else {
1786     KMP_WARNING(CantGetNumAvailCPU);
1787     KMP_INFORM(AssumedNumCPU);
1788   }
1789 
1790 #else
1791 
1792 #error "Unknown or unsupported OS."
1793 
1794 #endif
1795 
1796   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1797 
1798 } // __kmp_get_xproc
1799 
1800 int __kmp_read_from_file(char const *path, char const *format, ...) {
1801   int result;
1802   va_list args;
1803 
1804   va_start(args, format);
1805   FILE *f = fopen(path, "rb");
1806   if (f == NULL)
1807     return 0;
1808   result = vfscanf(f, format, args);
1809   fclose(f);
1810 
1811   return result;
1812 }
1813 
1814 void __kmp_runtime_initialize(void) {
1815   int status;
1816   pthread_mutexattr_t mutex_attr;
1817   pthread_condattr_t cond_attr;
1818 
1819   if (__kmp_init_runtime) {
1820     return;
1821   }
1822 
1823 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1824   if (!__kmp_cpuinfo.initialized) {
1825     __kmp_query_cpuid(&__kmp_cpuinfo);
1826   }
1827 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1828 
1829   __kmp_xproc = __kmp_get_xproc();
1830 
1831   if (sysconf(_SC_THREADS)) {
1832 
1833     /* Query the maximum number of threads */
1834     __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1835     if (__kmp_sys_max_nth == -1) {
1836       /* Unlimited threads for NPTL */
1837       __kmp_sys_max_nth = INT_MAX;
1838     } else if (__kmp_sys_max_nth <= 1) {
1839       /* Can't tell, just use PTHREAD_THREADS_MAX */
1840       __kmp_sys_max_nth = KMP_MAX_NTH;
1841     }
1842 
1843     /* Query the minimum stack size */
1844     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1845     if (__kmp_sys_min_stksize <= 1) {
1846       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1847     }
1848   }
1849 
1850   /* Set up minimum number of threads to switch to TLS gtid */
1851   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1852 
1853   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1854                               __kmp_internal_end_dest);
1855   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1856   status = pthread_mutexattr_init(&mutex_attr);
1857   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1858   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1859   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1860   status = pthread_condattr_init(&cond_attr);
1861   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1862   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1863   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1864 #if USE_ITT_BUILD
1865   __kmp_itt_initialize();
1866 #endif /* USE_ITT_BUILD */
1867 
1868   __kmp_init_runtime = TRUE;
1869 }
1870 
1871 void __kmp_runtime_destroy(void) {
1872   int status;
1873 
1874   if (!__kmp_init_runtime) {
1875     return; // Nothing to do.
1876   }
1877 
1878 #if USE_ITT_BUILD
1879   __kmp_itt_destroy();
1880 #endif /* USE_ITT_BUILD */
1881 
1882   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1883   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1884 
1885   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1886   if (status != 0 && status != EBUSY) {
1887     KMP_SYSFAIL("pthread_mutex_destroy", status);
1888   }
1889   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1890   if (status != 0 && status != EBUSY) {
1891     KMP_SYSFAIL("pthread_cond_destroy", status);
1892   }
1893 #if KMP_AFFINITY_SUPPORTED
1894   __kmp_affinity_uninitialize();
1895 #endif
1896 
1897   __kmp_init_runtime = FALSE;
1898 }
1899 
1900 /* Put the thread to sleep for a time period */
1901 /* NOTE: not currently used anywhere */
1902 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1903 
1904 /* Calculate the elapsed wall clock time for the user */
1905 void __kmp_elapsed(double *t) {
1906   int status;
1907 #ifdef FIX_SGI_CLOCK
1908   struct timespec ts;
1909 
1910   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1911   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1912   *t =
1913       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1914 #else
1915   struct timeval tv;
1916 
1917   status = gettimeofday(&tv, NULL);
1918   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1919   *t =
1920       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1921 #endif
1922 }
1923 
1924 /* Calculate the elapsed wall clock tick for the user */
1925 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1926 
1927 /* Return the current time stamp in nsec */
1928 kmp_uint64 __kmp_now_nsec() {
1929   struct timeval t;
1930   gettimeofday(&t, NULL);
1931   return KMP_NSEC_PER_SEC * t.tv_sec + 1000 * t.tv_usec;
1932 }
1933 
1934 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1935 /* Measure clock ticks per millisecond */
1936 void __kmp_initialize_system_tick() {
1937   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1938   kmp_uint64 nsec = __kmp_now_nsec();
1939   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1940   kmp_uint64 now;
1941   while ((now = __kmp_hardware_timestamp()) < goal)
1942     ;
1943   __kmp_ticks_per_msec =
1944       (kmp_uint64)(1e6 * (delay + (now - goal)) / (__kmp_now_nsec() - nsec));
1945 }
1946 #endif
1947 
1948 /* Determine whether the given address is mapped into the current address
1949    space. */
1950 
1951 int __kmp_is_address_mapped(void *addr) {
1952 
1953   int found = 0;
1954   int rc;
1955 
1956 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1957 
1958   /* On Linux* OS, read the /proc/<pid>/maps pseudo-file to get all the address
1959      ranges mapped into the address space. */
1960 
1961   char *name = __kmp_str_format("/proc/%d/maps", getpid());
1962   FILE *file = NULL;
1963 
1964   file = fopen(name, "r");
1965   KMP_ASSERT(file != NULL);
1966 
1967   for (;;) {
1968 
1969     void *beginning = NULL;
1970     void *ending = NULL;
1971     char perms[5];
1972 
1973     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1974     if (rc == EOF) {
1975       break;
1976     }
1977     KMP_ASSERT(rc == 3 &&
1978                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1979 
1980     // Ending address is not included in the region, but beginning is.
1981     if ((addr >= beginning) && (addr < ending)) {
1982       perms[2] = 0; // 3th and 4th character does not matter.
1983       if (strcmp(perms, "rw") == 0) {
1984         // Memory we are looking for should be readable and writable.
1985         found = 1;
1986       }
1987       break;
1988     }
1989   }
1990 
1991   // Free resources.
1992   fclose(file);
1993   KMP_INTERNAL_FREE(name);
1994 
1995 #elif KMP_OS_DARWIN
1996 
1997   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
1998      using vm interface. */
1999 
2000   int buffer;
2001   vm_size_t count;
2002   rc = vm_read_overwrite(
2003       mach_task_self(), // Task to read memory of.
2004       (vm_address_t)(addr), // Address to read from.
2005       1, // Number of bytes to be read.
2006       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2007       &count // Address of var to save number of read bytes in.
2008       );
2009   if (rc == 0) {
2010     // Memory successfully read.
2011     found = 1;
2012   }
2013 
2014 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD
2015 
2016   // FIXME(FreeBSD, NetBSD): Implement this
2017   found = 1;
2018 
2019 #else
2020 
2021 #error "Unknown or unsupported OS"
2022 
2023 #endif
2024 
2025   return found;
2026 
2027 } // __kmp_is_address_mapped
2028 
2029 #ifdef USE_LOAD_BALANCE
2030 
2031 #if KMP_OS_DARWIN
2032 
2033 // The function returns the rounded value of the system load average
2034 // during given time interval which depends on the value of
2035 // __kmp_load_balance_interval variable (default is 60 sec, other values
2036 // may be 300 sec or 900 sec).
2037 // It returns -1 in case of error.
2038 int __kmp_get_load_balance(int max) {
2039   double averages[3];
2040   int ret_avg = 0;
2041 
2042   int res = getloadavg(averages, 3);
2043 
2044   // Check __kmp_load_balance_interval to determine which of averages to use.
2045   // getloadavg() may return the number of samples less than requested that is
2046   // less than 3.
2047   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2048     ret_avg = averages[0]; // 1 min
2049   } else if ((__kmp_load_balance_interval >= 180 &&
2050               __kmp_load_balance_interval < 600) &&
2051              (res >= 2)) {
2052     ret_avg = averages[1]; // 5 min
2053   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2054     ret_avg = averages[2]; // 15 min
2055   } else { // Error occurred
2056     return -1;
2057   }
2058 
2059   return ret_avg;
2060 }
2061 
2062 #else // Linux* OS
2063 
2064 // The fuction returns number of running (not sleeping) threads, or -1 in case
2065 // of error. Error could be reported if Linux* OS kernel too old (without
2066 // "/proc" support). Counting running threads stops if max running threads
2067 // encountered.
2068 int __kmp_get_load_balance(int max) {
2069   static int permanent_error = 0;
2070   static int glb_running_threads = 0; // Saved count of the running threads for
2071   // the thread balance algortihm
2072   static double glb_call_time = 0; /* Thread balance algorithm call time */
2073 
2074   int running_threads = 0; // Number of running threads in the system.
2075 
2076   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2077   struct dirent *proc_entry = NULL;
2078 
2079   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2080   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2081   struct dirent *task_entry = NULL;
2082   int task_path_fixed_len;
2083 
2084   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2085   int stat_file = -1;
2086   int stat_path_fixed_len;
2087 
2088   int total_processes = 0; // Total number of processes in system.
2089   int total_threads = 0; // Total number of threads in system.
2090 
2091   double call_time = 0.0;
2092 
2093   __kmp_str_buf_init(&task_path);
2094   __kmp_str_buf_init(&stat_path);
2095 
2096   __kmp_elapsed(&call_time);
2097 
2098   if (glb_call_time &&
2099       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2100     running_threads = glb_running_threads;
2101     goto finish;
2102   }
2103 
2104   glb_call_time = call_time;
2105 
2106   // Do not spend time on scanning "/proc/" if we have a permanent error.
2107   if (permanent_error) {
2108     running_threads = -1;
2109     goto finish;
2110   }
2111 
2112   if (max <= 0) {
2113     max = INT_MAX;
2114   }
2115 
2116   // Open "/proc/" directory.
2117   proc_dir = opendir("/proc");
2118   if (proc_dir == NULL) {
2119     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2120     // error now and in subsequent calls.
2121     running_threads = -1;
2122     permanent_error = 1;
2123     goto finish;
2124   }
2125 
2126   // Initialize fixed part of task_path. This part will not change.
2127   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2128   task_path_fixed_len = task_path.used; // Remember number of used characters.
2129 
2130   proc_entry = readdir(proc_dir);
2131   while (proc_entry != NULL) {
2132     // Proc entry is a directory and name starts with a digit. Assume it is a
2133     // process' directory.
2134     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2135 
2136       ++total_processes;
2137       // Make sure init process is the very first in "/proc", so we can replace
2138       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2139       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2140       // true (where "=>" is implication). Since C++ does not have => operator,
2141       // let us replace it with its equivalent: a => b == ! a || b.
2142       KMP_DEBUG_ASSERT(total_processes != 1 ||
2143                        strcmp(proc_entry->d_name, "1") == 0);
2144 
2145       // Construct task_path.
2146       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2147       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2148                         KMP_STRLEN(proc_entry->d_name));
2149       __kmp_str_buf_cat(&task_path, "/task", 5);
2150 
2151       task_dir = opendir(task_path.str);
2152       if (task_dir == NULL) {
2153         // Process can finish between reading "/proc/" directory entry and
2154         // opening process' "task/" directory. So, in general case we should not
2155         // complain, but have to skip this process and read the next one. But on
2156         // systems with no "task/" support we will spend lot of time to scan
2157         // "/proc/" tree again and again without any benefit. "init" process
2158         // (its pid is 1) should exist always, so, if we cannot open
2159         // "/proc/1/task/" directory, it means "task/" is not supported by
2160         // kernel. Report an error now and in the future.
2161         if (strcmp(proc_entry->d_name, "1") == 0) {
2162           running_threads = -1;
2163           permanent_error = 1;
2164           goto finish;
2165         }
2166       } else {
2167         // Construct fixed part of stat file path.
2168         __kmp_str_buf_clear(&stat_path);
2169         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2170         __kmp_str_buf_cat(&stat_path, "/", 1);
2171         stat_path_fixed_len = stat_path.used;
2172 
2173         task_entry = readdir(task_dir);
2174         while (task_entry != NULL) {
2175           // It is a directory and name starts with a digit.
2176           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2177             ++total_threads;
2178 
2179             // Consruct complete stat file path. Easiest way would be:
2180             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2181             //  task_entry->d_name );
2182             // but seriae of __kmp_str_buf_cat works a bit faster.
2183             stat_path.used =
2184                 stat_path_fixed_len; // Reset stat path to its fixed part.
2185             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2186                               KMP_STRLEN(task_entry->d_name));
2187             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2188 
2189             // Note: Low-level API (open/read/close) is used. High-level API
2190             // (fopen/fclose)  works ~ 30 % slower.
2191             stat_file = open(stat_path.str, O_RDONLY);
2192             if (stat_file == -1) {
2193               // We cannot report an error because task (thread) can terminate
2194               // just before reading this file.
2195             } else {
2196               /* Content of "stat" file looks like:
2197                  24285 (program) S ...
2198 
2199                  It is a single line (if program name does not include funny
2200                  symbols). First number is a thread id, then name of executable
2201                  file name in paretheses, then state of the thread. We need just
2202                  thread state.
2203 
2204                  Good news: Length of program name is 15 characters max. Longer
2205                  names are truncated.
2206 
2207                  Thus, we need rather short buffer: 15 chars for program name +
2208                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2209 
2210                  Bad news: Program name may contain special symbols like space,
2211                  closing parenthesis, or even new line. This makes parsing
2212                  "stat" file not 100 % reliable. In case of fanny program names
2213                  parsing may fail (report incorrect thread state).
2214 
2215                  Parsing "status" file looks more promissing (due to different
2216                  file structure and escaping special symbols) but reading and
2217                  parsing of "status" file works slower.
2218                   -- ln
2219               */
2220               char buffer[65];
2221               int len;
2222               len = read(stat_file, buffer, sizeof(buffer) - 1);
2223               if (len >= 0) {
2224                 buffer[len] = 0;
2225                 // Using scanf:
2226                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2227                 // looks very nice, but searching for a closing parenthesis
2228                 // works a bit faster.
2229                 char *close_parent = strstr(buffer, ") ");
2230                 if (close_parent != NULL) {
2231                   char state = *(close_parent + 2);
2232                   if (state == 'R') {
2233                     ++running_threads;
2234                     if (running_threads >= max) {
2235                       goto finish;
2236                     }
2237                   }
2238                 }
2239               }
2240               close(stat_file);
2241               stat_file = -1;
2242             }
2243           }
2244           task_entry = readdir(task_dir);
2245         }
2246         closedir(task_dir);
2247         task_dir = NULL;
2248       }
2249     }
2250     proc_entry = readdir(proc_dir);
2251   }
2252 
2253   // There _might_ be a timing hole where the thread executing this
2254   // code get skipped in the load balance, and running_threads is 0.
2255   // Assert in the debug builds only!!!
2256   KMP_DEBUG_ASSERT(running_threads > 0);
2257   if (running_threads <= 0) {
2258     running_threads = 1;
2259   }
2260 
2261 finish: // Clean up and exit.
2262   if (proc_dir != NULL) {
2263     closedir(proc_dir);
2264   }
2265   __kmp_str_buf_free(&task_path);
2266   if (task_dir != NULL) {
2267     closedir(task_dir);
2268   }
2269   __kmp_str_buf_free(&stat_path);
2270   if (stat_file != -1) {
2271     close(stat_file);
2272   }
2273 
2274   glb_running_threads = running_threads;
2275 
2276   return running_threads;
2277 
2278 } // __kmp_get_load_balance
2279 
2280 #endif // KMP_OS_DARWIN
2281 
2282 #endif // USE_LOAD_BALANCE
2283 
2284 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2285       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2286 
2287 // we really only need the case with 1 argument, because CLANG always build
2288 // a struct of pointers to shared variables referenced in the outlined function
2289 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2290                            void *p_argv[]
2291 #if OMPT_SUPPORT
2292                            ,
2293                            void **exit_frame_ptr
2294 #endif
2295                            ) {
2296 #if OMPT_SUPPORT
2297   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2298 #endif
2299 
2300   switch (argc) {
2301   default:
2302     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2303     fflush(stderr);
2304     exit(-1);
2305   case 0:
2306     (*pkfn)(&gtid, &tid);
2307     break;
2308   case 1:
2309     (*pkfn)(&gtid, &tid, p_argv[0]);
2310     break;
2311   case 2:
2312     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2313     break;
2314   case 3:
2315     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2316     break;
2317   case 4:
2318     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2319     break;
2320   case 5:
2321     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2322     break;
2323   case 6:
2324     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2325             p_argv[5]);
2326     break;
2327   case 7:
2328     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2329             p_argv[5], p_argv[6]);
2330     break;
2331   case 8:
2332     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2333             p_argv[5], p_argv[6], p_argv[7]);
2334     break;
2335   case 9:
2336     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2337             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2338     break;
2339   case 10:
2340     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2341             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2342     break;
2343   case 11:
2344     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2345             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2346     break;
2347   case 12:
2348     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2349             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2350             p_argv[11]);
2351     break;
2352   case 13:
2353     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2354             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2355             p_argv[11], p_argv[12]);
2356     break;
2357   case 14:
2358     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2359             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2360             p_argv[11], p_argv[12], p_argv[13]);
2361     break;
2362   case 15:
2363     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2364             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2365             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2366     break;
2367   }
2368 
2369 #if OMPT_SUPPORT
2370   *exit_frame_ptr = 0;
2371 #endif
2372 
2373   return 1;
2374 }
2375 
2376 #endif
2377 
2378 // end of file //
2379