1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // The LLVM Compiler Infrastructure 8 // 9 // This file is dual licensed under the MIT and the University of Illinois Open 10 // Source Licenses. See LICENSE.txt for details. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "kmp.h" 15 #include "kmp_affinity.h" 16 #include "kmp_i18n.h" 17 #include "kmp_io.h" 18 #include "kmp_itt.h" 19 #include "kmp_lock.h" 20 #include "kmp_stats.h" 21 #include "kmp_str.h" 22 #include "kmp_wait_release.h" 23 #include "kmp_wrapper_getpid.h" 24 25 #if !KMP_OS_FREEBSD && !KMP_OS_NETBSD 26 #include <alloca.h> 27 #endif 28 #include <math.h> // HUGE_VAL. 29 #include <sys/resource.h> 30 #include <sys/syscall.h> 31 #include <sys/time.h> 32 #include <sys/times.h> 33 #include <unistd.h> 34 35 #if KMP_OS_LINUX && !KMP_OS_CNK 36 #include <sys/sysinfo.h> 37 #if KMP_USE_FUTEX 38 // We should really include <futex.h>, but that causes compatibility problems on 39 // different Linux* OS distributions that either require that you include (or 40 // break when you try to include) <pci/types.h>. Since all we need is the two 41 // macros below (which are part of the kernel ABI, so can't change) we just 42 // define the constants here and don't include <futex.h> 43 #ifndef FUTEX_WAIT 44 #define FUTEX_WAIT 0 45 #endif 46 #ifndef FUTEX_WAKE 47 #define FUTEX_WAKE 1 48 #endif 49 #endif 50 #elif KMP_OS_DARWIN 51 #include <mach/mach.h> 52 #include <sys/sysctl.h> 53 #elif KMP_OS_FREEBSD 54 #include <pthread_np.h> 55 #endif 56 57 #include <ctype.h> 58 #include <dirent.h> 59 #include <fcntl.h> 60 61 #include "tsan_annotations.h" 62 63 struct kmp_sys_timer { 64 struct timespec start; 65 }; 66 67 // Convert timespec to nanoseconds. 68 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec) 69 70 static struct kmp_sys_timer __kmp_sys_timer_data; 71 72 #if KMP_HANDLE_SIGNALS 73 typedef void (*sig_func_t)(int); 74 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 75 static sigset_t __kmp_sigset; 76 #endif 77 78 static int __kmp_init_runtime = FALSE; 79 80 static int __kmp_fork_count = 0; 81 82 static pthread_condattr_t __kmp_suspend_cond_attr; 83 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 84 85 static kmp_cond_align_t __kmp_wait_cv; 86 static kmp_mutex_align_t __kmp_wait_mx; 87 88 kmp_uint64 __kmp_ticks_per_msec = 1000000; 89 90 #ifdef DEBUG_SUSPEND 91 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 92 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 93 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 94 cond->c_cond.__c_waiting); 95 } 96 #endif 97 98 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED) 99 100 /* Affinity support */ 101 102 void __kmp_affinity_bind_thread(int which) { 103 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 104 "Illegal set affinity operation when not capable"); 105 106 kmp_affin_mask_t *mask; 107 KMP_CPU_ALLOC_ON_STACK(mask); 108 KMP_CPU_ZERO(mask); 109 KMP_CPU_SET(which, mask); 110 __kmp_set_system_affinity(mask, TRUE); 111 KMP_CPU_FREE_FROM_STACK(mask); 112 } 113 114 /* Determine if we can access affinity functionality on this version of 115 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 116 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 117 void __kmp_affinity_determine_capable(const char *env_var) { 118 // Check and see if the OS supports thread affinity. 119 120 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 121 122 int gCode; 123 int sCode; 124 unsigned char *buf; 125 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 126 127 // If Linux* OS: 128 // If the syscall fails or returns a suggestion for the size, 129 // then we don't have to search for an appropriate size. 130 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 131 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 132 "initial getaffinity call returned %d errno = %d\n", 133 gCode, errno)); 134 135 // if ((gCode < 0) && (errno == ENOSYS)) 136 if (gCode < 0) { 137 // System call not supported 138 if (__kmp_affinity_verbose || 139 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 140 (__kmp_affinity_type != affinity_default) && 141 (__kmp_affinity_type != affinity_disabled))) { 142 int error = errno; 143 kmp_msg_t err_code = KMP_ERR(error); 144 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 145 err_code, __kmp_msg_null); 146 if (__kmp_generate_warnings == kmp_warnings_off) { 147 __kmp_str_free(&err_code.str); 148 } 149 } 150 KMP_AFFINITY_DISABLE(); 151 KMP_INTERNAL_FREE(buf); 152 return; 153 } 154 if (gCode > 0) { // Linux* OS only 155 // The optimal situation: the OS returns the size of the buffer it expects. 156 // 157 // A verification of correct behavior is that Isetaffinity on a NULL 158 // buffer with the same size fails with errno set to EFAULT. 159 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 160 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 161 "setaffinity for mask size %d returned %d errno = %d\n", 162 gCode, sCode, errno)); 163 if (sCode < 0) { 164 if (errno == ENOSYS) { 165 if (__kmp_affinity_verbose || 166 (__kmp_affinity_warnings && 167 (__kmp_affinity_type != affinity_none) && 168 (__kmp_affinity_type != affinity_default) && 169 (__kmp_affinity_type != affinity_disabled))) { 170 int error = errno; 171 kmp_msg_t err_code = KMP_ERR(error); 172 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 173 err_code, __kmp_msg_null); 174 if (__kmp_generate_warnings == kmp_warnings_off) { 175 __kmp_str_free(&err_code.str); 176 } 177 } 178 KMP_AFFINITY_DISABLE(); 179 KMP_INTERNAL_FREE(buf); 180 } 181 if (errno == EFAULT) { 182 KMP_AFFINITY_ENABLE(gCode); 183 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 184 "affinity supported (mask size %d)\n", 185 (int)__kmp_affin_mask_size)); 186 KMP_INTERNAL_FREE(buf); 187 return; 188 } 189 } 190 } 191 192 // Call the getaffinity system call repeatedly with increasing set sizes 193 // until we succeed, or reach an upper bound on the search. 194 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 195 "searching for proper set size\n")); 196 int size; 197 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 198 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 199 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 200 "getaffinity for mask size %d returned %d errno = %d\n", 201 size, gCode, errno)); 202 203 if (gCode < 0) { 204 if (errno == ENOSYS) { 205 // We shouldn't get here 206 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 207 "inconsistent OS call behavior: errno == ENOSYS for mask " 208 "size %d\n", 209 size)); 210 if (__kmp_affinity_verbose || 211 (__kmp_affinity_warnings && 212 (__kmp_affinity_type != affinity_none) && 213 (__kmp_affinity_type != affinity_default) && 214 (__kmp_affinity_type != affinity_disabled))) { 215 int error = errno; 216 kmp_msg_t err_code = KMP_ERR(error); 217 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 218 err_code, __kmp_msg_null); 219 if (__kmp_generate_warnings == kmp_warnings_off) { 220 __kmp_str_free(&err_code.str); 221 } 222 } 223 KMP_AFFINITY_DISABLE(); 224 KMP_INTERNAL_FREE(buf); 225 return; 226 } 227 continue; 228 } 229 230 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 231 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 232 "setaffinity for mask size %d returned %d errno = %d\n", 233 gCode, sCode, errno)); 234 if (sCode < 0) { 235 if (errno == ENOSYS) { // Linux* OS only 236 // We shouldn't get here 237 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 238 "inconsistent OS call behavior: errno == ENOSYS for mask " 239 "size %d\n", 240 size)); 241 if (__kmp_affinity_verbose || 242 (__kmp_affinity_warnings && 243 (__kmp_affinity_type != affinity_none) && 244 (__kmp_affinity_type != affinity_default) && 245 (__kmp_affinity_type != affinity_disabled))) { 246 int error = errno; 247 kmp_msg_t err_code = KMP_ERR(error); 248 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 249 err_code, __kmp_msg_null); 250 if (__kmp_generate_warnings == kmp_warnings_off) { 251 __kmp_str_free(&err_code.str); 252 } 253 } 254 KMP_AFFINITY_DISABLE(); 255 KMP_INTERNAL_FREE(buf); 256 return; 257 } 258 if (errno == EFAULT) { 259 KMP_AFFINITY_ENABLE(gCode); 260 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 261 "affinity supported (mask size %d)\n", 262 (int)__kmp_affin_mask_size)); 263 KMP_INTERNAL_FREE(buf); 264 return; 265 } 266 } 267 } 268 // save uncaught error code 269 // int error = errno; 270 KMP_INTERNAL_FREE(buf); 271 // restore uncaught error code, will be printed at the next KMP_WARNING below 272 // errno = error; 273 274 // Affinity is not supported 275 KMP_AFFINITY_DISABLE(); 276 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 277 "cannot determine mask size - affinity not supported\n")); 278 if (__kmp_affinity_verbose || 279 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 280 (__kmp_affinity_type != affinity_default) && 281 (__kmp_affinity_type != affinity_disabled))) { 282 KMP_WARNING(AffCantGetMaskSize, env_var); 283 } 284 } 285 286 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 287 288 #if KMP_USE_FUTEX 289 290 int __kmp_futex_determine_capable() { 291 int loc = 0; 292 int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 293 int retval = (rc == 0) || (errno != ENOSYS); 294 295 KA_TRACE(10, 296 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 297 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 298 retval ? "" : " not")); 299 300 return retval; 301 } 302 303 #endif // KMP_USE_FUTEX 304 305 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 306 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 307 use compare_and_store for these routines */ 308 309 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 310 kmp_int8 old_value, new_value; 311 312 old_value = TCR_1(*p); 313 new_value = old_value | d; 314 315 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 316 KMP_CPU_PAUSE(); 317 old_value = TCR_1(*p); 318 new_value = old_value | d; 319 } 320 return old_value; 321 } 322 323 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 324 kmp_int8 old_value, new_value; 325 326 old_value = TCR_1(*p); 327 new_value = old_value & d; 328 329 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 330 KMP_CPU_PAUSE(); 331 old_value = TCR_1(*p); 332 new_value = old_value & d; 333 } 334 return old_value; 335 } 336 337 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 338 kmp_uint32 old_value, new_value; 339 340 old_value = TCR_4(*p); 341 new_value = old_value | d; 342 343 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 344 KMP_CPU_PAUSE(); 345 old_value = TCR_4(*p); 346 new_value = old_value | d; 347 } 348 return old_value; 349 } 350 351 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 352 kmp_uint32 old_value, new_value; 353 354 old_value = TCR_4(*p); 355 new_value = old_value & d; 356 357 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 358 KMP_CPU_PAUSE(); 359 old_value = TCR_4(*p); 360 new_value = old_value & d; 361 } 362 return old_value; 363 } 364 365 #if KMP_ARCH_X86 366 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 367 kmp_int8 old_value, new_value; 368 369 old_value = TCR_1(*p); 370 new_value = old_value + d; 371 372 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 373 KMP_CPU_PAUSE(); 374 old_value = TCR_1(*p); 375 new_value = old_value + d; 376 } 377 return old_value; 378 } 379 380 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 381 kmp_int64 old_value, new_value; 382 383 old_value = TCR_8(*p); 384 new_value = old_value + d; 385 386 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 387 KMP_CPU_PAUSE(); 388 old_value = TCR_8(*p); 389 new_value = old_value + d; 390 } 391 return old_value; 392 } 393 #endif /* KMP_ARCH_X86 */ 394 395 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 396 kmp_uint64 old_value, new_value; 397 398 old_value = TCR_8(*p); 399 new_value = old_value | d; 400 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 401 KMP_CPU_PAUSE(); 402 old_value = TCR_8(*p); 403 new_value = old_value | d; 404 } 405 return old_value; 406 } 407 408 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 409 kmp_uint64 old_value, new_value; 410 411 old_value = TCR_8(*p); 412 new_value = old_value & d; 413 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 414 KMP_CPU_PAUSE(); 415 old_value = TCR_8(*p); 416 new_value = old_value & d; 417 } 418 return old_value; 419 } 420 421 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 422 423 void __kmp_terminate_thread(int gtid) { 424 int status; 425 kmp_info_t *th = __kmp_threads[gtid]; 426 427 if (!th) 428 return; 429 430 #ifdef KMP_CANCEL_THREADS 431 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 432 status = pthread_cancel(th->th.th_info.ds.ds_thread); 433 if (status != 0 && status != ESRCH) { 434 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 435 __kmp_msg_null); 436 } 437 #endif 438 __kmp_yield(TRUE); 439 } // 440 441 /* Set thread stack info according to values returned by pthread_getattr_np(). 442 If values are unreasonable, assume call failed and use incremental stack 443 refinement method instead. Returns TRUE if the stack parameters could be 444 determined exactly, FALSE if incremental refinement is necessary. */ 445 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 446 int stack_data; 447 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 448 /* Linux* OS only -- no pthread_getattr_np support on OS X* */ 449 pthread_attr_t attr; 450 int status; 451 size_t size = 0; 452 void *addr = 0; 453 454 /* Always do incremental stack refinement for ubermaster threads since the 455 initial thread stack range can be reduced by sibling thread creation so 456 pthread_attr_getstack may cause thread gtid aliasing */ 457 if (!KMP_UBER_GTID(gtid)) { 458 459 /* Fetch the real thread attributes */ 460 status = pthread_attr_init(&attr); 461 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 462 #if KMP_OS_FREEBSD || KMP_OS_NETBSD 463 status = pthread_attr_get_np(pthread_self(), &attr); 464 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 465 #else 466 status = pthread_getattr_np(pthread_self(), &attr); 467 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 468 #endif 469 status = pthread_attr_getstack(&attr, &addr, &size); 470 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 471 KA_TRACE(60, 472 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 473 " %lu, low addr: %p\n", 474 gtid, size, addr)); 475 status = pthread_attr_destroy(&attr); 476 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 477 } 478 479 if (size != 0 && addr != 0) { // was stack parameter determination successful? 480 /* Store the correct base and size */ 481 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 482 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 483 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 484 return TRUE; 485 } 486 #endif /* KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD */ 487 /* Use incremental refinement starting from initial conservative estimate */ 488 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 489 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 490 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 491 return FALSE; 492 } 493 494 static void *__kmp_launch_worker(void *thr) { 495 int status, old_type, old_state; 496 #ifdef KMP_BLOCK_SIGNALS 497 sigset_t new_set, old_set; 498 #endif /* KMP_BLOCK_SIGNALS */ 499 void *exit_val; 500 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 501 void *volatile padding = 0; 502 #endif 503 int gtid; 504 505 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 506 __kmp_gtid_set_specific(gtid); 507 #ifdef KMP_TDATA_GTID 508 __kmp_gtid = gtid; 509 #endif 510 #if KMP_STATS_ENABLED 511 // set thread local index to point to thread-specific stats 512 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 513 KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life); 514 KMP_SET_THREAD_STATE(IDLE); 515 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 516 #endif 517 518 #if USE_ITT_BUILD 519 __kmp_itt_thread_name(gtid); 520 #endif /* USE_ITT_BUILD */ 521 522 #if KMP_AFFINITY_SUPPORTED 523 __kmp_affinity_set_init_mask(gtid, FALSE); 524 #endif 525 526 #ifdef KMP_CANCEL_THREADS 527 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 528 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 529 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 530 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 531 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 532 #endif 533 534 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 535 // Set FP control regs to be a copy of the parallel initialization thread's. 536 __kmp_clear_x87_fpu_status_word(); 537 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 538 __kmp_load_mxcsr(&__kmp_init_mxcsr); 539 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 540 541 #ifdef KMP_BLOCK_SIGNALS 542 status = sigfillset(&new_set); 543 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 544 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 545 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 546 #endif /* KMP_BLOCK_SIGNALS */ 547 548 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 549 if (__kmp_stkoffset > 0 && gtid > 0) { 550 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 551 } 552 #endif 553 554 KMP_MB(); 555 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 556 557 __kmp_check_stack_overlap((kmp_info_t *)thr); 558 559 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 560 561 #ifdef KMP_BLOCK_SIGNALS 562 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 563 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 564 #endif /* KMP_BLOCK_SIGNALS */ 565 566 return exit_val; 567 } 568 569 #if KMP_USE_MONITOR 570 /* The monitor thread controls all of the threads in the complex */ 571 572 static void *__kmp_launch_monitor(void *thr) { 573 int status, old_type, old_state; 574 #ifdef KMP_BLOCK_SIGNALS 575 sigset_t new_set; 576 #endif /* KMP_BLOCK_SIGNALS */ 577 struct timespec interval; 578 int yield_count; 579 int yield_cycles = 0; 580 581 KMP_MB(); /* Flush all pending memory write invalidates. */ 582 583 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 584 585 /* register us as the monitor thread */ 586 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 587 #ifdef KMP_TDATA_GTID 588 __kmp_gtid = KMP_GTID_MONITOR; 589 #endif 590 591 KMP_MB(); 592 593 #if USE_ITT_BUILD 594 // Instruct Intel(R) Threading Tools to ignore monitor thread. 595 __kmp_itt_thread_ignore(); 596 #endif /* USE_ITT_BUILD */ 597 598 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 599 (kmp_info_t *)thr); 600 601 __kmp_check_stack_overlap((kmp_info_t *)thr); 602 603 #ifdef KMP_CANCEL_THREADS 604 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 605 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 606 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 607 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 608 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 609 #endif 610 611 #if KMP_REAL_TIME_FIX 612 // This is a potential fix which allows application with real-time scheduling 613 // policy work. However, decision about the fix is not made yet, so it is 614 // disabled by default. 615 { // Are program started with real-time scheduling policy? 616 int sched = sched_getscheduler(0); 617 if (sched == SCHED_FIFO || sched == SCHED_RR) { 618 // Yes, we are a part of real-time application. Try to increase the 619 // priority of the monitor. 620 struct sched_param param; 621 int max_priority = sched_get_priority_max(sched); 622 int rc; 623 KMP_WARNING(RealTimeSchedNotSupported); 624 sched_getparam(0, ¶m); 625 if (param.sched_priority < max_priority) { 626 param.sched_priority += 1; 627 rc = sched_setscheduler(0, sched, ¶m); 628 if (rc != 0) { 629 int error = errno; 630 kmp_msg_t err_code = KMP_ERR(error); 631 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 632 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 633 if (__kmp_generate_warnings == kmp_warnings_off) { 634 __kmp_str_free(&err_code.str); 635 } 636 } 637 } else { 638 // We cannot abort here, because number of CPUs may be enough for all 639 // the threads, including the monitor thread, so application could 640 // potentially work... 641 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 642 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 643 __kmp_msg_null); 644 } 645 } 646 // AC: free thread that waits for monitor started 647 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 648 } 649 #endif // KMP_REAL_TIME_FIX 650 651 KMP_MB(); /* Flush all pending memory write invalidates. */ 652 653 if (__kmp_monitor_wakeups == 1) { 654 interval.tv_sec = 1; 655 interval.tv_nsec = 0; 656 } else { 657 interval.tv_sec = 0; 658 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 659 } 660 661 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 662 663 if (__kmp_yield_cycle) { 664 __kmp_yielding_on = 0; /* Start out with yielding shut off */ 665 yield_count = __kmp_yield_off_count; 666 } else { 667 __kmp_yielding_on = 1; /* Yielding is on permanently */ 668 } 669 670 while (!TCR_4(__kmp_global.g.g_done)) { 671 struct timespec now; 672 struct timeval tval; 673 674 /* This thread monitors the state of the system */ 675 676 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 677 678 status = gettimeofday(&tval, NULL); 679 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 680 TIMEVAL_TO_TIMESPEC(&tval, &now); 681 682 now.tv_sec += interval.tv_sec; 683 now.tv_nsec += interval.tv_nsec; 684 685 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 686 now.tv_sec += 1; 687 now.tv_nsec -= KMP_NSEC_PER_SEC; 688 } 689 690 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 691 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 692 // AC: the monitor should not fall asleep if g_done has been set 693 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 694 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 695 &__kmp_wait_mx.m_mutex, &now); 696 if (status != 0) { 697 if (status != ETIMEDOUT && status != EINTR) { 698 KMP_SYSFAIL("pthread_cond_timedwait", status); 699 } 700 } 701 } 702 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 703 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 704 705 if (__kmp_yield_cycle) { 706 yield_cycles++; 707 if ((yield_cycles % yield_count) == 0) { 708 if (__kmp_yielding_on) { 709 __kmp_yielding_on = 0; /* Turn it off now */ 710 yield_count = __kmp_yield_off_count; 711 } else { 712 __kmp_yielding_on = 1; /* Turn it on now */ 713 yield_count = __kmp_yield_on_count; 714 } 715 yield_cycles = 0; 716 } 717 } else { 718 __kmp_yielding_on = 1; 719 } 720 721 TCW_4(__kmp_global.g.g_time.dt.t_value, 722 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 723 724 KMP_MB(); /* Flush all pending memory write invalidates. */ 725 } 726 727 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 728 729 #ifdef KMP_BLOCK_SIGNALS 730 status = sigfillset(&new_set); 731 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 732 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 733 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 734 #endif /* KMP_BLOCK_SIGNALS */ 735 736 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 737 738 if (__kmp_global.g.g_abort != 0) { 739 /* now we need to terminate the worker threads */ 740 /* the value of t_abort is the signal we caught */ 741 742 int gtid; 743 744 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 745 __kmp_global.g.g_abort)); 746 747 /* terminate the OpenMP worker threads */ 748 /* TODO this is not valid for sibling threads!! 749 * the uber master might not be 0 anymore.. */ 750 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 751 __kmp_terminate_thread(gtid); 752 753 __kmp_cleanup(); 754 755 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 756 __kmp_global.g.g_abort)); 757 758 if (__kmp_global.g.g_abort > 0) 759 raise(__kmp_global.g.g_abort); 760 } 761 762 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 763 764 return thr; 765 } 766 #endif // KMP_USE_MONITOR 767 768 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 769 pthread_t handle; 770 pthread_attr_t thread_attr; 771 int status; 772 773 th->th.th_info.ds.ds_gtid = gtid; 774 775 #if KMP_STATS_ENABLED 776 // sets up worker thread stats 777 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 778 779 // th->th.th_stats is used to transfer thread-specific stats-pointer to 780 // __kmp_launch_worker. So when thread is created (goes into 781 // __kmp_launch_worker) it will set its thread local pointer to 782 // th->th.th_stats 783 if (!KMP_UBER_GTID(gtid)) { 784 th->th.th_stats = __kmp_stats_list->push_back(gtid); 785 } else { 786 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 787 // so set the th->th.th_stats field to it. 788 th->th.th_stats = __kmp_stats_thread_ptr; 789 } 790 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 791 792 #endif // KMP_STATS_ENABLED 793 794 if (KMP_UBER_GTID(gtid)) { 795 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 796 th->th.th_info.ds.ds_thread = pthread_self(); 797 __kmp_set_stack_info(gtid, th); 798 __kmp_check_stack_overlap(th); 799 return; 800 } 801 802 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 803 804 KMP_MB(); /* Flush all pending memory write invalidates. */ 805 806 #ifdef KMP_THREAD_ATTR 807 status = pthread_attr_init(&thread_attr); 808 if (status != 0) { 809 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 810 } 811 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 812 if (status != 0) { 813 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 814 } 815 816 /* Set stack size for this thread now. 817 The multiple of 2 is there because on some machines, requesting an unusual 818 stacksize causes the thread to have an offset before the dummy alloca() 819 takes place to create the offset. Since we want the user to have a 820 sufficient stacksize AND support a stack offset, we alloca() twice the 821 offset so that the upcoming alloca() does not eliminate any premade offset, 822 and also gives the user the stack space they requested for all threads */ 823 stack_size += gtid * __kmp_stkoffset * 2; 824 825 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 826 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 827 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 828 829 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 830 status = pthread_attr_setstacksize(&thread_attr, stack_size); 831 #ifdef KMP_BACKUP_STKSIZE 832 if (status != 0) { 833 if (!__kmp_env_stksize) { 834 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 835 __kmp_stksize = KMP_BACKUP_STKSIZE; 836 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 837 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 838 "bytes\n", 839 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 840 status = pthread_attr_setstacksize(&thread_attr, stack_size); 841 } 842 } 843 #endif /* KMP_BACKUP_STKSIZE */ 844 if (status != 0) { 845 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 846 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 847 } 848 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 849 850 #endif /* KMP_THREAD_ATTR */ 851 852 status = 853 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 854 if (status != 0 || !handle) { // ??? Why do we check handle?? 855 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 856 if (status == EINVAL) { 857 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 858 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 859 } 860 if (status == ENOMEM) { 861 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 862 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 863 } 864 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 865 if (status == EAGAIN) { 866 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 867 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 868 } 869 KMP_SYSFAIL("pthread_create", status); 870 } 871 872 th->th.th_info.ds.ds_thread = handle; 873 874 #ifdef KMP_THREAD_ATTR 875 status = pthread_attr_destroy(&thread_attr); 876 if (status) { 877 kmp_msg_t err_code = KMP_ERR(status); 878 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 879 __kmp_msg_null); 880 if (__kmp_generate_warnings == kmp_warnings_off) { 881 __kmp_str_free(&err_code.str); 882 } 883 } 884 #endif /* KMP_THREAD_ATTR */ 885 886 KMP_MB(); /* Flush all pending memory write invalidates. */ 887 888 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 889 890 } // __kmp_create_worker 891 892 #if KMP_USE_MONITOR 893 void __kmp_create_monitor(kmp_info_t *th) { 894 pthread_t handle; 895 pthread_attr_t thread_attr; 896 size_t size; 897 int status; 898 int auto_adj_size = FALSE; 899 900 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 901 // We don't need monitor thread in case of MAX_BLOCKTIME 902 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 903 "MAX blocktime\n")); 904 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 905 th->th.th_info.ds.ds_gtid = 0; 906 return; 907 } 908 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 909 910 KMP_MB(); /* Flush all pending memory write invalidates. */ 911 912 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 913 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 914 #if KMP_REAL_TIME_FIX 915 TCW_4(__kmp_global.g.g_time.dt.t_value, 916 -1); // Will use it for synchronization a bit later. 917 #else 918 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 919 #endif // KMP_REAL_TIME_FIX 920 921 #ifdef KMP_THREAD_ATTR 922 if (__kmp_monitor_stksize == 0) { 923 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 924 auto_adj_size = TRUE; 925 } 926 status = pthread_attr_init(&thread_attr); 927 if (status != 0) { 928 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 929 } 930 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 931 if (status != 0) { 932 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 933 } 934 935 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 936 status = pthread_attr_getstacksize(&thread_attr, &size); 937 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 938 #else 939 size = __kmp_sys_min_stksize; 940 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 941 #endif /* KMP_THREAD_ATTR */ 942 943 if (__kmp_monitor_stksize == 0) { 944 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 945 } 946 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 947 __kmp_monitor_stksize = __kmp_sys_min_stksize; 948 } 949 950 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 951 "requested stacksize = %lu bytes\n", 952 size, __kmp_monitor_stksize)); 953 954 retry: 955 956 /* Set stack size for this thread now. */ 957 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 958 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 959 __kmp_monitor_stksize)); 960 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 961 if (status != 0) { 962 if (auto_adj_size) { 963 __kmp_monitor_stksize *= 2; 964 goto retry; 965 } 966 kmp_msg_t err_code = KMP_ERR(status); 967 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 968 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 969 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 970 if (__kmp_generate_warnings == kmp_warnings_off) { 971 __kmp_str_free(&err_code.str); 972 } 973 } 974 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 975 976 status = 977 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 978 979 if (status != 0) { 980 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 981 if (status == EINVAL) { 982 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 983 __kmp_monitor_stksize *= 2; 984 goto retry; 985 } 986 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 987 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 988 __kmp_msg_null); 989 } 990 if (status == ENOMEM) { 991 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 992 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 993 __kmp_msg_null); 994 } 995 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 996 if (status == EAGAIN) { 997 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 998 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 999 } 1000 KMP_SYSFAIL("pthread_create", status); 1001 } 1002 1003 th->th.th_info.ds.ds_thread = handle; 1004 1005 #if KMP_REAL_TIME_FIX 1006 // Wait for the monitor thread is really started and set its *priority*. 1007 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 1008 sizeof(__kmp_global.g.g_time.dt.t_value)); 1009 __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, 1010 -1, &__kmp_neq_4, NULL); 1011 #endif // KMP_REAL_TIME_FIX 1012 1013 #ifdef KMP_THREAD_ATTR 1014 status = pthread_attr_destroy(&thread_attr); 1015 if (status != 0) { 1016 kmp_msg_t err_code = KMP_ERR(status); 1017 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 1018 __kmp_msg_null); 1019 if (__kmp_generate_warnings == kmp_warnings_off) { 1020 __kmp_str_free(&err_code.str); 1021 } 1022 } 1023 #endif 1024 1025 KMP_MB(); /* Flush all pending memory write invalidates. */ 1026 1027 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1028 th->th.th_info.ds.ds_thread)); 1029 1030 } // __kmp_create_monitor 1031 #endif // KMP_USE_MONITOR 1032 1033 void __kmp_exit_thread(int exit_status) { 1034 pthread_exit((void *)(intptr_t)exit_status); 1035 } // __kmp_exit_thread 1036 1037 #if KMP_USE_MONITOR 1038 void __kmp_resume_monitor(); 1039 1040 void __kmp_reap_monitor(kmp_info_t *th) { 1041 int status; 1042 void *exit_val; 1043 1044 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1045 " %#.8lx\n", 1046 th->th.th_info.ds.ds_thread)); 1047 1048 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1049 // If both tid and gtid are 0, it means the monitor did not ever start. 1050 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1051 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1052 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1053 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1054 return; 1055 } 1056 1057 KMP_MB(); /* Flush all pending memory write invalidates. */ 1058 1059 /* First, check to see whether the monitor thread exists to wake it up. This 1060 is to avoid performance problem when the monitor sleeps during 1061 blocktime-size interval */ 1062 1063 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1064 if (status != ESRCH) { 1065 __kmp_resume_monitor(); // Wake up the monitor thread 1066 } 1067 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1068 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1069 if (exit_val != th) { 1070 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1071 } 1072 1073 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1074 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1075 1076 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1077 " %#.8lx\n", 1078 th->th.th_info.ds.ds_thread)); 1079 1080 KMP_MB(); /* Flush all pending memory write invalidates. */ 1081 } 1082 #endif // KMP_USE_MONITOR 1083 1084 void __kmp_reap_worker(kmp_info_t *th) { 1085 int status; 1086 void *exit_val; 1087 1088 KMP_MB(); /* Flush all pending memory write invalidates. */ 1089 1090 KA_TRACE( 1091 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1092 1093 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1094 #ifdef KMP_DEBUG 1095 /* Don't expose these to the user until we understand when they trigger */ 1096 if (status != 0) { 1097 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1098 } 1099 if (exit_val != th) { 1100 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1101 "exit_val = %p\n", 1102 th->th.th_info.ds.ds_gtid, exit_val)); 1103 } 1104 #endif /* KMP_DEBUG */ 1105 1106 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1107 th->th.th_info.ds.ds_gtid)); 1108 1109 KMP_MB(); /* Flush all pending memory write invalidates. */ 1110 } 1111 1112 #if KMP_HANDLE_SIGNALS 1113 1114 static void __kmp_null_handler(int signo) { 1115 // Do nothing, for doing SIG_IGN-type actions. 1116 } // __kmp_null_handler 1117 1118 static void __kmp_team_handler(int signo) { 1119 if (__kmp_global.g.g_abort == 0) { 1120 /* Stage 1 signal handler, let's shut down all of the threads */ 1121 #ifdef KMP_DEBUG 1122 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1123 #endif 1124 switch (signo) { 1125 case SIGHUP: 1126 case SIGINT: 1127 case SIGQUIT: 1128 case SIGILL: 1129 case SIGABRT: 1130 case SIGFPE: 1131 case SIGBUS: 1132 case SIGSEGV: 1133 #ifdef SIGSYS 1134 case SIGSYS: 1135 #endif 1136 case SIGTERM: 1137 if (__kmp_debug_buf) { 1138 __kmp_dump_debug_buffer(); 1139 } 1140 KMP_MB(); // Flush all pending memory write invalidates. 1141 TCW_4(__kmp_global.g.g_abort, signo); 1142 KMP_MB(); // Flush all pending memory write invalidates. 1143 TCW_4(__kmp_global.g.g_done, TRUE); 1144 KMP_MB(); // Flush all pending memory write invalidates. 1145 break; 1146 default: 1147 #ifdef KMP_DEBUG 1148 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1149 #endif 1150 break; 1151 } 1152 } 1153 } // __kmp_team_handler 1154 1155 static void __kmp_sigaction(int signum, const struct sigaction *act, 1156 struct sigaction *oldact) { 1157 int rc = sigaction(signum, act, oldact); 1158 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1159 } 1160 1161 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1162 int parallel_init) { 1163 KMP_MB(); // Flush all pending memory write invalidates. 1164 KB_TRACE(60, 1165 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1166 if (parallel_init) { 1167 struct sigaction new_action; 1168 struct sigaction old_action; 1169 new_action.sa_handler = handler_func; 1170 new_action.sa_flags = 0; 1171 sigfillset(&new_action.sa_mask); 1172 __kmp_sigaction(sig, &new_action, &old_action); 1173 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1174 sigaddset(&__kmp_sigset, sig); 1175 } else { 1176 // Restore/keep user's handler if one previously installed. 1177 __kmp_sigaction(sig, &old_action, NULL); 1178 } 1179 } else { 1180 // Save initial/system signal handlers to see if user handlers installed. 1181 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1182 } 1183 KMP_MB(); // Flush all pending memory write invalidates. 1184 } // __kmp_install_one_handler 1185 1186 static void __kmp_remove_one_handler(int sig) { 1187 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1188 if (sigismember(&__kmp_sigset, sig)) { 1189 struct sigaction old; 1190 KMP_MB(); // Flush all pending memory write invalidates. 1191 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1192 if ((old.sa_handler != __kmp_team_handler) && 1193 (old.sa_handler != __kmp_null_handler)) { 1194 // Restore the users signal handler. 1195 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1196 "restoring: sig=%d\n", 1197 sig)); 1198 __kmp_sigaction(sig, &old, NULL); 1199 } 1200 sigdelset(&__kmp_sigset, sig); 1201 KMP_MB(); // Flush all pending memory write invalidates. 1202 } 1203 } // __kmp_remove_one_handler 1204 1205 void __kmp_install_signals(int parallel_init) { 1206 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1207 if (__kmp_handle_signals || !parallel_init) { 1208 // If ! parallel_init, we do not install handlers, just save original 1209 // handlers. Let us do it even __handle_signals is 0. 1210 sigemptyset(&__kmp_sigset); 1211 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1212 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1213 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1214 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1215 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1216 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1217 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1218 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1219 #ifdef SIGSYS 1220 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1221 #endif // SIGSYS 1222 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1223 #ifdef SIGPIPE 1224 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1225 #endif // SIGPIPE 1226 } 1227 } // __kmp_install_signals 1228 1229 void __kmp_remove_signals(void) { 1230 int sig; 1231 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1232 for (sig = 1; sig < NSIG; ++sig) { 1233 __kmp_remove_one_handler(sig); 1234 } 1235 } // __kmp_remove_signals 1236 1237 #endif // KMP_HANDLE_SIGNALS 1238 1239 void __kmp_enable(int new_state) { 1240 #ifdef KMP_CANCEL_THREADS 1241 int status, old_state; 1242 status = pthread_setcancelstate(new_state, &old_state); 1243 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1244 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1245 #endif 1246 } 1247 1248 void __kmp_disable(int *old_state) { 1249 #ifdef KMP_CANCEL_THREADS 1250 int status; 1251 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1252 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1253 #endif 1254 } 1255 1256 static void __kmp_atfork_prepare(void) { 1257 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1258 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1259 } 1260 1261 static void __kmp_atfork_parent(void) { 1262 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1263 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1264 } 1265 1266 /* Reset the library so execution in the child starts "all over again" with 1267 clean data structures in initial states. Don't worry about freeing memory 1268 allocated by parent, just abandon it to be safe. */ 1269 static void __kmp_atfork_child(void) { 1270 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1271 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1272 /* TODO make sure this is done right for nested/sibling */ 1273 // ATT: Memory leaks are here? TODO: Check it and fix. 1274 /* KMP_ASSERT( 0 ); */ 1275 1276 ++__kmp_fork_count; 1277 1278 #if KMP_AFFINITY_SUPPORTED 1279 #if KMP_OS_LINUX 1280 // reset the affinity in the child to the initial thread 1281 // affinity in the parent 1282 kmp_set_thread_affinity_mask_initial(); 1283 #endif 1284 // Set default not to bind threads tightly in the child (we’re expecting 1285 // over-subscription after the fork and this can improve things for 1286 // scripting languages that use OpenMP inside process-parallel code). 1287 __kmp_affinity_type = affinity_none; 1288 #if OMP_40_ENABLED 1289 if (__kmp_nested_proc_bind.bind_types != NULL) { 1290 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1291 } 1292 #endif // OMP_40_ENABLED 1293 #endif // KMP_AFFINITY_SUPPORTED 1294 1295 __kmp_init_runtime = FALSE; 1296 #if KMP_USE_MONITOR 1297 __kmp_init_monitor = 0; 1298 #endif 1299 __kmp_init_parallel = FALSE; 1300 __kmp_init_middle = FALSE; 1301 __kmp_init_serial = FALSE; 1302 TCW_4(__kmp_init_gtid, FALSE); 1303 __kmp_init_common = FALSE; 1304 1305 TCW_4(__kmp_init_user_locks, FALSE); 1306 #if !KMP_USE_DYNAMIC_LOCK 1307 __kmp_user_lock_table.used = 1; 1308 __kmp_user_lock_table.allocated = 0; 1309 __kmp_user_lock_table.table = NULL; 1310 __kmp_lock_blocks = NULL; 1311 #endif 1312 1313 __kmp_all_nth = 0; 1314 TCW_4(__kmp_nth, 0); 1315 1316 __kmp_thread_pool = NULL; 1317 __kmp_thread_pool_insert_pt = NULL; 1318 __kmp_team_pool = NULL; 1319 1320 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1321 here so threadprivate doesn't use stale data */ 1322 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1323 __kmp_threadpriv_cache_list)); 1324 1325 while (__kmp_threadpriv_cache_list != NULL) { 1326 1327 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1328 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1329 &(*__kmp_threadpriv_cache_list->addr))); 1330 1331 *__kmp_threadpriv_cache_list->addr = NULL; 1332 } 1333 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1334 } 1335 1336 __kmp_init_runtime = FALSE; 1337 1338 /* reset statically initialized locks */ 1339 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1340 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1341 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1342 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1343 1344 #if USE_ITT_BUILD 1345 __kmp_itt_reset(); // reset ITT's global state 1346 #endif /* USE_ITT_BUILD */ 1347 1348 /* This is necessary to make sure no stale data is left around */ 1349 /* AC: customers complain that we use unsafe routines in the atfork 1350 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1351 in dynamic_link when check the presence of shared tbbmalloc library. 1352 Suggestion is to make the library initialization lazier, similar 1353 to what done for __kmpc_begin(). */ 1354 // TODO: synchronize all static initializations with regular library 1355 // startup; look at kmp_global.cpp and etc. 1356 //__kmp_internal_begin (); 1357 } 1358 1359 void __kmp_register_atfork(void) { 1360 if (__kmp_need_register_atfork) { 1361 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1362 __kmp_atfork_child); 1363 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1364 __kmp_need_register_atfork = FALSE; 1365 } 1366 } 1367 1368 void __kmp_suspend_initialize(void) { 1369 int status; 1370 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1371 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1372 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1373 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1374 } 1375 1376 static void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1377 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1378 if (th->th.th_suspend_init_count <= __kmp_fork_count) { 1379 /* this means we haven't initialized the suspension pthread objects for this 1380 thread in this instance of the process */ 1381 int status; 1382 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1383 &__kmp_suspend_cond_attr); 1384 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1385 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1386 &__kmp_suspend_mutex_attr); 1387 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1388 *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1; 1389 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1390 } 1391 } 1392 1393 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1394 if (th->th.th_suspend_init_count > __kmp_fork_count) { 1395 /* this means we have initialize the suspension pthread objects for this 1396 thread in this instance of the process */ 1397 int status; 1398 1399 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1400 if (status != 0 && status != EBUSY) { 1401 KMP_SYSFAIL("pthread_cond_destroy", status); 1402 } 1403 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1404 if (status != 0 && status != EBUSY) { 1405 KMP_SYSFAIL("pthread_mutex_destroy", status); 1406 } 1407 --th->th.th_suspend_init_count; 1408 KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count); 1409 } 1410 } 1411 1412 /* This routine puts the calling thread to sleep after setting the 1413 sleep bit for the indicated flag variable to true. */ 1414 template <class C> 1415 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1416 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1417 kmp_info_t *th = __kmp_threads[th_gtid]; 1418 int status; 1419 typename C::flag_t old_spin; 1420 1421 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1422 flag->get())); 1423 1424 __kmp_suspend_initialize_thread(th); 1425 1426 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1427 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1428 1429 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1430 th_gtid, flag->get())); 1431 1432 /* TODO: shouldn't this use release semantics to ensure that 1433 __kmp_suspend_initialize_thread gets called first? */ 1434 old_spin = flag->set_sleeping(); 1435 1436 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1437 " was %x\n", 1438 th_gtid, flag->get(), *(flag->get()), old_spin)); 1439 1440 if (flag->done_check_val(old_spin)) { 1441 old_spin = flag->unset_sleeping(); 1442 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1443 "for spin(%p)\n", 1444 th_gtid, flag->get())); 1445 } else { 1446 /* Encapsulate in a loop as the documentation states that this may 1447 "with low probability" return when the condition variable has 1448 not been signaled or broadcast */ 1449 int deactivated = FALSE; 1450 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1451 1452 while (flag->is_sleeping()) { 1453 #ifdef DEBUG_SUSPEND 1454 char buffer[128]; 1455 __kmp_suspend_count++; 1456 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1457 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1458 buffer); 1459 #endif 1460 // Mark the thread as no longer active (only in the first iteration of the 1461 // loop). 1462 if (!deactivated) { 1463 th->th.th_active = FALSE; 1464 if (th->th.th_active_in_pool) { 1465 th->th.th_active_in_pool = FALSE; 1466 KMP_TEST_THEN_DEC32(&__kmp_thread_pool_active_nth); 1467 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1468 } 1469 deactivated = TRUE; 1470 } 1471 1472 #if USE_SUSPEND_TIMEOUT 1473 struct timespec now; 1474 struct timeval tval; 1475 int msecs; 1476 1477 status = gettimeofday(&tval, NULL); 1478 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1479 TIMEVAL_TO_TIMESPEC(&tval, &now); 1480 1481 msecs = (4 * __kmp_dflt_blocktime) + 200; 1482 now.tv_sec += msecs / 1000; 1483 now.tv_nsec += (msecs % 1000) * 1000; 1484 1485 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1486 "pthread_cond_timedwait\n", 1487 th_gtid)); 1488 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1489 &th->th.th_suspend_mx.m_mutex, &now); 1490 #else 1491 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1492 " pthread_cond_wait\n", 1493 th_gtid)); 1494 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1495 &th->th.th_suspend_mx.m_mutex); 1496 #endif 1497 1498 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1499 KMP_SYSFAIL("pthread_cond_wait", status); 1500 } 1501 #ifdef KMP_DEBUG 1502 if (status == ETIMEDOUT) { 1503 if (flag->is_sleeping()) { 1504 KF_TRACE(100, 1505 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1506 } else { 1507 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1508 "not set!\n", 1509 th_gtid)); 1510 } 1511 } else if (flag->is_sleeping()) { 1512 KF_TRACE(100, 1513 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1514 } 1515 #endif 1516 } // while 1517 1518 // Mark the thread as active again (if it was previous marked as inactive) 1519 if (deactivated) { 1520 th->th.th_active = TRUE; 1521 if (TCR_4(th->th.th_in_pool)) { 1522 KMP_TEST_THEN_INC32(&__kmp_thread_pool_active_nth); 1523 th->th.th_active_in_pool = TRUE; 1524 } 1525 } 1526 } 1527 #ifdef DEBUG_SUSPEND 1528 { 1529 char buffer[128]; 1530 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1531 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1532 buffer); 1533 } 1534 #endif 1535 1536 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1537 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1538 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1539 } 1540 1541 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 1542 __kmp_suspend_template(th_gtid, flag); 1543 } 1544 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 1545 __kmp_suspend_template(th_gtid, flag); 1546 } 1547 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1548 __kmp_suspend_template(th_gtid, flag); 1549 } 1550 1551 /* This routine signals the thread specified by target_gtid to wake up 1552 after setting the sleep bit indicated by the flag argument to FALSE. 1553 The target thread must already have called __kmp_suspend_template() */ 1554 template <class C> 1555 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1556 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1557 kmp_info_t *th = __kmp_threads[target_gtid]; 1558 int status; 1559 1560 #ifdef KMP_DEBUG 1561 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1562 #endif 1563 1564 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1565 gtid, target_gtid)); 1566 KMP_DEBUG_ASSERT(gtid != target_gtid); 1567 1568 __kmp_suspend_initialize_thread(th); 1569 1570 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1571 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1572 1573 if (!flag) { // coming from __kmp_null_resume_wrapper 1574 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1575 } 1576 1577 // First, check if the flag is null or its type has changed. If so, someone 1578 // else woke it up. 1579 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1580 // simply shows what 1581 // flag was cast to 1582 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1583 "awake: flag(%p)\n", 1584 gtid, target_gtid, NULL)); 1585 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1586 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1587 return; 1588 } else { // if multiple threads are sleeping, flag should be internally 1589 // referring to a specific thread here 1590 typename C::flag_t old_spin = flag->unset_sleeping(); 1591 if (!flag->is_sleeping_val(old_spin)) { 1592 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1593 "awake: flag(%p): " 1594 "%u => %u\n", 1595 gtid, target_gtid, flag->get(), old_spin, *flag->get())); 1596 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1597 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1598 return; 1599 } 1600 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1601 "sleep bit for flag's loc(%p): " 1602 "%u => %u\n", 1603 gtid, target_gtid, flag->get(), old_spin, *flag->get())); 1604 } 1605 TCW_PTR(th->th.th_sleep_loc, NULL); 1606 1607 #ifdef DEBUG_SUSPEND 1608 { 1609 char buffer[128]; 1610 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1611 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1612 target_gtid, buffer); 1613 } 1614 #endif 1615 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1616 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1617 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1618 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1619 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1620 " for T#%d\n", 1621 gtid, target_gtid)); 1622 } 1623 1624 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 1625 __kmp_resume_template(target_gtid, flag); 1626 } 1627 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 1628 __kmp_resume_template(target_gtid, flag); 1629 } 1630 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1631 __kmp_resume_template(target_gtid, flag); 1632 } 1633 1634 #if KMP_USE_MONITOR 1635 void __kmp_resume_monitor() { 1636 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1637 int status; 1638 #ifdef KMP_DEBUG 1639 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1640 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1641 KMP_GTID_MONITOR)); 1642 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1643 #endif 1644 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1645 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1646 #ifdef DEBUG_SUSPEND 1647 { 1648 char buffer[128]; 1649 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1650 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1651 KMP_GTID_MONITOR, buffer); 1652 } 1653 #endif 1654 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1655 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1656 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1657 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1658 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1659 " for T#%d\n", 1660 gtid, KMP_GTID_MONITOR)); 1661 } 1662 #endif // KMP_USE_MONITOR 1663 1664 void __kmp_yield(int cond) { 1665 if (!cond) 1666 return; 1667 #if KMP_USE_MONITOR 1668 if (!__kmp_yielding_on) 1669 return; 1670 #else 1671 if (__kmp_yield_cycle && !KMP_YIELD_NOW()) 1672 return; 1673 #endif 1674 sched_yield(); 1675 } 1676 1677 void __kmp_gtid_set_specific(int gtid) { 1678 if (__kmp_init_gtid) { 1679 int status; 1680 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1681 (void *)(intptr_t)(gtid + 1)); 1682 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1683 } else { 1684 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1685 } 1686 } 1687 1688 int __kmp_gtid_get_specific() { 1689 int gtid; 1690 if (!__kmp_init_gtid) { 1691 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1692 "KMP_GTID_SHUTDOWN\n")); 1693 return KMP_GTID_SHUTDOWN; 1694 } 1695 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1696 if (gtid == 0) { 1697 gtid = KMP_GTID_DNE; 1698 } else { 1699 gtid--; 1700 } 1701 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1702 __kmp_gtid_threadprivate_key, gtid)); 1703 return gtid; 1704 } 1705 1706 double __kmp_read_cpu_time(void) { 1707 /*clock_t t;*/ 1708 struct tms buffer; 1709 1710 /*t =*/times(&buffer); 1711 1712 return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC; 1713 } 1714 1715 int __kmp_read_system_info(struct kmp_sys_info *info) { 1716 int status; 1717 struct rusage r_usage; 1718 1719 memset(info, 0, sizeof(*info)); 1720 1721 status = getrusage(RUSAGE_SELF, &r_usage); 1722 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1723 1724 // The maximum resident set size utilized (in kilobytes) 1725 info->maxrss = r_usage.ru_maxrss; 1726 // The number of page faults serviced without any I/O 1727 info->minflt = r_usage.ru_minflt; 1728 // The number of page faults serviced that required I/O 1729 info->majflt = r_usage.ru_majflt; 1730 // The number of times a process was "swapped" out of memory 1731 info->nswap = r_usage.ru_nswap; 1732 // The number of times the file system had to perform input 1733 info->inblock = r_usage.ru_inblock; 1734 // The number of times the file system had to perform output 1735 info->oublock = r_usage.ru_oublock; 1736 // The number of times a context switch was voluntarily 1737 info->nvcsw = r_usage.ru_nvcsw; 1738 // The number of times a context switch was forced 1739 info->nivcsw = r_usage.ru_nivcsw; 1740 1741 return (status != 0); 1742 } 1743 1744 void __kmp_read_system_time(double *delta) { 1745 double t_ns; 1746 struct timeval tval; 1747 struct timespec stop; 1748 int status; 1749 1750 status = gettimeofday(&tval, NULL); 1751 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1752 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1753 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start); 1754 *delta = (t_ns * 1e-9); 1755 } 1756 1757 void __kmp_clear_system_time(void) { 1758 struct timeval tval; 1759 int status; 1760 status = gettimeofday(&tval, NULL); 1761 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1762 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1763 } 1764 1765 static int __kmp_get_xproc(void) { 1766 1767 int r = 0; 1768 1769 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 1770 1771 r = sysconf(_SC_NPROCESSORS_ONLN); 1772 1773 #elif KMP_OS_DARWIN 1774 1775 // Bug C77011 High "OpenMP Threads and number of active cores". 1776 1777 // Find the number of available CPUs. 1778 kern_return_t rc; 1779 host_basic_info_data_t info; 1780 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1781 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1782 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1783 // Cannot use KA_TRACE() here because this code works before trace support 1784 // is initialized. 1785 r = info.avail_cpus; 1786 } else { 1787 KMP_WARNING(CantGetNumAvailCPU); 1788 KMP_INFORM(AssumedNumCPU); 1789 } 1790 1791 #else 1792 1793 #error "Unknown or unsupported OS." 1794 1795 #endif 1796 1797 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1798 1799 } // __kmp_get_xproc 1800 1801 int __kmp_read_from_file(char const *path, char const *format, ...) { 1802 int result; 1803 va_list args; 1804 1805 va_start(args, format); 1806 FILE *f = fopen(path, "rb"); 1807 if (f == NULL) 1808 return 0; 1809 result = vfscanf(f, format, args); 1810 fclose(f); 1811 1812 return result; 1813 } 1814 1815 void __kmp_runtime_initialize(void) { 1816 int status; 1817 pthread_mutexattr_t mutex_attr; 1818 pthread_condattr_t cond_attr; 1819 1820 if (__kmp_init_runtime) { 1821 return; 1822 } 1823 1824 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1825 if (!__kmp_cpuinfo.initialized) { 1826 __kmp_query_cpuid(&__kmp_cpuinfo); 1827 } 1828 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1829 1830 __kmp_xproc = __kmp_get_xproc(); 1831 1832 if (sysconf(_SC_THREADS)) { 1833 1834 /* Query the maximum number of threads */ 1835 __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX); 1836 if (__kmp_sys_max_nth == -1) { 1837 /* Unlimited threads for NPTL */ 1838 __kmp_sys_max_nth = INT_MAX; 1839 } else if (__kmp_sys_max_nth <= 1) { 1840 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1841 __kmp_sys_max_nth = KMP_MAX_NTH; 1842 } 1843 1844 /* Query the minimum stack size */ 1845 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1846 if (__kmp_sys_min_stksize <= 1) { 1847 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1848 } 1849 } 1850 1851 /* Set up minimum number of threads to switch to TLS gtid */ 1852 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1853 1854 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1855 __kmp_internal_end_dest); 1856 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1857 status = pthread_mutexattr_init(&mutex_attr); 1858 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1859 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1860 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1861 status = pthread_condattr_init(&cond_attr); 1862 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1863 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1864 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1865 #if USE_ITT_BUILD 1866 __kmp_itt_initialize(); 1867 #endif /* USE_ITT_BUILD */ 1868 1869 __kmp_init_runtime = TRUE; 1870 } 1871 1872 void __kmp_runtime_destroy(void) { 1873 int status; 1874 1875 if (!__kmp_init_runtime) { 1876 return; // Nothing to do. 1877 } 1878 1879 #if USE_ITT_BUILD 1880 __kmp_itt_destroy(); 1881 #endif /* USE_ITT_BUILD */ 1882 1883 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1884 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1885 1886 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1887 if (status != 0 && status != EBUSY) { 1888 KMP_SYSFAIL("pthread_mutex_destroy", status); 1889 } 1890 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1891 if (status != 0 && status != EBUSY) { 1892 KMP_SYSFAIL("pthread_cond_destroy", status); 1893 } 1894 #if KMP_AFFINITY_SUPPORTED 1895 __kmp_affinity_uninitialize(); 1896 #endif 1897 1898 __kmp_init_runtime = FALSE; 1899 } 1900 1901 /* Put the thread to sleep for a time period */ 1902 /* NOTE: not currently used anywhere */ 1903 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1904 1905 /* Calculate the elapsed wall clock time for the user */ 1906 void __kmp_elapsed(double *t) { 1907 int status; 1908 #ifdef FIX_SGI_CLOCK 1909 struct timespec ts; 1910 1911 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1912 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1913 *t = 1914 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1915 #else 1916 struct timeval tv; 1917 1918 status = gettimeofday(&tv, NULL); 1919 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1920 *t = 1921 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1922 #endif 1923 } 1924 1925 /* Calculate the elapsed wall clock tick for the user */ 1926 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1927 1928 /* Return the current time stamp in nsec */ 1929 kmp_uint64 __kmp_now_nsec() { 1930 struct timeval t; 1931 gettimeofday(&t, NULL); 1932 return KMP_NSEC_PER_SEC * t.tv_sec + 1000 * t.tv_usec; 1933 } 1934 1935 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1936 /* Measure clock ticks per millisecond */ 1937 void __kmp_initialize_system_tick() { 1938 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1939 kmp_uint64 nsec = __kmp_now_nsec(); 1940 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1941 kmp_uint64 now; 1942 while ((now = __kmp_hardware_timestamp()) < goal) 1943 ; 1944 __kmp_ticks_per_msec = 1945 (kmp_uint64)(1e6 * (delay + (now - goal)) / (__kmp_now_nsec() - nsec)); 1946 } 1947 #endif 1948 1949 /* Determine whether the given address is mapped into the current address 1950 space. */ 1951 1952 int __kmp_is_address_mapped(void *addr) { 1953 1954 int found = 0; 1955 int rc; 1956 1957 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1958 1959 /* On Linux* OS, read the /proc/<pid>/maps pseudo-file to get all the address 1960 ranges mapped into the address space. */ 1961 1962 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 1963 FILE *file = NULL; 1964 1965 file = fopen(name, "r"); 1966 KMP_ASSERT(file != NULL); 1967 1968 for (;;) { 1969 1970 void *beginning = NULL; 1971 void *ending = NULL; 1972 char perms[5]; 1973 1974 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 1975 if (rc == EOF) { 1976 break; 1977 } 1978 KMP_ASSERT(rc == 3 && 1979 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 1980 1981 // Ending address is not included in the region, but beginning is. 1982 if ((addr >= beginning) && (addr < ending)) { 1983 perms[2] = 0; // 3th and 4th character does not matter. 1984 if (strcmp(perms, "rw") == 0) { 1985 // Memory we are looking for should be readable and writable. 1986 found = 1; 1987 } 1988 break; 1989 } 1990 } 1991 1992 // Free resources. 1993 fclose(file); 1994 KMP_INTERNAL_FREE(name); 1995 1996 #elif KMP_OS_DARWIN 1997 1998 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 1999 using vm interface. */ 2000 2001 int buffer; 2002 vm_size_t count; 2003 rc = vm_read_overwrite( 2004 mach_task_self(), // Task to read memory of. 2005 (vm_address_t)(addr), // Address to read from. 2006 1, // Number of bytes to be read. 2007 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2008 &count // Address of var to save number of read bytes in. 2009 ); 2010 if (rc == 0) { 2011 // Memory successfully read. 2012 found = 1; 2013 } 2014 2015 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD 2016 2017 // FIXME(FreeBSD, NetBSD): Implement this 2018 found = 1; 2019 2020 #else 2021 2022 #error "Unknown or unsupported OS" 2023 2024 #endif 2025 2026 return found; 2027 2028 } // __kmp_is_address_mapped 2029 2030 #ifdef USE_LOAD_BALANCE 2031 2032 #if KMP_OS_DARWIN 2033 2034 // The function returns the rounded value of the system load average 2035 // during given time interval which depends on the value of 2036 // __kmp_load_balance_interval variable (default is 60 sec, other values 2037 // may be 300 sec or 900 sec). 2038 // It returns -1 in case of error. 2039 int __kmp_get_load_balance(int max) { 2040 double averages[3]; 2041 int ret_avg = 0; 2042 2043 int res = getloadavg(averages, 3); 2044 2045 // Check __kmp_load_balance_interval to determine which of averages to use. 2046 // getloadavg() may return the number of samples less than requested that is 2047 // less than 3. 2048 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2049 ret_avg = averages[0]; // 1 min 2050 } else if ((__kmp_load_balance_interval >= 180 && 2051 __kmp_load_balance_interval < 600) && 2052 (res >= 2)) { 2053 ret_avg = averages[1]; // 5 min 2054 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2055 ret_avg = averages[2]; // 15 min 2056 } else { // Error occurred 2057 return -1; 2058 } 2059 2060 return ret_avg; 2061 } 2062 2063 #else // Linux* OS 2064 2065 // The fuction returns number of running (not sleeping) threads, or -1 in case 2066 // of error. Error could be reported if Linux* OS kernel too old (without 2067 // "/proc" support). Counting running threads stops if max running threads 2068 // encountered. 2069 int __kmp_get_load_balance(int max) { 2070 static int permanent_error = 0; 2071 static int glb_running_threads = 0; // Saved count of the running threads for 2072 // the thread balance algortihm 2073 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2074 2075 int running_threads = 0; // Number of running threads in the system. 2076 2077 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2078 struct dirent *proc_entry = NULL; 2079 2080 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2081 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2082 struct dirent *task_entry = NULL; 2083 int task_path_fixed_len; 2084 2085 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2086 int stat_file = -1; 2087 int stat_path_fixed_len; 2088 2089 int total_processes = 0; // Total number of processes in system. 2090 int total_threads = 0; // Total number of threads in system. 2091 2092 double call_time = 0.0; 2093 2094 __kmp_str_buf_init(&task_path); 2095 __kmp_str_buf_init(&stat_path); 2096 2097 __kmp_elapsed(&call_time); 2098 2099 if (glb_call_time && 2100 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2101 running_threads = glb_running_threads; 2102 goto finish; 2103 } 2104 2105 glb_call_time = call_time; 2106 2107 // Do not spend time on scanning "/proc/" if we have a permanent error. 2108 if (permanent_error) { 2109 running_threads = -1; 2110 goto finish; 2111 } 2112 2113 if (max <= 0) { 2114 max = INT_MAX; 2115 } 2116 2117 // Open "/proc/" directory. 2118 proc_dir = opendir("/proc"); 2119 if (proc_dir == NULL) { 2120 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2121 // error now and in subsequent calls. 2122 running_threads = -1; 2123 permanent_error = 1; 2124 goto finish; 2125 } 2126 2127 // Initialize fixed part of task_path. This part will not change. 2128 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2129 task_path_fixed_len = task_path.used; // Remember number of used characters. 2130 2131 proc_entry = readdir(proc_dir); 2132 while (proc_entry != NULL) { 2133 // Proc entry is a directory and name starts with a digit. Assume it is a 2134 // process' directory. 2135 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2136 2137 ++total_processes; 2138 // Make sure init process is the very first in "/proc", so we can replace 2139 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2140 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2141 // true (where "=>" is implication). Since C++ does not have => operator, 2142 // let us replace it with its equivalent: a => b == ! a || b. 2143 KMP_DEBUG_ASSERT(total_processes != 1 || 2144 strcmp(proc_entry->d_name, "1") == 0); 2145 2146 // Construct task_path. 2147 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2148 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2149 KMP_STRLEN(proc_entry->d_name)); 2150 __kmp_str_buf_cat(&task_path, "/task", 5); 2151 2152 task_dir = opendir(task_path.str); 2153 if (task_dir == NULL) { 2154 // Process can finish between reading "/proc/" directory entry and 2155 // opening process' "task/" directory. So, in general case we should not 2156 // complain, but have to skip this process and read the next one. But on 2157 // systems with no "task/" support we will spend lot of time to scan 2158 // "/proc/" tree again and again without any benefit. "init" process 2159 // (its pid is 1) should exist always, so, if we cannot open 2160 // "/proc/1/task/" directory, it means "task/" is not supported by 2161 // kernel. Report an error now and in the future. 2162 if (strcmp(proc_entry->d_name, "1") == 0) { 2163 running_threads = -1; 2164 permanent_error = 1; 2165 goto finish; 2166 } 2167 } else { 2168 // Construct fixed part of stat file path. 2169 __kmp_str_buf_clear(&stat_path); 2170 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2171 __kmp_str_buf_cat(&stat_path, "/", 1); 2172 stat_path_fixed_len = stat_path.used; 2173 2174 task_entry = readdir(task_dir); 2175 while (task_entry != NULL) { 2176 // It is a directory and name starts with a digit. 2177 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2178 ++total_threads; 2179 2180 // Consruct complete stat file path. Easiest way would be: 2181 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2182 // task_entry->d_name ); 2183 // but seriae of __kmp_str_buf_cat works a bit faster. 2184 stat_path.used = 2185 stat_path_fixed_len; // Reset stat path to its fixed part. 2186 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2187 KMP_STRLEN(task_entry->d_name)); 2188 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2189 2190 // Note: Low-level API (open/read/close) is used. High-level API 2191 // (fopen/fclose) works ~ 30 % slower. 2192 stat_file = open(stat_path.str, O_RDONLY); 2193 if (stat_file == -1) { 2194 // We cannot report an error because task (thread) can terminate 2195 // just before reading this file. 2196 } else { 2197 /* Content of "stat" file looks like: 2198 24285 (program) S ... 2199 2200 It is a single line (if program name does not include funny 2201 symbols). First number is a thread id, then name of executable 2202 file name in paretheses, then state of the thread. We need just 2203 thread state. 2204 2205 Good news: Length of program name is 15 characters max. Longer 2206 names are truncated. 2207 2208 Thus, we need rather short buffer: 15 chars for program name + 2209 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2210 2211 Bad news: Program name may contain special symbols like space, 2212 closing parenthesis, or even new line. This makes parsing 2213 "stat" file not 100 % reliable. In case of fanny program names 2214 parsing may fail (report incorrect thread state). 2215 2216 Parsing "status" file looks more promissing (due to different 2217 file structure and escaping special symbols) but reading and 2218 parsing of "status" file works slower. 2219 -- ln 2220 */ 2221 char buffer[65]; 2222 int len; 2223 len = read(stat_file, buffer, sizeof(buffer) - 1); 2224 if (len >= 0) { 2225 buffer[len] = 0; 2226 // Using scanf: 2227 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2228 // looks very nice, but searching for a closing parenthesis 2229 // works a bit faster. 2230 char *close_parent = strstr(buffer, ") "); 2231 if (close_parent != NULL) { 2232 char state = *(close_parent + 2); 2233 if (state == 'R') { 2234 ++running_threads; 2235 if (running_threads >= max) { 2236 goto finish; 2237 } 2238 } 2239 } 2240 } 2241 close(stat_file); 2242 stat_file = -1; 2243 } 2244 } 2245 task_entry = readdir(task_dir); 2246 } 2247 closedir(task_dir); 2248 task_dir = NULL; 2249 } 2250 } 2251 proc_entry = readdir(proc_dir); 2252 } 2253 2254 // There _might_ be a timing hole where the thread executing this 2255 // code get skipped in the load balance, and running_threads is 0. 2256 // Assert in the debug builds only!!! 2257 KMP_DEBUG_ASSERT(running_threads > 0); 2258 if (running_threads <= 0) { 2259 running_threads = 1; 2260 } 2261 2262 finish: // Clean up and exit. 2263 if (proc_dir != NULL) { 2264 closedir(proc_dir); 2265 } 2266 __kmp_str_buf_free(&task_path); 2267 if (task_dir != NULL) { 2268 closedir(task_dir); 2269 } 2270 __kmp_str_buf_free(&stat_path); 2271 if (stat_file != -1) { 2272 close(stat_file); 2273 } 2274 2275 glb_running_threads = running_threads; 2276 2277 return running_threads; 2278 2279 } // __kmp_get_load_balance 2280 2281 #endif // KMP_OS_DARWIN 2282 2283 #endif // USE_LOAD_BALANCE 2284 2285 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2286 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64) 2287 2288 // we really only need the case with 1 argument, because CLANG always build 2289 // a struct of pointers to shared variables referenced in the outlined function 2290 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2291 void *p_argv[] 2292 #if OMPT_SUPPORT 2293 , 2294 void **exit_frame_ptr 2295 #endif 2296 ) { 2297 #if OMPT_SUPPORT 2298 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2299 #endif 2300 2301 switch (argc) { 2302 default: 2303 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2304 fflush(stderr); 2305 exit(-1); 2306 case 0: 2307 (*pkfn)(>id, &tid); 2308 break; 2309 case 1: 2310 (*pkfn)(>id, &tid, p_argv[0]); 2311 break; 2312 case 2: 2313 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2314 break; 2315 case 3: 2316 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2317 break; 2318 case 4: 2319 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2320 break; 2321 case 5: 2322 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2323 break; 2324 case 6: 2325 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2326 p_argv[5]); 2327 break; 2328 case 7: 2329 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2330 p_argv[5], p_argv[6]); 2331 break; 2332 case 8: 2333 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2334 p_argv[5], p_argv[6], p_argv[7]); 2335 break; 2336 case 9: 2337 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2338 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2339 break; 2340 case 10: 2341 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2342 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2343 break; 2344 case 11: 2345 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2346 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2347 break; 2348 case 12: 2349 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2350 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2351 p_argv[11]); 2352 break; 2353 case 13: 2354 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2355 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2356 p_argv[11], p_argv[12]); 2357 break; 2358 case 14: 2359 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2360 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2361 p_argv[11], p_argv[12], p_argv[13]); 2362 break; 2363 case 15: 2364 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2365 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2366 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2367 break; 2368 } 2369 2370 #if OMPT_SUPPORT 2371 *exit_frame_ptr = 0; 2372 #endif 2373 2374 return 1; 2375 } 2376 2377 #endif 2378 2379 // end of file // 2380