1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
30 #include <sys/time.h>
31 #include <sys/times.h>
32 #include <unistd.h>
33 
34 #if KMP_OS_LINUX && !KMP_OS_CNK
35 #include <sys/sysinfo.h>
36 #if KMP_USE_FUTEX
37 // We should really include <futex.h>, but that causes compatibility problems on
38 // different Linux* OS distributions that either require that you include (or
39 // break when you try to include) <pci/types.h>. Since all we need is the two
40 // macros below (which are part of the kernel ABI, so can't change) we just
41 // define the constants here and don't include <futex.h>
42 #ifndef FUTEX_WAIT
43 #define FUTEX_WAIT 0
44 #endif
45 #ifndef FUTEX_WAKE
46 #define FUTEX_WAKE 1
47 #endif
48 #endif
49 #elif KMP_OS_DARWIN
50 #include <mach/mach.h>
51 #include <sys/sysctl.h>
52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
53 #include <pthread_np.h>
54 #elif KMP_OS_NETBSD
55 #include <sys/types.h>
56 #include <sys/sysctl.h>
57 #endif
58 
59 #include <ctype.h>
60 #include <dirent.h>
61 #include <fcntl.h>
62 
63 #include "tsan_annotations.h"
64 
65 struct kmp_sys_timer {
66   struct timespec start;
67 };
68 
69 // Convert timespec to nanoseconds.
70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
71 
72 static struct kmp_sys_timer __kmp_sys_timer_data;
73 
74 #if KMP_HANDLE_SIGNALS
75 typedef void (*sig_func_t)(int);
76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
77 static sigset_t __kmp_sigset;
78 #endif
79 
80 static int __kmp_init_runtime = FALSE;
81 
82 static int __kmp_fork_count = 0;
83 
84 static pthread_condattr_t __kmp_suspend_cond_attr;
85 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
86 
87 static kmp_cond_align_t __kmp_wait_cv;
88 static kmp_mutex_align_t __kmp_wait_mx;
89 
90 kmp_uint64 __kmp_ticks_per_msec = 1000000;
91 
92 #ifdef DEBUG_SUSPEND
93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
94   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
95                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
96                cond->c_cond.__c_waiting);
97 }
98 #endif
99 
100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
101 
102 /* Affinity support */
103 
104 void __kmp_affinity_bind_thread(int which) {
105   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
106               "Illegal set affinity operation when not capable");
107 
108   kmp_affin_mask_t *mask;
109   KMP_CPU_ALLOC_ON_STACK(mask);
110   KMP_CPU_ZERO(mask);
111   KMP_CPU_SET(which, mask);
112   __kmp_set_system_affinity(mask, TRUE);
113   KMP_CPU_FREE_FROM_STACK(mask);
114 }
115 
116 /* Determine if we can access affinity functionality on this version of
117  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
118  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
119 void __kmp_affinity_determine_capable(const char *env_var) {
120 // Check and see if the OS supports thread affinity.
121 
122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
123 
124   int gCode;
125   int sCode;
126   unsigned char *buf;
127   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
128 
129   // If Linux* OS:
130   // If the syscall fails or returns a suggestion for the size,
131   // then we don't have to search for an appropriate size.
132   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
133   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
134                 "initial getaffinity call returned %d errno = %d\n",
135                 gCode, errno));
136 
137   // if ((gCode < 0) && (errno == ENOSYS))
138   if (gCode < 0) {
139     // System call not supported
140     if (__kmp_affinity_verbose ||
141         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
142          (__kmp_affinity_type != affinity_default) &&
143          (__kmp_affinity_type != affinity_disabled))) {
144       int error = errno;
145       kmp_msg_t err_code = KMP_ERR(error);
146       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
147                 err_code, __kmp_msg_null);
148       if (__kmp_generate_warnings == kmp_warnings_off) {
149         __kmp_str_free(&err_code.str);
150       }
151     }
152     KMP_AFFINITY_DISABLE();
153     KMP_INTERNAL_FREE(buf);
154     return;
155   }
156   if (gCode > 0) { // Linux* OS only
157     // The optimal situation: the OS returns the size of the buffer it expects.
158     //
159     // A verification of correct behavior is that Isetaffinity on a NULL
160     // buffer with the same size fails with errno set to EFAULT.
161     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
162     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
163                   "setaffinity for mask size %d returned %d errno = %d\n",
164                   gCode, sCode, errno));
165     if (sCode < 0) {
166       if (errno == ENOSYS) {
167         if (__kmp_affinity_verbose ||
168             (__kmp_affinity_warnings &&
169              (__kmp_affinity_type != affinity_none) &&
170              (__kmp_affinity_type != affinity_default) &&
171              (__kmp_affinity_type != affinity_disabled))) {
172           int error = errno;
173           kmp_msg_t err_code = KMP_ERR(error);
174           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
175                     err_code, __kmp_msg_null);
176           if (__kmp_generate_warnings == kmp_warnings_off) {
177             __kmp_str_free(&err_code.str);
178           }
179         }
180         KMP_AFFINITY_DISABLE();
181         KMP_INTERNAL_FREE(buf);
182       }
183       if (errno == EFAULT) {
184         KMP_AFFINITY_ENABLE(gCode);
185         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
186                       "affinity supported (mask size %d)\n",
187                       (int)__kmp_affin_mask_size));
188         KMP_INTERNAL_FREE(buf);
189         return;
190       }
191     }
192   }
193 
194   // Call the getaffinity system call repeatedly with increasing set sizes
195   // until we succeed, or reach an upper bound on the search.
196   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
197                 "searching for proper set size\n"));
198   int size;
199   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
200     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
201     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
202                   "getaffinity for mask size %d returned %d errno = %d\n",
203                   size, gCode, errno));
204 
205     if (gCode < 0) {
206       if (errno == ENOSYS) {
207         // We shouldn't get here
208         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
209                       "inconsistent OS call behavior: errno == ENOSYS for mask "
210                       "size %d\n",
211                       size));
212         if (__kmp_affinity_verbose ||
213             (__kmp_affinity_warnings &&
214              (__kmp_affinity_type != affinity_none) &&
215              (__kmp_affinity_type != affinity_default) &&
216              (__kmp_affinity_type != affinity_disabled))) {
217           int error = errno;
218           kmp_msg_t err_code = KMP_ERR(error);
219           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
220                     err_code, __kmp_msg_null);
221           if (__kmp_generate_warnings == kmp_warnings_off) {
222             __kmp_str_free(&err_code.str);
223           }
224         }
225         KMP_AFFINITY_DISABLE();
226         KMP_INTERNAL_FREE(buf);
227         return;
228       }
229       continue;
230     }
231 
232     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
233     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
234                   "setaffinity for mask size %d returned %d errno = %d\n",
235                   gCode, sCode, errno));
236     if (sCode < 0) {
237       if (errno == ENOSYS) { // Linux* OS only
238         // We shouldn't get here
239         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
240                       "inconsistent OS call behavior: errno == ENOSYS for mask "
241                       "size %d\n",
242                       size));
243         if (__kmp_affinity_verbose ||
244             (__kmp_affinity_warnings &&
245              (__kmp_affinity_type != affinity_none) &&
246              (__kmp_affinity_type != affinity_default) &&
247              (__kmp_affinity_type != affinity_disabled))) {
248           int error = errno;
249           kmp_msg_t err_code = KMP_ERR(error);
250           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
251                     err_code, __kmp_msg_null);
252           if (__kmp_generate_warnings == kmp_warnings_off) {
253             __kmp_str_free(&err_code.str);
254           }
255         }
256         KMP_AFFINITY_DISABLE();
257         KMP_INTERNAL_FREE(buf);
258         return;
259       }
260       if (errno == EFAULT) {
261         KMP_AFFINITY_ENABLE(gCode);
262         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
263                       "affinity supported (mask size %d)\n",
264                       (int)__kmp_affin_mask_size));
265         KMP_INTERNAL_FREE(buf);
266         return;
267       }
268     }
269   }
270   // save uncaught error code
271   // int error = errno;
272   KMP_INTERNAL_FREE(buf);
273   // restore uncaught error code, will be printed at the next KMP_WARNING below
274   // errno = error;
275 
276   // Affinity is not supported
277   KMP_AFFINITY_DISABLE();
278   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
279                 "cannot determine mask size - affinity not supported\n"));
280   if (__kmp_affinity_verbose ||
281       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
282        (__kmp_affinity_type != affinity_default) &&
283        (__kmp_affinity_type != affinity_disabled))) {
284     KMP_WARNING(AffCantGetMaskSize, env_var);
285   }
286 }
287 
288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
289 
290 #if KMP_USE_FUTEX
291 
292 int __kmp_futex_determine_capable() {
293   int loc = 0;
294   int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
295   int retval = (rc == 0) || (errno != ENOSYS);
296 
297   KA_TRACE(10,
298            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
299   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
300                 retval ? "" : " not"));
301 
302   return retval;
303 }
304 
305 #endif // KMP_USE_FUTEX
306 
307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
309    use compare_and_store for these routines */
310 
311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
312   kmp_int8 old_value, new_value;
313 
314   old_value = TCR_1(*p);
315   new_value = old_value | d;
316 
317   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
318     KMP_CPU_PAUSE();
319     old_value = TCR_1(*p);
320     new_value = old_value | d;
321   }
322   return old_value;
323 }
324 
325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
326   kmp_int8 old_value, new_value;
327 
328   old_value = TCR_1(*p);
329   new_value = old_value & d;
330 
331   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
332     KMP_CPU_PAUSE();
333     old_value = TCR_1(*p);
334     new_value = old_value & d;
335   }
336   return old_value;
337 }
338 
339 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
340   kmp_uint32 old_value, new_value;
341 
342   old_value = TCR_4(*p);
343   new_value = old_value | d;
344 
345   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
346     KMP_CPU_PAUSE();
347     old_value = TCR_4(*p);
348     new_value = old_value | d;
349   }
350   return old_value;
351 }
352 
353 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
354   kmp_uint32 old_value, new_value;
355 
356   old_value = TCR_4(*p);
357   new_value = old_value & d;
358 
359   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
360     KMP_CPU_PAUSE();
361     old_value = TCR_4(*p);
362     new_value = old_value & d;
363   }
364   return old_value;
365 }
366 
367 #if KMP_ARCH_X86
368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
369   kmp_int8 old_value, new_value;
370 
371   old_value = TCR_1(*p);
372   new_value = old_value + d;
373 
374   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
375     KMP_CPU_PAUSE();
376     old_value = TCR_1(*p);
377     new_value = old_value + d;
378   }
379   return old_value;
380 }
381 
382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
383   kmp_int64 old_value, new_value;
384 
385   old_value = TCR_8(*p);
386   new_value = old_value + d;
387 
388   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
389     KMP_CPU_PAUSE();
390     old_value = TCR_8(*p);
391     new_value = old_value + d;
392   }
393   return old_value;
394 }
395 #endif /* KMP_ARCH_X86 */
396 
397 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
398   kmp_uint64 old_value, new_value;
399 
400   old_value = TCR_8(*p);
401   new_value = old_value | d;
402   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
403     KMP_CPU_PAUSE();
404     old_value = TCR_8(*p);
405     new_value = old_value | d;
406   }
407   return old_value;
408 }
409 
410 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
411   kmp_uint64 old_value, new_value;
412 
413   old_value = TCR_8(*p);
414   new_value = old_value & d;
415   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416     KMP_CPU_PAUSE();
417     old_value = TCR_8(*p);
418     new_value = old_value & d;
419   }
420   return old_value;
421 }
422 
423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
424 
425 void __kmp_terminate_thread(int gtid) {
426   int status;
427   kmp_info_t *th = __kmp_threads[gtid];
428 
429   if (!th)
430     return;
431 
432 #ifdef KMP_CANCEL_THREADS
433   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
434   status = pthread_cancel(th->th.th_info.ds.ds_thread);
435   if (status != 0 && status != ESRCH) {
436     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
437                 __kmp_msg_null);
438   }
439 #endif
440   KMP_YIELD(TRUE);
441 } //
442 
443 /* Set thread stack info according to values returned by pthread_getattr_np().
444    If values are unreasonable, assume call failed and use incremental stack
445    refinement method instead. Returns TRUE if the stack parameters could be
446    determined exactly, FALSE if incremental refinement is necessary. */
447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
448   int stack_data;
449 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
450         KMP_OS_HURD
451   pthread_attr_t attr;
452   int status;
453   size_t size = 0;
454   void *addr = 0;
455 
456   /* Always do incremental stack refinement for ubermaster threads since the
457      initial thread stack range can be reduced by sibling thread creation so
458      pthread_attr_getstack may cause thread gtid aliasing */
459   if (!KMP_UBER_GTID(gtid)) {
460 
461     /* Fetch the real thread attributes */
462     status = pthread_attr_init(&attr);
463     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
464 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
465     status = pthread_attr_get_np(pthread_self(), &attr);
466     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
467 #else
468     status = pthread_getattr_np(pthread_self(), &attr);
469     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
470 #endif
471     status = pthread_attr_getstack(&attr, &addr, &size);
472     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
473     KA_TRACE(60,
474              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
475               " %lu, low addr: %p\n",
476               gtid, size, addr));
477     status = pthread_attr_destroy(&attr);
478     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
479   }
480 
481   if (size != 0 && addr != 0) { // was stack parameter determination successful?
482     /* Store the correct base and size */
483     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
484     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
485     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
486     return TRUE;
487   }
488 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
489               KMP_OS_HURD */
490   /* Use incremental refinement starting from initial conservative estimate */
491   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
492   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
493   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
494   return FALSE;
495 }
496 
497 static void *__kmp_launch_worker(void *thr) {
498   int status, old_type, old_state;
499 #ifdef KMP_BLOCK_SIGNALS
500   sigset_t new_set, old_set;
501 #endif /* KMP_BLOCK_SIGNALS */
502   void *exit_val;
503 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
504         KMP_OS_OPENBSD || KMP_OS_HURD
505   void *volatile padding = 0;
506 #endif
507   int gtid;
508 
509   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
510   __kmp_gtid_set_specific(gtid);
511 #ifdef KMP_TDATA_GTID
512   __kmp_gtid = gtid;
513 #endif
514 #if KMP_STATS_ENABLED
515   // set thread local index to point to thread-specific stats
516   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
517   __kmp_stats_thread_ptr->startLife();
518   KMP_SET_THREAD_STATE(IDLE);
519   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
520 #endif
521 
522 #if USE_ITT_BUILD
523   __kmp_itt_thread_name(gtid);
524 #endif /* USE_ITT_BUILD */
525 
526 #if KMP_AFFINITY_SUPPORTED
527   __kmp_affinity_set_init_mask(gtid, FALSE);
528 #endif
529 
530 #ifdef KMP_CANCEL_THREADS
531   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
532   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
533   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
534   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
535   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
536 #endif
537 
538 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
539   // Set FP control regs to be a copy of the parallel initialization thread's.
540   __kmp_clear_x87_fpu_status_word();
541   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
542   __kmp_load_mxcsr(&__kmp_init_mxcsr);
543 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
544 
545 #ifdef KMP_BLOCK_SIGNALS
546   status = sigfillset(&new_set);
547   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
548   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
549   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
550 #endif /* KMP_BLOCK_SIGNALS */
551 
552 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
553         KMP_OS_OPENBSD
554   if (__kmp_stkoffset > 0 && gtid > 0) {
555     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
556   }
557 #endif
558 
559   KMP_MB();
560   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
561 
562   __kmp_check_stack_overlap((kmp_info_t *)thr);
563 
564   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
565 
566 #ifdef KMP_BLOCK_SIGNALS
567   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
568   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
569 #endif /* KMP_BLOCK_SIGNALS */
570 
571   return exit_val;
572 }
573 
574 #if KMP_USE_MONITOR
575 /* The monitor thread controls all of the threads in the complex */
576 
577 static void *__kmp_launch_monitor(void *thr) {
578   int status, old_type, old_state;
579 #ifdef KMP_BLOCK_SIGNALS
580   sigset_t new_set;
581 #endif /* KMP_BLOCK_SIGNALS */
582   struct timespec interval;
583 
584   KMP_MB(); /* Flush all pending memory write invalidates.  */
585 
586   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
587 
588   /* register us as the monitor thread */
589   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
590 #ifdef KMP_TDATA_GTID
591   __kmp_gtid = KMP_GTID_MONITOR;
592 #endif
593 
594   KMP_MB();
595 
596 #if USE_ITT_BUILD
597   // Instruct Intel(R) Threading Tools to ignore monitor thread.
598   __kmp_itt_thread_ignore();
599 #endif /* USE_ITT_BUILD */
600 
601   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
602                        (kmp_info_t *)thr);
603 
604   __kmp_check_stack_overlap((kmp_info_t *)thr);
605 
606 #ifdef KMP_CANCEL_THREADS
607   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
608   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
609   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
610   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
611   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
612 #endif
613 
614 #if KMP_REAL_TIME_FIX
615   // This is a potential fix which allows application with real-time scheduling
616   // policy work. However, decision about the fix is not made yet, so it is
617   // disabled by default.
618   { // Are program started with real-time scheduling policy?
619     int sched = sched_getscheduler(0);
620     if (sched == SCHED_FIFO || sched == SCHED_RR) {
621       // Yes, we are a part of real-time application. Try to increase the
622       // priority of the monitor.
623       struct sched_param param;
624       int max_priority = sched_get_priority_max(sched);
625       int rc;
626       KMP_WARNING(RealTimeSchedNotSupported);
627       sched_getparam(0, &param);
628       if (param.sched_priority < max_priority) {
629         param.sched_priority += 1;
630         rc = sched_setscheduler(0, sched, &param);
631         if (rc != 0) {
632           int error = errno;
633           kmp_msg_t err_code = KMP_ERR(error);
634           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
635                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
636           if (__kmp_generate_warnings == kmp_warnings_off) {
637             __kmp_str_free(&err_code.str);
638           }
639         }
640       } else {
641         // We cannot abort here, because number of CPUs may be enough for all
642         // the threads, including the monitor thread, so application could
643         // potentially work...
644         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
645                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
646                   __kmp_msg_null);
647       }
648     }
649     // AC: free thread that waits for monitor started
650     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
651   }
652 #endif // KMP_REAL_TIME_FIX
653 
654   KMP_MB(); /* Flush all pending memory write invalidates.  */
655 
656   if (__kmp_monitor_wakeups == 1) {
657     interval.tv_sec = 1;
658     interval.tv_nsec = 0;
659   } else {
660     interval.tv_sec = 0;
661     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
662   }
663 
664   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
665 
666   while (!TCR_4(__kmp_global.g.g_done)) {
667     struct timespec now;
668     struct timeval tval;
669 
670     /*  This thread monitors the state of the system */
671 
672     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
673 
674     status = gettimeofday(&tval, NULL);
675     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
676     TIMEVAL_TO_TIMESPEC(&tval, &now);
677 
678     now.tv_sec += interval.tv_sec;
679     now.tv_nsec += interval.tv_nsec;
680 
681     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
682       now.tv_sec += 1;
683       now.tv_nsec -= KMP_NSEC_PER_SEC;
684     }
685 
686     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
687     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
688     // AC: the monitor should not fall asleep if g_done has been set
689     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
690       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
691                                       &__kmp_wait_mx.m_mutex, &now);
692       if (status != 0) {
693         if (status != ETIMEDOUT && status != EINTR) {
694           KMP_SYSFAIL("pthread_cond_timedwait", status);
695         }
696       }
697     }
698     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
699     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
700 
701     TCW_4(__kmp_global.g.g_time.dt.t_value,
702           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
703 
704     KMP_MB(); /* Flush all pending memory write invalidates.  */
705   }
706 
707   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
708 
709 #ifdef KMP_BLOCK_SIGNALS
710   status = sigfillset(&new_set);
711   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
712   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
713   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
714 #endif /* KMP_BLOCK_SIGNALS */
715 
716   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
717 
718   if (__kmp_global.g.g_abort != 0) {
719     /* now we need to terminate the worker threads  */
720     /* the value of t_abort is the signal we caught */
721 
722     int gtid;
723 
724     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
725                   __kmp_global.g.g_abort));
726 
727     /* terminate the OpenMP worker threads */
728     /* TODO this is not valid for sibling threads!!
729      * the uber master might not be 0 anymore.. */
730     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
731       __kmp_terminate_thread(gtid);
732 
733     __kmp_cleanup();
734 
735     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
736                   __kmp_global.g.g_abort));
737 
738     if (__kmp_global.g.g_abort > 0)
739       raise(__kmp_global.g.g_abort);
740   }
741 
742   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
743 
744   return thr;
745 }
746 #endif // KMP_USE_MONITOR
747 
748 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
749   pthread_t handle;
750   pthread_attr_t thread_attr;
751   int status;
752 
753   th->th.th_info.ds.ds_gtid = gtid;
754 
755 #if KMP_STATS_ENABLED
756   // sets up worker thread stats
757   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
758 
759   // th->th.th_stats is used to transfer thread-specific stats-pointer to
760   // __kmp_launch_worker. So when thread is created (goes into
761   // __kmp_launch_worker) it will set its thread local pointer to
762   // th->th.th_stats
763   if (!KMP_UBER_GTID(gtid)) {
764     th->th.th_stats = __kmp_stats_list->push_back(gtid);
765   } else {
766     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
767     // so set the th->th.th_stats field to it.
768     th->th.th_stats = __kmp_stats_thread_ptr;
769   }
770   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
771 
772 #endif // KMP_STATS_ENABLED
773 
774   if (KMP_UBER_GTID(gtid)) {
775     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
776     th->th.th_info.ds.ds_thread = pthread_self();
777     __kmp_set_stack_info(gtid, th);
778     __kmp_check_stack_overlap(th);
779     return;
780   }
781 
782   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
783 
784   KMP_MB(); /* Flush all pending memory write invalidates.  */
785 
786 #ifdef KMP_THREAD_ATTR
787   status = pthread_attr_init(&thread_attr);
788   if (status != 0) {
789     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
790   }
791   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
792   if (status != 0) {
793     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
794   }
795 
796   /* Set stack size for this thread now.
797      The multiple of 2 is there because on some machines, requesting an unusual
798      stacksize causes the thread to have an offset before the dummy alloca()
799      takes place to create the offset.  Since we want the user to have a
800      sufficient stacksize AND support a stack offset, we alloca() twice the
801      offset so that the upcoming alloca() does not eliminate any premade offset,
802      and also gives the user the stack space they requested for all threads */
803   stack_size += gtid * __kmp_stkoffset * 2;
804 
805   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
806                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
807                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
808 
809 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
810   status = pthread_attr_setstacksize(&thread_attr, stack_size);
811 #ifdef KMP_BACKUP_STKSIZE
812   if (status != 0) {
813     if (!__kmp_env_stksize) {
814       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
815       __kmp_stksize = KMP_BACKUP_STKSIZE;
816       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
817                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
818                     "bytes\n",
819                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
820       status = pthread_attr_setstacksize(&thread_attr, stack_size);
821     }
822   }
823 #endif /* KMP_BACKUP_STKSIZE */
824   if (status != 0) {
825     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
826                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
827   }
828 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
829 
830 #endif /* KMP_THREAD_ATTR */
831 
832   status =
833       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
834   if (status != 0 || !handle) { // ??? Why do we check handle??
835 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
836     if (status == EINVAL) {
837       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
838                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
839     }
840     if (status == ENOMEM) {
841       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
842                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
843     }
844 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
845     if (status == EAGAIN) {
846       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
847                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
848     }
849     KMP_SYSFAIL("pthread_create", status);
850   }
851 
852   th->th.th_info.ds.ds_thread = handle;
853 
854 #ifdef KMP_THREAD_ATTR
855   status = pthread_attr_destroy(&thread_attr);
856   if (status) {
857     kmp_msg_t err_code = KMP_ERR(status);
858     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
859               __kmp_msg_null);
860     if (__kmp_generate_warnings == kmp_warnings_off) {
861       __kmp_str_free(&err_code.str);
862     }
863   }
864 #endif /* KMP_THREAD_ATTR */
865 
866   KMP_MB(); /* Flush all pending memory write invalidates.  */
867 
868   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
869 
870 } // __kmp_create_worker
871 
872 #if KMP_USE_MONITOR
873 void __kmp_create_monitor(kmp_info_t *th) {
874   pthread_t handle;
875   pthread_attr_t thread_attr;
876   size_t size;
877   int status;
878   int auto_adj_size = FALSE;
879 
880   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
881     // We don't need monitor thread in case of MAX_BLOCKTIME
882     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
883                   "MAX blocktime\n"));
884     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
885     th->th.th_info.ds.ds_gtid = 0;
886     return;
887   }
888   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
889 
890   KMP_MB(); /* Flush all pending memory write invalidates.  */
891 
892   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
893   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
894 #if KMP_REAL_TIME_FIX
895   TCW_4(__kmp_global.g.g_time.dt.t_value,
896         -1); // Will use it for synchronization a bit later.
897 #else
898   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
899 #endif // KMP_REAL_TIME_FIX
900 
901 #ifdef KMP_THREAD_ATTR
902   if (__kmp_monitor_stksize == 0) {
903     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
904     auto_adj_size = TRUE;
905   }
906   status = pthread_attr_init(&thread_attr);
907   if (status != 0) {
908     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
909   }
910   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
911   if (status != 0) {
912     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
913   }
914 
915 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
916   status = pthread_attr_getstacksize(&thread_attr, &size);
917   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
918 #else
919   size = __kmp_sys_min_stksize;
920 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
921 #endif /* KMP_THREAD_ATTR */
922 
923   if (__kmp_monitor_stksize == 0) {
924     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
925   }
926   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
927     __kmp_monitor_stksize = __kmp_sys_min_stksize;
928   }
929 
930   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
931                 "requested stacksize = %lu bytes\n",
932                 size, __kmp_monitor_stksize));
933 
934 retry:
935 
936 /* Set stack size for this thread now. */
937 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
938   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
939                 __kmp_monitor_stksize));
940   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
941   if (status != 0) {
942     if (auto_adj_size) {
943       __kmp_monitor_stksize *= 2;
944       goto retry;
945     }
946     kmp_msg_t err_code = KMP_ERR(status);
947     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
948               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
949               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
950     if (__kmp_generate_warnings == kmp_warnings_off) {
951       __kmp_str_free(&err_code.str);
952     }
953   }
954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
955 
956   status =
957       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
958 
959   if (status != 0) {
960 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
961     if (status == EINVAL) {
962       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
963         __kmp_monitor_stksize *= 2;
964         goto retry;
965       }
966       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
967                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
968                   __kmp_msg_null);
969     }
970     if (status == ENOMEM) {
971       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
972                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
973                   __kmp_msg_null);
974     }
975 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
976     if (status == EAGAIN) {
977       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
978                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
979     }
980     KMP_SYSFAIL("pthread_create", status);
981   }
982 
983   th->th.th_info.ds.ds_thread = handle;
984 
985 #if KMP_REAL_TIME_FIX
986   // Wait for the monitor thread is really started and set its *priority*.
987   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
988                    sizeof(__kmp_global.g.g_time.dt.t_value));
989   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
990                &__kmp_neq_4, NULL);
991 #endif // KMP_REAL_TIME_FIX
992 
993 #ifdef KMP_THREAD_ATTR
994   status = pthread_attr_destroy(&thread_attr);
995   if (status != 0) {
996     kmp_msg_t err_code = KMP_ERR(status);
997     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
998               __kmp_msg_null);
999     if (__kmp_generate_warnings == kmp_warnings_off) {
1000       __kmp_str_free(&err_code.str);
1001     }
1002   }
1003 #endif
1004 
1005   KMP_MB(); /* Flush all pending memory write invalidates.  */
1006 
1007   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1008                 th->th.th_info.ds.ds_thread));
1009 
1010 } // __kmp_create_monitor
1011 #endif // KMP_USE_MONITOR
1012 
1013 void __kmp_exit_thread(int exit_status) {
1014   pthread_exit((void *)(intptr_t)exit_status);
1015 } // __kmp_exit_thread
1016 
1017 #if KMP_USE_MONITOR
1018 void __kmp_resume_monitor();
1019 
1020 void __kmp_reap_monitor(kmp_info_t *th) {
1021   int status;
1022   void *exit_val;
1023 
1024   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1025                 " %#.8lx\n",
1026                 th->th.th_info.ds.ds_thread));
1027 
1028   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1029   // If both tid and gtid are 0, it means the monitor did not ever start.
1030   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1031   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1032   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1033     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1034     return;
1035   }
1036 
1037   KMP_MB(); /* Flush all pending memory write invalidates.  */
1038 
1039   /* First, check to see whether the monitor thread exists to wake it up. This
1040      is to avoid performance problem when the monitor sleeps during
1041      blocktime-size interval */
1042 
1043   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1044   if (status != ESRCH) {
1045     __kmp_resume_monitor(); // Wake up the monitor thread
1046   }
1047   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1048   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1049   if (exit_val != th) {
1050     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1051   }
1052 
1053   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1054   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1055 
1056   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1057                 " %#.8lx\n",
1058                 th->th.th_info.ds.ds_thread));
1059 
1060   KMP_MB(); /* Flush all pending memory write invalidates.  */
1061 }
1062 #endif // KMP_USE_MONITOR
1063 
1064 void __kmp_reap_worker(kmp_info_t *th) {
1065   int status;
1066   void *exit_val;
1067 
1068   KMP_MB(); /* Flush all pending memory write invalidates.  */
1069 
1070   KA_TRACE(
1071       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1072 
1073   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1074 #ifdef KMP_DEBUG
1075   /* Don't expose these to the user until we understand when they trigger */
1076   if (status != 0) {
1077     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1078   }
1079   if (exit_val != th) {
1080     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1081                   "exit_val = %p\n",
1082                   th->th.th_info.ds.ds_gtid, exit_val));
1083   }
1084 #endif /* KMP_DEBUG */
1085 
1086   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1087                 th->th.th_info.ds.ds_gtid));
1088 
1089   KMP_MB(); /* Flush all pending memory write invalidates.  */
1090 }
1091 
1092 #if KMP_HANDLE_SIGNALS
1093 
1094 static void __kmp_null_handler(int signo) {
1095   //  Do nothing, for doing SIG_IGN-type actions.
1096 } // __kmp_null_handler
1097 
1098 static void __kmp_team_handler(int signo) {
1099   if (__kmp_global.g.g_abort == 0) {
1100 /* Stage 1 signal handler, let's shut down all of the threads */
1101 #ifdef KMP_DEBUG
1102     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1103 #endif
1104     switch (signo) {
1105     case SIGHUP:
1106     case SIGINT:
1107     case SIGQUIT:
1108     case SIGILL:
1109     case SIGABRT:
1110     case SIGFPE:
1111     case SIGBUS:
1112     case SIGSEGV:
1113 #ifdef SIGSYS
1114     case SIGSYS:
1115 #endif
1116     case SIGTERM:
1117       if (__kmp_debug_buf) {
1118         __kmp_dump_debug_buffer();
1119       }
1120       KMP_MB(); // Flush all pending memory write invalidates.
1121       TCW_4(__kmp_global.g.g_abort, signo);
1122       KMP_MB(); // Flush all pending memory write invalidates.
1123       TCW_4(__kmp_global.g.g_done, TRUE);
1124       KMP_MB(); // Flush all pending memory write invalidates.
1125       break;
1126     default:
1127 #ifdef KMP_DEBUG
1128       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1129 #endif
1130       break;
1131     }
1132   }
1133 } // __kmp_team_handler
1134 
1135 static void __kmp_sigaction(int signum, const struct sigaction *act,
1136                             struct sigaction *oldact) {
1137   int rc = sigaction(signum, act, oldact);
1138   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1139 }
1140 
1141 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1142                                       int parallel_init) {
1143   KMP_MB(); // Flush all pending memory write invalidates.
1144   KB_TRACE(60,
1145            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1146   if (parallel_init) {
1147     struct sigaction new_action;
1148     struct sigaction old_action;
1149     new_action.sa_handler = handler_func;
1150     new_action.sa_flags = 0;
1151     sigfillset(&new_action.sa_mask);
1152     __kmp_sigaction(sig, &new_action, &old_action);
1153     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1154       sigaddset(&__kmp_sigset, sig);
1155     } else {
1156       // Restore/keep user's handler if one previously installed.
1157       __kmp_sigaction(sig, &old_action, NULL);
1158     }
1159   } else {
1160     // Save initial/system signal handlers to see if user handlers installed.
1161     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1162   }
1163   KMP_MB(); // Flush all pending memory write invalidates.
1164 } // __kmp_install_one_handler
1165 
1166 static void __kmp_remove_one_handler(int sig) {
1167   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1168   if (sigismember(&__kmp_sigset, sig)) {
1169     struct sigaction old;
1170     KMP_MB(); // Flush all pending memory write invalidates.
1171     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1172     if ((old.sa_handler != __kmp_team_handler) &&
1173         (old.sa_handler != __kmp_null_handler)) {
1174       // Restore the users signal handler.
1175       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1176                     "restoring: sig=%d\n",
1177                     sig));
1178       __kmp_sigaction(sig, &old, NULL);
1179     }
1180     sigdelset(&__kmp_sigset, sig);
1181     KMP_MB(); // Flush all pending memory write invalidates.
1182   }
1183 } // __kmp_remove_one_handler
1184 
1185 void __kmp_install_signals(int parallel_init) {
1186   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1187   if (__kmp_handle_signals || !parallel_init) {
1188     // If ! parallel_init, we do not install handlers, just save original
1189     // handlers. Let us do it even __handle_signals is 0.
1190     sigemptyset(&__kmp_sigset);
1191     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1192     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1193     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1194     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1195     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1196     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1197     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1198     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1199 #ifdef SIGSYS
1200     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1201 #endif // SIGSYS
1202     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1203 #ifdef SIGPIPE
1204     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1205 #endif // SIGPIPE
1206   }
1207 } // __kmp_install_signals
1208 
1209 void __kmp_remove_signals(void) {
1210   int sig;
1211   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1212   for (sig = 1; sig < NSIG; ++sig) {
1213     __kmp_remove_one_handler(sig);
1214   }
1215 } // __kmp_remove_signals
1216 
1217 #endif // KMP_HANDLE_SIGNALS
1218 
1219 void __kmp_enable(int new_state) {
1220 #ifdef KMP_CANCEL_THREADS
1221   int status, old_state;
1222   status = pthread_setcancelstate(new_state, &old_state);
1223   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1224   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1225 #endif
1226 }
1227 
1228 void __kmp_disable(int *old_state) {
1229 #ifdef KMP_CANCEL_THREADS
1230   int status;
1231   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1232   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1233 #endif
1234 }
1235 
1236 static void __kmp_atfork_prepare(void) {
1237   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1238   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1239 }
1240 
1241 static void __kmp_atfork_parent(void) {
1242   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1243   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1244 }
1245 
1246 /* Reset the library so execution in the child starts "all over again" with
1247    clean data structures in initial states.  Don't worry about freeing memory
1248    allocated by parent, just abandon it to be safe. */
1249 static void __kmp_atfork_child(void) {
1250   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1251   /* TODO make sure this is done right for nested/sibling */
1252   // ATT:  Memory leaks are here? TODO: Check it and fix.
1253   /* KMP_ASSERT( 0 ); */
1254 
1255   ++__kmp_fork_count;
1256 
1257 #if KMP_AFFINITY_SUPPORTED
1258 #if KMP_OS_LINUX
1259   // reset the affinity in the child to the initial thread
1260   // affinity in the parent
1261   kmp_set_thread_affinity_mask_initial();
1262 #endif
1263   // Set default not to bind threads tightly in the child (we’re expecting
1264   // over-subscription after the fork and this can improve things for
1265   // scripting languages that use OpenMP inside process-parallel code).
1266   __kmp_affinity_type = affinity_none;
1267 #if OMP_40_ENABLED
1268   if (__kmp_nested_proc_bind.bind_types != NULL) {
1269     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1270   }
1271 #endif // OMP_40_ENABLED
1272 #endif // KMP_AFFINITY_SUPPORTED
1273 
1274   __kmp_init_runtime = FALSE;
1275 #if KMP_USE_MONITOR
1276   __kmp_init_monitor = 0;
1277 #endif
1278   __kmp_init_parallel = FALSE;
1279   __kmp_init_middle = FALSE;
1280   __kmp_init_serial = FALSE;
1281   TCW_4(__kmp_init_gtid, FALSE);
1282   __kmp_init_common = FALSE;
1283 
1284   TCW_4(__kmp_init_user_locks, FALSE);
1285 #if !KMP_USE_DYNAMIC_LOCK
1286   __kmp_user_lock_table.used = 1;
1287   __kmp_user_lock_table.allocated = 0;
1288   __kmp_user_lock_table.table = NULL;
1289   __kmp_lock_blocks = NULL;
1290 #endif
1291 
1292   __kmp_all_nth = 0;
1293   TCW_4(__kmp_nth, 0);
1294 
1295   __kmp_thread_pool = NULL;
1296   __kmp_thread_pool_insert_pt = NULL;
1297   __kmp_team_pool = NULL;
1298 
1299   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1300      here so threadprivate doesn't use stale data */
1301   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1302                 __kmp_threadpriv_cache_list));
1303 
1304   while (__kmp_threadpriv_cache_list != NULL) {
1305 
1306     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1307       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1308                     &(*__kmp_threadpriv_cache_list->addr)));
1309 
1310       *__kmp_threadpriv_cache_list->addr = NULL;
1311     }
1312     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1313   }
1314 
1315   __kmp_init_runtime = FALSE;
1316 
1317   /* reset statically initialized locks */
1318   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1319   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1320   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1321   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1322 
1323 #if USE_ITT_BUILD
1324   __kmp_itt_reset(); // reset ITT's global state
1325 #endif /* USE_ITT_BUILD */
1326 
1327   /* This is necessary to make sure no stale data is left around */
1328   /* AC: customers complain that we use unsafe routines in the atfork
1329      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1330      in dynamic_link when check the presence of shared tbbmalloc library.
1331      Suggestion is to make the library initialization lazier, similar
1332      to what done for __kmpc_begin(). */
1333   // TODO: synchronize all static initializations with regular library
1334   //       startup; look at kmp_global.cpp and etc.
1335   //__kmp_internal_begin ();
1336 }
1337 
1338 void __kmp_register_atfork(void) {
1339   if (__kmp_need_register_atfork) {
1340     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1341                                 __kmp_atfork_child);
1342     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1343     __kmp_need_register_atfork = FALSE;
1344   }
1345 }
1346 
1347 void __kmp_suspend_initialize(void) {
1348   int status;
1349   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1350   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1351   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1352   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1353 }
1354 
1355 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1356   ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1357   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1358   int new_value = __kmp_fork_count + 1;
1359   // Return if already initialized
1360   if (old_value == new_value)
1361     return;
1362   // Wait, then return if being initialized
1363   if (old_value == -1 ||
1364       !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value,
1365                                   -1)) {
1366     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1367       KMP_CPU_PAUSE();
1368     }
1369   } else {
1370     // Claim to be the initializer and do initializations
1371     int status;
1372     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1373                                &__kmp_suspend_cond_attr);
1374     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1375     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1376                                 &__kmp_suspend_mutex_attr);
1377     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1378     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1379     ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1380   }
1381 }
1382 
1383 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1384   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1385     /* this means we have initialize the suspension pthread objects for this
1386        thread in this instance of the process */
1387     int status;
1388 
1389     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1390     if (status != 0 && status != EBUSY) {
1391       KMP_SYSFAIL("pthread_cond_destroy", status);
1392     }
1393     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1394     if (status != 0 && status != EBUSY) {
1395       KMP_SYSFAIL("pthread_mutex_destroy", status);
1396     }
1397     --th->th.th_suspend_init_count;
1398     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1399                      __kmp_fork_count);
1400   }
1401 }
1402 
1403 // return true if lock obtained, false otherwise
1404 int __kmp_try_suspend_mx(kmp_info_t *th) {
1405   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1406 }
1407 
1408 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1409   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1410   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1411 }
1412 
1413 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1414   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1415   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1416 }
1417 
1418 /* This routine puts the calling thread to sleep after setting the
1419    sleep bit for the indicated flag variable to true. */
1420 template <class C>
1421 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1422   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1423   kmp_info_t *th = __kmp_threads[th_gtid];
1424   int status;
1425   typename C::flag_t old_spin;
1426 
1427   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1428                 flag->get()));
1429 
1430   __kmp_suspend_initialize_thread(th);
1431 
1432   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1433   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1434 
1435   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1436                 th_gtid, flag->get()));
1437 
1438   /* TODO: shouldn't this use release semantics to ensure that
1439      __kmp_suspend_initialize_thread gets called first? */
1440   old_spin = flag->set_sleeping();
1441 #if OMP_50_ENABLED
1442   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1443       __kmp_pause_status != kmp_soft_paused) {
1444     flag->unset_sleeping();
1445     status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1446     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1447     return;
1448   }
1449 #endif
1450   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1451                " was %x\n",
1452                th_gtid, flag->get(), flag->load(), old_spin));
1453 
1454   if (flag->done_check_val(old_spin)) {
1455     old_spin = flag->unset_sleeping();
1456     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1457                  "for spin(%p)\n",
1458                  th_gtid, flag->get()));
1459   } else {
1460     /* Encapsulate in a loop as the documentation states that this may
1461        "with low probability" return when the condition variable has
1462        not been signaled or broadcast */
1463     int deactivated = FALSE;
1464     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1465 
1466     while (flag->is_sleeping()) {
1467 #ifdef DEBUG_SUSPEND
1468       char buffer[128];
1469       __kmp_suspend_count++;
1470       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1471       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1472                    buffer);
1473 #endif
1474       // Mark the thread as no longer active (only in the first iteration of the
1475       // loop).
1476       if (!deactivated) {
1477         th->th.th_active = FALSE;
1478         if (th->th.th_active_in_pool) {
1479           th->th.th_active_in_pool = FALSE;
1480           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1481           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1482         }
1483         deactivated = TRUE;
1484       }
1485 
1486 #if USE_SUSPEND_TIMEOUT
1487       struct timespec now;
1488       struct timeval tval;
1489       int msecs;
1490 
1491       status = gettimeofday(&tval, NULL);
1492       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1493       TIMEVAL_TO_TIMESPEC(&tval, &now);
1494 
1495       msecs = (4 * __kmp_dflt_blocktime) + 200;
1496       now.tv_sec += msecs / 1000;
1497       now.tv_nsec += (msecs % 1000) * 1000;
1498 
1499       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1500                     "pthread_cond_timedwait\n",
1501                     th_gtid));
1502       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1503                                       &th->th.th_suspend_mx.m_mutex, &now);
1504 #else
1505       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1506                     " pthread_cond_wait\n",
1507                     th_gtid));
1508       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1509                                  &th->th.th_suspend_mx.m_mutex);
1510 #endif
1511 
1512       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1513         KMP_SYSFAIL("pthread_cond_wait", status);
1514       }
1515 #ifdef KMP_DEBUG
1516       if (status == ETIMEDOUT) {
1517         if (flag->is_sleeping()) {
1518           KF_TRACE(100,
1519                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1520         } else {
1521           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1522                        "not set!\n",
1523                        th_gtid));
1524         }
1525       } else if (flag->is_sleeping()) {
1526         KF_TRACE(100,
1527                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1528       }
1529 #endif
1530     } // while
1531 
1532     // Mark the thread as active again (if it was previous marked as inactive)
1533     if (deactivated) {
1534       th->th.th_active = TRUE;
1535       if (TCR_4(th->th.th_in_pool)) {
1536         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1537         th->th.th_active_in_pool = TRUE;
1538       }
1539     }
1540   }
1541 #ifdef DEBUG_SUSPEND
1542   {
1543     char buffer[128];
1544     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1545     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1546                  buffer);
1547   }
1548 #endif
1549 
1550   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1551   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1552   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1553 }
1554 
1555 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1556   __kmp_suspend_template(th_gtid, flag);
1557 }
1558 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1559   __kmp_suspend_template(th_gtid, flag);
1560 }
1561 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1562   __kmp_suspend_template(th_gtid, flag);
1563 }
1564 
1565 /* This routine signals the thread specified by target_gtid to wake up
1566    after setting the sleep bit indicated by the flag argument to FALSE.
1567    The target thread must already have called __kmp_suspend_template() */
1568 template <class C>
1569 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1570   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1571   kmp_info_t *th = __kmp_threads[target_gtid];
1572   int status;
1573 
1574 #ifdef KMP_DEBUG
1575   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1576 #endif
1577 
1578   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1579                 gtid, target_gtid));
1580   KMP_DEBUG_ASSERT(gtid != target_gtid);
1581 
1582   __kmp_suspend_initialize_thread(th);
1583 
1584   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1585   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1586 
1587   if (!flag) { // coming from __kmp_null_resume_wrapper
1588     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1589   }
1590 
1591   // First, check if the flag is null or its type has changed. If so, someone
1592   // else woke it up.
1593   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1594     // simply shows what
1595     // flag was cast to
1596     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1597                  "awake: flag(%p)\n",
1598                  gtid, target_gtid, NULL));
1599     status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1600     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1601     return;
1602   } else { // if multiple threads are sleeping, flag should be internally
1603     // referring to a specific thread here
1604     typename C::flag_t old_spin = flag->unset_sleeping();
1605     if (!flag->is_sleeping_val(old_spin)) {
1606       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1607                    "awake: flag(%p): "
1608                    "%u => %u\n",
1609                    gtid, target_gtid, flag->get(), old_spin, flag->load()));
1610       status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1611       KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1612       return;
1613     }
1614     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1615                  "sleep bit for flag's loc(%p): "
1616                  "%u => %u\n",
1617                  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1618   }
1619   TCW_PTR(th->th.th_sleep_loc, NULL);
1620 
1621 #ifdef DEBUG_SUSPEND
1622   {
1623     char buffer[128];
1624     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1625     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1626                  target_gtid, buffer);
1627   }
1628 #endif
1629   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1630   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1631   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1632   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1633   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1634                 " for T#%d\n",
1635                 gtid, target_gtid));
1636 }
1637 
1638 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1639   __kmp_resume_template(target_gtid, flag);
1640 }
1641 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1642   __kmp_resume_template(target_gtid, flag);
1643 }
1644 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1645   __kmp_resume_template(target_gtid, flag);
1646 }
1647 
1648 #if KMP_USE_MONITOR
1649 void __kmp_resume_monitor() {
1650   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1651   int status;
1652 #ifdef KMP_DEBUG
1653   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1654   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1655                 KMP_GTID_MONITOR));
1656   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1657 #endif
1658   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1659   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1660 #ifdef DEBUG_SUSPEND
1661   {
1662     char buffer[128];
1663     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1664     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1665                  KMP_GTID_MONITOR, buffer);
1666   }
1667 #endif
1668   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1669   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1670   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1671   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1672   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1673                 " for T#%d\n",
1674                 gtid, KMP_GTID_MONITOR));
1675 }
1676 #endif // KMP_USE_MONITOR
1677 
1678 void __kmp_yield() { sched_yield(); }
1679 
1680 void __kmp_gtid_set_specific(int gtid) {
1681   if (__kmp_init_gtid) {
1682     int status;
1683     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1684                                  (void *)(intptr_t)(gtid + 1));
1685     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1686   } else {
1687     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1688   }
1689 }
1690 
1691 int __kmp_gtid_get_specific() {
1692   int gtid;
1693   if (!__kmp_init_gtid) {
1694     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1695                   "KMP_GTID_SHUTDOWN\n"));
1696     return KMP_GTID_SHUTDOWN;
1697   }
1698   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1699   if (gtid == 0) {
1700     gtid = KMP_GTID_DNE;
1701   } else {
1702     gtid--;
1703   }
1704   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1705                 __kmp_gtid_threadprivate_key, gtid));
1706   return gtid;
1707 }
1708 
1709 double __kmp_read_cpu_time(void) {
1710   /*clock_t   t;*/
1711   struct tms buffer;
1712 
1713   /*t =*/times(&buffer);
1714 
1715   return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1716 }
1717 
1718 int __kmp_read_system_info(struct kmp_sys_info *info) {
1719   int status;
1720   struct rusage r_usage;
1721 
1722   memset(info, 0, sizeof(*info));
1723 
1724   status = getrusage(RUSAGE_SELF, &r_usage);
1725   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1726 
1727   // The maximum resident set size utilized (in kilobytes)
1728   info->maxrss = r_usage.ru_maxrss;
1729   // The number of page faults serviced without any I/O
1730   info->minflt = r_usage.ru_minflt;
1731   // The number of page faults serviced that required I/O
1732   info->majflt = r_usage.ru_majflt;
1733   // The number of times a process was "swapped" out of memory
1734   info->nswap = r_usage.ru_nswap;
1735   // The number of times the file system had to perform input
1736   info->inblock = r_usage.ru_inblock;
1737   // The number of times the file system had to perform output
1738   info->oublock = r_usage.ru_oublock;
1739   // The number of times a context switch was voluntarily
1740   info->nvcsw = r_usage.ru_nvcsw;
1741   // The number of times a context switch was forced
1742   info->nivcsw = r_usage.ru_nivcsw;
1743 
1744   return (status != 0);
1745 }
1746 
1747 void __kmp_read_system_time(double *delta) {
1748   double t_ns;
1749   struct timeval tval;
1750   struct timespec stop;
1751   int status;
1752 
1753   status = gettimeofday(&tval, NULL);
1754   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1755   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1756   t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1757   *delta = (t_ns * 1e-9);
1758 }
1759 
1760 void __kmp_clear_system_time(void) {
1761   struct timeval tval;
1762   int status;
1763   status = gettimeofday(&tval, NULL);
1764   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1765   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1766 }
1767 
1768 static int __kmp_get_xproc(void) {
1769 
1770   int r = 0;
1771 
1772 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
1773         KMP_OS_OPENBSD || KMP_OS_HURD
1774 
1775   r = sysconf(_SC_NPROCESSORS_ONLN);
1776 
1777 #elif KMP_OS_DARWIN
1778 
1779   // Bug C77011 High "OpenMP Threads and number of active cores".
1780 
1781   // Find the number of available CPUs.
1782   kern_return_t rc;
1783   host_basic_info_data_t info;
1784   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1785   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1786   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1787     // Cannot use KA_TRACE() here because this code works before trace support
1788     // is initialized.
1789     r = info.avail_cpus;
1790   } else {
1791     KMP_WARNING(CantGetNumAvailCPU);
1792     KMP_INFORM(AssumedNumCPU);
1793   }
1794 
1795 #else
1796 
1797 #error "Unknown or unsupported OS."
1798 
1799 #endif
1800 
1801   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1802 
1803 } // __kmp_get_xproc
1804 
1805 int __kmp_read_from_file(char const *path, char const *format, ...) {
1806   int result;
1807   va_list args;
1808 
1809   va_start(args, format);
1810   FILE *f = fopen(path, "rb");
1811   if (f == NULL)
1812     return 0;
1813   result = vfscanf(f, format, args);
1814   fclose(f);
1815 
1816   return result;
1817 }
1818 
1819 void __kmp_runtime_initialize(void) {
1820   int status;
1821   pthread_mutexattr_t mutex_attr;
1822   pthread_condattr_t cond_attr;
1823 
1824   if (__kmp_init_runtime) {
1825     return;
1826   }
1827 
1828 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1829   if (!__kmp_cpuinfo.initialized) {
1830     __kmp_query_cpuid(&__kmp_cpuinfo);
1831   }
1832 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1833 
1834   __kmp_xproc = __kmp_get_xproc();
1835 
1836   if (sysconf(_SC_THREADS)) {
1837 
1838     /* Query the maximum number of threads */
1839     __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1840     if (__kmp_sys_max_nth == -1) {
1841       /* Unlimited threads for NPTL */
1842       __kmp_sys_max_nth = INT_MAX;
1843     } else if (__kmp_sys_max_nth <= 1) {
1844       /* Can't tell, just use PTHREAD_THREADS_MAX */
1845       __kmp_sys_max_nth = KMP_MAX_NTH;
1846     }
1847 
1848     /* Query the minimum stack size */
1849     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1850     if (__kmp_sys_min_stksize <= 1) {
1851       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1852     }
1853   }
1854 
1855   /* Set up minimum number of threads to switch to TLS gtid */
1856   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1857 
1858   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1859                               __kmp_internal_end_dest);
1860   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1861   status = pthread_mutexattr_init(&mutex_attr);
1862   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1863   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1864   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1865   status = pthread_condattr_init(&cond_attr);
1866   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1867   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1868   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1869 #if USE_ITT_BUILD
1870   __kmp_itt_initialize();
1871 #endif /* USE_ITT_BUILD */
1872 
1873   __kmp_init_runtime = TRUE;
1874 }
1875 
1876 void __kmp_runtime_destroy(void) {
1877   int status;
1878 
1879   if (!__kmp_init_runtime) {
1880     return; // Nothing to do.
1881   }
1882 
1883 #if USE_ITT_BUILD
1884   __kmp_itt_destroy();
1885 #endif /* USE_ITT_BUILD */
1886 
1887   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1888   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1889 
1890   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1891   if (status != 0 && status != EBUSY) {
1892     KMP_SYSFAIL("pthread_mutex_destroy", status);
1893   }
1894   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1895   if (status != 0 && status != EBUSY) {
1896     KMP_SYSFAIL("pthread_cond_destroy", status);
1897   }
1898 #if KMP_AFFINITY_SUPPORTED
1899   __kmp_affinity_uninitialize();
1900 #endif
1901 
1902   __kmp_init_runtime = FALSE;
1903 }
1904 
1905 /* Put the thread to sleep for a time period */
1906 /* NOTE: not currently used anywhere */
1907 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1908 
1909 /* Calculate the elapsed wall clock time for the user */
1910 void __kmp_elapsed(double *t) {
1911   int status;
1912 #ifdef FIX_SGI_CLOCK
1913   struct timespec ts;
1914 
1915   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1916   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1917   *t =
1918       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1919 #else
1920   struct timeval tv;
1921 
1922   status = gettimeofday(&tv, NULL);
1923   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1924   *t =
1925       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1926 #endif
1927 }
1928 
1929 /* Calculate the elapsed wall clock tick for the user */
1930 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1931 
1932 /* Return the current time stamp in nsec */
1933 kmp_uint64 __kmp_now_nsec() {
1934   struct timeval t;
1935   gettimeofday(&t, NULL);
1936   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1937                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1938   return nsec;
1939 }
1940 
1941 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1942 /* Measure clock ticks per millisecond */
1943 void __kmp_initialize_system_tick() {
1944   kmp_uint64 now, nsec2, diff;
1945   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1946   kmp_uint64 nsec = __kmp_now_nsec();
1947   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1948   while ((now = __kmp_hardware_timestamp()) < goal)
1949     ;
1950   nsec2 = __kmp_now_nsec();
1951   diff = nsec2 - nsec;
1952   if (diff > 0) {
1953     kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff);
1954     if (tpms > 0)
1955       __kmp_ticks_per_msec = tpms;
1956   }
1957 }
1958 #endif
1959 
1960 /* Determine whether the given address is mapped into the current address
1961    space. */
1962 
1963 int __kmp_is_address_mapped(void *addr) {
1964 
1965   int found = 0;
1966   int rc;
1967 
1968 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_HURD
1969 
1970   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
1971      ranges mapped into the address space. */
1972 
1973   char *name = __kmp_str_format("/proc/%d/maps", getpid());
1974   FILE *file = NULL;
1975 
1976   file = fopen(name, "r");
1977   KMP_ASSERT(file != NULL);
1978 
1979   for (;;) {
1980 
1981     void *beginning = NULL;
1982     void *ending = NULL;
1983     char perms[5];
1984 
1985     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1986     if (rc == EOF) {
1987       break;
1988     }
1989     KMP_ASSERT(rc == 3 &&
1990                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1991 
1992     // Ending address is not included in the region, but beginning is.
1993     if ((addr >= beginning) && (addr < ending)) {
1994       perms[2] = 0; // 3th and 4th character does not matter.
1995       if (strcmp(perms, "rw") == 0) {
1996         // Memory we are looking for should be readable and writable.
1997         found = 1;
1998       }
1999       break;
2000     }
2001   }
2002 
2003   // Free resources.
2004   fclose(file);
2005   KMP_INTERNAL_FREE(name);
2006 
2007 #elif KMP_OS_DARWIN
2008 
2009   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2010      using vm interface. */
2011 
2012   int buffer;
2013   vm_size_t count;
2014   rc = vm_read_overwrite(
2015       mach_task_self(), // Task to read memory of.
2016       (vm_address_t)(addr), // Address to read from.
2017       1, // Number of bytes to be read.
2018       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2019       &count // Address of var to save number of read bytes in.
2020       );
2021   if (rc == 0) {
2022     // Memory successfully read.
2023     found = 1;
2024   }
2025 
2026 #elif KMP_OS_NETBSD
2027 
2028   int mib[5];
2029   mib[0] = CTL_VM;
2030   mib[1] = VM_PROC;
2031   mib[2] = VM_PROC_MAP;
2032   mib[3] = getpid();
2033   mib[4] = sizeof(struct kinfo_vmentry);
2034 
2035   size_t size;
2036   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2037   KMP_ASSERT(!rc);
2038   KMP_ASSERT(size);
2039 
2040   size = size * 4 / 3;
2041   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2042   KMP_ASSERT(kiv);
2043 
2044   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2045   KMP_ASSERT(!rc);
2046   KMP_ASSERT(size);
2047 
2048   for (size_t i = 0; i < size; i++) {
2049     if (kiv[i].kve_start >= (uint64_t)addr &&
2050         kiv[i].kve_end <= (uint64_t)addr) {
2051       found = 1;
2052       break;
2053     }
2054   }
2055   KMP_INTERNAL_FREE(kiv);
2056 #elif KMP_OS_DRAGONFLY || KMP_OS_OPENBSD
2057 
2058   // FIXME(DragonFly, OpenBSD): Implement this
2059   found = 1;
2060 
2061 #else
2062 
2063 #error "Unknown or unsupported OS"
2064 
2065 #endif
2066 
2067   return found;
2068 
2069 } // __kmp_is_address_mapped
2070 
2071 #ifdef USE_LOAD_BALANCE
2072 
2073 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2074 
2075 // The function returns the rounded value of the system load average
2076 // during given time interval which depends on the value of
2077 // __kmp_load_balance_interval variable (default is 60 sec, other values
2078 // may be 300 sec or 900 sec).
2079 // It returns -1 in case of error.
2080 int __kmp_get_load_balance(int max) {
2081   double averages[3];
2082   int ret_avg = 0;
2083 
2084   int res = getloadavg(averages, 3);
2085 
2086   // Check __kmp_load_balance_interval to determine which of averages to use.
2087   // getloadavg() may return the number of samples less than requested that is
2088   // less than 3.
2089   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2090     ret_avg = averages[0]; // 1 min
2091   } else if ((__kmp_load_balance_interval >= 180 &&
2092               __kmp_load_balance_interval < 600) &&
2093              (res >= 2)) {
2094     ret_avg = averages[1]; // 5 min
2095   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2096     ret_avg = averages[2]; // 15 min
2097   } else { // Error occurred
2098     return -1;
2099   }
2100 
2101   return ret_avg;
2102 }
2103 
2104 #else // Linux* OS
2105 
2106 // The fuction returns number of running (not sleeping) threads, or -1 in case
2107 // of error. Error could be reported if Linux* OS kernel too old (without
2108 // "/proc" support). Counting running threads stops if max running threads
2109 // encountered.
2110 int __kmp_get_load_balance(int max) {
2111   static int permanent_error = 0;
2112   static int glb_running_threads = 0; // Saved count of the running threads for
2113   // the thread balance algortihm
2114   static double glb_call_time = 0; /* Thread balance algorithm call time */
2115 
2116   int running_threads = 0; // Number of running threads in the system.
2117 
2118   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2119   struct dirent *proc_entry = NULL;
2120 
2121   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2122   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2123   struct dirent *task_entry = NULL;
2124   int task_path_fixed_len;
2125 
2126   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2127   int stat_file = -1;
2128   int stat_path_fixed_len;
2129 
2130   int total_processes = 0; // Total number of processes in system.
2131   int total_threads = 0; // Total number of threads in system.
2132 
2133   double call_time = 0.0;
2134 
2135   __kmp_str_buf_init(&task_path);
2136   __kmp_str_buf_init(&stat_path);
2137 
2138   __kmp_elapsed(&call_time);
2139 
2140   if (glb_call_time &&
2141       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2142     running_threads = glb_running_threads;
2143     goto finish;
2144   }
2145 
2146   glb_call_time = call_time;
2147 
2148   // Do not spend time on scanning "/proc/" if we have a permanent error.
2149   if (permanent_error) {
2150     running_threads = -1;
2151     goto finish;
2152   }
2153 
2154   if (max <= 0) {
2155     max = INT_MAX;
2156   }
2157 
2158   // Open "/proc/" directory.
2159   proc_dir = opendir("/proc");
2160   if (proc_dir == NULL) {
2161     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2162     // error now and in subsequent calls.
2163     running_threads = -1;
2164     permanent_error = 1;
2165     goto finish;
2166   }
2167 
2168   // Initialize fixed part of task_path. This part will not change.
2169   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2170   task_path_fixed_len = task_path.used; // Remember number of used characters.
2171 
2172   proc_entry = readdir(proc_dir);
2173   while (proc_entry != NULL) {
2174     // Proc entry is a directory and name starts with a digit. Assume it is a
2175     // process' directory.
2176     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2177 
2178       ++total_processes;
2179       // Make sure init process is the very first in "/proc", so we can replace
2180       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2181       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2182       // true (where "=>" is implication). Since C++ does not have => operator,
2183       // let us replace it with its equivalent: a => b == ! a || b.
2184       KMP_DEBUG_ASSERT(total_processes != 1 ||
2185                        strcmp(proc_entry->d_name, "1") == 0);
2186 
2187       // Construct task_path.
2188       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2189       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2190                         KMP_STRLEN(proc_entry->d_name));
2191       __kmp_str_buf_cat(&task_path, "/task", 5);
2192 
2193       task_dir = opendir(task_path.str);
2194       if (task_dir == NULL) {
2195         // Process can finish between reading "/proc/" directory entry and
2196         // opening process' "task/" directory. So, in general case we should not
2197         // complain, but have to skip this process and read the next one. But on
2198         // systems with no "task/" support we will spend lot of time to scan
2199         // "/proc/" tree again and again without any benefit. "init" process
2200         // (its pid is 1) should exist always, so, if we cannot open
2201         // "/proc/1/task/" directory, it means "task/" is not supported by
2202         // kernel. Report an error now and in the future.
2203         if (strcmp(proc_entry->d_name, "1") == 0) {
2204           running_threads = -1;
2205           permanent_error = 1;
2206           goto finish;
2207         }
2208       } else {
2209         // Construct fixed part of stat file path.
2210         __kmp_str_buf_clear(&stat_path);
2211         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2212         __kmp_str_buf_cat(&stat_path, "/", 1);
2213         stat_path_fixed_len = stat_path.used;
2214 
2215         task_entry = readdir(task_dir);
2216         while (task_entry != NULL) {
2217           // It is a directory and name starts with a digit.
2218           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2219             ++total_threads;
2220 
2221             // Consruct complete stat file path. Easiest way would be:
2222             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2223             //  task_entry->d_name );
2224             // but seriae of __kmp_str_buf_cat works a bit faster.
2225             stat_path.used =
2226                 stat_path_fixed_len; // Reset stat path to its fixed part.
2227             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2228                               KMP_STRLEN(task_entry->d_name));
2229             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2230 
2231             // Note: Low-level API (open/read/close) is used. High-level API
2232             // (fopen/fclose)  works ~ 30 % slower.
2233             stat_file = open(stat_path.str, O_RDONLY);
2234             if (stat_file == -1) {
2235               // We cannot report an error because task (thread) can terminate
2236               // just before reading this file.
2237             } else {
2238               /* Content of "stat" file looks like:
2239                  24285 (program) S ...
2240 
2241                  It is a single line (if program name does not include funny
2242                  symbols). First number is a thread id, then name of executable
2243                  file name in paretheses, then state of the thread. We need just
2244                  thread state.
2245 
2246                  Good news: Length of program name is 15 characters max. Longer
2247                  names are truncated.
2248 
2249                  Thus, we need rather short buffer: 15 chars for program name +
2250                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2251 
2252                  Bad news: Program name may contain special symbols like space,
2253                  closing parenthesis, or even new line. This makes parsing
2254                  "stat" file not 100 % reliable. In case of fanny program names
2255                  parsing may fail (report incorrect thread state).
2256 
2257                  Parsing "status" file looks more promissing (due to different
2258                  file structure and escaping special symbols) but reading and
2259                  parsing of "status" file works slower.
2260                   -- ln
2261               */
2262               char buffer[65];
2263               int len;
2264               len = read(stat_file, buffer, sizeof(buffer) - 1);
2265               if (len >= 0) {
2266                 buffer[len] = 0;
2267                 // Using scanf:
2268                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2269                 // looks very nice, but searching for a closing parenthesis
2270                 // works a bit faster.
2271                 char *close_parent = strstr(buffer, ") ");
2272                 if (close_parent != NULL) {
2273                   char state = *(close_parent + 2);
2274                   if (state == 'R') {
2275                     ++running_threads;
2276                     if (running_threads >= max) {
2277                       goto finish;
2278                     }
2279                   }
2280                 }
2281               }
2282               close(stat_file);
2283               stat_file = -1;
2284             }
2285           }
2286           task_entry = readdir(task_dir);
2287         }
2288         closedir(task_dir);
2289         task_dir = NULL;
2290       }
2291     }
2292     proc_entry = readdir(proc_dir);
2293   }
2294 
2295   // There _might_ be a timing hole where the thread executing this
2296   // code get skipped in the load balance, and running_threads is 0.
2297   // Assert in the debug builds only!!!
2298   KMP_DEBUG_ASSERT(running_threads > 0);
2299   if (running_threads <= 0) {
2300     running_threads = 1;
2301   }
2302 
2303 finish: // Clean up and exit.
2304   if (proc_dir != NULL) {
2305     closedir(proc_dir);
2306   }
2307   __kmp_str_buf_free(&task_path);
2308   if (task_dir != NULL) {
2309     closedir(task_dir);
2310   }
2311   __kmp_str_buf_free(&stat_path);
2312   if (stat_file != -1) {
2313     close(stat_file);
2314   }
2315 
2316   glb_running_threads = running_threads;
2317 
2318   return running_threads;
2319 
2320 } // __kmp_get_load_balance
2321 
2322 #endif // KMP_OS_DARWIN
2323 
2324 #endif // USE_LOAD_BALANCE
2325 
2326 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2327       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2328 
2329 // we really only need the case with 1 argument, because CLANG always build
2330 // a struct of pointers to shared variables referenced in the outlined function
2331 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2332                            void *p_argv[]
2333 #if OMPT_SUPPORT
2334                            ,
2335                            void **exit_frame_ptr
2336 #endif
2337                            ) {
2338 #if OMPT_SUPPORT
2339   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2340 #endif
2341 
2342   switch (argc) {
2343   default:
2344     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2345     fflush(stderr);
2346     exit(-1);
2347   case 0:
2348     (*pkfn)(&gtid, &tid);
2349     break;
2350   case 1:
2351     (*pkfn)(&gtid, &tid, p_argv[0]);
2352     break;
2353   case 2:
2354     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2355     break;
2356   case 3:
2357     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2358     break;
2359   case 4:
2360     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2361     break;
2362   case 5:
2363     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2364     break;
2365   case 6:
2366     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2367             p_argv[5]);
2368     break;
2369   case 7:
2370     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2371             p_argv[5], p_argv[6]);
2372     break;
2373   case 8:
2374     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2375             p_argv[5], p_argv[6], p_argv[7]);
2376     break;
2377   case 9:
2378     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2379             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2380     break;
2381   case 10:
2382     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2383             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2384     break;
2385   case 11:
2386     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2387             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2388     break;
2389   case 12:
2390     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2391             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2392             p_argv[11]);
2393     break;
2394   case 13:
2395     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2396             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2397             p_argv[11], p_argv[12]);
2398     break;
2399   case 14:
2400     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2401             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2402             p_argv[11], p_argv[12], p_argv[13]);
2403     break;
2404   case 15:
2405     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2406             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2407             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2408     break;
2409   }
2410 
2411 #if OMPT_SUPPORT
2412   *exit_frame_ptr = 0;
2413 #endif
2414 
2415   return 1;
2416 }
2417 
2418 #endif
2419 
2420 // end of file //
2421