1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #include <sys/resource.h> 29 #include <sys/syscall.h> 30 #include <sys/time.h> 31 #include <sys/times.h> 32 #include <unistd.h> 33 34 #if KMP_OS_LINUX 35 #include <sys/sysinfo.h> 36 #if KMP_USE_FUTEX 37 // We should really include <futex.h>, but that causes compatibility problems on 38 // different Linux* OS distributions that either require that you include (or 39 // break when you try to include) <pci/types.h>. Since all we need is the two 40 // macros below (which are part of the kernel ABI, so can't change) we just 41 // define the constants here and don't include <futex.h> 42 #ifndef FUTEX_WAIT 43 #define FUTEX_WAIT 0 44 #endif 45 #ifndef FUTEX_WAKE 46 #define FUTEX_WAKE 1 47 #endif 48 #endif 49 #elif KMP_OS_DARWIN 50 #include <mach/mach.h> 51 #include <sys/sysctl.h> 52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 53 #include <sys/types.h> 54 #include <sys/sysctl.h> 55 #include <sys/user.h> 56 #include <pthread_np.h> 57 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 58 #include <sys/types.h> 59 #include <sys/sysctl.h> 60 #endif 61 62 #include <ctype.h> 63 #include <dirent.h> 64 #include <fcntl.h> 65 66 #include "tsan_annotations.h" 67 68 struct kmp_sys_timer { 69 struct timespec start; 70 }; 71 72 // Convert timespec to nanoseconds. 73 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec) 74 75 static struct kmp_sys_timer __kmp_sys_timer_data; 76 77 #if KMP_HANDLE_SIGNALS 78 typedef void (*sig_func_t)(int); 79 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 80 static sigset_t __kmp_sigset; 81 #endif 82 83 static int __kmp_init_runtime = FALSE; 84 85 static int __kmp_fork_count = 0; 86 87 static pthread_condattr_t __kmp_suspend_cond_attr; 88 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 89 90 static kmp_cond_align_t __kmp_wait_cv; 91 static kmp_mutex_align_t __kmp_wait_mx; 92 93 kmp_uint64 __kmp_ticks_per_msec = 1000000; 94 95 #ifdef DEBUG_SUSPEND 96 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 97 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 98 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 99 cond->c_cond.__c_waiting); 100 } 101 #endif 102 103 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 104 105 /* Affinity support */ 106 107 void __kmp_affinity_bind_thread(int which) { 108 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 109 "Illegal set affinity operation when not capable"); 110 111 kmp_affin_mask_t *mask; 112 KMP_CPU_ALLOC_ON_STACK(mask); 113 KMP_CPU_ZERO(mask); 114 KMP_CPU_SET(which, mask); 115 __kmp_set_system_affinity(mask, TRUE); 116 KMP_CPU_FREE_FROM_STACK(mask); 117 } 118 119 /* Determine if we can access affinity functionality on this version of 120 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 121 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 122 void __kmp_affinity_determine_capable(const char *env_var) { 123 // Check and see if the OS supports thread affinity. 124 125 #if KMP_OS_LINUX 126 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 127 #elif KMP_OS_FREEBSD 128 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 129 #endif 130 131 132 #if KMP_OS_LINUX 133 // If Linux* OS: 134 // If the syscall fails or returns a suggestion for the size, 135 // then we don't have to search for an appropriate size. 136 int gCode; 137 int sCode; 138 unsigned char *buf; 139 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 140 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 141 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 142 "initial getaffinity call returned %d errno = %d\n", 143 gCode, errno)); 144 145 // if ((gCode < 0) && (errno == ENOSYS)) 146 if (gCode < 0) { 147 // System call not supported 148 if (__kmp_affinity_verbose || 149 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 150 (__kmp_affinity_type != affinity_default) && 151 (__kmp_affinity_type != affinity_disabled))) { 152 int error = errno; 153 kmp_msg_t err_code = KMP_ERR(error); 154 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 155 err_code, __kmp_msg_null); 156 if (__kmp_generate_warnings == kmp_warnings_off) { 157 __kmp_str_free(&err_code.str); 158 } 159 } 160 KMP_AFFINITY_DISABLE(); 161 KMP_INTERNAL_FREE(buf); 162 return; 163 } 164 if (gCode > 0) { // Linux* OS only 165 // The optimal situation: the OS returns the size of the buffer it expects. 166 // 167 // A verification of correct behavior is that setaffinity on a NULL 168 // buffer with the same size fails with errno set to EFAULT. 169 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 170 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 171 "setaffinity for mask size %d returned %d errno = %d\n", 172 gCode, sCode, errno)); 173 if (sCode < 0) { 174 if (errno == ENOSYS) { 175 if (__kmp_affinity_verbose || 176 (__kmp_affinity_warnings && 177 (__kmp_affinity_type != affinity_none) && 178 (__kmp_affinity_type != affinity_default) && 179 (__kmp_affinity_type != affinity_disabled))) { 180 int error = errno; 181 kmp_msg_t err_code = KMP_ERR(error); 182 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 183 err_code, __kmp_msg_null); 184 if (__kmp_generate_warnings == kmp_warnings_off) { 185 __kmp_str_free(&err_code.str); 186 } 187 } 188 KMP_AFFINITY_DISABLE(); 189 KMP_INTERNAL_FREE(buf); 190 } 191 if (errno == EFAULT) { 192 KMP_AFFINITY_ENABLE(gCode); 193 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 194 "affinity supported (mask size %d)\n", 195 (int)__kmp_affin_mask_size)); 196 KMP_INTERNAL_FREE(buf); 197 return; 198 } 199 } 200 } 201 202 // Call the getaffinity system call repeatedly with increasing set sizes 203 // until we succeed, or reach an upper bound on the search. 204 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 205 "searching for proper set size\n")); 206 int size; 207 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 208 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 209 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 210 "getaffinity for mask size %d returned %d errno = %d\n", 211 size, gCode, errno)); 212 213 if (gCode < 0) { 214 if (errno == ENOSYS) { 215 // We shouldn't get here 216 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 217 "inconsistent OS call behavior: errno == ENOSYS for mask " 218 "size %d\n", 219 size)); 220 if (__kmp_affinity_verbose || 221 (__kmp_affinity_warnings && 222 (__kmp_affinity_type != affinity_none) && 223 (__kmp_affinity_type != affinity_default) && 224 (__kmp_affinity_type != affinity_disabled))) { 225 int error = errno; 226 kmp_msg_t err_code = KMP_ERR(error); 227 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 228 err_code, __kmp_msg_null); 229 if (__kmp_generate_warnings == kmp_warnings_off) { 230 __kmp_str_free(&err_code.str); 231 } 232 } 233 KMP_AFFINITY_DISABLE(); 234 KMP_INTERNAL_FREE(buf); 235 return; 236 } 237 continue; 238 } 239 240 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 241 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 242 "setaffinity for mask size %d returned %d errno = %d\n", 243 gCode, sCode, errno)); 244 if (sCode < 0) { 245 if (errno == ENOSYS) { // Linux* OS only 246 // We shouldn't get here 247 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 248 "inconsistent OS call behavior: errno == ENOSYS for mask " 249 "size %d\n", 250 size)); 251 if (__kmp_affinity_verbose || 252 (__kmp_affinity_warnings && 253 (__kmp_affinity_type != affinity_none) && 254 (__kmp_affinity_type != affinity_default) && 255 (__kmp_affinity_type != affinity_disabled))) { 256 int error = errno; 257 kmp_msg_t err_code = KMP_ERR(error); 258 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 259 err_code, __kmp_msg_null); 260 if (__kmp_generate_warnings == kmp_warnings_off) { 261 __kmp_str_free(&err_code.str); 262 } 263 } 264 KMP_AFFINITY_DISABLE(); 265 KMP_INTERNAL_FREE(buf); 266 return; 267 } 268 if (errno == EFAULT) { 269 KMP_AFFINITY_ENABLE(gCode); 270 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 271 "affinity supported (mask size %d)\n", 272 (int)__kmp_affin_mask_size)); 273 KMP_INTERNAL_FREE(buf); 274 return; 275 } 276 } 277 } 278 #elif KMP_OS_FREEBSD 279 int gCode; 280 unsigned char *buf; 281 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 282 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, reinterpret_cast<cpuset_t *>(buf)); 283 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 284 "initial getaffinity call returned %d errno = %d\n", 285 gCode, errno)); 286 if (gCode == 0) { 287 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 288 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 289 "affinity supported (mask size %d)\n", 290 (int)__kmp_affin_mask_size)); 291 KMP_INTERNAL_FREE(buf); 292 return; 293 } 294 #endif 295 // save uncaught error code 296 // int error = errno; 297 KMP_INTERNAL_FREE(buf); 298 // restore uncaught error code, will be printed at the next KMP_WARNING below 299 // errno = error; 300 301 // Affinity is not supported 302 KMP_AFFINITY_DISABLE(); 303 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 304 "cannot determine mask size - affinity not supported\n")); 305 if (__kmp_affinity_verbose || 306 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 307 (__kmp_affinity_type != affinity_default) && 308 (__kmp_affinity_type != affinity_disabled))) { 309 KMP_WARNING(AffCantGetMaskSize, env_var); 310 } 311 } 312 313 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 314 315 #if KMP_USE_FUTEX 316 317 int __kmp_futex_determine_capable() { 318 int loc = 0; 319 int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 320 int retval = (rc == 0) || (errno != ENOSYS); 321 322 KA_TRACE(10, 323 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 324 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 325 retval ? "" : " not")); 326 327 return retval; 328 } 329 330 #endif // KMP_USE_FUTEX 331 332 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 333 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 334 use compare_and_store for these routines */ 335 336 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 337 kmp_int8 old_value, new_value; 338 339 old_value = TCR_1(*p); 340 new_value = old_value | d; 341 342 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 343 KMP_CPU_PAUSE(); 344 old_value = TCR_1(*p); 345 new_value = old_value | d; 346 } 347 return old_value; 348 } 349 350 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 351 kmp_int8 old_value, new_value; 352 353 old_value = TCR_1(*p); 354 new_value = old_value & d; 355 356 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 357 KMP_CPU_PAUSE(); 358 old_value = TCR_1(*p); 359 new_value = old_value & d; 360 } 361 return old_value; 362 } 363 364 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 365 kmp_uint32 old_value, new_value; 366 367 old_value = TCR_4(*p); 368 new_value = old_value | d; 369 370 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 371 KMP_CPU_PAUSE(); 372 old_value = TCR_4(*p); 373 new_value = old_value | d; 374 } 375 return old_value; 376 } 377 378 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 379 kmp_uint32 old_value, new_value; 380 381 old_value = TCR_4(*p); 382 new_value = old_value & d; 383 384 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 385 KMP_CPU_PAUSE(); 386 old_value = TCR_4(*p); 387 new_value = old_value & d; 388 } 389 return old_value; 390 } 391 392 #if KMP_ARCH_X86 393 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 394 kmp_int8 old_value, new_value; 395 396 old_value = TCR_1(*p); 397 new_value = old_value + d; 398 399 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 400 KMP_CPU_PAUSE(); 401 old_value = TCR_1(*p); 402 new_value = old_value + d; 403 } 404 return old_value; 405 } 406 407 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 408 kmp_int64 old_value, new_value; 409 410 old_value = TCR_8(*p); 411 new_value = old_value + d; 412 413 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 414 KMP_CPU_PAUSE(); 415 old_value = TCR_8(*p); 416 new_value = old_value + d; 417 } 418 return old_value; 419 } 420 #endif /* KMP_ARCH_X86 */ 421 422 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 423 kmp_uint64 old_value, new_value; 424 425 old_value = TCR_8(*p); 426 new_value = old_value | d; 427 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 428 KMP_CPU_PAUSE(); 429 old_value = TCR_8(*p); 430 new_value = old_value | d; 431 } 432 return old_value; 433 } 434 435 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 436 kmp_uint64 old_value, new_value; 437 438 old_value = TCR_8(*p); 439 new_value = old_value & d; 440 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 441 KMP_CPU_PAUSE(); 442 old_value = TCR_8(*p); 443 new_value = old_value & d; 444 } 445 return old_value; 446 } 447 448 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 449 450 void __kmp_terminate_thread(int gtid) { 451 int status; 452 kmp_info_t *th = __kmp_threads[gtid]; 453 454 if (!th) 455 return; 456 457 #ifdef KMP_CANCEL_THREADS 458 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 459 status = pthread_cancel(th->th.th_info.ds.ds_thread); 460 if (status != 0 && status != ESRCH) { 461 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 462 __kmp_msg_null); 463 } 464 #endif 465 KMP_YIELD(TRUE); 466 } // 467 468 /* Set thread stack info according to values returned by pthread_getattr_np(). 469 If values are unreasonable, assume call failed and use incremental stack 470 refinement method instead. Returns TRUE if the stack parameters could be 471 determined exactly, FALSE if incremental refinement is necessary. */ 472 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 473 int stack_data; 474 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 475 KMP_OS_HURD 476 pthread_attr_t attr; 477 int status; 478 size_t size = 0; 479 void *addr = 0; 480 481 /* Always do incremental stack refinement for ubermaster threads since the 482 initial thread stack range can be reduced by sibling thread creation so 483 pthread_attr_getstack may cause thread gtid aliasing */ 484 if (!KMP_UBER_GTID(gtid)) { 485 486 /* Fetch the real thread attributes */ 487 status = pthread_attr_init(&attr); 488 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 489 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 490 status = pthread_attr_get_np(pthread_self(), &attr); 491 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 492 #else 493 status = pthread_getattr_np(pthread_self(), &attr); 494 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 495 #endif 496 status = pthread_attr_getstack(&attr, &addr, &size); 497 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 498 KA_TRACE(60, 499 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 500 " %lu, low addr: %p\n", 501 gtid, size, addr)); 502 status = pthread_attr_destroy(&attr); 503 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 504 } 505 506 if (size != 0 && addr != 0) { // was stack parameter determination successful? 507 /* Store the correct base and size */ 508 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 509 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 510 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 511 return TRUE; 512 } 513 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 514 KMP_OS_HURD */ 515 /* Use incremental refinement starting from initial conservative estimate */ 516 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 517 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 518 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 519 return FALSE; 520 } 521 522 static void *__kmp_launch_worker(void *thr) { 523 int status, old_type, old_state; 524 #ifdef KMP_BLOCK_SIGNALS 525 sigset_t new_set, old_set; 526 #endif /* KMP_BLOCK_SIGNALS */ 527 void *exit_val; 528 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 529 KMP_OS_OPENBSD || KMP_OS_HURD 530 void *volatile padding = 0; 531 #endif 532 int gtid; 533 534 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 535 __kmp_gtid_set_specific(gtid); 536 #ifdef KMP_TDATA_GTID 537 __kmp_gtid = gtid; 538 #endif 539 #if KMP_STATS_ENABLED 540 // set thread local index to point to thread-specific stats 541 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 542 __kmp_stats_thread_ptr->startLife(); 543 KMP_SET_THREAD_STATE(IDLE); 544 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 545 #endif 546 547 #if USE_ITT_BUILD 548 __kmp_itt_thread_name(gtid); 549 #endif /* USE_ITT_BUILD */ 550 551 #if KMP_AFFINITY_SUPPORTED 552 __kmp_affinity_set_init_mask(gtid, FALSE); 553 #endif 554 555 #ifdef KMP_CANCEL_THREADS 556 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 557 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 558 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 559 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 560 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 561 #endif 562 563 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 564 // Set FP control regs to be a copy of the parallel initialization thread's. 565 __kmp_clear_x87_fpu_status_word(); 566 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 567 __kmp_load_mxcsr(&__kmp_init_mxcsr); 568 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 569 570 #ifdef KMP_BLOCK_SIGNALS 571 status = sigfillset(&new_set); 572 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 573 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 574 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 575 #endif /* KMP_BLOCK_SIGNALS */ 576 577 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 578 KMP_OS_OPENBSD 579 if (__kmp_stkoffset > 0 && gtid > 0) { 580 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 581 } 582 #endif 583 584 KMP_MB(); 585 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 586 587 __kmp_check_stack_overlap((kmp_info_t *)thr); 588 589 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 590 591 #ifdef KMP_BLOCK_SIGNALS 592 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 593 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 594 #endif /* KMP_BLOCK_SIGNALS */ 595 596 return exit_val; 597 } 598 599 #if KMP_USE_MONITOR 600 /* The monitor thread controls all of the threads in the complex */ 601 602 static void *__kmp_launch_monitor(void *thr) { 603 int status, old_type, old_state; 604 #ifdef KMP_BLOCK_SIGNALS 605 sigset_t new_set; 606 #endif /* KMP_BLOCK_SIGNALS */ 607 struct timespec interval; 608 609 KMP_MB(); /* Flush all pending memory write invalidates. */ 610 611 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 612 613 /* register us as the monitor thread */ 614 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 615 #ifdef KMP_TDATA_GTID 616 __kmp_gtid = KMP_GTID_MONITOR; 617 #endif 618 619 KMP_MB(); 620 621 #if USE_ITT_BUILD 622 // Instruct Intel(R) Threading Tools to ignore monitor thread. 623 __kmp_itt_thread_ignore(); 624 #endif /* USE_ITT_BUILD */ 625 626 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 627 (kmp_info_t *)thr); 628 629 __kmp_check_stack_overlap((kmp_info_t *)thr); 630 631 #ifdef KMP_CANCEL_THREADS 632 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 633 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 634 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 635 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 636 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 637 #endif 638 639 #if KMP_REAL_TIME_FIX 640 // This is a potential fix which allows application with real-time scheduling 641 // policy work. However, decision about the fix is not made yet, so it is 642 // disabled by default. 643 { // Are program started with real-time scheduling policy? 644 int sched = sched_getscheduler(0); 645 if (sched == SCHED_FIFO || sched == SCHED_RR) { 646 // Yes, we are a part of real-time application. Try to increase the 647 // priority of the monitor. 648 struct sched_param param; 649 int max_priority = sched_get_priority_max(sched); 650 int rc; 651 KMP_WARNING(RealTimeSchedNotSupported); 652 sched_getparam(0, ¶m); 653 if (param.sched_priority < max_priority) { 654 param.sched_priority += 1; 655 rc = sched_setscheduler(0, sched, ¶m); 656 if (rc != 0) { 657 int error = errno; 658 kmp_msg_t err_code = KMP_ERR(error); 659 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 660 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 661 if (__kmp_generate_warnings == kmp_warnings_off) { 662 __kmp_str_free(&err_code.str); 663 } 664 } 665 } else { 666 // We cannot abort here, because number of CPUs may be enough for all 667 // the threads, including the monitor thread, so application could 668 // potentially work... 669 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 670 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 671 __kmp_msg_null); 672 } 673 } 674 // AC: free thread that waits for monitor started 675 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 676 } 677 #endif // KMP_REAL_TIME_FIX 678 679 KMP_MB(); /* Flush all pending memory write invalidates. */ 680 681 if (__kmp_monitor_wakeups == 1) { 682 interval.tv_sec = 1; 683 interval.tv_nsec = 0; 684 } else { 685 interval.tv_sec = 0; 686 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 687 } 688 689 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 690 691 while (!TCR_4(__kmp_global.g.g_done)) { 692 struct timespec now; 693 struct timeval tval; 694 695 /* This thread monitors the state of the system */ 696 697 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 698 699 status = gettimeofday(&tval, NULL); 700 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 701 TIMEVAL_TO_TIMESPEC(&tval, &now); 702 703 now.tv_sec += interval.tv_sec; 704 now.tv_nsec += interval.tv_nsec; 705 706 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 707 now.tv_sec += 1; 708 now.tv_nsec -= KMP_NSEC_PER_SEC; 709 } 710 711 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 712 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 713 // AC: the monitor should not fall asleep if g_done has been set 714 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 715 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 716 &__kmp_wait_mx.m_mutex, &now); 717 if (status != 0) { 718 if (status != ETIMEDOUT && status != EINTR) { 719 KMP_SYSFAIL("pthread_cond_timedwait", status); 720 } 721 } 722 } 723 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 724 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 725 726 TCW_4(__kmp_global.g.g_time.dt.t_value, 727 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 728 729 KMP_MB(); /* Flush all pending memory write invalidates. */ 730 } 731 732 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 733 734 #ifdef KMP_BLOCK_SIGNALS 735 status = sigfillset(&new_set); 736 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 737 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 738 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 739 #endif /* KMP_BLOCK_SIGNALS */ 740 741 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 742 743 if (__kmp_global.g.g_abort != 0) { 744 /* now we need to terminate the worker threads */ 745 /* the value of t_abort is the signal we caught */ 746 747 int gtid; 748 749 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 750 __kmp_global.g.g_abort)); 751 752 /* terminate the OpenMP worker threads */ 753 /* TODO this is not valid for sibling threads!! 754 * the uber master might not be 0 anymore.. */ 755 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 756 __kmp_terminate_thread(gtid); 757 758 __kmp_cleanup(); 759 760 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 761 __kmp_global.g.g_abort)); 762 763 if (__kmp_global.g.g_abort > 0) 764 raise(__kmp_global.g.g_abort); 765 } 766 767 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 768 769 return thr; 770 } 771 #endif // KMP_USE_MONITOR 772 773 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 774 pthread_t handle; 775 pthread_attr_t thread_attr; 776 int status; 777 778 th->th.th_info.ds.ds_gtid = gtid; 779 780 #if KMP_STATS_ENABLED 781 // sets up worker thread stats 782 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 783 784 // th->th.th_stats is used to transfer thread-specific stats-pointer to 785 // __kmp_launch_worker. So when thread is created (goes into 786 // __kmp_launch_worker) it will set its thread local pointer to 787 // th->th.th_stats 788 if (!KMP_UBER_GTID(gtid)) { 789 th->th.th_stats = __kmp_stats_list->push_back(gtid); 790 } else { 791 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 792 // so set the th->th.th_stats field to it. 793 th->th.th_stats = __kmp_stats_thread_ptr; 794 } 795 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 796 797 #endif // KMP_STATS_ENABLED 798 799 if (KMP_UBER_GTID(gtid)) { 800 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 801 th->th.th_info.ds.ds_thread = pthread_self(); 802 __kmp_set_stack_info(gtid, th); 803 __kmp_check_stack_overlap(th); 804 return; 805 } 806 807 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 808 809 KMP_MB(); /* Flush all pending memory write invalidates. */ 810 811 #ifdef KMP_THREAD_ATTR 812 status = pthread_attr_init(&thread_attr); 813 if (status != 0) { 814 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 815 } 816 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 817 if (status != 0) { 818 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 819 } 820 821 /* Set stack size for this thread now. 822 The multiple of 2 is there because on some machines, requesting an unusual 823 stacksize causes the thread to have an offset before the dummy alloca() 824 takes place to create the offset. Since we want the user to have a 825 sufficient stacksize AND support a stack offset, we alloca() twice the 826 offset so that the upcoming alloca() does not eliminate any premade offset, 827 and also gives the user the stack space they requested for all threads */ 828 stack_size += gtid * __kmp_stkoffset * 2; 829 830 #if defined(__ANDROID__) && __ANDROID_API__ < 19 831 // Round the stack size to a multiple of the page size. Older versions of 832 // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL 833 // if the stack size was not a multiple of the page size. 834 stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 835 #endif 836 837 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 838 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 839 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 840 841 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 842 status = pthread_attr_setstacksize(&thread_attr, stack_size); 843 #ifdef KMP_BACKUP_STKSIZE 844 if (status != 0) { 845 if (!__kmp_env_stksize) { 846 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 847 __kmp_stksize = KMP_BACKUP_STKSIZE; 848 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 849 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 850 "bytes\n", 851 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 852 status = pthread_attr_setstacksize(&thread_attr, stack_size); 853 } 854 } 855 #endif /* KMP_BACKUP_STKSIZE */ 856 if (status != 0) { 857 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 858 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 859 } 860 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 861 862 #endif /* KMP_THREAD_ATTR */ 863 864 status = 865 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 866 if (status != 0 || !handle) { // ??? Why do we check handle?? 867 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 868 if (status == EINVAL) { 869 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 870 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 871 } 872 if (status == ENOMEM) { 873 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 874 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 875 } 876 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 877 if (status == EAGAIN) { 878 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 879 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 880 } 881 KMP_SYSFAIL("pthread_create", status); 882 } 883 884 th->th.th_info.ds.ds_thread = handle; 885 886 #ifdef KMP_THREAD_ATTR 887 status = pthread_attr_destroy(&thread_attr); 888 if (status) { 889 kmp_msg_t err_code = KMP_ERR(status); 890 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 891 __kmp_msg_null); 892 if (__kmp_generate_warnings == kmp_warnings_off) { 893 __kmp_str_free(&err_code.str); 894 } 895 } 896 #endif /* KMP_THREAD_ATTR */ 897 898 KMP_MB(); /* Flush all pending memory write invalidates. */ 899 900 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 901 902 } // __kmp_create_worker 903 904 #if KMP_USE_MONITOR 905 void __kmp_create_monitor(kmp_info_t *th) { 906 pthread_t handle; 907 pthread_attr_t thread_attr; 908 size_t size; 909 int status; 910 int auto_adj_size = FALSE; 911 912 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 913 // We don't need monitor thread in case of MAX_BLOCKTIME 914 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 915 "MAX blocktime\n")); 916 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 917 th->th.th_info.ds.ds_gtid = 0; 918 return; 919 } 920 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 921 922 KMP_MB(); /* Flush all pending memory write invalidates. */ 923 924 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 925 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 926 #if KMP_REAL_TIME_FIX 927 TCW_4(__kmp_global.g.g_time.dt.t_value, 928 -1); // Will use it for synchronization a bit later. 929 #else 930 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 931 #endif // KMP_REAL_TIME_FIX 932 933 #ifdef KMP_THREAD_ATTR 934 if (__kmp_monitor_stksize == 0) { 935 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 936 auto_adj_size = TRUE; 937 } 938 status = pthread_attr_init(&thread_attr); 939 if (status != 0) { 940 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 941 } 942 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 943 if (status != 0) { 944 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 945 } 946 947 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 948 status = pthread_attr_getstacksize(&thread_attr, &size); 949 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 950 #else 951 size = __kmp_sys_min_stksize; 952 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 953 #endif /* KMP_THREAD_ATTR */ 954 955 if (__kmp_monitor_stksize == 0) { 956 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 957 } 958 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 959 __kmp_monitor_stksize = __kmp_sys_min_stksize; 960 } 961 962 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 963 "requested stacksize = %lu bytes\n", 964 size, __kmp_monitor_stksize)); 965 966 retry: 967 968 /* Set stack size for this thread now. */ 969 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 970 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 971 __kmp_monitor_stksize)); 972 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 973 if (status != 0) { 974 if (auto_adj_size) { 975 __kmp_monitor_stksize *= 2; 976 goto retry; 977 } 978 kmp_msg_t err_code = KMP_ERR(status); 979 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 980 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 981 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 982 if (__kmp_generate_warnings == kmp_warnings_off) { 983 __kmp_str_free(&err_code.str); 984 } 985 } 986 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 987 988 status = 989 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 990 991 if (status != 0) { 992 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 993 if (status == EINVAL) { 994 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 995 __kmp_monitor_stksize *= 2; 996 goto retry; 997 } 998 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 999 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 1000 __kmp_msg_null); 1001 } 1002 if (status == ENOMEM) { 1003 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1004 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 1005 __kmp_msg_null); 1006 } 1007 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1008 if (status == EAGAIN) { 1009 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 1010 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 1011 } 1012 KMP_SYSFAIL("pthread_create", status); 1013 } 1014 1015 th->th.th_info.ds.ds_thread = handle; 1016 1017 #if KMP_REAL_TIME_FIX 1018 // Wait for the monitor thread is really started and set its *priority*. 1019 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 1020 sizeof(__kmp_global.g.g_time.dt.t_value)); 1021 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 1022 &__kmp_neq_4, NULL); 1023 #endif // KMP_REAL_TIME_FIX 1024 1025 #ifdef KMP_THREAD_ATTR 1026 status = pthread_attr_destroy(&thread_attr); 1027 if (status != 0) { 1028 kmp_msg_t err_code = KMP_ERR(status); 1029 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 1030 __kmp_msg_null); 1031 if (__kmp_generate_warnings == kmp_warnings_off) { 1032 __kmp_str_free(&err_code.str); 1033 } 1034 } 1035 #endif 1036 1037 KMP_MB(); /* Flush all pending memory write invalidates. */ 1038 1039 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1040 th->th.th_info.ds.ds_thread)); 1041 1042 } // __kmp_create_monitor 1043 #endif // KMP_USE_MONITOR 1044 1045 void __kmp_exit_thread(int exit_status) { 1046 pthread_exit((void *)(intptr_t)exit_status); 1047 } // __kmp_exit_thread 1048 1049 #if KMP_USE_MONITOR 1050 void __kmp_resume_monitor(); 1051 1052 void __kmp_reap_monitor(kmp_info_t *th) { 1053 int status; 1054 void *exit_val; 1055 1056 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1057 " %#.8lx\n", 1058 th->th.th_info.ds.ds_thread)); 1059 1060 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1061 // If both tid and gtid are 0, it means the monitor did not ever start. 1062 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1063 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1064 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1065 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1066 return; 1067 } 1068 1069 KMP_MB(); /* Flush all pending memory write invalidates. */ 1070 1071 /* First, check to see whether the monitor thread exists to wake it up. This 1072 is to avoid performance problem when the monitor sleeps during 1073 blocktime-size interval */ 1074 1075 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1076 if (status != ESRCH) { 1077 __kmp_resume_monitor(); // Wake up the monitor thread 1078 } 1079 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1080 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1081 if (exit_val != th) { 1082 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1083 } 1084 1085 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1086 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1087 1088 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1089 " %#.8lx\n", 1090 th->th.th_info.ds.ds_thread)); 1091 1092 KMP_MB(); /* Flush all pending memory write invalidates. */ 1093 } 1094 #endif // KMP_USE_MONITOR 1095 1096 void __kmp_reap_worker(kmp_info_t *th) { 1097 int status; 1098 void *exit_val; 1099 1100 KMP_MB(); /* Flush all pending memory write invalidates. */ 1101 1102 KA_TRACE( 1103 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1104 1105 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1106 #ifdef KMP_DEBUG 1107 /* Don't expose these to the user until we understand when they trigger */ 1108 if (status != 0) { 1109 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1110 } 1111 if (exit_val != th) { 1112 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1113 "exit_val = %p\n", 1114 th->th.th_info.ds.ds_gtid, exit_val)); 1115 } 1116 #endif /* KMP_DEBUG */ 1117 1118 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1119 th->th.th_info.ds.ds_gtid)); 1120 1121 KMP_MB(); /* Flush all pending memory write invalidates. */ 1122 } 1123 1124 #if KMP_HANDLE_SIGNALS 1125 1126 static void __kmp_null_handler(int signo) { 1127 // Do nothing, for doing SIG_IGN-type actions. 1128 } // __kmp_null_handler 1129 1130 static void __kmp_team_handler(int signo) { 1131 if (__kmp_global.g.g_abort == 0) { 1132 /* Stage 1 signal handler, let's shut down all of the threads */ 1133 #ifdef KMP_DEBUG 1134 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1135 #endif 1136 switch (signo) { 1137 case SIGHUP: 1138 case SIGINT: 1139 case SIGQUIT: 1140 case SIGILL: 1141 case SIGABRT: 1142 case SIGFPE: 1143 case SIGBUS: 1144 case SIGSEGV: 1145 #ifdef SIGSYS 1146 case SIGSYS: 1147 #endif 1148 case SIGTERM: 1149 if (__kmp_debug_buf) { 1150 __kmp_dump_debug_buffer(); 1151 } 1152 __kmp_unregister_library(); // cleanup shared memory 1153 KMP_MB(); // Flush all pending memory write invalidates. 1154 TCW_4(__kmp_global.g.g_abort, signo); 1155 KMP_MB(); // Flush all pending memory write invalidates. 1156 TCW_4(__kmp_global.g.g_done, TRUE); 1157 KMP_MB(); // Flush all pending memory write invalidates. 1158 break; 1159 default: 1160 #ifdef KMP_DEBUG 1161 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1162 #endif 1163 break; 1164 } 1165 } 1166 } // __kmp_team_handler 1167 1168 static void __kmp_sigaction(int signum, const struct sigaction *act, 1169 struct sigaction *oldact) { 1170 int rc = sigaction(signum, act, oldact); 1171 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1172 } 1173 1174 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1175 int parallel_init) { 1176 KMP_MB(); // Flush all pending memory write invalidates. 1177 KB_TRACE(60, 1178 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1179 if (parallel_init) { 1180 struct sigaction new_action; 1181 struct sigaction old_action; 1182 new_action.sa_handler = handler_func; 1183 new_action.sa_flags = 0; 1184 sigfillset(&new_action.sa_mask); 1185 __kmp_sigaction(sig, &new_action, &old_action); 1186 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1187 sigaddset(&__kmp_sigset, sig); 1188 } else { 1189 // Restore/keep user's handler if one previously installed. 1190 __kmp_sigaction(sig, &old_action, NULL); 1191 } 1192 } else { 1193 // Save initial/system signal handlers to see if user handlers installed. 1194 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1195 } 1196 KMP_MB(); // Flush all pending memory write invalidates. 1197 } // __kmp_install_one_handler 1198 1199 static void __kmp_remove_one_handler(int sig) { 1200 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1201 if (sigismember(&__kmp_sigset, sig)) { 1202 struct sigaction old; 1203 KMP_MB(); // Flush all pending memory write invalidates. 1204 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1205 if ((old.sa_handler != __kmp_team_handler) && 1206 (old.sa_handler != __kmp_null_handler)) { 1207 // Restore the users signal handler. 1208 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1209 "restoring: sig=%d\n", 1210 sig)); 1211 __kmp_sigaction(sig, &old, NULL); 1212 } 1213 sigdelset(&__kmp_sigset, sig); 1214 KMP_MB(); // Flush all pending memory write invalidates. 1215 } 1216 } // __kmp_remove_one_handler 1217 1218 void __kmp_install_signals(int parallel_init) { 1219 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1220 if (__kmp_handle_signals || !parallel_init) { 1221 // If ! parallel_init, we do not install handlers, just save original 1222 // handlers. Let us do it even __handle_signals is 0. 1223 sigemptyset(&__kmp_sigset); 1224 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1225 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1226 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1227 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1228 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1229 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1230 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1231 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1232 #ifdef SIGSYS 1233 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1234 #endif // SIGSYS 1235 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1236 #ifdef SIGPIPE 1237 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1238 #endif // SIGPIPE 1239 } 1240 } // __kmp_install_signals 1241 1242 void __kmp_remove_signals(void) { 1243 int sig; 1244 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1245 for (sig = 1; sig < NSIG; ++sig) { 1246 __kmp_remove_one_handler(sig); 1247 } 1248 } // __kmp_remove_signals 1249 1250 #endif // KMP_HANDLE_SIGNALS 1251 1252 void __kmp_enable(int new_state) { 1253 #ifdef KMP_CANCEL_THREADS 1254 int status, old_state; 1255 status = pthread_setcancelstate(new_state, &old_state); 1256 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1257 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1258 #endif 1259 } 1260 1261 void __kmp_disable(int *old_state) { 1262 #ifdef KMP_CANCEL_THREADS 1263 int status; 1264 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1265 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1266 #endif 1267 } 1268 1269 static void __kmp_atfork_prepare(void) { 1270 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1271 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1272 } 1273 1274 static void __kmp_atfork_parent(void) { 1275 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1276 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1277 } 1278 1279 /* Reset the library so execution in the child starts "all over again" with 1280 clean data structures in initial states. Don't worry about freeing memory 1281 allocated by parent, just abandon it to be safe. */ 1282 static void __kmp_atfork_child(void) { 1283 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1284 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1285 /* TODO make sure this is done right for nested/sibling */ 1286 // ATT: Memory leaks are here? TODO: Check it and fix. 1287 /* KMP_ASSERT( 0 ); */ 1288 1289 ++__kmp_fork_count; 1290 1291 #if KMP_AFFINITY_SUPPORTED 1292 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1293 // reset the affinity in the child to the initial thread 1294 // affinity in the parent 1295 kmp_set_thread_affinity_mask_initial(); 1296 #endif 1297 // Set default not to bind threads tightly in the child (we’re expecting 1298 // over-subscription after the fork and this can improve things for 1299 // scripting languages that use OpenMP inside process-parallel code). 1300 __kmp_affinity_type = affinity_none; 1301 if (__kmp_nested_proc_bind.bind_types != NULL) { 1302 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1303 } 1304 #endif // KMP_AFFINITY_SUPPORTED 1305 1306 #if KMP_USE_MONITOR 1307 __kmp_init_monitor = 0; 1308 #endif 1309 __kmp_init_parallel = FALSE; 1310 __kmp_init_middle = FALSE; 1311 __kmp_init_serial = FALSE; 1312 TCW_4(__kmp_init_gtid, FALSE); 1313 __kmp_init_common = FALSE; 1314 1315 TCW_4(__kmp_init_user_locks, FALSE); 1316 #if !KMP_USE_DYNAMIC_LOCK 1317 __kmp_user_lock_table.used = 1; 1318 __kmp_user_lock_table.allocated = 0; 1319 __kmp_user_lock_table.table = NULL; 1320 __kmp_lock_blocks = NULL; 1321 #endif 1322 1323 __kmp_all_nth = 0; 1324 TCW_4(__kmp_nth, 0); 1325 1326 __kmp_thread_pool = NULL; 1327 __kmp_thread_pool_insert_pt = NULL; 1328 __kmp_team_pool = NULL; 1329 1330 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1331 here so threadprivate doesn't use stale data */ 1332 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1333 __kmp_threadpriv_cache_list)); 1334 1335 while (__kmp_threadpriv_cache_list != NULL) { 1336 1337 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1338 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1339 &(*__kmp_threadpriv_cache_list->addr))); 1340 1341 *__kmp_threadpriv_cache_list->addr = NULL; 1342 } 1343 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1344 } 1345 1346 __kmp_init_runtime = FALSE; 1347 1348 /* reset statically initialized locks */ 1349 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1350 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1351 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1352 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1353 1354 #if USE_ITT_BUILD 1355 __kmp_itt_reset(); // reset ITT's global state 1356 #endif /* USE_ITT_BUILD */ 1357 1358 __kmp_serial_initialize(); 1359 1360 /* This is necessary to make sure no stale data is left around */ 1361 /* AC: customers complain that we use unsafe routines in the atfork 1362 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1363 in dynamic_link when check the presence of shared tbbmalloc library. 1364 Suggestion is to make the library initialization lazier, similar 1365 to what done for __kmpc_begin(). */ 1366 // TODO: synchronize all static initializations with regular library 1367 // startup; look at kmp_global.cpp and etc. 1368 //__kmp_internal_begin (); 1369 } 1370 1371 void __kmp_register_atfork(void) { 1372 if (__kmp_need_register_atfork) { 1373 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1374 __kmp_atfork_child); 1375 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1376 __kmp_need_register_atfork = FALSE; 1377 } 1378 } 1379 1380 void __kmp_suspend_initialize(void) { 1381 int status; 1382 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1383 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1384 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1385 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1386 } 1387 1388 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1389 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1390 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1391 int new_value = __kmp_fork_count + 1; 1392 // Return if already initialized 1393 if (old_value == new_value) 1394 return; 1395 // Wait, then return if being initialized 1396 if (old_value == -1 || 1397 !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value, 1398 -1)) { 1399 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1400 KMP_CPU_PAUSE(); 1401 } 1402 } else { 1403 // Claim to be the initializer and do initializations 1404 int status; 1405 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1406 &__kmp_suspend_cond_attr); 1407 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1408 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1409 &__kmp_suspend_mutex_attr); 1410 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1411 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1412 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1413 } 1414 } 1415 1416 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1417 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1418 /* this means we have initialize the suspension pthread objects for this 1419 thread in this instance of the process */ 1420 int status; 1421 1422 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1423 if (status != 0 && status != EBUSY) { 1424 KMP_SYSFAIL("pthread_cond_destroy", status); 1425 } 1426 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1427 if (status != 0 && status != EBUSY) { 1428 KMP_SYSFAIL("pthread_mutex_destroy", status); 1429 } 1430 --th->th.th_suspend_init_count; 1431 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1432 __kmp_fork_count); 1433 } 1434 } 1435 1436 // return true if lock obtained, false otherwise 1437 int __kmp_try_suspend_mx(kmp_info_t *th) { 1438 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1439 } 1440 1441 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1442 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1443 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1444 } 1445 1446 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1447 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1448 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1449 } 1450 1451 /* This routine puts the calling thread to sleep after setting the 1452 sleep bit for the indicated flag variable to true. */ 1453 template <class C> 1454 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1455 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1456 kmp_info_t *th = __kmp_threads[th_gtid]; 1457 int status; 1458 typename C::flag_t old_spin; 1459 1460 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1461 flag->get())); 1462 1463 __kmp_suspend_initialize_thread(th); 1464 1465 __kmp_lock_suspend_mx(th); 1466 1467 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1468 th_gtid, flag->get())); 1469 1470 /* TODO: shouldn't this use release semantics to ensure that 1471 __kmp_suspend_initialize_thread gets called first? */ 1472 old_spin = flag->set_sleeping(); 1473 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1474 __kmp_pause_status != kmp_soft_paused) { 1475 flag->unset_sleeping(); 1476 __kmp_unlock_suspend_mx(th); 1477 return; 1478 } 1479 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1480 " was %x\n", 1481 th_gtid, flag->get(), flag->load(), old_spin)); 1482 1483 if (flag->done_check_val(old_spin)) { 1484 old_spin = flag->unset_sleeping(); 1485 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1486 "for spin(%p)\n", 1487 th_gtid, flag->get())); 1488 } else { 1489 /* Encapsulate in a loop as the documentation states that this may 1490 "with low probability" return when the condition variable has 1491 not been signaled or broadcast */ 1492 int deactivated = FALSE; 1493 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1494 1495 while (flag->is_sleeping()) { 1496 #ifdef DEBUG_SUSPEND 1497 char buffer[128]; 1498 __kmp_suspend_count++; 1499 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1500 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1501 buffer); 1502 #endif 1503 // Mark the thread as no longer active (only in the first iteration of the 1504 // loop). 1505 if (!deactivated) { 1506 th->th.th_active = FALSE; 1507 if (th->th.th_active_in_pool) { 1508 th->th.th_active_in_pool = FALSE; 1509 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1510 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1511 } 1512 deactivated = TRUE; 1513 } 1514 1515 #if USE_SUSPEND_TIMEOUT 1516 struct timespec now; 1517 struct timeval tval; 1518 int msecs; 1519 1520 status = gettimeofday(&tval, NULL); 1521 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1522 TIMEVAL_TO_TIMESPEC(&tval, &now); 1523 1524 msecs = (4 * __kmp_dflt_blocktime) + 200; 1525 now.tv_sec += msecs / 1000; 1526 now.tv_nsec += (msecs % 1000) * 1000; 1527 1528 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1529 "pthread_cond_timedwait\n", 1530 th_gtid)); 1531 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1532 &th->th.th_suspend_mx.m_mutex, &now); 1533 #else 1534 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1535 " pthread_cond_wait\n", 1536 th_gtid)); 1537 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1538 &th->th.th_suspend_mx.m_mutex); 1539 #endif // USE_SUSPEND_TIMEOUT 1540 1541 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1542 KMP_SYSFAIL("pthread_cond_wait", status); 1543 } 1544 #ifdef KMP_DEBUG 1545 if (status == ETIMEDOUT) { 1546 if (flag->is_sleeping()) { 1547 KF_TRACE(100, 1548 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1549 } else { 1550 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1551 "not set!\n", 1552 th_gtid)); 1553 } 1554 } else if (flag->is_sleeping()) { 1555 KF_TRACE(100, 1556 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1557 } 1558 #endif 1559 } // while 1560 1561 // Mark the thread as active again (if it was previous marked as inactive) 1562 if (deactivated) { 1563 th->th.th_active = TRUE; 1564 if (TCR_4(th->th.th_in_pool)) { 1565 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1566 th->th.th_active_in_pool = TRUE; 1567 } 1568 } 1569 } 1570 #ifdef DEBUG_SUSPEND 1571 { 1572 char buffer[128]; 1573 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1574 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1575 buffer); 1576 } 1577 #endif 1578 1579 __kmp_unlock_suspend_mx(th); 1580 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1581 } 1582 1583 template <bool C, bool S> 1584 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 1585 __kmp_suspend_template(th_gtid, flag); 1586 } 1587 template <bool C, bool S> 1588 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 1589 __kmp_suspend_template(th_gtid, flag); 1590 } 1591 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1592 __kmp_suspend_template(th_gtid, flag); 1593 } 1594 1595 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 1596 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 1597 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 1598 1599 /* This routine signals the thread specified by target_gtid to wake up 1600 after setting the sleep bit indicated by the flag argument to FALSE. 1601 The target thread must already have called __kmp_suspend_template() */ 1602 template <class C> 1603 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1604 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1605 kmp_info_t *th = __kmp_threads[target_gtid]; 1606 int status; 1607 1608 #ifdef KMP_DEBUG 1609 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1610 #endif 1611 1612 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1613 gtid, target_gtid)); 1614 KMP_DEBUG_ASSERT(gtid != target_gtid); 1615 1616 __kmp_suspend_initialize_thread(th); 1617 1618 __kmp_lock_suspend_mx(th); 1619 1620 if (!flag) { // coming from __kmp_null_resume_wrapper 1621 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1622 } 1623 1624 // First, check if the flag is null or its type has changed. If so, someone 1625 // else woke it up. 1626 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1627 // simply shows what flag was cast to 1628 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1629 "awake: flag(%p)\n", 1630 gtid, target_gtid, NULL)); 1631 __kmp_unlock_suspend_mx(th); 1632 return; 1633 } else { // if multiple threads are sleeping, flag should be internally 1634 // referring to a specific thread here 1635 typename C::flag_t old_spin = flag->unset_sleeping(); 1636 if (!flag->is_sleeping_val(old_spin)) { 1637 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1638 "awake: flag(%p): " 1639 "%u => %u\n", 1640 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1641 __kmp_unlock_suspend_mx(th); 1642 return; 1643 } 1644 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1645 "sleep bit for flag's loc(%p): " 1646 "%u => %u\n", 1647 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1648 } 1649 TCW_PTR(th->th.th_sleep_loc, NULL); 1650 1651 #ifdef DEBUG_SUSPEND 1652 { 1653 char buffer[128]; 1654 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1655 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1656 target_gtid, buffer); 1657 } 1658 #endif 1659 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1660 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1661 __kmp_unlock_suspend_mx(th); 1662 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1663 " for T#%d\n", 1664 gtid, target_gtid)); 1665 } 1666 1667 template <bool C, bool S> 1668 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 1669 __kmp_resume_template(target_gtid, flag); 1670 } 1671 template <bool C, bool S> 1672 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 1673 __kmp_resume_template(target_gtid, flag); 1674 } 1675 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1676 __kmp_resume_template(target_gtid, flag); 1677 } 1678 1679 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 1680 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 1681 1682 #if KMP_USE_MONITOR 1683 void __kmp_resume_monitor() { 1684 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1685 int status; 1686 #ifdef KMP_DEBUG 1687 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1688 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1689 KMP_GTID_MONITOR)); 1690 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1691 #endif 1692 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1693 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1694 #ifdef DEBUG_SUSPEND 1695 { 1696 char buffer[128]; 1697 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1698 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1699 KMP_GTID_MONITOR, buffer); 1700 } 1701 #endif 1702 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1703 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1704 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1705 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1706 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1707 " for T#%d\n", 1708 gtid, KMP_GTID_MONITOR)); 1709 } 1710 #endif // KMP_USE_MONITOR 1711 1712 void __kmp_yield() { sched_yield(); } 1713 1714 void __kmp_gtid_set_specific(int gtid) { 1715 if (__kmp_init_gtid) { 1716 int status; 1717 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1718 (void *)(intptr_t)(gtid + 1)); 1719 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1720 } else { 1721 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1722 } 1723 } 1724 1725 int __kmp_gtid_get_specific() { 1726 int gtid; 1727 if (!__kmp_init_gtid) { 1728 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1729 "KMP_GTID_SHUTDOWN\n")); 1730 return KMP_GTID_SHUTDOWN; 1731 } 1732 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1733 if (gtid == 0) { 1734 gtid = KMP_GTID_DNE; 1735 } else { 1736 gtid--; 1737 } 1738 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1739 __kmp_gtid_threadprivate_key, gtid)); 1740 return gtid; 1741 } 1742 1743 double __kmp_read_cpu_time(void) { 1744 /*clock_t t;*/ 1745 struct tms buffer; 1746 1747 /*t =*/times(&buffer); 1748 1749 return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC; 1750 } 1751 1752 int __kmp_read_system_info(struct kmp_sys_info *info) { 1753 int status; 1754 struct rusage r_usage; 1755 1756 memset(info, 0, sizeof(*info)); 1757 1758 status = getrusage(RUSAGE_SELF, &r_usage); 1759 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1760 1761 // The maximum resident set size utilized (in kilobytes) 1762 info->maxrss = r_usage.ru_maxrss; 1763 // The number of page faults serviced without any I/O 1764 info->minflt = r_usage.ru_minflt; 1765 // The number of page faults serviced that required I/O 1766 info->majflt = r_usage.ru_majflt; 1767 // The number of times a process was "swapped" out of memory 1768 info->nswap = r_usage.ru_nswap; 1769 // The number of times the file system had to perform input 1770 info->inblock = r_usage.ru_inblock; 1771 // The number of times the file system had to perform output 1772 info->oublock = r_usage.ru_oublock; 1773 // The number of times a context switch was voluntarily 1774 info->nvcsw = r_usage.ru_nvcsw; 1775 // The number of times a context switch was forced 1776 info->nivcsw = r_usage.ru_nivcsw; 1777 1778 return (status != 0); 1779 } 1780 1781 void __kmp_read_system_time(double *delta) { 1782 double t_ns; 1783 struct timeval tval; 1784 struct timespec stop; 1785 int status; 1786 1787 status = gettimeofday(&tval, NULL); 1788 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1789 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1790 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start); 1791 *delta = (t_ns * 1e-9); 1792 } 1793 1794 void __kmp_clear_system_time(void) { 1795 struct timeval tval; 1796 int status; 1797 status = gettimeofday(&tval, NULL); 1798 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1799 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1800 } 1801 1802 static int __kmp_get_xproc(void) { 1803 1804 int r = 0; 1805 1806 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 1807 KMP_OS_OPENBSD || KMP_OS_HURD 1808 1809 r = sysconf(_SC_NPROCESSORS_ONLN); 1810 1811 #elif KMP_OS_DARWIN 1812 1813 // Bug C77011 High "OpenMP Threads and number of active cores". 1814 1815 // Find the number of available CPUs. 1816 kern_return_t rc; 1817 host_basic_info_data_t info; 1818 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1819 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1820 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1821 // Cannot use KA_TRACE() here because this code works before trace support 1822 // is initialized. 1823 r = info.avail_cpus; 1824 } else { 1825 KMP_WARNING(CantGetNumAvailCPU); 1826 KMP_INFORM(AssumedNumCPU); 1827 } 1828 1829 #else 1830 1831 #error "Unknown or unsupported OS." 1832 1833 #endif 1834 1835 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1836 1837 } // __kmp_get_xproc 1838 1839 int __kmp_read_from_file(char const *path, char const *format, ...) { 1840 int result; 1841 va_list args; 1842 1843 va_start(args, format); 1844 FILE *f = fopen(path, "rb"); 1845 if (f == NULL) 1846 return 0; 1847 result = vfscanf(f, format, args); 1848 fclose(f); 1849 1850 return result; 1851 } 1852 1853 void __kmp_runtime_initialize(void) { 1854 int status; 1855 pthread_mutexattr_t mutex_attr; 1856 pthread_condattr_t cond_attr; 1857 1858 if (__kmp_init_runtime) { 1859 return; 1860 } 1861 1862 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1863 if (!__kmp_cpuinfo.initialized) { 1864 __kmp_query_cpuid(&__kmp_cpuinfo); 1865 } 1866 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1867 1868 __kmp_xproc = __kmp_get_xproc(); 1869 1870 #if ! KMP_32_BIT_ARCH 1871 struct rlimit rlim; 1872 // read stack size of calling thread, save it as default for worker threads; 1873 // this should be done before reading environment variables 1874 status = getrlimit(RLIMIT_STACK, &rlim); 1875 if (status == 0) { // success? 1876 __kmp_stksize = rlim.rlim_cur; 1877 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1878 } 1879 #endif /* KMP_32_BIT_ARCH */ 1880 1881 if (sysconf(_SC_THREADS)) { 1882 1883 /* Query the maximum number of threads */ 1884 __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX); 1885 if (__kmp_sys_max_nth == -1) { 1886 /* Unlimited threads for NPTL */ 1887 __kmp_sys_max_nth = INT_MAX; 1888 } else if (__kmp_sys_max_nth <= 1) { 1889 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1890 __kmp_sys_max_nth = KMP_MAX_NTH; 1891 } 1892 1893 /* Query the minimum stack size */ 1894 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1895 if (__kmp_sys_min_stksize <= 1) { 1896 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1897 } 1898 } 1899 1900 /* Set up minimum number of threads to switch to TLS gtid */ 1901 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1902 1903 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1904 __kmp_internal_end_dest); 1905 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1906 status = pthread_mutexattr_init(&mutex_attr); 1907 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1908 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1909 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1910 status = pthread_condattr_init(&cond_attr); 1911 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1912 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1913 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1914 #if USE_ITT_BUILD 1915 __kmp_itt_initialize(); 1916 #endif /* USE_ITT_BUILD */ 1917 1918 __kmp_init_runtime = TRUE; 1919 } 1920 1921 void __kmp_runtime_destroy(void) { 1922 int status; 1923 1924 if (!__kmp_init_runtime) { 1925 return; // Nothing to do. 1926 } 1927 1928 #if USE_ITT_BUILD 1929 __kmp_itt_destroy(); 1930 #endif /* USE_ITT_BUILD */ 1931 1932 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1933 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1934 1935 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1936 if (status != 0 && status != EBUSY) { 1937 KMP_SYSFAIL("pthread_mutex_destroy", status); 1938 } 1939 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1940 if (status != 0 && status != EBUSY) { 1941 KMP_SYSFAIL("pthread_cond_destroy", status); 1942 } 1943 #if KMP_AFFINITY_SUPPORTED 1944 __kmp_affinity_uninitialize(); 1945 #endif 1946 1947 __kmp_init_runtime = FALSE; 1948 } 1949 1950 /* Put the thread to sleep for a time period */ 1951 /* NOTE: not currently used anywhere */ 1952 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1953 1954 /* Calculate the elapsed wall clock time for the user */ 1955 void __kmp_elapsed(double *t) { 1956 int status; 1957 #ifdef FIX_SGI_CLOCK 1958 struct timespec ts; 1959 1960 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1961 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1962 *t = 1963 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1964 #else 1965 struct timeval tv; 1966 1967 status = gettimeofday(&tv, NULL); 1968 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1969 *t = 1970 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1971 #endif 1972 } 1973 1974 /* Calculate the elapsed wall clock tick for the user */ 1975 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1976 1977 /* Return the current time stamp in nsec */ 1978 kmp_uint64 __kmp_now_nsec() { 1979 struct timeval t; 1980 gettimeofday(&t, NULL); 1981 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 1982 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 1983 return nsec; 1984 } 1985 1986 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1987 /* Measure clock ticks per millisecond */ 1988 void __kmp_initialize_system_tick() { 1989 kmp_uint64 now, nsec2, diff; 1990 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1991 kmp_uint64 nsec = __kmp_now_nsec(); 1992 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1993 while ((now = __kmp_hardware_timestamp()) < goal) 1994 ; 1995 nsec2 = __kmp_now_nsec(); 1996 diff = nsec2 - nsec; 1997 if (diff > 0) { 1998 kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff); 1999 if (tpms > 0) 2000 __kmp_ticks_per_msec = tpms; 2001 } 2002 } 2003 #endif 2004 2005 /* Determine whether the given address is mapped into the current address 2006 space. */ 2007 2008 int __kmp_is_address_mapped(void *addr) { 2009 2010 int found = 0; 2011 int rc; 2012 2013 #if KMP_OS_LINUX || KMP_OS_HURD 2014 2015 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address 2016 ranges mapped into the address space. */ 2017 2018 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 2019 FILE *file = NULL; 2020 2021 file = fopen(name, "r"); 2022 KMP_ASSERT(file != NULL); 2023 2024 for (;;) { 2025 2026 void *beginning = NULL; 2027 void *ending = NULL; 2028 char perms[5]; 2029 2030 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2031 if (rc == EOF) { 2032 break; 2033 } 2034 KMP_ASSERT(rc == 3 && 2035 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2036 2037 // Ending address is not included in the region, but beginning is. 2038 if ((addr >= beginning) && (addr < ending)) { 2039 perms[2] = 0; // 3th and 4th character does not matter. 2040 if (strcmp(perms, "rw") == 0) { 2041 // Memory we are looking for should be readable and writable. 2042 found = 1; 2043 } 2044 break; 2045 } 2046 } 2047 2048 // Free resources. 2049 fclose(file); 2050 KMP_INTERNAL_FREE(name); 2051 #elif KMP_OS_FREEBSD 2052 char *buf; 2053 size_t lstsz; 2054 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 2055 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2056 if (rc < 0) 2057 return 0; 2058 // We pass from number of vm entry's semantic 2059 // to size of whole entry map list. 2060 lstsz = lstsz * 4 / 3; 2061 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2062 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2063 if (rc < 0) { 2064 kmpc_free(buf); 2065 return 0; 2066 } 2067 2068 char *lw = buf; 2069 char *up = buf + lstsz; 2070 2071 while (lw < up) { 2072 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2073 size_t cursz = cur->kve_structsize; 2074 if (cursz == 0) 2075 break; 2076 void *start = reinterpret_cast<void *>(cur->kve_start); 2077 void *end = reinterpret_cast<void *>(cur->kve_end); 2078 // Readable/Writable addresses within current map entry 2079 if ((addr >= start) && (addr < end)) { 2080 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2081 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2082 found = 1; 2083 break; 2084 } 2085 } 2086 lw += cursz; 2087 } 2088 kmpc_free(buf); 2089 2090 #elif KMP_OS_DARWIN 2091 2092 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2093 using vm interface. */ 2094 2095 int buffer; 2096 vm_size_t count; 2097 rc = vm_read_overwrite( 2098 mach_task_self(), // Task to read memory of. 2099 (vm_address_t)(addr), // Address to read from. 2100 1, // Number of bytes to be read. 2101 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2102 &count // Address of var to save number of read bytes in. 2103 ); 2104 if (rc == 0) { 2105 // Memory successfully read. 2106 found = 1; 2107 } 2108 2109 #elif KMP_OS_NETBSD 2110 2111 int mib[5]; 2112 mib[0] = CTL_VM; 2113 mib[1] = VM_PROC; 2114 mib[2] = VM_PROC_MAP; 2115 mib[3] = getpid(); 2116 mib[4] = sizeof(struct kinfo_vmentry); 2117 2118 size_t size; 2119 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2120 KMP_ASSERT(!rc); 2121 KMP_ASSERT(size); 2122 2123 size = size * 4 / 3; 2124 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2125 KMP_ASSERT(kiv); 2126 2127 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2128 KMP_ASSERT(!rc); 2129 KMP_ASSERT(size); 2130 2131 for (size_t i = 0; i < size; i++) { 2132 if (kiv[i].kve_start >= (uint64_t)addr && 2133 kiv[i].kve_end <= (uint64_t)addr) { 2134 found = 1; 2135 break; 2136 } 2137 } 2138 KMP_INTERNAL_FREE(kiv); 2139 #elif KMP_OS_OPENBSD 2140 2141 int mib[3]; 2142 mib[0] = CTL_KERN; 2143 mib[1] = KERN_PROC_VMMAP; 2144 mib[2] = getpid(); 2145 2146 size_t size; 2147 uint64_t end; 2148 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2149 KMP_ASSERT(!rc); 2150 KMP_ASSERT(size); 2151 end = size; 2152 2153 struct kinfo_vmentry kiv = {.kve_start = 0}; 2154 2155 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2156 KMP_ASSERT(size); 2157 if (kiv.kve_end == end) 2158 break; 2159 2160 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2161 found = 1; 2162 break; 2163 } 2164 kiv.kve_start += 1; 2165 } 2166 #elif KMP_OS_DRAGONFLY 2167 2168 // FIXME(DragonFly): Implement this 2169 found = 1; 2170 2171 #else 2172 2173 #error "Unknown or unsupported OS" 2174 2175 #endif 2176 2177 return found; 2178 2179 } // __kmp_is_address_mapped 2180 2181 #ifdef USE_LOAD_BALANCE 2182 2183 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2184 2185 // The function returns the rounded value of the system load average 2186 // during given time interval which depends on the value of 2187 // __kmp_load_balance_interval variable (default is 60 sec, other values 2188 // may be 300 sec or 900 sec). 2189 // It returns -1 in case of error. 2190 int __kmp_get_load_balance(int max) { 2191 double averages[3]; 2192 int ret_avg = 0; 2193 2194 int res = getloadavg(averages, 3); 2195 2196 // Check __kmp_load_balance_interval to determine which of averages to use. 2197 // getloadavg() may return the number of samples less than requested that is 2198 // less than 3. 2199 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2200 ret_avg = averages[0]; // 1 min 2201 } else if ((__kmp_load_balance_interval >= 180 && 2202 __kmp_load_balance_interval < 600) && 2203 (res >= 2)) { 2204 ret_avg = averages[1]; // 5 min 2205 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2206 ret_avg = averages[2]; // 15 min 2207 } else { // Error occurred 2208 return -1; 2209 } 2210 2211 return ret_avg; 2212 } 2213 2214 #else // Linux* OS 2215 2216 // The function returns number of running (not sleeping) threads, or -1 in case 2217 // of error. Error could be reported if Linux* OS kernel too old (without 2218 // "/proc" support). Counting running threads stops if max running threads 2219 // encountered. 2220 int __kmp_get_load_balance(int max) { 2221 static int permanent_error = 0; 2222 static int glb_running_threads = 0; // Saved count of the running threads for 2223 // the thread balance algorithm 2224 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2225 2226 int running_threads = 0; // Number of running threads in the system. 2227 2228 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2229 struct dirent *proc_entry = NULL; 2230 2231 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2232 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2233 struct dirent *task_entry = NULL; 2234 int task_path_fixed_len; 2235 2236 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2237 int stat_file = -1; 2238 int stat_path_fixed_len; 2239 2240 int total_processes = 0; // Total number of processes in system. 2241 int total_threads = 0; // Total number of threads in system. 2242 2243 double call_time = 0.0; 2244 2245 __kmp_str_buf_init(&task_path); 2246 __kmp_str_buf_init(&stat_path); 2247 2248 __kmp_elapsed(&call_time); 2249 2250 if (glb_call_time && 2251 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2252 running_threads = glb_running_threads; 2253 goto finish; 2254 } 2255 2256 glb_call_time = call_time; 2257 2258 // Do not spend time on scanning "/proc/" if we have a permanent error. 2259 if (permanent_error) { 2260 running_threads = -1; 2261 goto finish; 2262 } 2263 2264 if (max <= 0) { 2265 max = INT_MAX; 2266 } 2267 2268 // Open "/proc/" directory. 2269 proc_dir = opendir("/proc"); 2270 if (proc_dir == NULL) { 2271 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2272 // error now and in subsequent calls. 2273 running_threads = -1; 2274 permanent_error = 1; 2275 goto finish; 2276 } 2277 2278 // Initialize fixed part of task_path. This part will not change. 2279 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2280 task_path_fixed_len = task_path.used; // Remember number of used characters. 2281 2282 proc_entry = readdir(proc_dir); 2283 while (proc_entry != NULL) { 2284 // Proc entry is a directory and name starts with a digit. Assume it is a 2285 // process' directory. 2286 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2287 2288 ++total_processes; 2289 // Make sure init process is the very first in "/proc", so we can replace 2290 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2291 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2292 // true (where "=>" is implication). Since C++ does not have => operator, 2293 // let us replace it with its equivalent: a => b == ! a || b. 2294 KMP_DEBUG_ASSERT(total_processes != 1 || 2295 strcmp(proc_entry->d_name, "1") == 0); 2296 2297 // Construct task_path. 2298 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2299 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2300 KMP_STRLEN(proc_entry->d_name)); 2301 __kmp_str_buf_cat(&task_path, "/task", 5); 2302 2303 task_dir = opendir(task_path.str); 2304 if (task_dir == NULL) { 2305 // Process can finish between reading "/proc/" directory entry and 2306 // opening process' "task/" directory. So, in general case we should not 2307 // complain, but have to skip this process and read the next one. But on 2308 // systems with no "task/" support we will spend lot of time to scan 2309 // "/proc/" tree again and again without any benefit. "init" process 2310 // (its pid is 1) should exist always, so, if we cannot open 2311 // "/proc/1/task/" directory, it means "task/" is not supported by 2312 // kernel. Report an error now and in the future. 2313 if (strcmp(proc_entry->d_name, "1") == 0) { 2314 running_threads = -1; 2315 permanent_error = 1; 2316 goto finish; 2317 } 2318 } else { 2319 // Construct fixed part of stat file path. 2320 __kmp_str_buf_clear(&stat_path); 2321 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2322 __kmp_str_buf_cat(&stat_path, "/", 1); 2323 stat_path_fixed_len = stat_path.used; 2324 2325 task_entry = readdir(task_dir); 2326 while (task_entry != NULL) { 2327 // It is a directory and name starts with a digit. 2328 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2329 ++total_threads; 2330 2331 // Construct complete stat file path. Easiest way would be: 2332 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2333 // task_entry->d_name ); 2334 // but seriae of __kmp_str_buf_cat works a bit faster. 2335 stat_path.used = 2336 stat_path_fixed_len; // Reset stat path to its fixed part. 2337 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2338 KMP_STRLEN(task_entry->d_name)); 2339 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2340 2341 // Note: Low-level API (open/read/close) is used. High-level API 2342 // (fopen/fclose) works ~ 30 % slower. 2343 stat_file = open(stat_path.str, O_RDONLY); 2344 if (stat_file == -1) { 2345 // We cannot report an error because task (thread) can terminate 2346 // just before reading this file. 2347 } else { 2348 /* Content of "stat" file looks like: 2349 24285 (program) S ... 2350 2351 It is a single line (if program name does not include funny 2352 symbols). First number is a thread id, then name of executable 2353 file name in paretheses, then state of the thread. We need just 2354 thread state. 2355 2356 Good news: Length of program name is 15 characters max. Longer 2357 names are truncated. 2358 2359 Thus, we need rather short buffer: 15 chars for program name + 2360 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2361 2362 Bad news: Program name may contain special symbols like space, 2363 closing parenthesis, or even new line. This makes parsing 2364 "stat" file not 100 % reliable. In case of fanny program names 2365 parsing may fail (report incorrect thread state). 2366 2367 Parsing "status" file looks more promissing (due to different 2368 file structure and escaping special symbols) but reading and 2369 parsing of "status" file works slower. 2370 -- ln 2371 */ 2372 char buffer[65]; 2373 int len; 2374 len = read(stat_file, buffer, sizeof(buffer) - 1); 2375 if (len >= 0) { 2376 buffer[len] = 0; 2377 // Using scanf: 2378 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2379 // looks very nice, but searching for a closing parenthesis 2380 // works a bit faster. 2381 char *close_parent = strstr(buffer, ") "); 2382 if (close_parent != NULL) { 2383 char state = *(close_parent + 2); 2384 if (state == 'R') { 2385 ++running_threads; 2386 if (running_threads >= max) { 2387 goto finish; 2388 } 2389 } 2390 } 2391 } 2392 close(stat_file); 2393 stat_file = -1; 2394 } 2395 } 2396 task_entry = readdir(task_dir); 2397 } 2398 closedir(task_dir); 2399 task_dir = NULL; 2400 } 2401 } 2402 proc_entry = readdir(proc_dir); 2403 } 2404 2405 // There _might_ be a timing hole where the thread executing this 2406 // code get skipped in the load balance, and running_threads is 0. 2407 // Assert in the debug builds only!!! 2408 KMP_DEBUG_ASSERT(running_threads > 0); 2409 if (running_threads <= 0) { 2410 running_threads = 1; 2411 } 2412 2413 finish: // Clean up and exit. 2414 if (proc_dir != NULL) { 2415 closedir(proc_dir); 2416 } 2417 __kmp_str_buf_free(&task_path); 2418 if (task_dir != NULL) { 2419 closedir(task_dir); 2420 } 2421 __kmp_str_buf_free(&stat_path); 2422 if (stat_file != -1) { 2423 close(stat_file); 2424 } 2425 2426 glb_running_threads = running_threads; 2427 2428 return running_threads; 2429 2430 } // __kmp_get_load_balance 2431 2432 #endif // KMP_OS_DARWIN 2433 2434 #endif // USE_LOAD_BALANCE 2435 2436 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2437 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2438 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64) 2439 2440 // we really only need the case with 1 argument, because CLANG always build 2441 // a struct of pointers to shared variables referenced in the outlined function 2442 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2443 void *p_argv[] 2444 #if OMPT_SUPPORT 2445 , 2446 void **exit_frame_ptr 2447 #endif 2448 ) { 2449 #if OMPT_SUPPORT 2450 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2451 #endif 2452 2453 switch (argc) { 2454 default: 2455 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2456 fflush(stderr); 2457 exit(-1); 2458 case 0: 2459 (*pkfn)(>id, &tid); 2460 break; 2461 case 1: 2462 (*pkfn)(>id, &tid, p_argv[0]); 2463 break; 2464 case 2: 2465 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2466 break; 2467 case 3: 2468 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2469 break; 2470 case 4: 2471 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2472 break; 2473 case 5: 2474 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2475 break; 2476 case 6: 2477 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2478 p_argv[5]); 2479 break; 2480 case 7: 2481 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2482 p_argv[5], p_argv[6]); 2483 break; 2484 case 8: 2485 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2486 p_argv[5], p_argv[6], p_argv[7]); 2487 break; 2488 case 9: 2489 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2490 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2491 break; 2492 case 10: 2493 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2494 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2495 break; 2496 case 11: 2497 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2498 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2499 break; 2500 case 12: 2501 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2502 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2503 p_argv[11]); 2504 break; 2505 case 13: 2506 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2507 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2508 p_argv[11], p_argv[12]); 2509 break; 2510 case 14: 2511 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2512 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2513 p_argv[11], p_argv[12], p_argv[13]); 2514 break; 2515 case 15: 2516 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2517 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2518 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2519 break; 2520 } 2521 2522 return 1; 2523 } 2524 2525 #endif 2526 2527 // end of file // 2528