1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 
6 //===----------------------------------------------------------------------===//
7 //
8 //                     The LLVM Compiler Infrastructure
9 //
10 // This file is dual licensed under the MIT and the University of Illinois Open
11 // Source Licenses. See LICENSE.txt for details.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 
16 #include "kmp.h"
17 #include "kmp_affinity.h"
18 #include "kmp_i18n.h"
19 #include "kmp_io.h"
20 #include "kmp_itt.h"
21 #include "kmp_lock.h"
22 #include "kmp_stats.h"
23 #include "kmp_str.h"
24 #include "kmp_wait_release.h"
25 #include "kmp_wrapper_getpid.h"
26 
27 #if !KMP_OS_FREEBSD && !KMP_OS_NETBSD
28 #include <alloca.h>
29 #endif
30 #include <math.h> // HUGE_VAL.
31 #include <sys/resource.h>
32 #include <sys/syscall.h>
33 #include <sys/time.h>
34 #include <sys/times.h>
35 #include <unistd.h>
36 
37 #if KMP_OS_LINUX && !KMP_OS_CNK
38 #include <sys/sysinfo.h>
39 #if KMP_USE_FUTEX
40 // We should really include <futex.h>, but that causes compatibility problems on
41 // different Linux* OS distributions that either require that you include (or
42 // break when you try to include) <pci/types.h>. Since all we need is the two
43 // macros below (which are part of the kernel ABI, so can't change) we just
44 // define the constants here and don't include <futex.h>
45 #ifndef FUTEX_WAIT
46 #define FUTEX_WAIT 0
47 #endif
48 #ifndef FUTEX_WAKE
49 #define FUTEX_WAKE 1
50 #endif
51 #endif
52 #elif KMP_OS_DARWIN
53 #include <mach/mach.h>
54 #include <sys/sysctl.h>
55 #elif KMP_OS_FREEBSD
56 #include <pthread_np.h>
57 #endif
58 
59 #include <ctype.h>
60 #include <dirent.h>
61 #include <fcntl.h>
62 
63 #include "tsan_annotations.h"
64 
65 struct kmp_sys_timer {
66   struct timespec start;
67 };
68 
69 // Convert timespec to nanoseconds.
70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
71 
72 static struct kmp_sys_timer __kmp_sys_timer_data;
73 
74 #if KMP_HANDLE_SIGNALS
75 typedef void (*sig_func_t)(int);
76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
77 static sigset_t __kmp_sigset;
78 #endif
79 
80 static int __kmp_init_runtime = FALSE;
81 
82 static int __kmp_fork_count = 0;
83 
84 static pthread_condattr_t __kmp_suspend_cond_attr;
85 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
86 
87 static kmp_cond_align_t __kmp_wait_cv;
88 static kmp_mutex_align_t __kmp_wait_mx;
89 
90 kmp_uint64 __kmp_ticks_per_msec = 1000000;
91 
92 #ifdef DEBUG_SUSPEND
93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
94   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
95                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
96                cond->c_cond.__c_waiting);
97 }
98 #endif
99 
100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
101 
102 /* Affinity support */
103 
104 void __kmp_affinity_bind_thread(int which) {
105   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
106               "Illegal set affinity operation when not capable");
107 
108   kmp_affin_mask_t *mask;
109   KMP_CPU_ALLOC_ON_STACK(mask);
110   KMP_CPU_ZERO(mask);
111   KMP_CPU_SET(which, mask);
112   __kmp_set_system_affinity(mask, TRUE);
113   KMP_CPU_FREE_FROM_STACK(mask);
114 }
115 
116 /* Determine if we can access affinity functionality on this version of
117  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
118  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
119 void __kmp_affinity_determine_capable(const char *env_var) {
120 // Check and see if the OS supports thread affinity.
121 
122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
123 
124   int gCode;
125   int sCode;
126   unsigned char *buf;
127   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
128 
129   // If Linux* OS:
130   // If the syscall fails or returns a suggestion for the size,
131   // then we don't have to search for an appropriate size.
132   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
133   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
134                 "initial getaffinity call returned %d errno = %d\n",
135                 gCode, errno));
136 
137   // if ((gCode < 0) && (errno == ENOSYS))
138   if (gCode < 0) {
139     // System call not supported
140     if (__kmp_affinity_verbose ||
141         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
142          (__kmp_affinity_type != affinity_default) &&
143          (__kmp_affinity_type != affinity_disabled))) {
144       int error = errno;
145       kmp_msg_t err_code = KMP_ERR(error);
146       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
147                 err_code, __kmp_msg_null);
148       if (__kmp_generate_warnings == kmp_warnings_off) {
149         __kmp_str_free(&err_code.str);
150       }
151     }
152     KMP_AFFINITY_DISABLE();
153     KMP_INTERNAL_FREE(buf);
154     return;
155   }
156   if (gCode > 0) { // Linux* OS only
157     // The optimal situation: the OS returns the size of the buffer it expects.
158     //
159     // A verification of correct behavior is that Isetaffinity on a NULL
160     // buffer with the same size fails with errno set to EFAULT.
161     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
162     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
163                   "setaffinity for mask size %d returned %d errno = %d\n",
164                   gCode, sCode, errno));
165     if (sCode < 0) {
166       if (errno == ENOSYS) {
167         if (__kmp_affinity_verbose ||
168             (__kmp_affinity_warnings &&
169              (__kmp_affinity_type != affinity_none) &&
170              (__kmp_affinity_type != affinity_default) &&
171              (__kmp_affinity_type != affinity_disabled))) {
172           int error = errno;
173           kmp_msg_t err_code = KMP_ERR(error);
174           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
175                     err_code, __kmp_msg_null);
176           if (__kmp_generate_warnings == kmp_warnings_off) {
177             __kmp_str_free(&err_code.str);
178           }
179         }
180         KMP_AFFINITY_DISABLE();
181         KMP_INTERNAL_FREE(buf);
182       }
183       if (errno == EFAULT) {
184         KMP_AFFINITY_ENABLE(gCode);
185         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
186                       "affinity supported (mask size %d)\n",
187                       (int)__kmp_affin_mask_size));
188         KMP_INTERNAL_FREE(buf);
189         return;
190       }
191     }
192   }
193 
194   // Call the getaffinity system call repeatedly with increasing set sizes
195   // until we succeed, or reach an upper bound on the search.
196   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
197                 "searching for proper set size\n"));
198   int size;
199   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
200     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
201     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
202                   "getaffinity for mask size %d returned %d errno = %d\n",
203                   size, gCode, errno));
204 
205     if (gCode < 0) {
206       if (errno == ENOSYS) {
207         // We shouldn't get here
208         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
209                       "inconsistent OS call behavior: errno == ENOSYS for mask "
210                       "size %d\n",
211                       size));
212         if (__kmp_affinity_verbose ||
213             (__kmp_affinity_warnings &&
214              (__kmp_affinity_type != affinity_none) &&
215              (__kmp_affinity_type != affinity_default) &&
216              (__kmp_affinity_type != affinity_disabled))) {
217           int error = errno;
218           kmp_msg_t err_code = KMP_ERR(error);
219           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
220                     err_code, __kmp_msg_null);
221           if (__kmp_generate_warnings == kmp_warnings_off) {
222             __kmp_str_free(&err_code.str);
223           }
224         }
225         KMP_AFFINITY_DISABLE();
226         KMP_INTERNAL_FREE(buf);
227         return;
228       }
229       continue;
230     }
231 
232     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
233     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
234                   "setaffinity for mask size %d returned %d errno = %d\n",
235                   gCode, sCode, errno));
236     if (sCode < 0) {
237       if (errno == ENOSYS) { // Linux* OS only
238         // We shouldn't get here
239         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
240                       "inconsistent OS call behavior: errno == ENOSYS for mask "
241                       "size %d\n",
242                       size));
243         if (__kmp_affinity_verbose ||
244             (__kmp_affinity_warnings &&
245              (__kmp_affinity_type != affinity_none) &&
246              (__kmp_affinity_type != affinity_default) &&
247              (__kmp_affinity_type != affinity_disabled))) {
248           int error = errno;
249           kmp_msg_t err_code = KMP_ERR(error);
250           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
251                     err_code, __kmp_msg_null);
252           if (__kmp_generate_warnings == kmp_warnings_off) {
253             __kmp_str_free(&err_code.str);
254           }
255         }
256         KMP_AFFINITY_DISABLE();
257         KMP_INTERNAL_FREE(buf);
258         return;
259       }
260       if (errno == EFAULT) {
261         KMP_AFFINITY_ENABLE(gCode);
262         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
263                       "affinity supported (mask size %d)\n",
264                       (int)__kmp_affin_mask_size));
265         KMP_INTERNAL_FREE(buf);
266         return;
267       }
268     }
269   }
270   // save uncaught error code
271   // int error = errno;
272   KMP_INTERNAL_FREE(buf);
273   // restore uncaught error code, will be printed at the next KMP_WARNING below
274   // errno = error;
275 
276   // Affinity is not supported
277   KMP_AFFINITY_DISABLE();
278   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
279                 "cannot determine mask size - affinity not supported\n"));
280   if (__kmp_affinity_verbose ||
281       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
282        (__kmp_affinity_type != affinity_default) &&
283        (__kmp_affinity_type != affinity_disabled))) {
284     KMP_WARNING(AffCantGetMaskSize, env_var);
285   }
286 }
287 
288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
289 
290 #if KMP_USE_FUTEX
291 
292 int __kmp_futex_determine_capable() {
293   int loc = 0;
294   int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
295   int retval = (rc == 0) || (errno != ENOSYS);
296 
297   KA_TRACE(10,
298            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
299   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
300                 retval ? "" : " not"));
301 
302   return retval;
303 }
304 
305 #endif // KMP_USE_FUTEX
306 
307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
309    use compare_and_store for these routines */
310 
311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
312   kmp_int8 old_value, new_value;
313 
314   old_value = TCR_1(*p);
315   new_value = old_value | d;
316 
317   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
318     KMP_CPU_PAUSE();
319     old_value = TCR_1(*p);
320     new_value = old_value | d;
321   }
322   return old_value;
323 }
324 
325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
326   kmp_int8 old_value, new_value;
327 
328   old_value = TCR_1(*p);
329   new_value = old_value & d;
330 
331   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
332     KMP_CPU_PAUSE();
333     old_value = TCR_1(*p);
334     new_value = old_value & d;
335   }
336   return old_value;
337 }
338 
339 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
340   kmp_uint32 old_value, new_value;
341 
342   old_value = TCR_4(*p);
343   new_value = old_value | d;
344 
345   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
346     KMP_CPU_PAUSE();
347     old_value = TCR_4(*p);
348     new_value = old_value | d;
349   }
350   return old_value;
351 }
352 
353 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
354   kmp_uint32 old_value, new_value;
355 
356   old_value = TCR_4(*p);
357   new_value = old_value & d;
358 
359   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
360     KMP_CPU_PAUSE();
361     old_value = TCR_4(*p);
362     new_value = old_value & d;
363   }
364   return old_value;
365 }
366 
367 #if KMP_ARCH_X86
368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
369   kmp_int8 old_value, new_value;
370 
371   old_value = TCR_1(*p);
372   new_value = old_value + d;
373 
374   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
375     KMP_CPU_PAUSE();
376     old_value = TCR_1(*p);
377     new_value = old_value + d;
378   }
379   return old_value;
380 }
381 
382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
383   kmp_int64 old_value, new_value;
384 
385   old_value = TCR_8(*p);
386   new_value = old_value + d;
387 
388   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
389     KMP_CPU_PAUSE();
390     old_value = TCR_8(*p);
391     new_value = old_value + d;
392   }
393   return old_value;
394 }
395 #endif /* KMP_ARCH_X86 */
396 
397 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
398   kmp_uint64 old_value, new_value;
399 
400   old_value = TCR_8(*p);
401   new_value = old_value | d;
402   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
403     KMP_CPU_PAUSE();
404     old_value = TCR_8(*p);
405     new_value = old_value | d;
406   }
407   return old_value;
408 }
409 
410 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
411   kmp_uint64 old_value, new_value;
412 
413   old_value = TCR_8(*p);
414   new_value = old_value & d;
415   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416     KMP_CPU_PAUSE();
417     old_value = TCR_8(*p);
418     new_value = old_value & d;
419   }
420   return old_value;
421 }
422 
423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
424 
425 void __kmp_terminate_thread(int gtid) {
426   int status;
427   kmp_info_t *th = __kmp_threads[gtid];
428 
429   if (!th)
430     return;
431 
432 #ifdef KMP_CANCEL_THREADS
433   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
434   status = pthread_cancel(th->th.th_info.ds.ds_thread);
435   if (status != 0 && status != ESRCH) {
436     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
437               __kmp_msg_null);
438   }; // if
439 #endif
440   __kmp_yield(TRUE);
441 } //
442 
443 /* Set thread stack info according to values returned by pthread_getattr_np().
444    If values are unreasonable, assume call failed and use incremental stack
445    refinement method instead. Returns TRUE if the stack parameters could be
446    determined exactly, FALSE if incremental refinement is necessary. */
447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
448   int stack_data;
449 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
450   /* Linux* OS only -- no pthread_getattr_np support on OS X* */
451   pthread_attr_t attr;
452   int status;
453   size_t size = 0;
454   void *addr = 0;
455 
456   /* Always do incremental stack refinement for ubermaster threads since the
457      initial thread stack range can be reduced by sibling thread creation so
458      pthread_attr_getstack may cause thread gtid aliasing */
459   if (!KMP_UBER_GTID(gtid)) {
460 
461     /* Fetch the real thread attributes */
462     status = pthread_attr_init(&attr);
463     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
464 #if KMP_OS_FREEBSD || KMP_OS_NETBSD
465     status = pthread_attr_get_np(pthread_self(), &attr);
466     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
467 #else
468     status = pthread_getattr_np(pthread_self(), &attr);
469     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
470 #endif
471     status = pthread_attr_getstack(&attr, &addr, &size);
472     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
473     KA_TRACE(60,
474              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
475               " %lu, low addr: %p\n",
476               gtid, size, addr));
477     status = pthread_attr_destroy(&attr);
478     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
479   }
480 
481   if (size != 0 && addr != 0) { // was stack parameter determination successful?
482     /* Store the correct base and size */
483     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
484     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
485     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
486     return TRUE;
487   }
488 #endif /* KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD */
489   /* Use incremental refinement starting from initial conservative estimate */
490   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
491   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
492   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
493   return FALSE;
494 }
495 
496 static void *__kmp_launch_worker(void *thr) {
497   int status, old_type, old_state;
498 #ifdef KMP_BLOCK_SIGNALS
499   sigset_t new_set, old_set;
500 #endif /* KMP_BLOCK_SIGNALS */
501   void *exit_val;
502 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
503   void *volatile padding = 0;
504 #endif
505   int gtid;
506 
507   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
508   __kmp_gtid_set_specific(gtid);
509 #ifdef KMP_TDATA_GTID
510   __kmp_gtid = gtid;
511 #endif
512 #if KMP_STATS_ENABLED
513   // set __thread local index to point to thread-specific stats
514   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
515   KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life);
516   KMP_SET_THREAD_STATE(IDLE);
517   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
518 #endif
519 
520 #if USE_ITT_BUILD
521   __kmp_itt_thread_name(gtid);
522 #endif /* USE_ITT_BUILD */
523 
524 #if KMP_AFFINITY_SUPPORTED
525   __kmp_affinity_set_init_mask(gtid, FALSE);
526 #endif
527 
528 #ifdef KMP_CANCEL_THREADS
529   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
530   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
531   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
532   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
533   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
534 #endif
535 
536 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
537   // Set FP control regs to be a copy of the parallel initialization thread's.
538   __kmp_clear_x87_fpu_status_word();
539   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
540   __kmp_load_mxcsr(&__kmp_init_mxcsr);
541 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
542 
543 #ifdef KMP_BLOCK_SIGNALS
544   status = sigfillset(&new_set);
545   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
546   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
547   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
548 #endif /* KMP_BLOCK_SIGNALS */
549 
550 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
551   if (__kmp_stkoffset > 0 && gtid > 0) {
552     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
553   }
554 #endif
555 
556   KMP_MB();
557   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
558 
559   __kmp_check_stack_overlap((kmp_info_t *)thr);
560 
561   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
562 
563 #ifdef KMP_BLOCK_SIGNALS
564   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
565   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
566 #endif /* KMP_BLOCK_SIGNALS */
567 
568   return exit_val;
569 }
570 
571 #if KMP_USE_MONITOR
572 /* The monitor thread controls all of the threads in the complex */
573 
574 static void *__kmp_launch_monitor(void *thr) {
575   int status, old_type, old_state;
576 #ifdef KMP_BLOCK_SIGNALS
577   sigset_t new_set;
578 #endif /* KMP_BLOCK_SIGNALS */
579   struct timespec interval;
580   int yield_count;
581   int yield_cycles = 0;
582 
583   KMP_MB(); /* Flush all pending memory write invalidates.  */
584 
585   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
586 
587   /* register us as the monitor thread */
588   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
589 #ifdef KMP_TDATA_GTID
590   __kmp_gtid = KMP_GTID_MONITOR;
591 #endif
592 
593   KMP_MB();
594 
595 #if USE_ITT_BUILD
596   // Instruct Intel(R) Threading Tools to ignore monitor thread.
597   __kmp_itt_thread_ignore();
598 #endif /* USE_ITT_BUILD */
599 
600   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
601                        (kmp_info_t *)thr);
602 
603   __kmp_check_stack_overlap((kmp_info_t *)thr);
604 
605 #ifdef KMP_CANCEL_THREADS
606   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
607   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
608   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
609   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
610   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
611 #endif
612 
613 #if KMP_REAL_TIME_FIX
614   // This is a potential fix which allows application with real-time scheduling
615   // policy work. However, decision about the fix is not made yet, so it is
616   // disabled by default.
617   { // Are program started with real-time scheduling policy?
618     int sched = sched_getscheduler(0);
619     if (sched == SCHED_FIFO || sched == SCHED_RR) {
620       // Yes, we are a part of real-time application. Try to increase the
621       // priority of the monitor.
622       struct sched_param param;
623       int max_priority = sched_get_priority_max(sched);
624       int rc;
625       KMP_WARNING(RealTimeSchedNotSupported);
626       sched_getparam(0, &param);
627       if (param.sched_priority < max_priority) {
628         param.sched_priority += 1;
629         rc = sched_setscheduler(0, sched, &param);
630         if (rc != 0) {
631           int error = errno;
632           kmp_msg_t err_code = KMP_ERR(error);
633           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
634                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
635           if (__kmp_generate_warnings == kmp_warnings_off) {
636             __kmp_str_free(&err_code.str);
637           }
638         }; // if
639       } else {
640         // We cannot abort here, because number of CPUs may be enough for all
641         // the threads, including the monitor thread, so application could
642         // potentially work...
643         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
644                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
645                   __kmp_msg_null);
646       }; // if
647     }; // if
648     // AC: free thread that waits for monitor started
649     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
650   }
651 #endif // KMP_REAL_TIME_FIX
652 
653   KMP_MB(); /* Flush all pending memory write invalidates.  */
654 
655   if (__kmp_monitor_wakeups == 1) {
656     interval.tv_sec = 1;
657     interval.tv_nsec = 0;
658   } else {
659     interval.tv_sec = 0;
660     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
661   }
662 
663   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
664 
665   if (__kmp_yield_cycle) {
666     __kmp_yielding_on = 0; /* Start out with yielding shut off */
667     yield_count = __kmp_yield_off_count;
668   } else {
669     __kmp_yielding_on = 1; /* Yielding is on permanently */
670   }
671 
672   while (!TCR_4(__kmp_global.g.g_done)) {
673     struct timespec now;
674     struct timeval tval;
675 
676     /*  This thread monitors the state of the system */
677 
678     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
679 
680     status = gettimeofday(&tval, NULL);
681     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
682     TIMEVAL_TO_TIMESPEC(&tval, &now);
683 
684     now.tv_sec += interval.tv_sec;
685     now.tv_nsec += interval.tv_nsec;
686 
687     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
688       now.tv_sec += 1;
689       now.tv_nsec -= KMP_NSEC_PER_SEC;
690     }
691 
692     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
693     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
694     // AC: the monitor should not fall asleep if g_done has been set
695     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
696       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
697                                       &__kmp_wait_mx.m_mutex, &now);
698       if (status != 0) {
699         if (status != ETIMEDOUT && status != EINTR) {
700           KMP_SYSFAIL("pthread_cond_timedwait", status);
701         };
702       };
703     };
704     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
705     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
706 
707     if (__kmp_yield_cycle) {
708       yield_cycles++;
709       if ((yield_cycles % yield_count) == 0) {
710         if (__kmp_yielding_on) {
711           __kmp_yielding_on = 0; /* Turn it off now */
712           yield_count = __kmp_yield_off_count;
713         } else {
714           __kmp_yielding_on = 1; /* Turn it on now */
715           yield_count = __kmp_yield_on_count;
716         }
717         yield_cycles = 0;
718       }
719     } else {
720       __kmp_yielding_on = 1;
721     }
722 
723     TCW_4(__kmp_global.g.g_time.dt.t_value,
724           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
725 
726     KMP_MB(); /* Flush all pending memory write invalidates.  */
727   }
728 
729   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
730 
731 #ifdef KMP_BLOCK_SIGNALS
732   status = sigfillset(&new_set);
733   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
734   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
735   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
736 #endif /* KMP_BLOCK_SIGNALS */
737 
738   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
739 
740   if (__kmp_global.g.g_abort != 0) {
741     /* now we need to terminate the worker threads  */
742     /* the value of t_abort is the signal we caught */
743 
744     int gtid;
745 
746     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
747                   __kmp_global.g.g_abort));
748 
749     /* terminate the OpenMP worker threads */
750     /* TODO this is not valid for sibling threads!!
751      * the uber master might not be 0 anymore.. */
752     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
753       __kmp_terminate_thread(gtid);
754 
755     __kmp_cleanup();
756 
757     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
758                   __kmp_global.g.g_abort));
759 
760     if (__kmp_global.g.g_abort > 0)
761       raise(__kmp_global.g.g_abort);
762   }
763 
764   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
765 
766   return thr;
767 }
768 #endif // KMP_USE_MONITOR
769 
770 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
771   pthread_t handle;
772   pthread_attr_t thread_attr;
773   int status;
774 
775   th->th.th_info.ds.ds_gtid = gtid;
776 
777 #if KMP_STATS_ENABLED
778   // sets up worker thread stats
779   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
780 
781   // th->th.th_stats is used to transfer thread-specific stats-pointer to
782   // __kmp_launch_worker. So when thread is created (goes into
783   // __kmp_launch_worker) it will set its __thread local pointer to
784   // th->th.th_stats
785   if (!KMP_UBER_GTID(gtid)) {
786     th->th.th_stats = __kmp_stats_list->push_back(gtid);
787   } else {
788     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
789     // so set the th->th.th_stats field to it.
790     th->th.th_stats = __kmp_stats_thread_ptr;
791   }
792   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
793 
794 #endif // KMP_STATS_ENABLED
795 
796   if (KMP_UBER_GTID(gtid)) {
797     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
798     th->th.th_info.ds.ds_thread = pthread_self();
799     __kmp_set_stack_info(gtid, th);
800     __kmp_check_stack_overlap(th);
801     return;
802   }; // if
803 
804   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
805 
806   KMP_MB(); /* Flush all pending memory write invalidates.  */
807 
808 #ifdef KMP_THREAD_ATTR
809   status = pthread_attr_init(&thread_attr);
810   if (status != 0) {
811     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantInitThreadAttrs), KMP_ERR(status),
812               __kmp_msg_null);
813   }; // if
814   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
815   if (status != 0) {
816     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerState), KMP_ERR(status),
817               __kmp_msg_null);
818   }; // if
819 
820   /* Set stack size for this thread now.
821      The multiple of 2 is there because on some machines, requesting an unusual
822      stacksize causes the thread to have an offset before the dummy alloca()
823      takes place to create the offset.  Since we want the user to have a
824      sufficient stacksize AND support a stack offset, we alloca() twice the
825      offset so that the upcoming alloca() does not eliminate any premade offset,
826      and also gives the user the stack space they requested for all threads */
827   stack_size += gtid * __kmp_stkoffset * 2;
828 
829   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
830                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
831                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
832 
833 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
834   status = pthread_attr_setstacksize(&thread_attr, stack_size);
835 #ifdef KMP_BACKUP_STKSIZE
836   if (status != 0) {
837     if (!__kmp_env_stksize) {
838       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
839       __kmp_stksize = KMP_BACKUP_STKSIZE;
840       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
841                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
842                     "bytes\n",
843                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
844       status = pthread_attr_setstacksize(&thread_attr, stack_size);
845     }; // if
846   }; // if
847 #endif /* KMP_BACKUP_STKSIZE */
848   if (status != 0) {
849     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size),
850               KMP_ERR(status), KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
851   }; // if
852 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
853 
854 #endif /* KMP_THREAD_ATTR */
855 
856   status =
857       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
858   if (status != 0 || !handle) { // ??? Why do we check handle??
859 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
860     if (status == EINVAL) {
861       __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size),
862                 KMP_ERR(status), KMP_HNT(IncreaseWorkerStackSize),
863                 __kmp_msg_null);
864     };
865     if (status == ENOMEM) {
866       __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size),
867                 KMP_ERR(status), KMP_HNT(DecreaseWorkerStackSize),
868                 __kmp_msg_null);
869     };
870 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
871     if (status == EAGAIN) {
872       __kmp_msg(kmp_ms_fatal, KMP_MSG(NoResourcesForWorkerThread),
873                 KMP_ERR(status), KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
874     }; // if
875     KMP_SYSFAIL("pthread_create", status);
876   }; // if
877 
878   th->th.th_info.ds.ds_thread = handle;
879 
880 #ifdef KMP_THREAD_ATTR
881   status = pthread_attr_destroy(&thread_attr);
882   if (status) {
883     kmp_msg_t err_code = KMP_ERR(status);
884     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
885               __kmp_msg_null);
886     if (__kmp_generate_warnings == kmp_warnings_off) {
887       __kmp_str_free(&err_code.str);
888     }
889   }; // if
890 #endif /* KMP_THREAD_ATTR */
891 
892   KMP_MB(); /* Flush all pending memory write invalidates.  */
893 
894   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
895 
896 } // __kmp_create_worker
897 
898 #if KMP_USE_MONITOR
899 void __kmp_create_monitor(kmp_info_t *th) {
900   pthread_t handle;
901   pthread_attr_t thread_attr;
902   size_t size;
903   int status;
904   int auto_adj_size = FALSE;
905 
906   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
907     // We don't need monitor thread in case of MAX_BLOCKTIME
908     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
909                   "MAX blocktime\n"));
910     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
911     th->th.th_info.ds.ds_gtid = 0;
912     return;
913   }
914   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
915 
916   KMP_MB(); /* Flush all pending memory write invalidates.  */
917 
918   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
919   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
920 #if KMP_REAL_TIME_FIX
921   TCW_4(__kmp_global.g.g_time.dt.t_value,
922         -1); // Will use it for synchronization a bit later.
923 #else
924   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
925 #endif // KMP_REAL_TIME_FIX
926 
927 #ifdef KMP_THREAD_ATTR
928   if (__kmp_monitor_stksize == 0) {
929     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
930     auto_adj_size = TRUE;
931   }
932   status = pthread_attr_init(&thread_attr);
933   if (status != 0) {
934     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantInitThreadAttrs), KMP_ERR(status),
935               __kmp_msg_null);
936   }; // if
937   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
938   if (status != 0) {
939     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetMonitorState), KMP_ERR(status),
940               __kmp_msg_null);
941   }; // if
942 
943 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
944   status = pthread_attr_getstacksize(&thread_attr, &size);
945   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
946 #else
947   size = __kmp_sys_min_stksize;
948 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
949 #endif /* KMP_THREAD_ATTR */
950 
951   if (__kmp_monitor_stksize == 0) {
952     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
953   }
954   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
955     __kmp_monitor_stksize = __kmp_sys_min_stksize;
956   }
957 
958   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
959                 "requested stacksize = %lu bytes\n",
960                 size, __kmp_monitor_stksize));
961 
962 retry:
963 
964 /* Set stack size for this thread now. */
965 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
966   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
967                 __kmp_monitor_stksize));
968   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
969   if (status != 0) {
970     if (auto_adj_size) {
971       __kmp_monitor_stksize *= 2;
972       goto retry;
973     }
974     kmp_msg_t err_code = KMP_ERR(status);
975     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
976               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
977               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
978     if (__kmp_generate_warnings == kmp_warnings_off) {
979       __kmp_str_free(&err_code.str);
980     }
981   }; // if
982 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
983 
984   status =
985       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
986 
987   if (status != 0) {
988 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
989     if (status == EINVAL) {
990       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
991         __kmp_monitor_stksize *= 2;
992         goto retry;
993       }
994       __kmp_msg(
995           kmp_ms_fatal, KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
996           KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), __kmp_msg_null);
997     }; // if
998     if (status == ENOMEM) {
999       __kmp_msg(
1000           kmp_ms_fatal, KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1001           KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), __kmp_msg_null);
1002     }; // if
1003 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1004     if (status == EAGAIN) {
1005       __kmp_msg(kmp_ms_fatal, KMP_MSG(NoResourcesForMonitorThread),
1006                 KMP_ERR(status), KMP_HNT(DecreaseNumberOfThreadsInUse),
1007                 __kmp_msg_null);
1008     }; // if
1009     KMP_SYSFAIL("pthread_create", status);
1010   }; // if
1011 
1012   th->th.th_info.ds.ds_thread = handle;
1013 
1014 #if KMP_REAL_TIME_FIX
1015   // Wait for the monitor thread is really started and set its *priority*.
1016   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1017                    sizeof(__kmp_global.g.g_time.dt.t_value));
1018   __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value,
1019                      -1, &__kmp_neq_4, NULL);
1020 #endif // KMP_REAL_TIME_FIX
1021 
1022 #ifdef KMP_THREAD_ATTR
1023   status = pthread_attr_destroy(&thread_attr);
1024   if (status != 0) {
1025     kmp_msg_t err_code = KMP_ERR(status);
1026     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1027               __kmp_msg_null);
1028     if (__kmp_generate_warnings == kmp_warnings_off) {
1029       __kmp_str_free(&err_code.str);
1030     }
1031   }; // if
1032 #endif
1033 
1034   KMP_MB(); /* Flush all pending memory write invalidates.  */
1035 
1036   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1037                 th->th.th_info.ds.ds_thread));
1038 
1039 } // __kmp_create_monitor
1040 #endif // KMP_USE_MONITOR
1041 
1042 void __kmp_exit_thread(int exit_status) {
1043   pthread_exit((void *)(intptr_t)exit_status);
1044 } // __kmp_exit_thread
1045 
1046 #if KMP_USE_MONITOR
1047 void __kmp_resume_monitor();
1048 
1049 void __kmp_reap_monitor(kmp_info_t *th) {
1050   int status;
1051   void *exit_val;
1052 
1053   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1054                 " %#.8lx\n",
1055                 th->th.th_info.ds.ds_thread));
1056 
1057   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1058   // If both tid and gtid are 0, it means the monitor did not ever start.
1059   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1060   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1061   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1062     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1063     return;
1064   }; // if
1065 
1066   KMP_MB(); /* Flush all pending memory write invalidates.  */
1067 
1068   /* First, check to see whether the monitor thread exists to wake it up. This
1069      is to avoid performance problem when the monitor sleeps during
1070      blocktime-size interval */
1071 
1072   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1073   if (status != ESRCH) {
1074     __kmp_resume_monitor(); // Wake up the monitor thread
1075   }
1076   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1077   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1078   if (exit_val != th) {
1079     __kmp_msg(kmp_ms_fatal, KMP_MSG(ReapMonitorError), KMP_ERR(status),
1080               __kmp_msg_null);
1081   }
1082 
1083   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1084   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1085 
1086   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1087                 " %#.8lx\n",
1088                 th->th.th_info.ds.ds_thread));
1089 
1090   KMP_MB(); /* Flush all pending memory write invalidates.  */
1091 }
1092 #endif // KMP_USE_MONITOR
1093 
1094 void __kmp_reap_worker(kmp_info_t *th) {
1095   int status;
1096   void *exit_val;
1097 
1098   KMP_MB(); /* Flush all pending memory write invalidates.  */
1099 
1100   KA_TRACE(
1101       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1102 
1103   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1104 #ifdef KMP_DEBUG
1105   /* Don't expose these to the user until we understand when they trigger */
1106   if (status != 0) {
1107     __kmp_msg(kmp_ms_fatal, KMP_MSG(ReapWorkerError), KMP_ERR(status),
1108               __kmp_msg_null);
1109   }
1110   if (exit_val != th) {
1111     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1112                   "exit_val = %p\n",
1113                   th->th.th_info.ds.ds_gtid, exit_val));
1114   }
1115 #endif /* KMP_DEBUG */
1116 
1117   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1118                 th->th.th_info.ds.ds_gtid));
1119 
1120   KMP_MB(); /* Flush all pending memory write invalidates.  */
1121 }
1122 
1123 #if KMP_HANDLE_SIGNALS
1124 
1125 static void __kmp_null_handler(int signo) {
1126   //  Do nothing, for doing SIG_IGN-type actions.
1127 } // __kmp_null_handler
1128 
1129 static void __kmp_team_handler(int signo) {
1130   if (__kmp_global.g.g_abort == 0) {
1131 /* Stage 1 signal handler, let's shut down all of the threads */
1132 #ifdef KMP_DEBUG
1133     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1134 #endif
1135     switch (signo) {
1136     case SIGHUP:
1137     case SIGINT:
1138     case SIGQUIT:
1139     case SIGILL:
1140     case SIGABRT:
1141     case SIGFPE:
1142     case SIGBUS:
1143     case SIGSEGV:
1144 #ifdef SIGSYS
1145     case SIGSYS:
1146 #endif
1147     case SIGTERM:
1148       if (__kmp_debug_buf) {
1149         __kmp_dump_debug_buffer();
1150       }; // if
1151       KMP_MB(); // Flush all pending memory write invalidates.
1152       TCW_4(__kmp_global.g.g_abort, signo);
1153       KMP_MB(); // Flush all pending memory write invalidates.
1154       TCW_4(__kmp_global.g.g_done, TRUE);
1155       KMP_MB(); // Flush all pending memory write invalidates.
1156       break;
1157     default:
1158 #ifdef KMP_DEBUG
1159       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1160 #endif
1161       break;
1162     }; // switch
1163   }; // if
1164 } // __kmp_team_handler
1165 
1166 static void __kmp_sigaction(int signum, const struct sigaction *act,
1167                             struct sigaction *oldact) {
1168   int rc = sigaction(signum, act, oldact);
1169   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1170 }
1171 
1172 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1173                                       int parallel_init) {
1174   KMP_MB(); // Flush all pending memory write invalidates.
1175   KB_TRACE(60,
1176            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1177   if (parallel_init) {
1178     struct sigaction new_action;
1179     struct sigaction old_action;
1180     new_action.sa_handler = handler_func;
1181     new_action.sa_flags = 0;
1182     sigfillset(&new_action.sa_mask);
1183     __kmp_sigaction(sig, &new_action, &old_action);
1184     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1185       sigaddset(&__kmp_sigset, sig);
1186     } else {
1187       // Restore/keep user's handler if one previously installed.
1188       __kmp_sigaction(sig, &old_action, NULL);
1189     }; // if
1190   } else {
1191     // Save initial/system signal handlers to see if user handlers installed.
1192     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1193   }; // if
1194   KMP_MB(); // Flush all pending memory write invalidates.
1195 } // __kmp_install_one_handler
1196 
1197 static void __kmp_remove_one_handler(int sig) {
1198   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1199   if (sigismember(&__kmp_sigset, sig)) {
1200     struct sigaction old;
1201     KMP_MB(); // Flush all pending memory write invalidates.
1202     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1203     if ((old.sa_handler != __kmp_team_handler) &&
1204         (old.sa_handler != __kmp_null_handler)) {
1205       // Restore the users signal handler.
1206       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1207                     "restoring: sig=%d\n",
1208                     sig));
1209       __kmp_sigaction(sig, &old, NULL);
1210     }; // if
1211     sigdelset(&__kmp_sigset, sig);
1212     KMP_MB(); // Flush all pending memory write invalidates.
1213   }; // if
1214 } // __kmp_remove_one_handler
1215 
1216 void __kmp_install_signals(int parallel_init) {
1217   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1218   if (__kmp_handle_signals || !parallel_init) {
1219     // If ! parallel_init, we do not install handlers, just save original
1220     // handlers. Let us do it even __handle_signals is 0.
1221     sigemptyset(&__kmp_sigset);
1222     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1223     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1224     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1225     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1226     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1227     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1228     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1229     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1230 #ifdef SIGSYS
1231     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1232 #endif // SIGSYS
1233     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1234 #ifdef SIGPIPE
1235     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1236 #endif // SIGPIPE
1237   }; // if
1238 } // __kmp_install_signals
1239 
1240 void __kmp_remove_signals(void) {
1241   int sig;
1242   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1243   for (sig = 1; sig < NSIG; ++sig) {
1244     __kmp_remove_one_handler(sig);
1245   }; // for sig
1246 } // __kmp_remove_signals
1247 
1248 #endif // KMP_HANDLE_SIGNALS
1249 
1250 void __kmp_enable(int new_state) {
1251 #ifdef KMP_CANCEL_THREADS
1252   int status, old_state;
1253   status = pthread_setcancelstate(new_state, &old_state);
1254   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1255   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1256 #endif
1257 }
1258 
1259 void __kmp_disable(int *old_state) {
1260 #ifdef KMP_CANCEL_THREADS
1261   int status;
1262   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1263   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1264 #endif
1265 }
1266 
1267 static void __kmp_atfork_prepare(void) { /*  nothing to do  */
1268 }
1269 
1270 static void __kmp_atfork_parent(void) { /*  nothing to do  */
1271 }
1272 
1273 /* Reset the library so execution in the child starts "all over again" with
1274    clean data structures in initial states.  Don't worry about freeing memory
1275    allocated by parent, just abandon it to be safe. */
1276 static void __kmp_atfork_child(void) {
1277   /* TODO make sure this is done right for nested/sibling */
1278   // ATT:  Memory leaks are here? TODO: Check it and fix.
1279   /* KMP_ASSERT( 0 ); */
1280 
1281   ++__kmp_fork_count;
1282 
1283 #if KMP_AFFINITY_SUPPORTED
1284 #if KMP_OS_LINUX
1285   // reset the affinity in the child to the initial thread
1286   // affinity in the parent
1287   kmp_set_thread_affinity_mask_initial();
1288 #endif
1289   // Set default not to bind threads tightly in the child (we’re expecting
1290   // over-subscription after the fork and this can improve things for
1291   // scripting languages that use OpenMP inside process-parallel code).
1292   __kmp_affinity_type = affinity_none;
1293 #if OMP_40_ENABLED
1294   if (__kmp_nested_proc_bind.bind_types != NULL) {
1295     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1296   }
1297 #endif // OMP_40_ENABLED
1298 #endif // KMP_AFFINITY_SUPPORTED
1299 
1300   __kmp_init_runtime = FALSE;
1301 #if KMP_USE_MONITOR
1302   __kmp_init_monitor = 0;
1303 #endif
1304   __kmp_init_parallel = FALSE;
1305   __kmp_init_middle = FALSE;
1306   __kmp_init_serial = FALSE;
1307   TCW_4(__kmp_init_gtid, FALSE);
1308   __kmp_init_common = FALSE;
1309 
1310   TCW_4(__kmp_init_user_locks, FALSE);
1311 #if !KMP_USE_DYNAMIC_LOCK
1312   __kmp_user_lock_table.used = 1;
1313   __kmp_user_lock_table.allocated = 0;
1314   __kmp_user_lock_table.table = NULL;
1315   __kmp_lock_blocks = NULL;
1316 #endif
1317 
1318   __kmp_all_nth = 0;
1319   TCW_4(__kmp_nth, 0);
1320 
1321   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1322      here so threadprivate doesn't use stale data */
1323   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1324                 __kmp_threadpriv_cache_list));
1325 
1326   while (__kmp_threadpriv_cache_list != NULL) {
1327 
1328     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1329       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1330                     &(*__kmp_threadpriv_cache_list->addr)));
1331 
1332       *__kmp_threadpriv_cache_list->addr = NULL;
1333     }
1334     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1335   }
1336 
1337   __kmp_init_runtime = FALSE;
1338 
1339   /* reset statically initialized locks */
1340   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1341   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1342   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1343 
1344   /* This is necessary to make sure no stale data is left around */
1345   /* AC: customers complain that we use unsafe routines in the atfork
1346      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1347      in dynamic_link when check the presence of shared tbbmalloc library.
1348      Suggestion is to make the library initialization lazier, similar
1349      to what done for __kmpc_begin(). */
1350   // TODO: synchronize all static initializations with regular library
1351   //       startup; look at kmp_global.cpp and etc.
1352   //__kmp_internal_begin ();
1353 }
1354 
1355 void __kmp_register_atfork(void) {
1356   if (__kmp_need_register_atfork) {
1357     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1358                                 __kmp_atfork_child);
1359     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1360     __kmp_need_register_atfork = FALSE;
1361   }
1362 }
1363 
1364 void __kmp_suspend_initialize(void) {
1365   int status;
1366   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1367   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1368   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1369   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1370 }
1371 
1372 static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1373   ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1374   if (th->th.th_suspend_init_count <= __kmp_fork_count) {
1375     /* this means we haven't initialized the suspension pthread objects for this
1376        thread in this instance of the process */
1377     int status;
1378     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1379                                &__kmp_suspend_cond_attr);
1380     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1381     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1382                                 &__kmp_suspend_mutex_attr);
1383     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1384     *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1;
1385     ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1386   };
1387 }
1388 
1389 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1390   if (th->th.th_suspend_init_count > __kmp_fork_count) {
1391     /* this means we have initialize the suspension pthread objects for this
1392        thread in this instance of the process */
1393     int status;
1394 
1395     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1396     if (status != 0 && status != EBUSY) {
1397       KMP_SYSFAIL("pthread_cond_destroy", status);
1398     };
1399     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1400     if (status != 0 && status != EBUSY) {
1401       KMP_SYSFAIL("pthread_mutex_destroy", status);
1402     };
1403     --th->th.th_suspend_init_count;
1404     KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count);
1405   }
1406 }
1407 
1408 
1409 /* This routine puts the calling thread to sleep after setting the
1410    sleep bit for the indicated flag variable to true. */
1411 template <class C>
1412 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1413   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1414   kmp_info_t *th = __kmp_threads[th_gtid];
1415   int status;
1416   typename C::flag_t old_spin;
1417 
1418   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1419                 flag->get()));
1420 
1421   __kmp_suspend_initialize_thread(th);
1422 
1423   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1424   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1425 
1426   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1427                 th_gtid, flag->get()));
1428 
1429   /* TODO: shouldn't this use release semantics to ensure that
1430      __kmp_suspend_initialize_thread gets called first? */
1431   old_spin = flag->set_sleeping();
1432 
1433   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1434                " was %x\n",
1435                th_gtid, flag->get(), *(flag->get()), old_spin));
1436 
1437   if (flag->done_check_val(old_spin)) {
1438     old_spin = flag->unset_sleeping();
1439     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1440                  "for spin(%p)\n",
1441                  th_gtid, flag->get()));
1442   } else {
1443     /* Encapsulate in a loop as the documentation states that this may
1444        "with low probability" return when the condition variable has
1445        not been signaled or broadcast */
1446     int deactivated = FALSE;
1447     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1448 
1449     while (flag->is_sleeping()) {
1450 #ifdef DEBUG_SUSPEND
1451       char buffer[128];
1452       __kmp_suspend_count++;
1453       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1454       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1455                    buffer);
1456 #endif
1457       // Mark the thread as no longer active (only in the first iteration of the
1458       // loop).
1459       if (!deactivated) {
1460         th->th.th_active = FALSE;
1461         if (th->th.th_active_in_pool) {
1462           th->th.th_active_in_pool = FALSE;
1463           KMP_TEST_THEN_DEC32(&__kmp_thread_pool_active_nth);
1464           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1465         }
1466         deactivated = TRUE;
1467       }
1468 
1469 #if USE_SUSPEND_TIMEOUT
1470       struct timespec now;
1471       struct timeval tval;
1472       int msecs;
1473 
1474       status = gettimeofday(&tval, NULL);
1475       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1476       TIMEVAL_TO_TIMESPEC(&tval, &now);
1477 
1478       msecs = (4 * __kmp_dflt_blocktime) + 200;
1479       now.tv_sec += msecs / 1000;
1480       now.tv_nsec += (msecs % 1000) * 1000;
1481 
1482       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1483                     "pthread_cond_timedwait\n",
1484                     th_gtid));
1485       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1486                                       &th->th.th_suspend_mx.m_mutex, &now);
1487 #else
1488       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1489                     " pthread_cond_wait\n",
1490                     th_gtid));
1491       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1492                                  &th->th.th_suspend_mx.m_mutex);
1493 #endif
1494 
1495       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1496         KMP_SYSFAIL("pthread_cond_wait", status);
1497       }
1498 #ifdef KMP_DEBUG
1499       if (status == ETIMEDOUT) {
1500         if (flag->is_sleeping()) {
1501           KF_TRACE(100,
1502                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1503         } else {
1504           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1505                        "not set!\n",
1506                        th_gtid));
1507         }
1508       } else if (flag->is_sleeping()) {
1509         KF_TRACE(100,
1510                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1511       }
1512 #endif
1513     } // while
1514 
1515     // Mark the thread as active again (if it was previous marked as inactive)
1516     if (deactivated) {
1517       th->th.th_active = TRUE;
1518       if (TCR_4(th->th.th_in_pool)) {
1519         KMP_TEST_THEN_INC32(&__kmp_thread_pool_active_nth);
1520         th->th.th_active_in_pool = TRUE;
1521       }
1522     }
1523   }
1524 #ifdef DEBUG_SUSPEND
1525   {
1526     char buffer[128];
1527     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1528     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1529                  buffer);
1530   }
1531 #endif
1532 
1533   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1534   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1535   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1536 }
1537 
1538 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1539   __kmp_suspend_template(th_gtid, flag);
1540 }
1541 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1542   __kmp_suspend_template(th_gtid, flag);
1543 }
1544 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1545   __kmp_suspend_template(th_gtid, flag);
1546 }
1547 
1548 /* This routine signals the thread specified by target_gtid to wake up
1549    after setting the sleep bit indicated by the flag argument to FALSE.
1550    The target thread must already have called __kmp_suspend_template() */
1551 template <class C>
1552 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1553   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1554   kmp_info_t *th = __kmp_threads[target_gtid];
1555   int status;
1556 
1557 #ifdef KMP_DEBUG
1558   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1559 #endif
1560 
1561   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1562                 gtid, target_gtid));
1563   KMP_DEBUG_ASSERT(gtid != target_gtid);
1564 
1565   __kmp_suspend_initialize_thread(th);
1566 
1567   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1568   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1569 
1570   if (!flag) { // coming from __kmp_null_resume_wrapper
1571     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1572   }
1573 
1574   // First, check if the flag is null or its type has changed. If so, someone
1575   // else woke it up.
1576   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1577     // simply shows what
1578     // flag was cast to
1579     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1580                  "awake: flag(%p)\n",
1581                  gtid, target_gtid, NULL));
1582     status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1583     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1584     return;
1585   } else { // if multiple threads are sleeping, flag should be internally
1586     // referring to a specific thread here
1587     typename C::flag_t old_spin = flag->unset_sleeping();
1588     if (!flag->is_sleeping_val(old_spin)) {
1589       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1590                    "awake: flag(%p): "
1591                    "%u => %u\n",
1592                    gtid, target_gtid, flag->get(), old_spin, *flag->get()));
1593       status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1594       KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1595       return;
1596     }
1597     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1598                  "sleep bit for flag's loc(%p): "
1599                  "%u => %u\n",
1600                  gtid, target_gtid, flag->get(), old_spin, *flag->get()));
1601   }
1602   TCW_PTR(th->th.th_sleep_loc, NULL);
1603 
1604 #ifdef DEBUG_SUSPEND
1605   {
1606     char buffer[128];
1607     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1608     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1609                  target_gtid, buffer);
1610   }
1611 #endif
1612   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1613   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1614   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1615   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1616   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1617                 " for T#%d\n",
1618                 gtid, target_gtid));
1619 }
1620 
1621 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1622   __kmp_resume_template(target_gtid, flag);
1623 }
1624 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1625   __kmp_resume_template(target_gtid, flag);
1626 }
1627 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1628   __kmp_resume_template(target_gtid, flag);
1629 }
1630 
1631 #if KMP_USE_MONITOR
1632 void __kmp_resume_monitor() {
1633   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1634   int status;
1635 #ifdef KMP_DEBUG
1636   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1637   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1638                 KMP_GTID_MONITOR));
1639   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1640 #endif
1641   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1642   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1643 #ifdef DEBUG_SUSPEND
1644   {
1645     char buffer[128];
1646     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1647     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1648                  KMP_GTID_MONITOR, buffer);
1649   }
1650 #endif
1651   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1652   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1653   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1654   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1655   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1656                 " for T#%d\n",
1657                 gtid, KMP_GTID_MONITOR));
1658 }
1659 #endif // KMP_USE_MONITOR
1660 
1661 void __kmp_yield(int cond) {
1662   if (!cond)
1663     return;
1664 #if KMP_USE_MONITOR
1665   if (!__kmp_yielding_on)
1666     return;
1667 #else
1668   if (__kmp_yield_cycle && !KMP_YIELD_NOW())
1669     return;
1670 #endif
1671   sched_yield();
1672 }
1673 
1674 void __kmp_gtid_set_specific(int gtid) {
1675   if (__kmp_init_gtid) {
1676     int status;
1677     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1678                                  (void *)(intptr_t)(gtid + 1));
1679     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1680   } else {
1681     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1682   }
1683 }
1684 
1685 int __kmp_gtid_get_specific() {
1686   int gtid;
1687   if (!__kmp_init_gtid) {
1688     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1689                   "KMP_GTID_SHUTDOWN\n"));
1690     return KMP_GTID_SHUTDOWN;
1691   }
1692   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1693   if (gtid == 0) {
1694     gtid = KMP_GTID_DNE;
1695   } else {
1696     gtid--;
1697   }
1698   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1699                 __kmp_gtid_threadprivate_key, gtid));
1700   return gtid;
1701 }
1702 
1703 double __kmp_read_cpu_time(void) {
1704   /*clock_t   t;*/
1705   struct tms buffer;
1706 
1707   /*t =*/times(&buffer);
1708 
1709   return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1710 }
1711 
1712 int __kmp_read_system_info(struct kmp_sys_info *info) {
1713   int status;
1714   struct rusage r_usage;
1715 
1716   memset(info, 0, sizeof(*info));
1717 
1718   status = getrusage(RUSAGE_SELF, &r_usage);
1719   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1720 
1721   // The maximum resident set size utilized (in kilobytes)
1722   info->maxrss = r_usage.ru_maxrss;
1723   // The number of page faults serviced without any I/O
1724   info->minflt = r_usage.ru_minflt;
1725   // The number of page faults serviced that required I/O
1726   info->majflt = r_usage.ru_majflt;
1727   // The number of times a process was "swapped" out of memory
1728   info->nswap = r_usage.ru_nswap;
1729   // The number of times the file system had to perform input
1730   info->inblock = r_usage.ru_inblock;
1731   // The number of times the file system had to perform output
1732   info->oublock = r_usage.ru_oublock;
1733   // The number of times a context switch was voluntarily
1734   info->nvcsw = r_usage.ru_nvcsw;
1735   // The number of times a context switch was forced
1736   info->nivcsw = r_usage.ru_nivcsw;
1737 
1738   return (status != 0);
1739 }
1740 
1741 void __kmp_read_system_time(double *delta) {
1742   double t_ns;
1743   struct timeval tval;
1744   struct timespec stop;
1745   int status;
1746 
1747   status = gettimeofday(&tval, NULL);
1748   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1749   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1750   t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1751   *delta = (t_ns * 1e-9);
1752 }
1753 
1754 void __kmp_clear_system_time(void) {
1755   struct timeval tval;
1756   int status;
1757   status = gettimeofday(&tval, NULL);
1758   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1759   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1760 }
1761 
1762 static int __kmp_get_xproc(void) {
1763 
1764   int r = 0;
1765 
1766 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
1767 
1768   r = sysconf(_SC_NPROCESSORS_ONLN);
1769 
1770 #elif KMP_OS_DARWIN
1771 
1772   // Bug C77011 High "OpenMP Threads and number of active cores".
1773 
1774   // Find the number of available CPUs.
1775   kern_return_t rc;
1776   host_basic_info_data_t info;
1777   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1778   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1779   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1780     // Cannot use KA_TRACE() here because this code works before trace support
1781     // is initialized.
1782     r = info.avail_cpus;
1783   } else {
1784     KMP_WARNING(CantGetNumAvailCPU);
1785     KMP_INFORM(AssumedNumCPU);
1786   }; // if
1787 
1788 #else
1789 
1790 #error "Unknown or unsupported OS."
1791 
1792 #endif
1793 
1794   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1795 
1796 } // __kmp_get_xproc
1797 
1798 int __kmp_read_from_file(char const *path, char const *format, ...) {
1799   int result;
1800   va_list args;
1801 
1802   va_start(args, format);
1803   FILE *f = fopen(path, "rb");
1804   if (f == NULL)
1805     return 0;
1806   result = vfscanf(f, format, args);
1807   fclose(f);
1808 
1809   return result;
1810 }
1811 
1812 void __kmp_runtime_initialize(void) {
1813   int status;
1814   pthread_mutexattr_t mutex_attr;
1815   pthread_condattr_t cond_attr;
1816 
1817   if (__kmp_init_runtime) {
1818     return;
1819   }; // if
1820 
1821 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1822   if (!__kmp_cpuinfo.initialized) {
1823     __kmp_query_cpuid(&__kmp_cpuinfo);
1824   }; // if
1825 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1826 
1827   __kmp_xproc = __kmp_get_xproc();
1828 
1829   if (sysconf(_SC_THREADS)) {
1830 
1831     /* Query the maximum number of threads */
1832     __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1833     if (__kmp_sys_max_nth == -1) {
1834       /* Unlimited threads for NPTL */
1835       __kmp_sys_max_nth = INT_MAX;
1836     } else if (__kmp_sys_max_nth <= 1) {
1837       /* Can't tell, just use PTHREAD_THREADS_MAX */
1838       __kmp_sys_max_nth = KMP_MAX_NTH;
1839     }
1840 
1841     /* Query the minimum stack size */
1842     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1843     if (__kmp_sys_min_stksize <= 1) {
1844       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1845     }
1846   }
1847 
1848   /* Set up minimum number of threads to switch to TLS gtid */
1849   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1850 
1851   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1852                               __kmp_internal_end_dest);
1853   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1854   status = pthread_mutexattr_init(&mutex_attr);
1855   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1856   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1857   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1858   status = pthread_condattr_init(&cond_attr);
1859   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1860   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1861   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1862 #if USE_ITT_BUILD
1863   __kmp_itt_initialize();
1864 #endif /* USE_ITT_BUILD */
1865 
1866   __kmp_init_runtime = TRUE;
1867 }
1868 
1869 void __kmp_runtime_destroy(void) {
1870   int status;
1871 
1872   if (!__kmp_init_runtime) {
1873     return; // Nothing to do.
1874   };
1875 
1876 #if USE_ITT_BUILD
1877   __kmp_itt_destroy();
1878 #endif /* USE_ITT_BUILD */
1879 
1880   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1881   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1882 
1883   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1884   if (status != 0 && status != EBUSY) {
1885     KMP_SYSFAIL("pthread_mutex_destroy", status);
1886   }
1887   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1888   if (status != 0 && status != EBUSY) {
1889     KMP_SYSFAIL("pthread_cond_destroy", status);
1890   }
1891 #if KMP_AFFINITY_SUPPORTED
1892   __kmp_affinity_uninitialize();
1893 #endif
1894 
1895   __kmp_init_runtime = FALSE;
1896 }
1897 
1898 /* Put the thread to sleep for a time period */
1899 /* NOTE: not currently used anywhere */
1900 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1901 
1902 /* Calculate the elapsed wall clock time for the user */
1903 void __kmp_elapsed(double *t) {
1904   int status;
1905 #ifdef FIX_SGI_CLOCK
1906   struct timespec ts;
1907 
1908   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1909   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1910   *t =
1911       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1912 #else
1913   struct timeval tv;
1914 
1915   status = gettimeofday(&tv, NULL);
1916   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1917   *t =
1918       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1919 #endif
1920 }
1921 
1922 /* Calculate the elapsed wall clock tick for the user */
1923 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1924 
1925 /* Return the current time stamp in nsec */
1926 kmp_uint64 __kmp_now_nsec() {
1927   struct timeval t;
1928   gettimeofday(&t, NULL);
1929   return KMP_NSEC_PER_SEC * t.tv_sec + 1000 * t.tv_usec;
1930 }
1931 
1932 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1933 /* Measure clock ticks per millisecond */
1934 void __kmp_initialize_system_tick() {
1935   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1936   kmp_uint64 nsec = __kmp_now_nsec();
1937   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1938   kmp_uint64 now;
1939   while ((now = __kmp_hardware_timestamp()) < goal)
1940     ;
1941   __kmp_ticks_per_msec =
1942       (kmp_uint64)(1e6 * (delay + (now - goal)) / (__kmp_now_nsec() - nsec));
1943 }
1944 #endif
1945 
1946 /* Determine whether the given address is mapped into the current address
1947    space. */
1948 
1949 int __kmp_is_address_mapped(void *addr) {
1950 
1951   int found = 0;
1952   int rc;
1953 
1954 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1955 
1956   /* On Linux* OS, read the /proc/<pid>/maps pseudo-file to get all the address
1957      ranges mapped into the address space. */
1958 
1959   char *name = __kmp_str_format("/proc/%d/maps", getpid());
1960   FILE *file = NULL;
1961 
1962   file = fopen(name, "r");
1963   KMP_ASSERT(file != NULL);
1964 
1965   for (;;) {
1966 
1967     void *beginning = NULL;
1968     void *ending = NULL;
1969     char perms[5];
1970 
1971     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1972     if (rc == EOF) {
1973       break;
1974     }; // if
1975     KMP_ASSERT(rc == 3 &&
1976                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1977 
1978     // Ending address is not included in the region, but beginning is.
1979     if ((addr >= beginning) && (addr < ending)) {
1980       perms[2] = 0; // 3th and 4th character does not matter.
1981       if (strcmp(perms, "rw") == 0) {
1982         // Memory we are looking for should be readable and writable.
1983         found = 1;
1984       }; // if
1985       break;
1986     }; // if
1987 
1988   }; // forever
1989 
1990   // Free resources.
1991   fclose(file);
1992   KMP_INTERNAL_FREE(name);
1993 
1994 #elif KMP_OS_DARWIN
1995 
1996   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
1997      using vm interface. */
1998 
1999   int buffer;
2000   vm_size_t count;
2001   rc = vm_read_overwrite(
2002       mach_task_self(), // Task to read memory of.
2003       (vm_address_t)(addr), // Address to read from.
2004       1, // Number of bytes to be read.
2005       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2006       &count // Address of var to save number of read bytes in.
2007       );
2008   if (rc == 0) {
2009     // Memory successfully read.
2010     found = 1;
2011   }; // if
2012 
2013 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD
2014 
2015   // FIXME(FreeBSD, NetBSD): Implement this
2016   found = 1;
2017 
2018 #else
2019 
2020 #error "Unknown or unsupported OS"
2021 
2022 #endif
2023 
2024   return found;
2025 
2026 } // __kmp_is_address_mapped
2027 
2028 #ifdef USE_LOAD_BALANCE
2029 
2030 #if KMP_OS_DARWIN
2031 
2032 // The function returns the rounded value of the system load average
2033 // during given time interval which depends on the value of
2034 // __kmp_load_balance_interval variable (default is 60 sec, other values
2035 // may be 300 sec or 900 sec).
2036 // It returns -1 in case of error.
2037 int __kmp_get_load_balance(int max) {
2038   double averages[3];
2039   int ret_avg = 0;
2040 
2041   int res = getloadavg(averages, 3);
2042 
2043   // Check __kmp_load_balance_interval to determine which of averages to use.
2044   // getloadavg() may return the number of samples less than requested that is
2045   // less than 3.
2046   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2047     ret_avg = averages[0]; // 1 min
2048   } else if ((__kmp_load_balance_interval >= 180 &&
2049               __kmp_load_balance_interval < 600) &&
2050              (res >= 2)) {
2051     ret_avg = averages[1]; // 5 min
2052   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2053     ret_avg = averages[2]; // 15 min
2054   } else { // Error occurred
2055     return -1;
2056   }
2057 
2058   return ret_avg;
2059 }
2060 
2061 #else // Linux* OS
2062 
2063 // The fuction returns number of running (not sleeping) threads, or -1 in case
2064 // of error. Error could be reported if Linux* OS kernel too old (without
2065 // "/proc" support). Counting running threads stops if max running threads
2066 // encountered.
2067 int __kmp_get_load_balance(int max) {
2068   static int permanent_error = 0;
2069   static int glb_running_threads = 0; // Saved count of the running threads for
2070   // the thread balance algortihm
2071   static double glb_call_time = 0; /* Thread balance algorithm call time */
2072 
2073   int running_threads = 0; // Number of running threads in the system.
2074 
2075   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2076   struct dirent *proc_entry = NULL;
2077 
2078   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2079   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2080   struct dirent *task_entry = NULL;
2081   int task_path_fixed_len;
2082 
2083   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2084   int stat_file = -1;
2085   int stat_path_fixed_len;
2086 
2087   int total_processes = 0; // Total number of processes in system.
2088   int total_threads = 0; // Total number of threads in system.
2089 
2090   double call_time = 0.0;
2091 
2092   __kmp_str_buf_init(&task_path);
2093   __kmp_str_buf_init(&stat_path);
2094 
2095   __kmp_elapsed(&call_time);
2096 
2097   if (glb_call_time &&
2098       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2099     running_threads = glb_running_threads;
2100     goto finish;
2101   }
2102 
2103   glb_call_time = call_time;
2104 
2105   // Do not spend time on scanning "/proc/" if we have a permanent error.
2106   if (permanent_error) {
2107     running_threads = -1;
2108     goto finish;
2109   }; // if
2110 
2111   if (max <= 0) {
2112     max = INT_MAX;
2113   }; // if
2114 
2115   // Open "/proc/" directory.
2116   proc_dir = opendir("/proc");
2117   if (proc_dir == NULL) {
2118     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2119     // error now and in subsequent calls.
2120     running_threads = -1;
2121     permanent_error = 1;
2122     goto finish;
2123   }; // if
2124 
2125   // Initialize fixed part of task_path. This part will not change.
2126   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2127   task_path_fixed_len = task_path.used; // Remember number of used characters.
2128 
2129   proc_entry = readdir(proc_dir);
2130   while (proc_entry != NULL) {
2131     // Proc entry is a directory and name starts with a digit. Assume it is a
2132     // process' directory.
2133     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2134 
2135       ++total_processes;
2136       // Make sure init process is the very first in "/proc", so we can replace
2137       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2138       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2139       // true (where "=>" is implication). Since C++ does not have => operator,
2140       // let us replace it with its equivalent: a => b == ! a || b.
2141       KMP_DEBUG_ASSERT(total_processes != 1 ||
2142                        strcmp(proc_entry->d_name, "1") == 0);
2143 
2144       // Construct task_path.
2145       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2146       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2147                         KMP_STRLEN(proc_entry->d_name));
2148       __kmp_str_buf_cat(&task_path, "/task", 5);
2149 
2150       task_dir = opendir(task_path.str);
2151       if (task_dir == NULL) {
2152         // Process can finish between reading "/proc/" directory entry and
2153         // opening process' "task/" directory. So, in general case we should not
2154         // complain, but have to skip this process and read the next one. But on
2155         // systems with no "task/" support we will spend lot of time to scan
2156         // "/proc/" tree again and again without any benefit. "init" process
2157         // (its pid is 1) should exist always, so, if we cannot open
2158         // "/proc/1/task/" directory, it means "task/" is not supported by
2159         // kernel. Report an error now and in the future.
2160         if (strcmp(proc_entry->d_name, "1") == 0) {
2161           running_threads = -1;
2162           permanent_error = 1;
2163           goto finish;
2164         }; // if
2165       } else {
2166         // Construct fixed part of stat file path.
2167         __kmp_str_buf_clear(&stat_path);
2168         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2169         __kmp_str_buf_cat(&stat_path, "/", 1);
2170         stat_path_fixed_len = stat_path.used;
2171 
2172         task_entry = readdir(task_dir);
2173         while (task_entry != NULL) {
2174           // It is a directory and name starts with a digit.
2175           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2176             ++total_threads;
2177 
2178             // Consruct complete stat file path. Easiest way would be:
2179             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2180             //  task_entry->d_name );
2181             // but seriae of __kmp_str_buf_cat works a bit faster.
2182             stat_path.used =
2183                 stat_path_fixed_len; // Reset stat path to its fixed part.
2184             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2185                               KMP_STRLEN(task_entry->d_name));
2186             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2187 
2188             // Note: Low-level API (open/read/close) is used. High-level API
2189             // (fopen/fclose)  works ~ 30 % slower.
2190             stat_file = open(stat_path.str, O_RDONLY);
2191             if (stat_file == -1) {
2192               // We cannot report an error because task (thread) can terminate
2193               // just before reading this file.
2194             } else {
2195               /* Content of "stat" file looks like:
2196                  24285 (program) S ...
2197 
2198                  It is a single line (if program name does not include funny
2199                  symbols). First number is a thread id, then name of executable
2200                  file name in paretheses, then state of the thread. We need just
2201                  thread state.
2202 
2203                  Good news: Length of program name is 15 characters max. Longer
2204                  names are truncated.
2205 
2206                  Thus, we need rather short buffer: 15 chars for program name +
2207                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2208 
2209                  Bad news: Program name may contain special symbols like space,
2210                  closing parenthesis, or even new line. This makes parsing
2211                  "stat" file not 100 % reliable. In case of fanny program names
2212                  parsing may fail (report incorrect thread state).
2213 
2214                  Parsing "status" file looks more promissing (due to different
2215                  file structure and escaping special symbols) but reading and
2216                  parsing of "status" file works slower.
2217                   -- ln
2218               */
2219               char buffer[65];
2220               int len;
2221               len = read(stat_file, buffer, sizeof(buffer) - 1);
2222               if (len >= 0) {
2223                 buffer[len] = 0;
2224                 // Using scanf:
2225                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2226                 // looks very nice, but searching for a closing parenthesis
2227                 // works a bit faster.
2228                 char *close_parent = strstr(buffer, ") ");
2229                 if (close_parent != NULL) {
2230                   char state = *(close_parent + 2);
2231                   if (state == 'R') {
2232                     ++running_threads;
2233                     if (running_threads >= max) {
2234                       goto finish;
2235                     }; // if
2236                   }; // if
2237                 }; // if
2238               }; // if
2239               close(stat_file);
2240               stat_file = -1;
2241             }; // if
2242           }; // if
2243           task_entry = readdir(task_dir);
2244         }; // while
2245         closedir(task_dir);
2246         task_dir = NULL;
2247       }; // if
2248     }; // if
2249     proc_entry = readdir(proc_dir);
2250   }; // while
2251 
2252   // There _might_ be a timing hole where the thread executing this
2253   // code get skipped in the load balance, and running_threads is 0.
2254   // Assert in the debug builds only!!!
2255   KMP_DEBUG_ASSERT(running_threads > 0);
2256   if (running_threads <= 0) {
2257     running_threads = 1;
2258   }
2259 
2260 finish: // Clean up and exit.
2261   if (proc_dir != NULL) {
2262     closedir(proc_dir);
2263   }; // if
2264   __kmp_str_buf_free(&task_path);
2265   if (task_dir != NULL) {
2266     closedir(task_dir);
2267   }; // if
2268   __kmp_str_buf_free(&stat_path);
2269   if (stat_file != -1) {
2270     close(stat_file);
2271   }; // if
2272 
2273   glb_running_threads = running_threads;
2274 
2275   return running_threads;
2276 
2277 } // __kmp_get_load_balance
2278 
2279 #endif // KMP_OS_DARWIN
2280 
2281 #endif // USE_LOAD_BALANCE
2282 
2283 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2284       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2285 
2286 // we really only need the case with 1 argument, because CLANG always build
2287 // a struct of pointers to shared variables referenced in the outlined function
2288 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2289                            void *p_argv[]
2290 #if OMPT_SUPPORT
2291                            ,
2292                            void **exit_frame_ptr
2293 #endif
2294                            ) {
2295 #if OMPT_SUPPORT
2296   *exit_frame_ptr = __builtin_frame_address(0);
2297 #endif
2298 
2299   switch (argc) {
2300   default:
2301     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2302     fflush(stderr);
2303     exit(-1);
2304   case 0:
2305     (*pkfn)(&gtid, &tid);
2306     break;
2307   case 1:
2308     (*pkfn)(&gtid, &tid, p_argv[0]);
2309     break;
2310   case 2:
2311     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2312     break;
2313   case 3:
2314     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2315     break;
2316   case 4:
2317     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2318     break;
2319   case 5:
2320     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2321     break;
2322   case 6:
2323     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2324             p_argv[5]);
2325     break;
2326   case 7:
2327     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2328             p_argv[5], p_argv[6]);
2329     break;
2330   case 8:
2331     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2332             p_argv[5], p_argv[6], p_argv[7]);
2333     break;
2334   case 9:
2335     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2336             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2337     break;
2338   case 10:
2339     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2340             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2341     break;
2342   case 11:
2343     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2344             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2345     break;
2346   case 12:
2347     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2348             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2349             p_argv[11]);
2350     break;
2351   case 13:
2352     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2353             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2354             p_argv[11], p_argv[12]);
2355     break;
2356   case 14:
2357     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2358             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2359             p_argv[11], p_argv[12], p_argv[13]);
2360     break;
2361   case 15:
2362     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2363             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2364             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2365     break;
2366   }
2367 
2368 #if OMPT_SUPPORT
2369   *exit_frame_ptr = 0;
2370 #endif
2371 
2372   return 1;
2373 }
2374 
2375 #endif
2376 
2377 // end of file //
2378