1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 6 //===----------------------------------------------------------------------===// 7 // 8 // The LLVM Compiler Infrastructure 9 // 10 // This file is dual licensed under the MIT and the University of Illinois Open 11 // Source Licenses. See LICENSE.txt for details. 12 // 13 //===----------------------------------------------------------------------===// 14 15 16 #include "kmp.h" 17 #include "kmp_affinity.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_lock.h" 22 #include "kmp_stats.h" 23 #include "kmp_str.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_wrapper_getpid.h" 26 27 #if !KMP_OS_FREEBSD && !KMP_OS_NETBSD 28 #include <alloca.h> 29 #endif 30 #include <math.h> // HUGE_VAL. 31 #include <sys/resource.h> 32 #include <sys/syscall.h> 33 #include <sys/time.h> 34 #include <sys/times.h> 35 #include <unistd.h> 36 37 #if KMP_OS_LINUX && !KMP_OS_CNK 38 #include <sys/sysinfo.h> 39 #if KMP_USE_FUTEX 40 // We should really include <futex.h>, but that causes compatibility problems on 41 // different Linux* OS distributions that either require that you include (or 42 // break when you try to include) <pci/types.h>. Since all we need is the two 43 // macros below (which are part of the kernel ABI, so can't change) we just 44 // define the constants here and don't include <futex.h> 45 #ifndef FUTEX_WAIT 46 #define FUTEX_WAIT 0 47 #endif 48 #ifndef FUTEX_WAKE 49 #define FUTEX_WAKE 1 50 #endif 51 #endif 52 #elif KMP_OS_DARWIN 53 #include <mach/mach.h> 54 #include <sys/sysctl.h> 55 #elif KMP_OS_FREEBSD 56 #include <pthread_np.h> 57 #endif 58 59 #include <ctype.h> 60 #include <dirent.h> 61 #include <fcntl.h> 62 63 #include "tsan_annotations.h" 64 65 struct kmp_sys_timer { 66 struct timespec start; 67 }; 68 69 // Convert timespec to nanoseconds. 70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec) 71 72 static struct kmp_sys_timer __kmp_sys_timer_data; 73 74 #if KMP_HANDLE_SIGNALS 75 typedef void (*sig_func_t)(int); 76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 77 static sigset_t __kmp_sigset; 78 #endif 79 80 static int __kmp_init_runtime = FALSE; 81 82 static int __kmp_fork_count = 0; 83 84 static pthread_condattr_t __kmp_suspend_cond_attr; 85 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 86 87 static kmp_cond_align_t __kmp_wait_cv; 88 static kmp_mutex_align_t __kmp_wait_mx; 89 90 kmp_uint64 __kmp_ticks_per_msec = 1000000; 91 92 #ifdef DEBUG_SUSPEND 93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 94 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 95 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 96 cond->c_cond.__c_waiting); 97 } 98 #endif 99 100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED) 101 102 /* Affinity support */ 103 104 void __kmp_affinity_bind_thread(int which) { 105 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 106 "Illegal set affinity operation when not capable"); 107 108 kmp_affin_mask_t *mask; 109 KMP_CPU_ALLOC_ON_STACK(mask); 110 KMP_CPU_ZERO(mask); 111 KMP_CPU_SET(which, mask); 112 __kmp_set_system_affinity(mask, TRUE); 113 KMP_CPU_FREE_FROM_STACK(mask); 114 } 115 116 /* Determine if we can access affinity functionality on this version of 117 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 118 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 119 void __kmp_affinity_determine_capable(const char *env_var) { 120 // Check and see if the OS supports thread affinity. 121 122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 123 124 int gCode; 125 int sCode; 126 unsigned char *buf; 127 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 128 129 // If Linux* OS: 130 // If the syscall fails or returns a suggestion for the size, 131 // then we don't have to search for an appropriate size. 132 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 133 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 134 "initial getaffinity call returned %d errno = %d\n", 135 gCode, errno)); 136 137 // if ((gCode < 0) && (errno == ENOSYS)) 138 if (gCode < 0) { 139 // System call not supported 140 if (__kmp_affinity_verbose || 141 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 142 (__kmp_affinity_type != affinity_default) && 143 (__kmp_affinity_type != affinity_disabled))) { 144 int error = errno; 145 kmp_msg_t err_code = KMP_ERR(error); 146 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 147 err_code, __kmp_msg_null); 148 if (__kmp_generate_warnings == kmp_warnings_off) { 149 __kmp_str_free(&err_code.str); 150 } 151 } 152 KMP_AFFINITY_DISABLE(); 153 KMP_INTERNAL_FREE(buf); 154 return; 155 } 156 if (gCode > 0) { // Linux* OS only 157 // The optimal situation: the OS returns the size of the buffer it expects. 158 // 159 // A verification of correct behavior is that Isetaffinity on a NULL 160 // buffer with the same size fails with errno set to EFAULT. 161 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 162 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 163 "setaffinity for mask size %d returned %d errno = %d\n", 164 gCode, sCode, errno)); 165 if (sCode < 0) { 166 if (errno == ENOSYS) { 167 if (__kmp_affinity_verbose || 168 (__kmp_affinity_warnings && 169 (__kmp_affinity_type != affinity_none) && 170 (__kmp_affinity_type != affinity_default) && 171 (__kmp_affinity_type != affinity_disabled))) { 172 int error = errno; 173 kmp_msg_t err_code = KMP_ERR(error); 174 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 175 err_code, __kmp_msg_null); 176 if (__kmp_generate_warnings == kmp_warnings_off) { 177 __kmp_str_free(&err_code.str); 178 } 179 } 180 KMP_AFFINITY_DISABLE(); 181 KMP_INTERNAL_FREE(buf); 182 } 183 if (errno == EFAULT) { 184 KMP_AFFINITY_ENABLE(gCode); 185 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 186 "affinity supported (mask size %d)\n", 187 (int)__kmp_affin_mask_size)); 188 KMP_INTERNAL_FREE(buf); 189 return; 190 } 191 } 192 } 193 194 // Call the getaffinity system call repeatedly with increasing set sizes 195 // until we succeed, or reach an upper bound on the search. 196 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 197 "searching for proper set size\n")); 198 int size; 199 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 200 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 201 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 202 "getaffinity for mask size %d returned %d errno = %d\n", 203 size, gCode, errno)); 204 205 if (gCode < 0) { 206 if (errno == ENOSYS) { 207 // We shouldn't get here 208 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 209 "inconsistent OS call behavior: errno == ENOSYS for mask " 210 "size %d\n", 211 size)); 212 if (__kmp_affinity_verbose || 213 (__kmp_affinity_warnings && 214 (__kmp_affinity_type != affinity_none) && 215 (__kmp_affinity_type != affinity_default) && 216 (__kmp_affinity_type != affinity_disabled))) { 217 int error = errno; 218 kmp_msg_t err_code = KMP_ERR(error); 219 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 220 err_code, __kmp_msg_null); 221 if (__kmp_generate_warnings == kmp_warnings_off) { 222 __kmp_str_free(&err_code.str); 223 } 224 } 225 KMP_AFFINITY_DISABLE(); 226 KMP_INTERNAL_FREE(buf); 227 return; 228 } 229 continue; 230 } 231 232 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 233 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 234 "setaffinity for mask size %d returned %d errno = %d\n", 235 gCode, sCode, errno)); 236 if (sCode < 0) { 237 if (errno == ENOSYS) { // Linux* OS only 238 // We shouldn't get here 239 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 240 "inconsistent OS call behavior: errno == ENOSYS for mask " 241 "size %d\n", 242 size)); 243 if (__kmp_affinity_verbose || 244 (__kmp_affinity_warnings && 245 (__kmp_affinity_type != affinity_none) && 246 (__kmp_affinity_type != affinity_default) && 247 (__kmp_affinity_type != affinity_disabled))) { 248 int error = errno; 249 kmp_msg_t err_code = KMP_ERR(error); 250 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 251 err_code, __kmp_msg_null); 252 if (__kmp_generate_warnings == kmp_warnings_off) { 253 __kmp_str_free(&err_code.str); 254 } 255 } 256 KMP_AFFINITY_DISABLE(); 257 KMP_INTERNAL_FREE(buf); 258 return; 259 } 260 if (errno == EFAULT) { 261 KMP_AFFINITY_ENABLE(gCode); 262 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 263 "affinity supported (mask size %d)\n", 264 (int)__kmp_affin_mask_size)); 265 KMP_INTERNAL_FREE(buf); 266 return; 267 } 268 } 269 } 270 // save uncaught error code 271 // int error = errno; 272 KMP_INTERNAL_FREE(buf); 273 // restore uncaught error code, will be printed at the next KMP_WARNING below 274 // errno = error; 275 276 // Affinity is not supported 277 KMP_AFFINITY_DISABLE(); 278 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 279 "cannot determine mask size - affinity not supported\n")); 280 if (__kmp_affinity_verbose || 281 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 282 (__kmp_affinity_type != affinity_default) && 283 (__kmp_affinity_type != affinity_disabled))) { 284 KMP_WARNING(AffCantGetMaskSize, env_var); 285 } 286 } 287 288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 289 290 #if KMP_USE_FUTEX 291 292 int __kmp_futex_determine_capable() { 293 int loc = 0; 294 int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 295 int retval = (rc == 0) || (errno != ENOSYS); 296 297 KA_TRACE(10, 298 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 299 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 300 retval ? "" : " not")); 301 302 return retval; 303 } 304 305 #endif // KMP_USE_FUTEX 306 307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 309 use compare_and_store for these routines */ 310 311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 312 kmp_int8 old_value, new_value; 313 314 old_value = TCR_1(*p); 315 new_value = old_value | d; 316 317 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 318 KMP_CPU_PAUSE(); 319 old_value = TCR_1(*p); 320 new_value = old_value | d; 321 } 322 return old_value; 323 } 324 325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 326 kmp_int8 old_value, new_value; 327 328 old_value = TCR_1(*p); 329 new_value = old_value & d; 330 331 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 332 KMP_CPU_PAUSE(); 333 old_value = TCR_1(*p); 334 new_value = old_value & d; 335 } 336 return old_value; 337 } 338 339 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 340 kmp_uint32 old_value, new_value; 341 342 old_value = TCR_4(*p); 343 new_value = old_value | d; 344 345 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 346 KMP_CPU_PAUSE(); 347 old_value = TCR_4(*p); 348 new_value = old_value | d; 349 } 350 return old_value; 351 } 352 353 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 354 kmp_uint32 old_value, new_value; 355 356 old_value = TCR_4(*p); 357 new_value = old_value & d; 358 359 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 360 KMP_CPU_PAUSE(); 361 old_value = TCR_4(*p); 362 new_value = old_value & d; 363 } 364 return old_value; 365 } 366 367 #if KMP_ARCH_X86 368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 369 kmp_int8 old_value, new_value; 370 371 old_value = TCR_1(*p); 372 new_value = old_value + d; 373 374 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 375 KMP_CPU_PAUSE(); 376 old_value = TCR_1(*p); 377 new_value = old_value + d; 378 } 379 return old_value; 380 } 381 382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 383 kmp_int64 old_value, new_value; 384 385 old_value = TCR_8(*p); 386 new_value = old_value + d; 387 388 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 389 KMP_CPU_PAUSE(); 390 old_value = TCR_8(*p); 391 new_value = old_value + d; 392 } 393 return old_value; 394 } 395 #endif /* KMP_ARCH_X86 */ 396 397 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 398 kmp_uint64 old_value, new_value; 399 400 old_value = TCR_8(*p); 401 new_value = old_value | d; 402 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 403 KMP_CPU_PAUSE(); 404 old_value = TCR_8(*p); 405 new_value = old_value | d; 406 } 407 return old_value; 408 } 409 410 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 411 kmp_uint64 old_value, new_value; 412 413 old_value = TCR_8(*p); 414 new_value = old_value & d; 415 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 416 KMP_CPU_PAUSE(); 417 old_value = TCR_8(*p); 418 new_value = old_value & d; 419 } 420 return old_value; 421 } 422 423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 424 425 void __kmp_terminate_thread(int gtid) { 426 int status; 427 kmp_info_t *th = __kmp_threads[gtid]; 428 429 if (!th) 430 return; 431 432 #ifdef KMP_CANCEL_THREADS 433 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 434 status = pthread_cancel(th->th.th_info.ds.ds_thread); 435 if (status != 0 && status != ESRCH) { 436 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 437 __kmp_msg_null); 438 }; // if 439 #endif 440 __kmp_yield(TRUE); 441 } // 442 443 /* Set thread stack info according to values returned by pthread_getattr_np(). 444 If values are unreasonable, assume call failed and use incremental stack 445 refinement method instead. Returns TRUE if the stack parameters could be 446 determined exactly, FALSE if incremental refinement is necessary. */ 447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 448 int stack_data; 449 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 450 /* Linux* OS only -- no pthread_getattr_np support on OS X* */ 451 pthread_attr_t attr; 452 int status; 453 size_t size = 0; 454 void *addr = 0; 455 456 /* Always do incremental stack refinement for ubermaster threads since the 457 initial thread stack range can be reduced by sibling thread creation so 458 pthread_attr_getstack may cause thread gtid aliasing */ 459 if (!KMP_UBER_GTID(gtid)) { 460 461 /* Fetch the real thread attributes */ 462 status = pthread_attr_init(&attr); 463 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 464 #if KMP_OS_FREEBSD || KMP_OS_NETBSD 465 status = pthread_attr_get_np(pthread_self(), &attr); 466 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 467 #else 468 status = pthread_getattr_np(pthread_self(), &attr); 469 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 470 #endif 471 status = pthread_attr_getstack(&attr, &addr, &size); 472 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 473 KA_TRACE(60, 474 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 475 " %lu, low addr: %p\n", 476 gtid, size, addr)); 477 status = pthread_attr_destroy(&attr); 478 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 479 } 480 481 if (size != 0 && addr != 0) { // was stack parameter determination successful? 482 /* Store the correct base and size */ 483 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 484 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 485 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 486 return TRUE; 487 } 488 #endif /* KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD */ 489 /* Use incremental refinement starting from initial conservative estimate */ 490 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 491 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 492 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 493 return FALSE; 494 } 495 496 static void *__kmp_launch_worker(void *thr) { 497 int status, old_type, old_state; 498 #ifdef KMP_BLOCK_SIGNALS 499 sigset_t new_set, old_set; 500 #endif /* KMP_BLOCK_SIGNALS */ 501 void *exit_val; 502 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 503 void *volatile padding = 0; 504 #endif 505 int gtid; 506 507 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 508 __kmp_gtid_set_specific(gtid); 509 #ifdef KMP_TDATA_GTID 510 __kmp_gtid = gtid; 511 #endif 512 #if KMP_STATS_ENABLED 513 // set __thread local index to point to thread-specific stats 514 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 515 KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life); 516 KMP_SET_THREAD_STATE(IDLE); 517 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 518 #endif 519 520 #if USE_ITT_BUILD 521 __kmp_itt_thread_name(gtid); 522 #endif /* USE_ITT_BUILD */ 523 524 #if KMP_AFFINITY_SUPPORTED 525 __kmp_affinity_set_init_mask(gtid, FALSE); 526 #endif 527 528 #ifdef KMP_CANCEL_THREADS 529 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 530 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 531 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 532 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 533 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 534 #endif 535 536 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 537 // Set FP control regs to be a copy of the parallel initialization thread's. 538 __kmp_clear_x87_fpu_status_word(); 539 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 540 __kmp_load_mxcsr(&__kmp_init_mxcsr); 541 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 542 543 #ifdef KMP_BLOCK_SIGNALS 544 status = sigfillset(&new_set); 545 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 546 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 547 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 548 #endif /* KMP_BLOCK_SIGNALS */ 549 550 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 551 if (__kmp_stkoffset > 0 && gtid > 0) { 552 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 553 } 554 #endif 555 556 KMP_MB(); 557 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 558 559 __kmp_check_stack_overlap((kmp_info_t *)thr); 560 561 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 562 563 #ifdef KMP_BLOCK_SIGNALS 564 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 565 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 566 #endif /* KMP_BLOCK_SIGNALS */ 567 568 return exit_val; 569 } 570 571 #if KMP_USE_MONITOR 572 /* The monitor thread controls all of the threads in the complex */ 573 574 static void *__kmp_launch_monitor(void *thr) { 575 int status, old_type, old_state; 576 #ifdef KMP_BLOCK_SIGNALS 577 sigset_t new_set; 578 #endif /* KMP_BLOCK_SIGNALS */ 579 struct timespec interval; 580 int yield_count; 581 int yield_cycles = 0; 582 583 KMP_MB(); /* Flush all pending memory write invalidates. */ 584 585 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 586 587 /* register us as the monitor thread */ 588 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 589 #ifdef KMP_TDATA_GTID 590 __kmp_gtid = KMP_GTID_MONITOR; 591 #endif 592 593 KMP_MB(); 594 595 #if USE_ITT_BUILD 596 // Instruct Intel(R) Threading Tools to ignore monitor thread. 597 __kmp_itt_thread_ignore(); 598 #endif /* USE_ITT_BUILD */ 599 600 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 601 (kmp_info_t *)thr); 602 603 __kmp_check_stack_overlap((kmp_info_t *)thr); 604 605 #ifdef KMP_CANCEL_THREADS 606 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 607 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 608 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 609 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 610 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 611 #endif 612 613 #if KMP_REAL_TIME_FIX 614 // This is a potential fix which allows application with real-time scheduling 615 // policy work. However, decision about the fix is not made yet, so it is 616 // disabled by default. 617 { // Are program started with real-time scheduling policy? 618 int sched = sched_getscheduler(0); 619 if (sched == SCHED_FIFO || sched == SCHED_RR) { 620 // Yes, we are a part of real-time application. Try to increase the 621 // priority of the monitor. 622 struct sched_param param; 623 int max_priority = sched_get_priority_max(sched); 624 int rc; 625 KMP_WARNING(RealTimeSchedNotSupported); 626 sched_getparam(0, ¶m); 627 if (param.sched_priority < max_priority) { 628 param.sched_priority += 1; 629 rc = sched_setscheduler(0, sched, ¶m); 630 if (rc != 0) { 631 int error = errno; 632 kmp_msg_t err_code = KMP_ERR(error); 633 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 634 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 635 if (__kmp_generate_warnings == kmp_warnings_off) { 636 __kmp_str_free(&err_code.str); 637 } 638 }; // if 639 } else { 640 // We cannot abort here, because number of CPUs may be enough for all 641 // the threads, including the monitor thread, so application could 642 // potentially work... 643 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 644 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 645 __kmp_msg_null); 646 }; // if 647 }; // if 648 // AC: free thread that waits for monitor started 649 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 650 } 651 #endif // KMP_REAL_TIME_FIX 652 653 KMP_MB(); /* Flush all pending memory write invalidates. */ 654 655 if (__kmp_monitor_wakeups == 1) { 656 interval.tv_sec = 1; 657 interval.tv_nsec = 0; 658 } else { 659 interval.tv_sec = 0; 660 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 661 } 662 663 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 664 665 if (__kmp_yield_cycle) { 666 __kmp_yielding_on = 0; /* Start out with yielding shut off */ 667 yield_count = __kmp_yield_off_count; 668 } else { 669 __kmp_yielding_on = 1; /* Yielding is on permanently */ 670 } 671 672 while (!TCR_4(__kmp_global.g.g_done)) { 673 struct timespec now; 674 struct timeval tval; 675 676 /* This thread monitors the state of the system */ 677 678 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 679 680 status = gettimeofday(&tval, NULL); 681 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 682 TIMEVAL_TO_TIMESPEC(&tval, &now); 683 684 now.tv_sec += interval.tv_sec; 685 now.tv_nsec += interval.tv_nsec; 686 687 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 688 now.tv_sec += 1; 689 now.tv_nsec -= KMP_NSEC_PER_SEC; 690 } 691 692 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 693 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 694 // AC: the monitor should not fall asleep if g_done has been set 695 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 696 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 697 &__kmp_wait_mx.m_mutex, &now); 698 if (status != 0) { 699 if (status != ETIMEDOUT && status != EINTR) { 700 KMP_SYSFAIL("pthread_cond_timedwait", status); 701 }; 702 }; 703 }; 704 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 705 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 706 707 if (__kmp_yield_cycle) { 708 yield_cycles++; 709 if ((yield_cycles % yield_count) == 0) { 710 if (__kmp_yielding_on) { 711 __kmp_yielding_on = 0; /* Turn it off now */ 712 yield_count = __kmp_yield_off_count; 713 } else { 714 __kmp_yielding_on = 1; /* Turn it on now */ 715 yield_count = __kmp_yield_on_count; 716 } 717 yield_cycles = 0; 718 } 719 } else { 720 __kmp_yielding_on = 1; 721 } 722 723 TCW_4(__kmp_global.g.g_time.dt.t_value, 724 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 725 726 KMP_MB(); /* Flush all pending memory write invalidates. */ 727 } 728 729 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 730 731 #ifdef KMP_BLOCK_SIGNALS 732 status = sigfillset(&new_set); 733 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 734 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 735 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 736 #endif /* KMP_BLOCK_SIGNALS */ 737 738 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 739 740 if (__kmp_global.g.g_abort != 0) { 741 /* now we need to terminate the worker threads */ 742 /* the value of t_abort is the signal we caught */ 743 744 int gtid; 745 746 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 747 __kmp_global.g.g_abort)); 748 749 /* terminate the OpenMP worker threads */ 750 /* TODO this is not valid for sibling threads!! 751 * the uber master might not be 0 anymore.. */ 752 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 753 __kmp_terminate_thread(gtid); 754 755 __kmp_cleanup(); 756 757 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 758 __kmp_global.g.g_abort)); 759 760 if (__kmp_global.g.g_abort > 0) 761 raise(__kmp_global.g.g_abort); 762 } 763 764 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 765 766 return thr; 767 } 768 #endif // KMP_USE_MONITOR 769 770 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 771 pthread_t handle; 772 pthread_attr_t thread_attr; 773 int status; 774 775 th->th.th_info.ds.ds_gtid = gtid; 776 777 #if KMP_STATS_ENABLED 778 // sets up worker thread stats 779 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 780 781 // th->th.th_stats is used to transfer thread-specific stats-pointer to 782 // __kmp_launch_worker. So when thread is created (goes into 783 // __kmp_launch_worker) it will set its __thread local pointer to 784 // th->th.th_stats 785 if (!KMP_UBER_GTID(gtid)) { 786 th->th.th_stats = __kmp_stats_list->push_back(gtid); 787 } else { 788 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 789 // so set the th->th.th_stats field to it. 790 th->th.th_stats = __kmp_stats_thread_ptr; 791 } 792 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 793 794 #endif // KMP_STATS_ENABLED 795 796 if (KMP_UBER_GTID(gtid)) { 797 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 798 th->th.th_info.ds.ds_thread = pthread_self(); 799 __kmp_set_stack_info(gtid, th); 800 __kmp_check_stack_overlap(th); 801 return; 802 }; // if 803 804 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 805 806 KMP_MB(); /* Flush all pending memory write invalidates. */ 807 808 #ifdef KMP_THREAD_ATTR 809 status = pthread_attr_init(&thread_attr); 810 if (status != 0) { 811 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), 812 __kmp_msg_null); 813 }; // if 814 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 815 if (status != 0) { 816 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerState), KMP_ERR(status), 817 __kmp_msg_null); 818 }; // if 819 820 /* Set stack size for this thread now. 821 The multiple of 2 is there because on some machines, requesting an unusual 822 stacksize causes the thread to have an offset before the dummy alloca() 823 takes place to create the offset. Since we want the user to have a 824 sufficient stacksize AND support a stack offset, we alloca() twice the 825 offset so that the upcoming alloca() does not eliminate any premade offset, 826 and also gives the user the stack space they requested for all threads */ 827 stack_size += gtid * __kmp_stkoffset * 2; 828 829 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 830 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 831 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 832 833 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 834 status = pthread_attr_setstacksize(&thread_attr, stack_size); 835 #ifdef KMP_BACKUP_STKSIZE 836 if (status != 0) { 837 if (!__kmp_env_stksize) { 838 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 839 __kmp_stksize = KMP_BACKUP_STKSIZE; 840 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 841 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 842 "bytes\n", 843 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 844 status = pthread_attr_setstacksize(&thread_attr, stack_size); 845 }; // if 846 }; // if 847 #endif /* KMP_BACKUP_STKSIZE */ 848 if (status != 0) { 849 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size), 850 KMP_ERR(status), KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 851 }; // if 852 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 853 854 #endif /* KMP_THREAD_ATTR */ 855 856 status = 857 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 858 if (status != 0 || !handle) { // ??? Why do we check handle?? 859 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 860 if (status == EINVAL) { 861 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size), 862 KMP_ERR(status), KMP_HNT(IncreaseWorkerStackSize), 863 __kmp_msg_null); 864 }; 865 if (status == ENOMEM) { 866 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size), 867 KMP_ERR(status), KMP_HNT(DecreaseWorkerStackSize), 868 __kmp_msg_null); 869 }; 870 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 871 if (status == EAGAIN) { 872 __kmp_msg(kmp_ms_fatal, KMP_MSG(NoResourcesForWorkerThread), 873 KMP_ERR(status), KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 874 }; // if 875 KMP_SYSFAIL("pthread_create", status); 876 }; // if 877 878 th->th.th_info.ds.ds_thread = handle; 879 880 #ifdef KMP_THREAD_ATTR 881 status = pthread_attr_destroy(&thread_attr); 882 if (status) { 883 kmp_msg_t err_code = KMP_ERR(status); 884 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 885 __kmp_msg_null); 886 if (__kmp_generate_warnings == kmp_warnings_off) { 887 __kmp_str_free(&err_code.str); 888 } 889 }; // if 890 #endif /* KMP_THREAD_ATTR */ 891 892 KMP_MB(); /* Flush all pending memory write invalidates. */ 893 894 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 895 896 } // __kmp_create_worker 897 898 #if KMP_USE_MONITOR 899 void __kmp_create_monitor(kmp_info_t *th) { 900 pthread_t handle; 901 pthread_attr_t thread_attr; 902 size_t size; 903 int status; 904 int auto_adj_size = FALSE; 905 906 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 907 // We don't need monitor thread in case of MAX_BLOCKTIME 908 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 909 "MAX blocktime\n")); 910 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 911 th->th.th_info.ds.ds_gtid = 0; 912 return; 913 } 914 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 915 916 KMP_MB(); /* Flush all pending memory write invalidates. */ 917 918 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 919 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 920 #if KMP_REAL_TIME_FIX 921 TCW_4(__kmp_global.g.g_time.dt.t_value, 922 -1); // Will use it for synchronization a bit later. 923 #else 924 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 925 #endif // KMP_REAL_TIME_FIX 926 927 #ifdef KMP_THREAD_ATTR 928 if (__kmp_monitor_stksize == 0) { 929 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 930 auto_adj_size = TRUE; 931 } 932 status = pthread_attr_init(&thread_attr); 933 if (status != 0) { 934 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), 935 __kmp_msg_null); 936 }; // if 937 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 938 if (status != 0) { 939 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetMonitorState), KMP_ERR(status), 940 __kmp_msg_null); 941 }; // if 942 943 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 944 status = pthread_attr_getstacksize(&thread_attr, &size); 945 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 946 #else 947 size = __kmp_sys_min_stksize; 948 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 949 #endif /* KMP_THREAD_ATTR */ 950 951 if (__kmp_monitor_stksize == 0) { 952 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 953 } 954 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 955 __kmp_monitor_stksize = __kmp_sys_min_stksize; 956 } 957 958 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 959 "requested stacksize = %lu bytes\n", 960 size, __kmp_monitor_stksize)); 961 962 retry: 963 964 /* Set stack size for this thread now. */ 965 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 966 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 967 __kmp_monitor_stksize)); 968 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 969 if (status != 0) { 970 if (auto_adj_size) { 971 __kmp_monitor_stksize *= 2; 972 goto retry; 973 } 974 kmp_msg_t err_code = KMP_ERR(status); 975 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 976 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 977 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 978 if (__kmp_generate_warnings == kmp_warnings_off) { 979 __kmp_str_free(&err_code.str); 980 } 981 }; // if 982 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 983 984 status = 985 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 986 987 if (status != 0) { 988 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 989 if (status == EINVAL) { 990 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 991 __kmp_monitor_stksize *= 2; 992 goto retry; 993 } 994 __kmp_msg( 995 kmp_ms_fatal, KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 996 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), __kmp_msg_null); 997 }; // if 998 if (status == ENOMEM) { 999 __kmp_msg( 1000 kmp_ms_fatal, KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1001 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), __kmp_msg_null); 1002 }; // if 1003 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1004 if (status == EAGAIN) { 1005 __kmp_msg(kmp_ms_fatal, KMP_MSG(NoResourcesForMonitorThread), 1006 KMP_ERR(status), KMP_HNT(DecreaseNumberOfThreadsInUse), 1007 __kmp_msg_null); 1008 }; // if 1009 KMP_SYSFAIL("pthread_create", status); 1010 }; // if 1011 1012 th->th.th_info.ds.ds_thread = handle; 1013 1014 #if KMP_REAL_TIME_FIX 1015 // Wait for the monitor thread is really started and set its *priority*. 1016 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 1017 sizeof(__kmp_global.g.g_time.dt.t_value)); 1018 __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, 1019 -1, &__kmp_neq_4, NULL); 1020 #endif // KMP_REAL_TIME_FIX 1021 1022 #ifdef KMP_THREAD_ATTR 1023 status = pthread_attr_destroy(&thread_attr); 1024 if (status != 0) { 1025 kmp_msg_t err_code = KMP_ERR(status); 1026 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 1027 __kmp_msg_null); 1028 if (__kmp_generate_warnings == kmp_warnings_off) { 1029 __kmp_str_free(&err_code.str); 1030 } 1031 }; // if 1032 #endif 1033 1034 KMP_MB(); /* Flush all pending memory write invalidates. */ 1035 1036 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1037 th->th.th_info.ds.ds_thread)); 1038 1039 } // __kmp_create_monitor 1040 #endif // KMP_USE_MONITOR 1041 1042 void __kmp_exit_thread(int exit_status) { 1043 pthread_exit((void *)(intptr_t)exit_status); 1044 } // __kmp_exit_thread 1045 1046 #if KMP_USE_MONITOR 1047 void __kmp_resume_monitor(); 1048 1049 void __kmp_reap_monitor(kmp_info_t *th) { 1050 int status; 1051 void *exit_val; 1052 1053 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1054 " %#.8lx\n", 1055 th->th.th_info.ds.ds_thread)); 1056 1057 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1058 // If both tid and gtid are 0, it means the monitor did not ever start. 1059 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1060 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1061 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1062 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1063 return; 1064 }; // if 1065 1066 KMP_MB(); /* Flush all pending memory write invalidates. */ 1067 1068 /* First, check to see whether the monitor thread exists to wake it up. This 1069 is to avoid performance problem when the monitor sleeps during 1070 blocktime-size interval */ 1071 1072 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1073 if (status != ESRCH) { 1074 __kmp_resume_monitor(); // Wake up the monitor thread 1075 } 1076 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1077 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1078 if (exit_val != th) { 1079 __kmp_msg(kmp_ms_fatal, KMP_MSG(ReapMonitorError), KMP_ERR(status), 1080 __kmp_msg_null); 1081 } 1082 1083 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1084 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1085 1086 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1087 " %#.8lx\n", 1088 th->th.th_info.ds.ds_thread)); 1089 1090 KMP_MB(); /* Flush all pending memory write invalidates. */ 1091 } 1092 #endif // KMP_USE_MONITOR 1093 1094 void __kmp_reap_worker(kmp_info_t *th) { 1095 int status; 1096 void *exit_val; 1097 1098 KMP_MB(); /* Flush all pending memory write invalidates. */ 1099 1100 KA_TRACE( 1101 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1102 1103 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1104 #ifdef KMP_DEBUG 1105 /* Don't expose these to the user until we understand when they trigger */ 1106 if (status != 0) { 1107 __kmp_msg(kmp_ms_fatal, KMP_MSG(ReapWorkerError), KMP_ERR(status), 1108 __kmp_msg_null); 1109 } 1110 if (exit_val != th) { 1111 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1112 "exit_val = %p\n", 1113 th->th.th_info.ds.ds_gtid, exit_val)); 1114 } 1115 #endif /* KMP_DEBUG */ 1116 1117 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1118 th->th.th_info.ds.ds_gtid)); 1119 1120 KMP_MB(); /* Flush all pending memory write invalidates. */ 1121 } 1122 1123 #if KMP_HANDLE_SIGNALS 1124 1125 static void __kmp_null_handler(int signo) { 1126 // Do nothing, for doing SIG_IGN-type actions. 1127 } // __kmp_null_handler 1128 1129 static void __kmp_team_handler(int signo) { 1130 if (__kmp_global.g.g_abort == 0) { 1131 /* Stage 1 signal handler, let's shut down all of the threads */ 1132 #ifdef KMP_DEBUG 1133 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1134 #endif 1135 switch (signo) { 1136 case SIGHUP: 1137 case SIGINT: 1138 case SIGQUIT: 1139 case SIGILL: 1140 case SIGABRT: 1141 case SIGFPE: 1142 case SIGBUS: 1143 case SIGSEGV: 1144 #ifdef SIGSYS 1145 case SIGSYS: 1146 #endif 1147 case SIGTERM: 1148 if (__kmp_debug_buf) { 1149 __kmp_dump_debug_buffer(); 1150 }; // if 1151 KMP_MB(); // Flush all pending memory write invalidates. 1152 TCW_4(__kmp_global.g.g_abort, signo); 1153 KMP_MB(); // Flush all pending memory write invalidates. 1154 TCW_4(__kmp_global.g.g_done, TRUE); 1155 KMP_MB(); // Flush all pending memory write invalidates. 1156 break; 1157 default: 1158 #ifdef KMP_DEBUG 1159 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1160 #endif 1161 break; 1162 }; // switch 1163 }; // if 1164 } // __kmp_team_handler 1165 1166 static void __kmp_sigaction(int signum, const struct sigaction *act, 1167 struct sigaction *oldact) { 1168 int rc = sigaction(signum, act, oldact); 1169 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1170 } 1171 1172 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1173 int parallel_init) { 1174 KMP_MB(); // Flush all pending memory write invalidates. 1175 KB_TRACE(60, 1176 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1177 if (parallel_init) { 1178 struct sigaction new_action; 1179 struct sigaction old_action; 1180 new_action.sa_handler = handler_func; 1181 new_action.sa_flags = 0; 1182 sigfillset(&new_action.sa_mask); 1183 __kmp_sigaction(sig, &new_action, &old_action); 1184 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1185 sigaddset(&__kmp_sigset, sig); 1186 } else { 1187 // Restore/keep user's handler if one previously installed. 1188 __kmp_sigaction(sig, &old_action, NULL); 1189 }; // if 1190 } else { 1191 // Save initial/system signal handlers to see if user handlers installed. 1192 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1193 }; // if 1194 KMP_MB(); // Flush all pending memory write invalidates. 1195 } // __kmp_install_one_handler 1196 1197 static void __kmp_remove_one_handler(int sig) { 1198 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1199 if (sigismember(&__kmp_sigset, sig)) { 1200 struct sigaction old; 1201 KMP_MB(); // Flush all pending memory write invalidates. 1202 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1203 if ((old.sa_handler != __kmp_team_handler) && 1204 (old.sa_handler != __kmp_null_handler)) { 1205 // Restore the users signal handler. 1206 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1207 "restoring: sig=%d\n", 1208 sig)); 1209 __kmp_sigaction(sig, &old, NULL); 1210 }; // if 1211 sigdelset(&__kmp_sigset, sig); 1212 KMP_MB(); // Flush all pending memory write invalidates. 1213 }; // if 1214 } // __kmp_remove_one_handler 1215 1216 void __kmp_install_signals(int parallel_init) { 1217 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1218 if (__kmp_handle_signals || !parallel_init) { 1219 // If ! parallel_init, we do not install handlers, just save original 1220 // handlers. Let us do it even __handle_signals is 0. 1221 sigemptyset(&__kmp_sigset); 1222 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1223 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1224 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1225 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1226 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1227 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1228 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1229 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1230 #ifdef SIGSYS 1231 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1232 #endif // SIGSYS 1233 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1234 #ifdef SIGPIPE 1235 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1236 #endif // SIGPIPE 1237 }; // if 1238 } // __kmp_install_signals 1239 1240 void __kmp_remove_signals(void) { 1241 int sig; 1242 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1243 for (sig = 1; sig < NSIG; ++sig) { 1244 __kmp_remove_one_handler(sig); 1245 }; // for sig 1246 } // __kmp_remove_signals 1247 1248 #endif // KMP_HANDLE_SIGNALS 1249 1250 void __kmp_enable(int new_state) { 1251 #ifdef KMP_CANCEL_THREADS 1252 int status, old_state; 1253 status = pthread_setcancelstate(new_state, &old_state); 1254 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1255 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1256 #endif 1257 } 1258 1259 void __kmp_disable(int *old_state) { 1260 #ifdef KMP_CANCEL_THREADS 1261 int status; 1262 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1263 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1264 #endif 1265 } 1266 1267 static void __kmp_atfork_prepare(void) { /* nothing to do */ 1268 } 1269 1270 static void __kmp_atfork_parent(void) { /* nothing to do */ 1271 } 1272 1273 /* Reset the library so execution in the child starts "all over again" with 1274 clean data structures in initial states. Don't worry about freeing memory 1275 allocated by parent, just abandon it to be safe. */ 1276 static void __kmp_atfork_child(void) { 1277 /* TODO make sure this is done right for nested/sibling */ 1278 // ATT: Memory leaks are here? TODO: Check it and fix. 1279 /* KMP_ASSERT( 0 ); */ 1280 1281 ++__kmp_fork_count; 1282 1283 #if KMP_AFFINITY_SUPPORTED 1284 #if KMP_OS_LINUX 1285 // reset the affinity in the child to the initial thread 1286 // affinity in the parent 1287 kmp_set_thread_affinity_mask_initial(); 1288 #endif 1289 // Set default not to bind threads tightly in the child (we’re expecting 1290 // over-subscription after the fork and this can improve things for 1291 // scripting languages that use OpenMP inside process-parallel code). 1292 __kmp_affinity_type = affinity_none; 1293 #if OMP_40_ENABLED 1294 if (__kmp_nested_proc_bind.bind_types != NULL) { 1295 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1296 } 1297 #endif // OMP_40_ENABLED 1298 #endif // KMP_AFFINITY_SUPPORTED 1299 1300 __kmp_init_runtime = FALSE; 1301 #if KMP_USE_MONITOR 1302 __kmp_init_monitor = 0; 1303 #endif 1304 __kmp_init_parallel = FALSE; 1305 __kmp_init_middle = FALSE; 1306 __kmp_init_serial = FALSE; 1307 TCW_4(__kmp_init_gtid, FALSE); 1308 __kmp_init_common = FALSE; 1309 1310 TCW_4(__kmp_init_user_locks, FALSE); 1311 #if !KMP_USE_DYNAMIC_LOCK 1312 __kmp_user_lock_table.used = 1; 1313 __kmp_user_lock_table.allocated = 0; 1314 __kmp_user_lock_table.table = NULL; 1315 __kmp_lock_blocks = NULL; 1316 #endif 1317 1318 __kmp_all_nth = 0; 1319 TCW_4(__kmp_nth, 0); 1320 1321 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1322 here so threadprivate doesn't use stale data */ 1323 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1324 __kmp_threadpriv_cache_list)); 1325 1326 while (__kmp_threadpriv_cache_list != NULL) { 1327 1328 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1329 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1330 &(*__kmp_threadpriv_cache_list->addr))); 1331 1332 *__kmp_threadpriv_cache_list->addr = NULL; 1333 } 1334 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1335 } 1336 1337 __kmp_init_runtime = FALSE; 1338 1339 /* reset statically initialized locks */ 1340 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1341 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1342 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1343 1344 /* This is necessary to make sure no stale data is left around */ 1345 /* AC: customers complain that we use unsafe routines in the atfork 1346 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1347 in dynamic_link when check the presence of shared tbbmalloc library. 1348 Suggestion is to make the library initialization lazier, similar 1349 to what done for __kmpc_begin(). */ 1350 // TODO: synchronize all static initializations with regular library 1351 // startup; look at kmp_global.cpp and etc. 1352 //__kmp_internal_begin (); 1353 } 1354 1355 void __kmp_register_atfork(void) { 1356 if (__kmp_need_register_atfork) { 1357 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1358 __kmp_atfork_child); 1359 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1360 __kmp_need_register_atfork = FALSE; 1361 } 1362 } 1363 1364 void __kmp_suspend_initialize(void) { 1365 int status; 1366 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1367 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1368 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1369 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1370 } 1371 1372 static void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1373 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1374 if (th->th.th_suspend_init_count <= __kmp_fork_count) { 1375 /* this means we haven't initialized the suspension pthread objects for this 1376 thread in this instance of the process */ 1377 int status; 1378 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1379 &__kmp_suspend_cond_attr); 1380 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1381 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1382 &__kmp_suspend_mutex_attr); 1383 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1384 *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1; 1385 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1386 }; 1387 } 1388 1389 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1390 if (th->th.th_suspend_init_count > __kmp_fork_count) { 1391 /* this means we have initialize the suspension pthread objects for this 1392 thread in this instance of the process */ 1393 int status; 1394 1395 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1396 if (status != 0 && status != EBUSY) { 1397 KMP_SYSFAIL("pthread_cond_destroy", status); 1398 }; 1399 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1400 if (status != 0 && status != EBUSY) { 1401 KMP_SYSFAIL("pthread_mutex_destroy", status); 1402 }; 1403 --th->th.th_suspend_init_count; 1404 KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count); 1405 } 1406 } 1407 1408 1409 /* This routine puts the calling thread to sleep after setting the 1410 sleep bit for the indicated flag variable to true. */ 1411 template <class C> 1412 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1413 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1414 kmp_info_t *th = __kmp_threads[th_gtid]; 1415 int status; 1416 typename C::flag_t old_spin; 1417 1418 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1419 flag->get())); 1420 1421 __kmp_suspend_initialize_thread(th); 1422 1423 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1424 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1425 1426 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1427 th_gtid, flag->get())); 1428 1429 /* TODO: shouldn't this use release semantics to ensure that 1430 __kmp_suspend_initialize_thread gets called first? */ 1431 old_spin = flag->set_sleeping(); 1432 1433 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1434 " was %x\n", 1435 th_gtid, flag->get(), *(flag->get()), old_spin)); 1436 1437 if (flag->done_check_val(old_spin)) { 1438 old_spin = flag->unset_sleeping(); 1439 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1440 "for spin(%p)\n", 1441 th_gtid, flag->get())); 1442 } else { 1443 /* Encapsulate in a loop as the documentation states that this may 1444 "with low probability" return when the condition variable has 1445 not been signaled or broadcast */ 1446 int deactivated = FALSE; 1447 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1448 1449 while (flag->is_sleeping()) { 1450 #ifdef DEBUG_SUSPEND 1451 char buffer[128]; 1452 __kmp_suspend_count++; 1453 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1454 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1455 buffer); 1456 #endif 1457 // Mark the thread as no longer active (only in the first iteration of the 1458 // loop). 1459 if (!deactivated) { 1460 th->th.th_active = FALSE; 1461 if (th->th.th_active_in_pool) { 1462 th->th.th_active_in_pool = FALSE; 1463 KMP_TEST_THEN_DEC32(&__kmp_thread_pool_active_nth); 1464 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1465 } 1466 deactivated = TRUE; 1467 } 1468 1469 #if USE_SUSPEND_TIMEOUT 1470 struct timespec now; 1471 struct timeval tval; 1472 int msecs; 1473 1474 status = gettimeofday(&tval, NULL); 1475 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1476 TIMEVAL_TO_TIMESPEC(&tval, &now); 1477 1478 msecs = (4 * __kmp_dflt_blocktime) + 200; 1479 now.tv_sec += msecs / 1000; 1480 now.tv_nsec += (msecs % 1000) * 1000; 1481 1482 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1483 "pthread_cond_timedwait\n", 1484 th_gtid)); 1485 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1486 &th->th.th_suspend_mx.m_mutex, &now); 1487 #else 1488 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1489 " pthread_cond_wait\n", 1490 th_gtid)); 1491 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1492 &th->th.th_suspend_mx.m_mutex); 1493 #endif 1494 1495 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1496 KMP_SYSFAIL("pthread_cond_wait", status); 1497 } 1498 #ifdef KMP_DEBUG 1499 if (status == ETIMEDOUT) { 1500 if (flag->is_sleeping()) { 1501 KF_TRACE(100, 1502 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1503 } else { 1504 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1505 "not set!\n", 1506 th_gtid)); 1507 } 1508 } else if (flag->is_sleeping()) { 1509 KF_TRACE(100, 1510 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1511 } 1512 #endif 1513 } // while 1514 1515 // Mark the thread as active again (if it was previous marked as inactive) 1516 if (deactivated) { 1517 th->th.th_active = TRUE; 1518 if (TCR_4(th->th.th_in_pool)) { 1519 KMP_TEST_THEN_INC32(&__kmp_thread_pool_active_nth); 1520 th->th.th_active_in_pool = TRUE; 1521 } 1522 } 1523 } 1524 #ifdef DEBUG_SUSPEND 1525 { 1526 char buffer[128]; 1527 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1528 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1529 buffer); 1530 } 1531 #endif 1532 1533 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1534 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1535 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1536 } 1537 1538 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 1539 __kmp_suspend_template(th_gtid, flag); 1540 } 1541 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 1542 __kmp_suspend_template(th_gtid, flag); 1543 } 1544 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1545 __kmp_suspend_template(th_gtid, flag); 1546 } 1547 1548 /* This routine signals the thread specified by target_gtid to wake up 1549 after setting the sleep bit indicated by the flag argument to FALSE. 1550 The target thread must already have called __kmp_suspend_template() */ 1551 template <class C> 1552 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1553 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1554 kmp_info_t *th = __kmp_threads[target_gtid]; 1555 int status; 1556 1557 #ifdef KMP_DEBUG 1558 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1559 #endif 1560 1561 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1562 gtid, target_gtid)); 1563 KMP_DEBUG_ASSERT(gtid != target_gtid); 1564 1565 __kmp_suspend_initialize_thread(th); 1566 1567 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1568 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1569 1570 if (!flag) { // coming from __kmp_null_resume_wrapper 1571 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1572 } 1573 1574 // First, check if the flag is null or its type has changed. If so, someone 1575 // else woke it up. 1576 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1577 // simply shows what 1578 // flag was cast to 1579 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1580 "awake: flag(%p)\n", 1581 gtid, target_gtid, NULL)); 1582 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1583 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1584 return; 1585 } else { // if multiple threads are sleeping, flag should be internally 1586 // referring to a specific thread here 1587 typename C::flag_t old_spin = flag->unset_sleeping(); 1588 if (!flag->is_sleeping_val(old_spin)) { 1589 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1590 "awake: flag(%p): " 1591 "%u => %u\n", 1592 gtid, target_gtid, flag->get(), old_spin, *flag->get())); 1593 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1594 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1595 return; 1596 } 1597 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1598 "sleep bit for flag's loc(%p): " 1599 "%u => %u\n", 1600 gtid, target_gtid, flag->get(), old_spin, *flag->get())); 1601 } 1602 TCW_PTR(th->th.th_sleep_loc, NULL); 1603 1604 #ifdef DEBUG_SUSPEND 1605 { 1606 char buffer[128]; 1607 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1608 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1609 target_gtid, buffer); 1610 } 1611 #endif 1612 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1613 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1614 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1615 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1616 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1617 " for T#%d\n", 1618 gtid, target_gtid)); 1619 } 1620 1621 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 1622 __kmp_resume_template(target_gtid, flag); 1623 } 1624 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 1625 __kmp_resume_template(target_gtid, flag); 1626 } 1627 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1628 __kmp_resume_template(target_gtid, flag); 1629 } 1630 1631 #if KMP_USE_MONITOR 1632 void __kmp_resume_monitor() { 1633 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1634 int status; 1635 #ifdef KMP_DEBUG 1636 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1637 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1638 KMP_GTID_MONITOR)); 1639 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1640 #endif 1641 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1642 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1643 #ifdef DEBUG_SUSPEND 1644 { 1645 char buffer[128]; 1646 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1647 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1648 KMP_GTID_MONITOR, buffer); 1649 } 1650 #endif 1651 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1652 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1653 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1654 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1655 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1656 " for T#%d\n", 1657 gtid, KMP_GTID_MONITOR)); 1658 } 1659 #endif // KMP_USE_MONITOR 1660 1661 void __kmp_yield(int cond) { 1662 if (!cond) 1663 return; 1664 #if KMP_USE_MONITOR 1665 if (!__kmp_yielding_on) 1666 return; 1667 #else 1668 if (__kmp_yield_cycle && !KMP_YIELD_NOW()) 1669 return; 1670 #endif 1671 sched_yield(); 1672 } 1673 1674 void __kmp_gtid_set_specific(int gtid) { 1675 if (__kmp_init_gtid) { 1676 int status; 1677 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1678 (void *)(intptr_t)(gtid + 1)); 1679 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1680 } else { 1681 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1682 } 1683 } 1684 1685 int __kmp_gtid_get_specific() { 1686 int gtid; 1687 if (!__kmp_init_gtid) { 1688 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1689 "KMP_GTID_SHUTDOWN\n")); 1690 return KMP_GTID_SHUTDOWN; 1691 } 1692 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1693 if (gtid == 0) { 1694 gtid = KMP_GTID_DNE; 1695 } else { 1696 gtid--; 1697 } 1698 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1699 __kmp_gtid_threadprivate_key, gtid)); 1700 return gtid; 1701 } 1702 1703 double __kmp_read_cpu_time(void) { 1704 /*clock_t t;*/ 1705 struct tms buffer; 1706 1707 /*t =*/times(&buffer); 1708 1709 return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC; 1710 } 1711 1712 int __kmp_read_system_info(struct kmp_sys_info *info) { 1713 int status; 1714 struct rusage r_usage; 1715 1716 memset(info, 0, sizeof(*info)); 1717 1718 status = getrusage(RUSAGE_SELF, &r_usage); 1719 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1720 1721 // The maximum resident set size utilized (in kilobytes) 1722 info->maxrss = r_usage.ru_maxrss; 1723 // The number of page faults serviced without any I/O 1724 info->minflt = r_usage.ru_minflt; 1725 // The number of page faults serviced that required I/O 1726 info->majflt = r_usage.ru_majflt; 1727 // The number of times a process was "swapped" out of memory 1728 info->nswap = r_usage.ru_nswap; 1729 // The number of times the file system had to perform input 1730 info->inblock = r_usage.ru_inblock; 1731 // The number of times the file system had to perform output 1732 info->oublock = r_usage.ru_oublock; 1733 // The number of times a context switch was voluntarily 1734 info->nvcsw = r_usage.ru_nvcsw; 1735 // The number of times a context switch was forced 1736 info->nivcsw = r_usage.ru_nivcsw; 1737 1738 return (status != 0); 1739 } 1740 1741 void __kmp_read_system_time(double *delta) { 1742 double t_ns; 1743 struct timeval tval; 1744 struct timespec stop; 1745 int status; 1746 1747 status = gettimeofday(&tval, NULL); 1748 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1749 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1750 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start); 1751 *delta = (t_ns * 1e-9); 1752 } 1753 1754 void __kmp_clear_system_time(void) { 1755 struct timeval tval; 1756 int status; 1757 status = gettimeofday(&tval, NULL); 1758 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1759 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1760 } 1761 1762 #ifdef BUILD_TV 1763 1764 void __kmp_tv_threadprivate_store(kmp_info_t *th, void *global_addr, 1765 void *thread_addr) { 1766 struct tv_data *p; 1767 1768 p = (struct tv_data *)__kmp_allocate(sizeof(*p)); 1769 1770 p->u.tp.global_addr = global_addr; 1771 p->u.tp.thread_addr = thread_addr; 1772 1773 p->type = (void *)1; 1774 1775 p->next = th->th.th_local.tv_data; 1776 th->th.th_local.tv_data = p; 1777 1778 if (p->next == 0) { 1779 int rc = pthread_setspecific(__kmp_tv_key, p); 1780 KMP_CHECK_SYSFAIL("pthread_setspecific", rc); 1781 } 1782 } 1783 1784 #endif /* BUILD_TV */ 1785 1786 static int __kmp_get_xproc(void) { 1787 1788 int r = 0; 1789 1790 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 1791 1792 r = sysconf(_SC_NPROCESSORS_ONLN); 1793 1794 #elif KMP_OS_DARWIN 1795 1796 // Bug C77011 High "OpenMP Threads and number of active cores". 1797 1798 // Find the number of available CPUs. 1799 kern_return_t rc; 1800 host_basic_info_data_t info; 1801 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1802 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1803 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1804 // Cannot use KA_TRACE() here because this code works before trace support 1805 // is initialized. 1806 r = info.avail_cpus; 1807 } else { 1808 KMP_WARNING(CantGetNumAvailCPU); 1809 KMP_INFORM(AssumedNumCPU); 1810 }; // if 1811 1812 #else 1813 1814 #error "Unknown or unsupported OS." 1815 1816 #endif 1817 1818 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1819 1820 } // __kmp_get_xproc 1821 1822 int __kmp_read_from_file(char const *path, char const *format, ...) { 1823 int result; 1824 va_list args; 1825 1826 va_start(args, format); 1827 FILE *f = fopen(path, "rb"); 1828 if (f == NULL) 1829 return 0; 1830 result = vfscanf(f, format, args); 1831 fclose(f); 1832 1833 return result; 1834 } 1835 1836 void __kmp_runtime_initialize(void) { 1837 int status; 1838 pthread_mutexattr_t mutex_attr; 1839 pthread_condattr_t cond_attr; 1840 1841 if (__kmp_init_runtime) { 1842 return; 1843 }; // if 1844 1845 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1846 if (!__kmp_cpuinfo.initialized) { 1847 __kmp_query_cpuid(&__kmp_cpuinfo); 1848 }; // if 1849 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1850 1851 __kmp_xproc = __kmp_get_xproc(); 1852 1853 if (sysconf(_SC_THREADS)) { 1854 1855 /* Query the maximum number of threads */ 1856 __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX); 1857 if (__kmp_sys_max_nth == -1) { 1858 /* Unlimited threads for NPTL */ 1859 __kmp_sys_max_nth = INT_MAX; 1860 } else if (__kmp_sys_max_nth <= 1) { 1861 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1862 __kmp_sys_max_nth = KMP_MAX_NTH; 1863 } 1864 1865 /* Query the minimum stack size */ 1866 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1867 if (__kmp_sys_min_stksize <= 1) { 1868 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1869 } 1870 } 1871 1872 /* Set up minimum number of threads to switch to TLS gtid */ 1873 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1874 1875 #ifdef BUILD_TV 1876 { 1877 int rc = pthread_key_create(&__kmp_tv_key, 0); 1878 KMP_CHECK_SYSFAIL("pthread_key_create", rc); 1879 } 1880 #endif 1881 1882 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1883 __kmp_internal_end_dest); 1884 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1885 status = pthread_mutexattr_init(&mutex_attr); 1886 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1887 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1888 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1889 status = pthread_condattr_init(&cond_attr); 1890 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1891 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1892 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1893 #if USE_ITT_BUILD 1894 __kmp_itt_initialize(); 1895 #endif /* USE_ITT_BUILD */ 1896 1897 __kmp_init_runtime = TRUE; 1898 } 1899 1900 void __kmp_runtime_destroy(void) { 1901 int status; 1902 1903 if (!__kmp_init_runtime) { 1904 return; // Nothing to do. 1905 }; 1906 1907 #if USE_ITT_BUILD 1908 __kmp_itt_destroy(); 1909 #endif /* USE_ITT_BUILD */ 1910 1911 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1912 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1913 #ifdef BUILD_TV 1914 status = pthread_key_delete(__kmp_tv_key); 1915 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1916 #endif 1917 1918 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1919 if (status != 0 && status != EBUSY) { 1920 KMP_SYSFAIL("pthread_mutex_destroy", status); 1921 } 1922 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1923 if (status != 0 && status != EBUSY) { 1924 KMP_SYSFAIL("pthread_cond_destroy", status); 1925 } 1926 #if KMP_AFFINITY_SUPPORTED 1927 __kmp_affinity_uninitialize(); 1928 #endif 1929 1930 __kmp_init_runtime = FALSE; 1931 } 1932 1933 /* Put the thread to sleep for a time period */ 1934 /* NOTE: not currently used anywhere */ 1935 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1936 1937 /* Calculate the elapsed wall clock time for the user */ 1938 void __kmp_elapsed(double *t) { 1939 int status; 1940 #ifdef FIX_SGI_CLOCK 1941 struct timespec ts; 1942 1943 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1944 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1945 *t = 1946 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1947 #else 1948 struct timeval tv; 1949 1950 status = gettimeofday(&tv, NULL); 1951 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1952 *t = 1953 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1954 #endif 1955 } 1956 1957 /* Calculate the elapsed wall clock tick for the user */ 1958 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1959 1960 /* Return the current time stamp in nsec */ 1961 kmp_uint64 __kmp_now_nsec() { 1962 struct timeval t; 1963 gettimeofday(&t, NULL); 1964 return KMP_NSEC_PER_SEC * t.tv_sec + 1000 * t.tv_usec; 1965 } 1966 1967 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1968 /* Measure clock ticks per millisecond */ 1969 void __kmp_initialize_system_tick() { 1970 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1971 kmp_uint64 nsec = __kmp_now_nsec(); 1972 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1973 kmp_uint64 now; 1974 while ((now = __kmp_hardware_timestamp()) < goal) 1975 ; 1976 __kmp_ticks_per_msec = 1977 (kmp_uint64)(1e6 * (delay + (now - goal)) / (__kmp_now_nsec() - nsec)); 1978 } 1979 #endif 1980 1981 /* Determine whether the given address is mapped into the current address 1982 space. */ 1983 1984 int __kmp_is_address_mapped(void *addr) { 1985 1986 int found = 0; 1987 int rc; 1988 1989 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1990 1991 /* On Linux* OS, read the /proc/<pid>/maps pseudo-file to get all the address 1992 ranges mapped into the address space. */ 1993 1994 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 1995 FILE *file = NULL; 1996 1997 file = fopen(name, "r"); 1998 KMP_ASSERT(file != NULL); 1999 2000 for (;;) { 2001 2002 void *beginning = NULL; 2003 void *ending = NULL; 2004 char perms[5]; 2005 2006 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2007 if (rc == EOF) { 2008 break; 2009 }; // if 2010 KMP_ASSERT(rc == 3 && 2011 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2012 2013 // Ending address is not included in the region, but beginning is. 2014 if ((addr >= beginning) && (addr < ending)) { 2015 perms[2] = 0; // 3th and 4th character does not matter. 2016 if (strcmp(perms, "rw") == 0) { 2017 // Memory we are looking for should be readable and writable. 2018 found = 1; 2019 }; // if 2020 break; 2021 }; // if 2022 2023 }; // forever 2024 2025 // Free resources. 2026 fclose(file); 2027 KMP_INTERNAL_FREE(name); 2028 2029 #elif KMP_OS_DARWIN 2030 2031 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2032 using vm interface. */ 2033 2034 int buffer; 2035 vm_size_t count; 2036 rc = vm_read_overwrite( 2037 mach_task_self(), // Task to read memory of. 2038 (vm_address_t)(addr), // Address to read from. 2039 1, // Number of bytes to be read. 2040 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2041 &count // Address of var to save number of read bytes in. 2042 ); 2043 if (rc == 0) { 2044 // Memory successfully read. 2045 found = 1; 2046 }; // if 2047 2048 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD 2049 2050 // FIXME(FreeBSD, NetBSD): Implement this 2051 found = 1; 2052 2053 #else 2054 2055 #error "Unknown or unsupported OS" 2056 2057 #endif 2058 2059 return found; 2060 2061 } // __kmp_is_address_mapped 2062 2063 #ifdef USE_LOAD_BALANCE 2064 2065 #if KMP_OS_DARWIN 2066 2067 // The function returns the rounded value of the system load average 2068 // during given time interval which depends on the value of 2069 // __kmp_load_balance_interval variable (default is 60 sec, other values 2070 // may be 300 sec or 900 sec). 2071 // It returns -1 in case of error. 2072 int __kmp_get_load_balance(int max) { 2073 double averages[3]; 2074 int ret_avg = 0; 2075 2076 int res = getloadavg(averages, 3); 2077 2078 // Check __kmp_load_balance_interval to determine which of averages to use. 2079 // getloadavg() may return the number of samples less than requested that is 2080 // less than 3. 2081 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2082 ret_avg = averages[0]; // 1 min 2083 } else if ((__kmp_load_balance_interval >= 180 && 2084 __kmp_load_balance_interval < 600) && 2085 (res >= 2)) { 2086 ret_avg = averages[1]; // 5 min 2087 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2088 ret_avg = averages[2]; // 15 min 2089 } else { // Error occurred 2090 return -1; 2091 } 2092 2093 return ret_avg; 2094 } 2095 2096 #else // Linux* OS 2097 2098 // The fuction returns number of running (not sleeping) threads, or -1 in case 2099 // of error. Error could be reported if Linux* OS kernel too old (without 2100 // "/proc" support). Counting running threads stops if max running threads 2101 // encountered. 2102 int __kmp_get_load_balance(int max) { 2103 static int permanent_error = 0; 2104 static int glb_running_threads = 0; // Saved count of the running threads for 2105 // the thread balance algortihm 2106 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2107 2108 int running_threads = 0; // Number of running threads in the system. 2109 2110 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2111 struct dirent *proc_entry = NULL; 2112 2113 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2114 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2115 struct dirent *task_entry = NULL; 2116 int task_path_fixed_len; 2117 2118 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2119 int stat_file = -1; 2120 int stat_path_fixed_len; 2121 2122 int total_processes = 0; // Total number of processes in system. 2123 int total_threads = 0; // Total number of threads in system. 2124 2125 double call_time = 0.0; 2126 2127 __kmp_str_buf_init(&task_path); 2128 __kmp_str_buf_init(&stat_path); 2129 2130 __kmp_elapsed(&call_time); 2131 2132 if (glb_call_time && 2133 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2134 running_threads = glb_running_threads; 2135 goto finish; 2136 } 2137 2138 glb_call_time = call_time; 2139 2140 // Do not spend time on scanning "/proc/" if we have a permanent error. 2141 if (permanent_error) { 2142 running_threads = -1; 2143 goto finish; 2144 }; // if 2145 2146 if (max <= 0) { 2147 max = INT_MAX; 2148 }; // if 2149 2150 // Open "/proc/" directory. 2151 proc_dir = opendir("/proc"); 2152 if (proc_dir == NULL) { 2153 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2154 // error now and in subsequent calls. 2155 running_threads = -1; 2156 permanent_error = 1; 2157 goto finish; 2158 }; // if 2159 2160 // Initialize fixed part of task_path. This part will not change. 2161 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2162 task_path_fixed_len = task_path.used; // Remember number of used characters. 2163 2164 proc_entry = readdir(proc_dir); 2165 while (proc_entry != NULL) { 2166 // Proc entry is a directory and name starts with a digit. Assume it is a 2167 // process' directory. 2168 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2169 2170 ++total_processes; 2171 // Make sure init process is the very first in "/proc", so we can replace 2172 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2173 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2174 // true (where "=>" is implication). Since C++ does not have => operator, 2175 // let us replace it with its equivalent: a => b == ! a || b. 2176 KMP_DEBUG_ASSERT(total_processes != 1 || 2177 strcmp(proc_entry->d_name, "1") == 0); 2178 2179 // Construct task_path. 2180 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2181 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2182 KMP_STRLEN(proc_entry->d_name)); 2183 __kmp_str_buf_cat(&task_path, "/task", 5); 2184 2185 task_dir = opendir(task_path.str); 2186 if (task_dir == NULL) { 2187 // Process can finish between reading "/proc/" directory entry and 2188 // opening process' "task/" directory. So, in general case we should not 2189 // complain, but have to skip this process and read the next one. But on 2190 // systems with no "task/" support we will spend lot of time to scan 2191 // "/proc/" tree again and again without any benefit. "init" process 2192 // (its pid is 1) should exist always, so, if we cannot open 2193 // "/proc/1/task/" directory, it means "task/" is not supported by 2194 // kernel. Report an error now and in the future. 2195 if (strcmp(proc_entry->d_name, "1") == 0) { 2196 running_threads = -1; 2197 permanent_error = 1; 2198 goto finish; 2199 }; // if 2200 } else { 2201 // Construct fixed part of stat file path. 2202 __kmp_str_buf_clear(&stat_path); 2203 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2204 __kmp_str_buf_cat(&stat_path, "/", 1); 2205 stat_path_fixed_len = stat_path.used; 2206 2207 task_entry = readdir(task_dir); 2208 while (task_entry != NULL) { 2209 // It is a directory and name starts with a digit. 2210 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2211 ++total_threads; 2212 2213 // Consruct complete stat file path. Easiest way would be: 2214 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2215 // task_entry->d_name ); 2216 // but seriae of __kmp_str_buf_cat works a bit faster. 2217 stat_path.used = 2218 stat_path_fixed_len; // Reset stat path to its fixed part. 2219 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2220 KMP_STRLEN(task_entry->d_name)); 2221 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2222 2223 // Note: Low-level API (open/read/close) is used. High-level API 2224 // (fopen/fclose) works ~ 30 % slower. 2225 stat_file = open(stat_path.str, O_RDONLY); 2226 if (stat_file == -1) { 2227 // We cannot report an error because task (thread) can terminate 2228 // just before reading this file. 2229 } else { 2230 /* Content of "stat" file looks like: 2231 24285 (program) S ... 2232 2233 It is a single line (if program name does not include funny 2234 symbols). First number is a thread id, then name of executable 2235 file name in paretheses, then state of the thread. We need just 2236 thread state. 2237 2238 Good news: Length of program name is 15 characters max. Longer 2239 names are truncated. 2240 2241 Thus, we need rather short buffer: 15 chars for program name + 2242 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2243 2244 Bad news: Program name may contain special symbols like space, 2245 closing parenthesis, or even new line. This makes parsing 2246 "stat" file not 100 % reliable. In case of fanny program names 2247 parsing may fail (report incorrect thread state). 2248 2249 Parsing "status" file looks more promissing (due to different 2250 file structure and escaping special symbols) but reading and 2251 parsing of "status" file works slower. 2252 -- ln 2253 */ 2254 char buffer[65]; 2255 int len; 2256 len = read(stat_file, buffer, sizeof(buffer) - 1); 2257 if (len >= 0) { 2258 buffer[len] = 0; 2259 // Using scanf: 2260 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2261 // looks very nice, but searching for a closing parenthesis 2262 // works a bit faster. 2263 char *close_parent = strstr(buffer, ") "); 2264 if (close_parent != NULL) { 2265 char state = *(close_parent + 2); 2266 if (state == 'R') { 2267 ++running_threads; 2268 if (running_threads >= max) { 2269 goto finish; 2270 }; // if 2271 }; // if 2272 }; // if 2273 }; // if 2274 close(stat_file); 2275 stat_file = -1; 2276 }; // if 2277 }; // if 2278 task_entry = readdir(task_dir); 2279 }; // while 2280 closedir(task_dir); 2281 task_dir = NULL; 2282 }; // if 2283 }; // if 2284 proc_entry = readdir(proc_dir); 2285 }; // while 2286 2287 // There _might_ be a timing hole where the thread executing this 2288 // code get skipped in the load balance, and running_threads is 0. 2289 // Assert in the debug builds only!!! 2290 KMP_DEBUG_ASSERT(running_threads > 0); 2291 if (running_threads <= 0) { 2292 running_threads = 1; 2293 } 2294 2295 finish: // Clean up and exit. 2296 if (proc_dir != NULL) { 2297 closedir(proc_dir); 2298 }; // if 2299 __kmp_str_buf_free(&task_path); 2300 if (task_dir != NULL) { 2301 closedir(task_dir); 2302 }; // if 2303 __kmp_str_buf_free(&stat_path); 2304 if (stat_file != -1) { 2305 close(stat_file); 2306 }; // if 2307 2308 glb_running_threads = running_threads; 2309 2310 return running_threads; 2311 2312 } // __kmp_get_load_balance 2313 2314 #endif // KMP_OS_DARWIN 2315 2316 #endif // USE_LOAD_BALANCE 2317 2318 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2319 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64) 2320 2321 // we really only need the case with 1 argument, because CLANG always build 2322 // a struct of pointers to shared variables referenced in the outlined function 2323 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2324 void *p_argv[] 2325 #if OMPT_SUPPORT 2326 , 2327 void **exit_frame_ptr 2328 #endif 2329 ) { 2330 #if OMPT_SUPPORT 2331 *exit_frame_ptr = __builtin_frame_address(0); 2332 #endif 2333 2334 switch (argc) { 2335 default: 2336 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2337 fflush(stderr); 2338 exit(-1); 2339 case 0: 2340 (*pkfn)(>id, &tid); 2341 break; 2342 case 1: 2343 (*pkfn)(>id, &tid, p_argv[0]); 2344 break; 2345 case 2: 2346 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2347 break; 2348 case 3: 2349 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2350 break; 2351 case 4: 2352 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2353 break; 2354 case 5: 2355 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2356 break; 2357 case 6: 2358 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2359 p_argv[5]); 2360 break; 2361 case 7: 2362 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2363 p_argv[5], p_argv[6]); 2364 break; 2365 case 8: 2366 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2367 p_argv[5], p_argv[6], p_argv[7]); 2368 break; 2369 case 9: 2370 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2371 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2372 break; 2373 case 10: 2374 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2375 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2376 break; 2377 case 11: 2378 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2379 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2380 break; 2381 case 12: 2382 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2383 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2384 p_argv[11]); 2385 break; 2386 case 13: 2387 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2388 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2389 p_argv[11], p_argv[12]); 2390 break; 2391 case 14: 2392 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2393 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2394 p_argv[11], p_argv[12], p_argv[13]); 2395 break; 2396 case 15: 2397 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2398 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2399 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2400 break; 2401 } 2402 2403 #if OMPT_SUPPORT 2404 *exit_frame_ptr = 0; 2405 #endif 2406 2407 return 1; 2408 } 2409 2410 #endif 2411 2412 // end of file // 2413