1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 //                     The LLVM Compiler Infrastructure
8 //
9 // This file is dual licensed under the MIT and the University of Illinois Open
10 // Source Licenses. See LICENSE.txt for details.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "kmp.h"
15 #include "kmp_affinity.h"
16 #include "kmp_i18n.h"
17 #include "kmp_io.h"
18 #include "kmp_itt.h"
19 #include "kmp_lock.h"
20 #include "kmp_stats.h"
21 #include "kmp_str.h"
22 #include "kmp_wait_release.h"
23 #include "kmp_wrapper_getpid.h"
24 
25 #if !KMP_OS_FREEBSD && !KMP_OS_NETBSD
26 #include <alloca.h>
27 #endif
28 #include <math.h> // HUGE_VAL.
29 #include <sys/resource.h>
30 #include <sys/syscall.h>
31 #include <sys/time.h>
32 #include <sys/times.h>
33 #include <unistd.h>
34 
35 #if KMP_OS_LINUX && !KMP_OS_CNK
36 #include <sys/sysinfo.h>
37 #if KMP_USE_FUTEX
38 // We should really include <futex.h>, but that causes compatibility problems on
39 // different Linux* OS distributions that either require that you include (or
40 // break when you try to include) <pci/types.h>. Since all we need is the two
41 // macros below (which are part of the kernel ABI, so can't change) we just
42 // define the constants here and don't include <futex.h>
43 #ifndef FUTEX_WAIT
44 #define FUTEX_WAIT 0
45 #endif
46 #ifndef FUTEX_WAKE
47 #define FUTEX_WAKE 1
48 #endif
49 #endif
50 #elif KMP_OS_DARWIN
51 #include <mach/mach.h>
52 #include <sys/sysctl.h>
53 #elif KMP_OS_FREEBSD
54 #include <pthread_np.h>
55 #endif
56 
57 #include <ctype.h>
58 #include <dirent.h>
59 #include <fcntl.h>
60 
61 #include "tsan_annotations.h"
62 
63 struct kmp_sys_timer {
64   struct timespec start;
65 };
66 
67 // Convert timespec to nanoseconds.
68 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
69 
70 static struct kmp_sys_timer __kmp_sys_timer_data;
71 
72 #if KMP_HANDLE_SIGNALS
73 typedef void (*sig_func_t)(int);
74 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
75 static sigset_t __kmp_sigset;
76 #endif
77 
78 static int __kmp_init_runtime = FALSE;
79 
80 static int __kmp_fork_count = 0;
81 
82 static pthread_condattr_t __kmp_suspend_cond_attr;
83 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
84 
85 static kmp_cond_align_t __kmp_wait_cv;
86 static kmp_mutex_align_t __kmp_wait_mx;
87 
88 kmp_uint64 __kmp_ticks_per_msec = 1000000;
89 
90 #ifdef DEBUG_SUSPEND
91 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
92   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
93                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
94                cond->c_cond.__c_waiting);
95 }
96 #endif
97 
98 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
99 
100 /* Affinity support */
101 
102 void __kmp_affinity_bind_thread(int which) {
103   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
104               "Illegal set affinity operation when not capable");
105 
106   kmp_affin_mask_t *mask;
107   KMP_CPU_ALLOC_ON_STACK(mask);
108   KMP_CPU_ZERO(mask);
109   KMP_CPU_SET(which, mask);
110   __kmp_set_system_affinity(mask, TRUE);
111   KMP_CPU_FREE_FROM_STACK(mask);
112 }
113 
114 /* Determine if we can access affinity functionality on this version of
115  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
116  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
117 void __kmp_affinity_determine_capable(const char *env_var) {
118 // Check and see if the OS supports thread affinity.
119 
120 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
121 
122   int gCode;
123   int sCode;
124   unsigned char *buf;
125   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
126 
127   // If Linux* OS:
128   // If the syscall fails or returns a suggestion for the size,
129   // then we don't have to search for an appropriate size.
130   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
131   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
132                 "initial getaffinity call returned %d errno = %d\n",
133                 gCode, errno));
134 
135   // if ((gCode < 0) && (errno == ENOSYS))
136   if (gCode < 0) {
137     // System call not supported
138     if (__kmp_affinity_verbose ||
139         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
140          (__kmp_affinity_type != affinity_default) &&
141          (__kmp_affinity_type != affinity_disabled))) {
142       int error = errno;
143       kmp_msg_t err_code = KMP_ERR(error);
144       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
145                 err_code, __kmp_msg_null);
146       if (__kmp_generate_warnings == kmp_warnings_off) {
147         __kmp_str_free(&err_code.str);
148       }
149     }
150     KMP_AFFINITY_DISABLE();
151     KMP_INTERNAL_FREE(buf);
152     return;
153   }
154   if (gCode > 0) { // Linux* OS only
155     // The optimal situation: the OS returns the size of the buffer it expects.
156     //
157     // A verification of correct behavior is that Isetaffinity on a NULL
158     // buffer with the same size fails with errno set to EFAULT.
159     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
160     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
161                   "setaffinity for mask size %d returned %d errno = %d\n",
162                   gCode, sCode, errno));
163     if (sCode < 0) {
164       if (errno == ENOSYS) {
165         if (__kmp_affinity_verbose ||
166             (__kmp_affinity_warnings &&
167              (__kmp_affinity_type != affinity_none) &&
168              (__kmp_affinity_type != affinity_default) &&
169              (__kmp_affinity_type != affinity_disabled))) {
170           int error = errno;
171           kmp_msg_t err_code = KMP_ERR(error);
172           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
173                     err_code, __kmp_msg_null);
174           if (__kmp_generate_warnings == kmp_warnings_off) {
175             __kmp_str_free(&err_code.str);
176           }
177         }
178         KMP_AFFINITY_DISABLE();
179         KMP_INTERNAL_FREE(buf);
180       }
181       if (errno == EFAULT) {
182         KMP_AFFINITY_ENABLE(gCode);
183         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
184                       "affinity supported (mask size %d)\n",
185                       (int)__kmp_affin_mask_size));
186         KMP_INTERNAL_FREE(buf);
187         return;
188       }
189     }
190   }
191 
192   // Call the getaffinity system call repeatedly with increasing set sizes
193   // until we succeed, or reach an upper bound on the search.
194   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
195                 "searching for proper set size\n"));
196   int size;
197   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
198     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
199     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
200                   "getaffinity for mask size %d returned %d errno = %d\n",
201                   size, gCode, errno));
202 
203     if (gCode < 0) {
204       if (errno == ENOSYS) {
205         // We shouldn't get here
206         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
207                       "inconsistent OS call behavior: errno == ENOSYS for mask "
208                       "size %d\n",
209                       size));
210         if (__kmp_affinity_verbose ||
211             (__kmp_affinity_warnings &&
212              (__kmp_affinity_type != affinity_none) &&
213              (__kmp_affinity_type != affinity_default) &&
214              (__kmp_affinity_type != affinity_disabled))) {
215           int error = errno;
216           kmp_msg_t err_code = KMP_ERR(error);
217           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
218                     err_code, __kmp_msg_null);
219           if (__kmp_generate_warnings == kmp_warnings_off) {
220             __kmp_str_free(&err_code.str);
221           }
222         }
223         KMP_AFFINITY_DISABLE();
224         KMP_INTERNAL_FREE(buf);
225         return;
226       }
227       continue;
228     }
229 
230     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
231     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
232                   "setaffinity for mask size %d returned %d errno = %d\n",
233                   gCode, sCode, errno));
234     if (sCode < 0) {
235       if (errno == ENOSYS) { // Linux* OS only
236         // We shouldn't get here
237         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
238                       "inconsistent OS call behavior: errno == ENOSYS for mask "
239                       "size %d\n",
240                       size));
241         if (__kmp_affinity_verbose ||
242             (__kmp_affinity_warnings &&
243              (__kmp_affinity_type != affinity_none) &&
244              (__kmp_affinity_type != affinity_default) &&
245              (__kmp_affinity_type != affinity_disabled))) {
246           int error = errno;
247           kmp_msg_t err_code = KMP_ERR(error);
248           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
249                     err_code, __kmp_msg_null);
250           if (__kmp_generate_warnings == kmp_warnings_off) {
251             __kmp_str_free(&err_code.str);
252           }
253         }
254         KMP_AFFINITY_DISABLE();
255         KMP_INTERNAL_FREE(buf);
256         return;
257       }
258       if (errno == EFAULT) {
259         KMP_AFFINITY_ENABLE(gCode);
260         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
261                       "affinity supported (mask size %d)\n",
262                       (int)__kmp_affin_mask_size));
263         KMP_INTERNAL_FREE(buf);
264         return;
265       }
266     }
267   }
268   // save uncaught error code
269   // int error = errno;
270   KMP_INTERNAL_FREE(buf);
271   // restore uncaught error code, will be printed at the next KMP_WARNING below
272   // errno = error;
273 
274   // Affinity is not supported
275   KMP_AFFINITY_DISABLE();
276   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
277                 "cannot determine mask size - affinity not supported\n"));
278   if (__kmp_affinity_verbose ||
279       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
280        (__kmp_affinity_type != affinity_default) &&
281        (__kmp_affinity_type != affinity_disabled))) {
282     KMP_WARNING(AffCantGetMaskSize, env_var);
283   }
284 }
285 
286 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
287 
288 #if KMP_USE_FUTEX
289 
290 int __kmp_futex_determine_capable() {
291   int loc = 0;
292   int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
293   int retval = (rc == 0) || (errno != ENOSYS);
294 
295   KA_TRACE(10,
296            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
297   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
298                 retval ? "" : " not"));
299 
300   return retval;
301 }
302 
303 #endif // KMP_USE_FUTEX
304 
305 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
306 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
307    use compare_and_store for these routines */
308 
309 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
310   kmp_int8 old_value, new_value;
311 
312   old_value = TCR_1(*p);
313   new_value = old_value | d;
314 
315   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
316     KMP_CPU_PAUSE();
317     old_value = TCR_1(*p);
318     new_value = old_value | d;
319   }
320   return old_value;
321 }
322 
323 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
324   kmp_int8 old_value, new_value;
325 
326   old_value = TCR_1(*p);
327   new_value = old_value & d;
328 
329   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
330     KMP_CPU_PAUSE();
331     old_value = TCR_1(*p);
332     new_value = old_value & d;
333   }
334   return old_value;
335 }
336 
337 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
338   kmp_uint32 old_value, new_value;
339 
340   old_value = TCR_4(*p);
341   new_value = old_value | d;
342 
343   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
344     KMP_CPU_PAUSE();
345     old_value = TCR_4(*p);
346     new_value = old_value | d;
347   }
348   return old_value;
349 }
350 
351 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
352   kmp_uint32 old_value, new_value;
353 
354   old_value = TCR_4(*p);
355   new_value = old_value & d;
356 
357   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
358     KMP_CPU_PAUSE();
359     old_value = TCR_4(*p);
360     new_value = old_value & d;
361   }
362   return old_value;
363 }
364 
365 #if KMP_ARCH_X86
366 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
367   kmp_int8 old_value, new_value;
368 
369   old_value = TCR_1(*p);
370   new_value = old_value + d;
371 
372   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
373     KMP_CPU_PAUSE();
374     old_value = TCR_1(*p);
375     new_value = old_value + d;
376   }
377   return old_value;
378 }
379 
380 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
381   kmp_int64 old_value, new_value;
382 
383   old_value = TCR_8(*p);
384   new_value = old_value + d;
385 
386   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
387     KMP_CPU_PAUSE();
388     old_value = TCR_8(*p);
389     new_value = old_value + d;
390   }
391   return old_value;
392 }
393 #endif /* KMP_ARCH_X86 */
394 
395 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
396   kmp_uint64 old_value, new_value;
397 
398   old_value = TCR_8(*p);
399   new_value = old_value | d;
400   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
401     KMP_CPU_PAUSE();
402     old_value = TCR_8(*p);
403     new_value = old_value | d;
404   }
405   return old_value;
406 }
407 
408 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
409   kmp_uint64 old_value, new_value;
410 
411   old_value = TCR_8(*p);
412   new_value = old_value & d;
413   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
414     KMP_CPU_PAUSE();
415     old_value = TCR_8(*p);
416     new_value = old_value & d;
417   }
418   return old_value;
419 }
420 
421 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
422 
423 void __kmp_terminate_thread(int gtid) {
424   int status;
425   kmp_info_t *th = __kmp_threads[gtid];
426 
427   if (!th)
428     return;
429 
430 #ifdef KMP_CANCEL_THREADS
431   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
432   status = pthread_cancel(th->th.th_info.ds.ds_thread);
433   if (status != 0 && status != ESRCH) {
434     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
435                 __kmp_msg_null);
436   }
437 #endif
438   __kmp_yield(TRUE);
439 } //
440 
441 /* Set thread stack info according to values returned by pthread_getattr_np().
442    If values are unreasonable, assume call failed and use incremental stack
443    refinement method instead. Returns TRUE if the stack parameters could be
444    determined exactly, FALSE if incremental refinement is necessary. */
445 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
446   int stack_data;
447 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
448   /* Linux* OS only -- no pthread_getattr_np support on OS X* */
449   pthread_attr_t attr;
450   int status;
451   size_t size = 0;
452   void *addr = 0;
453 
454   /* Always do incremental stack refinement for ubermaster threads since the
455      initial thread stack range can be reduced by sibling thread creation so
456      pthread_attr_getstack may cause thread gtid aliasing */
457   if (!KMP_UBER_GTID(gtid)) {
458 
459     /* Fetch the real thread attributes */
460     status = pthread_attr_init(&attr);
461     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
462 #if KMP_OS_FREEBSD || KMP_OS_NETBSD
463     status = pthread_attr_get_np(pthread_self(), &attr);
464     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
465 #else
466     status = pthread_getattr_np(pthread_self(), &attr);
467     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
468 #endif
469     status = pthread_attr_getstack(&attr, &addr, &size);
470     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
471     KA_TRACE(60,
472              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
473               " %lu, low addr: %p\n",
474               gtid, size, addr));
475     status = pthread_attr_destroy(&attr);
476     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
477   }
478 
479   if (size != 0 && addr != 0) { // was stack parameter determination successful?
480     /* Store the correct base and size */
481     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
482     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
483     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
484     return TRUE;
485   }
486 #endif /* KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD */
487   /* Use incremental refinement starting from initial conservative estimate */
488   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
489   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
490   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
491   return FALSE;
492 }
493 
494 static void *__kmp_launch_worker(void *thr) {
495   int status, old_type, old_state;
496 #ifdef KMP_BLOCK_SIGNALS
497   sigset_t new_set, old_set;
498 #endif /* KMP_BLOCK_SIGNALS */
499   void *exit_val;
500 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
501   void *volatile padding = 0;
502 #endif
503   int gtid;
504 
505   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
506   __kmp_gtid_set_specific(gtid);
507 #ifdef KMP_TDATA_GTID
508   __kmp_gtid = gtid;
509 #endif
510 #if KMP_STATS_ENABLED
511   // set __thread local index to point to thread-specific stats
512   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
513   KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life);
514   KMP_SET_THREAD_STATE(IDLE);
515   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
516 #endif
517 
518 #if USE_ITT_BUILD
519   __kmp_itt_thread_name(gtid);
520 #endif /* USE_ITT_BUILD */
521 
522 #if KMP_AFFINITY_SUPPORTED
523   __kmp_affinity_set_init_mask(gtid, FALSE);
524 #endif
525 
526 #ifdef KMP_CANCEL_THREADS
527   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
528   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
529   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
530   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
531   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
532 #endif
533 
534 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
535   // Set FP control regs to be a copy of the parallel initialization thread's.
536   __kmp_clear_x87_fpu_status_word();
537   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
538   __kmp_load_mxcsr(&__kmp_init_mxcsr);
539 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
540 
541 #ifdef KMP_BLOCK_SIGNALS
542   status = sigfillset(&new_set);
543   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
544   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
545   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
546 #endif /* KMP_BLOCK_SIGNALS */
547 
548 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
549   if (__kmp_stkoffset > 0 && gtid > 0) {
550     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
551   }
552 #endif
553 
554   KMP_MB();
555   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
556 
557   __kmp_check_stack_overlap((kmp_info_t *)thr);
558 
559   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
560 
561 #ifdef KMP_BLOCK_SIGNALS
562   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
563   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
564 #endif /* KMP_BLOCK_SIGNALS */
565 
566   return exit_val;
567 }
568 
569 #if KMP_USE_MONITOR
570 /* The monitor thread controls all of the threads in the complex */
571 
572 static void *__kmp_launch_monitor(void *thr) {
573   int status, old_type, old_state;
574 #ifdef KMP_BLOCK_SIGNALS
575   sigset_t new_set;
576 #endif /* KMP_BLOCK_SIGNALS */
577   struct timespec interval;
578   int yield_count;
579   int yield_cycles = 0;
580 
581   KMP_MB(); /* Flush all pending memory write invalidates.  */
582 
583   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
584 
585   /* register us as the monitor thread */
586   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
587 #ifdef KMP_TDATA_GTID
588   __kmp_gtid = KMP_GTID_MONITOR;
589 #endif
590 
591   KMP_MB();
592 
593 #if USE_ITT_BUILD
594   // Instruct Intel(R) Threading Tools to ignore monitor thread.
595   __kmp_itt_thread_ignore();
596 #endif /* USE_ITT_BUILD */
597 
598   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
599                        (kmp_info_t *)thr);
600 
601   __kmp_check_stack_overlap((kmp_info_t *)thr);
602 
603 #ifdef KMP_CANCEL_THREADS
604   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
605   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
606   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
607   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
608   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
609 #endif
610 
611 #if KMP_REAL_TIME_FIX
612   // This is a potential fix which allows application with real-time scheduling
613   // policy work. However, decision about the fix is not made yet, so it is
614   // disabled by default.
615   { // Are program started with real-time scheduling policy?
616     int sched = sched_getscheduler(0);
617     if (sched == SCHED_FIFO || sched == SCHED_RR) {
618       // Yes, we are a part of real-time application. Try to increase the
619       // priority of the monitor.
620       struct sched_param param;
621       int max_priority = sched_get_priority_max(sched);
622       int rc;
623       KMP_WARNING(RealTimeSchedNotSupported);
624       sched_getparam(0, &param);
625       if (param.sched_priority < max_priority) {
626         param.sched_priority += 1;
627         rc = sched_setscheduler(0, sched, &param);
628         if (rc != 0) {
629           int error = errno;
630           kmp_msg_t err_code = KMP_ERR(error);
631           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
632                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
633           if (__kmp_generate_warnings == kmp_warnings_off) {
634             __kmp_str_free(&err_code.str);
635           }
636         }
637       } else {
638         // We cannot abort here, because number of CPUs may be enough for all
639         // the threads, including the monitor thread, so application could
640         // potentially work...
641         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
642                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
643                   __kmp_msg_null);
644       }
645     }
646     // AC: free thread that waits for monitor started
647     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
648   }
649 #endif // KMP_REAL_TIME_FIX
650 
651   KMP_MB(); /* Flush all pending memory write invalidates.  */
652 
653   if (__kmp_monitor_wakeups == 1) {
654     interval.tv_sec = 1;
655     interval.tv_nsec = 0;
656   } else {
657     interval.tv_sec = 0;
658     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
659   }
660 
661   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
662 
663   if (__kmp_yield_cycle) {
664     __kmp_yielding_on = 0; /* Start out with yielding shut off */
665     yield_count = __kmp_yield_off_count;
666   } else {
667     __kmp_yielding_on = 1; /* Yielding is on permanently */
668   }
669 
670   while (!TCR_4(__kmp_global.g.g_done)) {
671     struct timespec now;
672     struct timeval tval;
673 
674     /*  This thread monitors the state of the system */
675 
676     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
677 
678     status = gettimeofday(&tval, NULL);
679     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
680     TIMEVAL_TO_TIMESPEC(&tval, &now);
681 
682     now.tv_sec += interval.tv_sec;
683     now.tv_nsec += interval.tv_nsec;
684 
685     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
686       now.tv_sec += 1;
687       now.tv_nsec -= KMP_NSEC_PER_SEC;
688     }
689 
690     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
691     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
692     // AC: the monitor should not fall asleep if g_done has been set
693     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
694       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
695                                       &__kmp_wait_mx.m_mutex, &now);
696       if (status != 0) {
697         if (status != ETIMEDOUT && status != EINTR) {
698           KMP_SYSFAIL("pthread_cond_timedwait", status);
699         }
700       }
701     }
702     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
703     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
704 
705     if (__kmp_yield_cycle) {
706       yield_cycles++;
707       if ((yield_cycles % yield_count) == 0) {
708         if (__kmp_yielding_on) {
709           __kmp_yielding_on = 0; /* Turn it off now */
710           yield_count = __kmp_yield_off_count;
711         } else {
712           __kmp_yielding_on = 1; /* Turn it on now */
713           yield_count = __kmp_yield_on_count;
714         }
715         yield_cycles = 0;
716       }
717     } else {
718       __kmp_yielding_on = 1;
719     }
720 
721     TCW_4(__kmp_global.g.g_time.dt.t_value,
722           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
723 
724     KMP_MB(); /* Flush all pending memory write invalidates.  */
725   }
726 
727   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
728 
729 #ifdef KMP_BLOCK_SIGNALS
730   status = sigfillset(&new_set);
731   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
732   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
733   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
734 #endif /* KMP_BLOCK_SIGNALS */
735 
736   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
737 
738   if (__kmp_global.g.g_abort != 0) {
739     /* now we need to terminate the worker threads  */
740     /* the value of t_abort is the signal we caught */
741 
742     int gtid;
743 
744     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
745                   __kmp_global.g.g_abort));
746 
747     /* terminate the OpenMP worker threads */
748     /* TODO this is not valid for sibling threads!!
749      * the uber master might not be 0 anymore.. */
750     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
751       __kmp_terminate_thread(gtid);
752 
753     __kmp_cleanup();
754 
755     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
756                   __kmp_global.g.g_abort));
757 
758     if (__kmp_global.g.g_abort > 0)
759       raise(__kmp_global.g.g_abort);
760   }
761 
762   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
763 
764   return thr;
765 }
766 #endif // KMP_USE_MONITOR
767 
768 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
769   pthread_t handle;
770   pthread_attr_t thread_attr;
771   int status;
772 
773   th->th.th_info.ds.ds_gtid = gtid;
774 
775 #if KMP_STATS_ENABLED
776   // sets up worker thread stats
777   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
778 
779   // th->th.th_stats is used to transfer thread-specific stats-pointer to
780   // __kmp_launch_worker. So when thread is created (goes into
781   // __kmp_launch_worker) it will set its __thread local pointer to
782   // th->th.th_stats
783   if (!KMP_UBER_GTID(gtid)) {
784     th->th.th_stats = __kmp_stats_list->push_back(gtid);
785   } else {
786     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
787     // so set the th->th.th_stats field to it.
788     th->th.th_stats = __kmp_stats_thread_ptr;
789   }
790   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
791 
792 #endif // KMP_STATS_ENABLED
793 
794   if (KMP_UBER_GTID(gtid)) {
795     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
796     th->th.th_info.ds.ds_thread = pthread_self();
797     __kmp_set_stack_info(gtid, th);
798     __kmp_check_stack_overlap(th);
799     return;
800   }
801 
802   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
803 
804   KMP_MB(); /* Flush all pending memory write invalidates.  */
805 
806 #ifdef KMP_THREAD_ATTR
807   status = pthread_attr_init(&thread_attr);
808   if (status != 0) {
809     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
810   }
811   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
812   if (status != 0) {
813     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
814   }
815 
816   /* Set stack size for this thread now.
817      The multiple of 2 is there because on some machines, requesting an unusual
818      stacksize causes the thread to have an offset before the dummy alloca()
819      takes place to create the offset.  Since we want the user to have a
820      sufficient stacksize AND support a stack offset, we alloca() twice the
821      offset so that the upcoming alloca() does not eliminate any premade offset,
822      and also gives the user the stack space they requested for all threads */
823   stack_size += gtid * __kmp_stkoffset * 2;
824 
825   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
826                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
827                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
828 
829 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
830   status = pthread_attr_setstacksize(&thread_attr, stack_size);
831 #ifdef KMP_BACKUP_STKSIZE
832   if (status != 0) {
833     if (!__kmp_env_stksize) {
834       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
835       __kmp_stksize = KMP_BACKUP_STKSIZE;
836       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
837                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
838                     "bytes\n",
839                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
840       status = pthread_attr_setstacksize(&thread_attr, stack_size);
841     }
842   }
843 #endif /* KMP_BACKUP_STKSIZE */
844   if (status != 0) {
845     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
846                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
847   }
848 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
849 
850 #endif /* KMP_THREAD_ATTR */
851 
852   status =
853       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
854   if (status != 0 || !handle) { // ??? Why do we check handle??
855 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
856     if (status == EINVAL) {
857       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
858                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
859     }
860     if (status == ENOMEM) {
861       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
862                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
863     }
864 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
865     if (status == EAGAIN) {
866       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
867                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
868     }
869     KMP_SYSFAIL("pthread_create", status);
870   }
871 
872   th->th.th_info.ds.ds_thread = handle;
873 
874 #ifdef KMP_THREAD_ATTR
875   status = pthread_attr_destroy(&thread_attr);
876   if (status) {
877     kmp_msg_t err_code = KMP_ERR(status);
878     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
879               __kmp_msg_null);
880     if (__kmp_generate_warnings == kmp_warnings_off) {
881       __kmp_str_free(&err_code.str);
882     }
883   }
884 #endif /* KMP_THREAD_ATTR */
885 
886   KMP_MB(); /* Flush all pending memory write invalidates.  */
887 
888   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
889 
890 } // __kmp_create_worker
891 
892 #if KMP_USE_MONITOR
893 void __kmp_create_monitor(kmp_info_t *th) {
894   pthread_t handle;
895   pthread_attr_t thread_attr;
896   size_t size;
897   int status;
898   int auto_adj_size = FALSE;
899 
900   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
901     // We don't need monitor thread in case of MAX_BLOCKTIME
902     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
903                   "MAX blocktime\n"));
904     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
905     th->th.th_info.ds.ds_gtid = 0;
906     return;
907   }
908   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
909 
910   KMP_MB(); /* Flush all pending memory write invalidates.  */
911 
912   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
913   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
914 #if KMP_REAL_TIME_FIX
915   TCW_4(__kmp_global.g.g_time.dt.t_value,
916         -1); // Will use it for synchronization a bit later.
917 #else
918   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
919 #endif // KMP_REAL_TIME_FIX
920 
921 #ifdef KMP_THREAD_ATTR
922   if (__kmp_monitor_stksize == 0) {
923     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
924     auto_adj_size = TRUE;
925   }
926   status = pthread_attr_init(&thread_attr);
927   if (status != 0) {
928     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
929   }
930   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
931   if (status != 0) {
932     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
933   }
934 
935 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
936   status = pthread_attr_getstacksize(&thread_attr, &size);
937   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
938 #else
939   size = __kmp_sys_min_stksize;
940 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
941 #endif /* KMP_THREAD_ATTR */
942 
943   if (__kmp_monitor_stksize == 0) {
944     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
945   }
946   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
947     __kmp_monitor_stksize = __kmp_sys_min_stksize;
948   }
949 
950   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
951                 "requested stacksize = %lu bytes\n",
952                 size, __kmp_monitor_stksize));
953 
954 retry:
955 
956 /* Set stack size for this thread now. */
957 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
958   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
959                 __kmp_monitor_stksize));
960   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
961   if (status != 0) {
962     if (auto_adj_size) {
963       __kmp_monitor_stksize *= 2;
964       goto retry;
965     }
966     kmp_msg_t err_code = KMP_ERR(status);
967     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
968               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
969               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
970     if (__kmp_generate_warnings == kmp_warnings_off) {
971       __kmp_str_free(&err_code.str);
972     }
973   }
974 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
975 
976   status =
977       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
978 
979   if (status != 0) {
980 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
981     if (status == EINVAL) {
982       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
983         __kmp_monitor_stksize *= 2;
984         goto retry;
985       }
986       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
987                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
988                   __kmp_msg_null);
989     }
990     if (status == ENOMEM) {
991       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
992                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
993                   __kmp_msg_null);
994     }
995 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
996     if (status == EAGAIN) {
997       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
998                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
999     }
1000     KMP_SYSFAIL("pthread_create", status);
1001   }
1002 
1003   th->th.th_info.ds.ds_thread = handle;
1004 
1005 #if KMP_REAL_TIME_FIX
1006   // Wait for the monitor thread is really started and set its *priority*.
1007   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1008                    sizeof(__kmp_global.g.g_time.dt.t_value));
1009   __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value,
1010                      -1, &__kmp_neq_4, NULL);
1011 #endif // KMP_REAL_TIME_FIX
1012 
1013 #ifdef KMP_THREAD_ATTR
1014   status = pthread_attr_destroy(&thread_attr);
1015   if (status != 0) {
1016     kmp_msg_t err_code = KMP_ERR(status);
1017     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1018               __kmp_msg_null);
1019     if (__kmp_generate_warnings == kmp_warnings_off) {
1020       __kmp_str_free(&err_code.str);
1021     }
1022   }
1023 #endif
1024 
1025   KMP_MB(); /* Flush all pending memory write invalidates.  */
1026 
1027   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1028                 th->th.th_info.ds.ds_thread));
1029 
1030 } // __kmp_create_monitor
1031 #endif // KMP_USE_MONITOR
1032 
1033 void __kmp_exit_thread(int exit_status) {
1034   pthread_exit((void *)(intptr_t)exit_status);
1035 } // __kmp_exit_thread
1036 
1037 #if KMP_USE_MONITOR
1038 void __kmp_resume_monitor();
1039 
1040 void __kmp_reap_monitor(kmp_info_t *th) {
1041   int status;
1042   void *exit_val;
1043 
1044   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1045                 " %#.8lx\n",
1046                 th->th.th_info.ds.ds_thread));
1047 
1048   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1049   // If both tid and gtid are 0, it means the monitor did not ever start.
1050   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1051   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1052   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1053     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1054     return;
1055   }
1056 
1057   KMP_MB(); /* Flush all pending memory write invalidates.  */
1058 
1059   /* First, check to see whether the monitor thread exists to wake it up. This
1060      is to avoid performance problem when the monitor sleeps during
1061      blocktime-size interval */
1062 
1063   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1064   if (status != ESRCH) {
1065     __kmp_resume_monitor(); // Wake up the monitor thread
1066   }
1067   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1068   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1069   if (exit_val != th) {
1070     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1071   }
1072 
1073   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1074   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1075 
1076   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1077                 " %#.8lx\n",
1078                 th->th.th_info.ds.ds_thread));
1079 
1080   KMP_MB(); /* Flush all pending memory write invalidates.  */
1081 }
1082 #endif // KMP_USE_MONITOR
1083 
1084 void __kmp_reap_worker(kmp_info_t *th) {
1085   int status;
1086   void *exit_val;
1087 
1088   KMP_MB(); /* Flush all pending memory write invalidates.  */
1089 
1090   KA_TRACE(
1091       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1092 
1093   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1094 #ifdef KMP_DEBUG
1095   /* Don't expose these to the user until we understand when they trigger */
1096   if (status != 0) {
1097     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1098   }
1099   if (exit_val != th) {
1100     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1101                   "exit_val = %p\n",
1102                   th->th.th_info.ds.ds_gtid, exit_val));
1103   }
1104 #endif /* KMP_DEBUG */
1105 
1106   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1107                 th->th.th_info.ds.ds_gtid));
1108 
1109   KMP_MB(); /* Flush all pending memory write invalidates.  */
1110 }
1111 
1112 #if KMP_HANDLE_SIGNALS
1113 
1114 static void __kmp_null_handler(int signo) {
1115   //  Do nothing, for doing SIG_IGN-type actions.
1116 } // __kmp_null_handler
1117 
1118 static void __kmp_team_handler(int signo) {
1119   if (__kmp_global.g.g_abort == 0) {
1120 /* Stage 1 signal handler, let's shut down all of the threads */
1121 #ifdef KMP_DEBUG
1122     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1123 #endif
1124     switch (signo) {
1125     case SIGHUP:
1126     case SIGINT:
1127     case SIGQUIT:
1128     case SIGILL:
1129     case SIGABRT:
1130     case SIGFPE:
1131     case SIGBUS:
1132     case SIGSEGV:
1133 #ifdef SIGSYS
1134     case SIGSYS:
1135 #endif
1136     case SIGTERM:
1137       if (__kmp_debug_buf) {
1138         __kmp_dump_debug_buffer();
1139       }
1140       KMP_MB(); // Flush all pending memory write invalidates.
1141       TCW_4(__kmp_global.g.g_abort, signo);
1142       KMP_MB(); // Flush all pending memory write invalidates.
1143       TCW_4(__kmp_global.g.g_done, TRUE);
1144       KMP_MB(); // Flush all pending memory write invalidates.
1145       break;
1146     default:
1147 #ifdef KMP_DEBUG
1148       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1149 #endif
1150       break;
1151     }
1152   }
1153 } // __kmp_team_handler
1154 
1155 static void __kmp_sigaction(int signum, const struct sigaction *act,
1156                             struct sigaction *oldact) {
1157   int rc = sigaction(signum, act, oldact);
1158   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1159 }
1160 
1161 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1162                                       int parallel_init) {
1163   KMP_MB(); // Flush all pending memory write invalidates.
1164   KB_TRACE(60,
1165            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1166   if (parallel_init) {
1167     struct sigaction new_action;
1168     struct sigaction old_action;
1169     new_action.sa_handler = handler_func;
1170     new_action.sa_flags = 0;
1171     sigfillset(&new_action.sa_mask);
1172     __kmp_sigaction(sig, &new_action, &old_action);
1173     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1174       sigaddset(&__kmp_sigset, sig);
1175     } else {
1176       // Restore/keep user's handler if one previously installed.
1177       __kmp_sigaction(sig, &old_action, NULL);
1178     }
1179   } else {
1180     // Save initial/system signal handlers to see if user handlers installed.
1181     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1182   }
1183   KMP_MB(); // Flush all pending memory write invalidates.
1184 } // __kmp_install_one_handler
1185 
1186 static void __kmp_remove_one_handler(int sig) {
1187   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1188   if (sigismember(&__kmp_sigset, sig)) {
1189     struct sigaction old;
1190     KMP_MB(); // Flush all pending memory write invalidates.
1191     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1192     if ((old.sa_handler != __kmp_team_handler) &&
1193         (old.sa_handler != __kmp_null_handler)) {
1194       // Restore the users signal handler.
1195       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1196                     "restoring: sig=%d\n",
1197                     sig));
1198       __kmp_sigaction(sig, &old, NULL);
1199     }
1200     sigdelset(&__kmp_sigset, sig);
1201     KMP_MB(); // Flush all pending memory write invalidates.
1202   }
1203 } // __kmp_remove_one_handler
1204 
1205 void __kmp_install_signals(int parallel_init) {
1206   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1207   if (__kmp_handle_signals || !parallel_init) {
1208     // If ! parallel_init, we do not install handlers, just save original
1209     // handlers. Let us do it even __handle_signals is 0.
1210     sigemptyset(&__kmp_sigset);
1211     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1212     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1213     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1214     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1215     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1216     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1217     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1218     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1219 #ifdef SIGSYS
1220     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1221 #endif // SIGSYS
1222     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1223 #ifdef SIGPIPE
1224     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1225 #endif // SIGPIPE
1226   }
1227 } // __kmp_install_signals
1228 
1229 void __kmp_remove_signals(void) {
1230   int sig;
1231   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1232   for (sig = 1; sig < NSIG; ++sig) {
1233     __kmp_remove_one_handler(sig);
1234   }
1235 } // __kmp_remove_signals
1236 
1237 #endif // KMP_HANDLE_SIGNALS
1238 
1239 void __kmp_enable(int new_state) {
1240 #ifdef KMP_CANCEL_THREADS
1241   int status, old_state;
1242   status = pthread_setcancelstate(new_state, &old_state);
1243   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1244   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1245 #endif
1246 }
1247 
1248 void __kmp_disable(int *old_state) {
1249 #ifdef KMP_CANCEL_THREADS
1250   int status;
1251   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1252   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1253 #endif
1254 }
1255 
1256 static void __kmp_atfork_prepare(void) { /*  nothing to do  */
1257 }
1258 
1259 static void __kmp_atfork_parent(void) { /*  nothing to do  */
1260 }
1261 
1262 /* Reset the library so execution in the child starts "all over again" with
1263    clean data structures in initial states.  Don't worry about freeing memory
1264    allocated by parent, just abandon it to be safe. */
1265 static void __kmp_atfork_child(void) {
1266   /* TODO make sure this is done right for nested/sibling */
1267   // ATT:  Memory leaks are here? TODO: Check it and fix.
1268   /* KMP_ASSERT( 0 ); */
1269 
1270   ++__kmp_fork_count;
1271 
1272 #if KMP_AFFINITY_SUPPORTED
1273 #if KMP_OS_LINUX
1274   // reset the affinity in the child to the initial thread
1275   // affinity in the parent
1276   kmp_set_thread_affinity_mask_initial();
1277 #endif
1278   // Set default not to bind threads tightly in the child (we’re expecting
1279   // over-subscription after the fork and this can improve things for
1280   // scripting languages that use OpenMP inside process-parallel code).
1281   __kmp_affinity_type = affinity_none;
1282 #if OMP_40_ENABLED
1283   if (__kmp_nested_proc_bind.bind_types != NULL) {
1284     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1285   }
1286 #endif // OMP_40_ENABLED
1287 #endif // KMP_AFFINITY_SUPPORTED
1288 
1289   __kmp_init_runtime = FALSE;
1290 #if KMP_USE_MONITOR
1291   __kmp_init_monitor = 0;
1292 #endif
1293   __kmp_init_parallel = FALSE;
1294   __kmp_init_middle = FALSE;
1295   __kmp_init_serial = FALSE;
1296   TCW_4(__kmp_init_gtid, FALSE);
1297   __kmp_init_common = FALSE;
1298 
1299   TCW_4(__kmp_init_user_locks, FALSE);
1300 #if !KMP_USE_DYNAMIC_LOCK
1301   __kmp_user_lock_table.used = 1;
1302   __kmp_user_lock_table.allocated = 0;
1303   __kmp_user_lock_table.table = NULL;
1304   __kmp_lock_blocks = NULL;
1305 #endif
1306 
1307   __kmp_all_nth = 0;
1308   TCW_4(__kmp_nth, 0);
1309 
1310   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1311      here so threadprivate doesn't use stale data */
1312   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1313                 __kmp_threadpriv_cache_list));
1314 
1315   while (__kmp_threadpriv_cache_list != NULL) {
1316 
1317     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1318       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1319                     &(*__kmp_threadpriv_cache_list->addr)));
1320 
1321       *__kmp_threadpriv_cache_list->addr = NULL;
1322     }
1323     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1324   }
1325 
1326   __kmp_init_runtime = FALSE;
1327 
1328   /* reset statically initialized locks */
1329   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1330   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1331   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1332 
1333   /* This is necessary to make sure no stale data is left around */
1334   /* AC: customers complain that we use unsafe routines in the atfork
1335      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1336      in dynamic_link when check the presence of shared tbbmalloc library.
1337      Suggestion is to make the library initialization lazier, similar
1338      to what done for __kmpc_begin(). */
1339   // TODO: synchronize all static initializations with regular library
1340   //       startup; look at kmp_global.cpp and etc.
1341   //__kmp_internal_begin ();
1342 }
1343 
1344 void __kmp_register_atfork(void) {
1345   if (__kmp_need_register_atfork) {
1346     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1347                                 __kmp_atfork_child);
1348     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1349     __kmp_need_register_atfork = FALSE;
1350   }
1351 }
1352 
1353 void __kmp_suspend_initialize(void) {
1354   int status;
1355   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1356   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1357   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1358   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1359 }
1360 
1361 static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1362   ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1363   if (th->th.th_suspend_init_count <= __kmp_fork_count) {
1364     /* this means we haven't initialized the suspension pthread objects for this
1365        thread in this instance of the process */
1366     int status;
1367     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1368                                &__kmp_suspend_cond_attr);
1369     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1370     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1371                                 &__kmp_suspend_mutex_attr);
1372     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1373     *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1;
1374     ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1375   }
1376 }
1377 
1378 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1379   if (th->th.th_suspend_init_count > __kmp_fork_count) {
1380     /* this means we have initialize the suspension pthread objects for this
1381        thread in this instance of the process */
1382     int status;
1383 
1384     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1385     if (status != 0 && status != EBUSY) {
1386       KMP_SYSFAIL("pthread_cond_destroy", status);
1387     }
1388     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1389     if (status != 0 && status != EBUSY) {
1390       KMP_SYSFAIL("pthread_mutex_destroy", status);
1391     }
1392     --th->th.th_suspend_init_count;
1393     KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count);
1394   }
1395 }
1396 
1397 /* This routine puts the calling thread to sleep after setting the
1398    sleep bit for the indicated flag variable to true. */
1399 template <class C>
1400 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1401   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1402   kmp_info_t *th = __kmp_threads[th_gtid];
1403   int status;
1404   typename C::flag_t old_spin;
1405 
1406   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1407                 flag->get()));
1408 
1409   __kmp_suspend_initialize_thread(th);
1410 
1411   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1412   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1413 
1414   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1415                 th_gtid, flag->get()));
1416 
1417   /* TODO: shouldn't this use release semantics to ensure that
1418      __kmp_suspend_initialize_thread gets called first? */
1419   old_spin = flag->set_sleeping();
1420 
1421   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1422                " was %x\n",
1423                th_gtid, flag->get(), *(flag->get()), old_spin));
1424 
1425   if (flag->done_check_val(old_spin)) {
1426     old_spin = flag->unset_sleeping();
1427     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1428                  "for spin(%p)\n",
1429                  th_gtid, flag->get()));
1430   } else {
1431     /* Encapsulate in a loop as the documentation states that this may
1432        "with low probability" return when the condition variable has
1433        not been signaled or broadcast */
1434     int deactivated = FALSE;
1435     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1436 
1437     while (flag->is_sleeping()) {
1438 #ifdef DEBUG_SUSPEND
1439       char buffer[128];
1440       __kmp_suspend_count++;
1441       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1442       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1443                    buffer);
1444 #endif
1445       // Mark the thread as no longer active (only in the first iteration of the
1446       // loop).
1447       if (!deactivated) {
1448         th->th.th_active = FALSE;
1449         if (th->th.th_active_in_pool) {
1450           th->th.th_active_in_pool = FALSE;
1451           KMP_TEST_THEN_DEC32(&__kmp_thread_pool_active_nth);
1452           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1453         }
1454         deactivated = TRUE;
1455       }
1456 
1457 #if USE_SUSPEND_TIMEOUT
1458       struct timespec now;
1459       struct timeval tval;
1460       int msecs;
1461 
1462       status = gettimeofday(&tval, NULL);
1463       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1464       TIMEVAL_TO_TIMESPEC(&tval, &now);
1465 
1466       msecs = (4 * __kmp_dflt_blocktime) + 200;
1467       now.tv_sec += msecs / 1000;
1468       now.tv_nsec += (msecs % 1000) * 1000;
1469 
1470       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1471                     "pthread_cond_timedwait\n",
1472                     th_gtid));
1473       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1474                                       &th->th.th_suspend_mx.m_mutex, &now);
1475 #else
1476       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1477                     " pthread_cond_wait\n",
1478                     th_gtid));
1479       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1480                                  &th->th.th_suspend_mx.m_mutex);
1481 #endif
1482 
1483       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1484         KMP_SYSFAIL("pthread_cond_wait", status);
1485       }
1486 #ifdef KMP_DEBUG
1487       if (status == ETIMEDOUT) {
1488         if (flag->is_sleeping()) {
1489           KF_TRACE(100,
1490                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1491         } else {
1492           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1493                        "not set!\n",
1494                        th_gtid));
1495         }
1496       } else if (flag->is_sleeping()) {
1497         KF_TRACE(100,
1498                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1499       }
1500 #endif
1501     } // while
1502 
1503     // Mark the thread as active again (if it was previous marked as inactive)
1504     if (deactivated) {
1505       th->th.th_active = TRUE;
1506       if (TCR_4(th->th.th_in_pool)) {
1507         KMP_TEST_THEN_INC32(&__kmp_thread_pool_active_nth);
1508         th->th.th_active_in_pool = TRUE;
1509       }
1510     }
1511   }
1512 #ifdef DEBUG_SUSPEND
1513   {
1514     char buffer[128];
1515     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1516     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1517                  buffer);
1518   }
1519 #endif
1520 
1521   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1522   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1523   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1524 }
1525 
1526 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1527   __kmp_suspend_template(th_gtid, flag);
1528 }
1529 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1530   __kmp_suspend_template(th_gtid, flag);
1531 }
1532 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1533   __kmp_suspend_template(th_gtid, flag);
1534 }
1535 
1536 /* This routine signals the thread specified by target_gtid to wake up
1537    after setting the sleep bit indicated by the flag argument to FALSE.
1538    The target thread must already have called __kmp_suspend_template() */
1539 template <class C>
1540 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1541   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1542   kmp_info_t *th = __kmp_threads[target_gtid];
1543   int status;
1544 
1545 #ifdef KMP_DEBUG
1546   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1547 #endif
1548 
1549   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1550                 gtid, target_gtid));
1551   KMP_DEBUG_ASSERT(gtid != target_gtid);
1552 
1553   __kmp_suspend_initialize_thread(th);
1554 
1555   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1556   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1557 
1558   if (!flag) { // coming from __kmp_null_resume_wrapper
1559     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1560   }
1561 
1562   // First, check if the flag is null or its type has changed. If so, someone
1563   // else woke it up.
1564   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1565     // simply shows what
1566     // flag was cast to
1567     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1568                  "awake: flag(%p)\n",
1569                  gtid, target_gtid, NULL));
1570     status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1571     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1572     return;
1573   } else { // if multiple threads are sleeping, flag should be internally
1574     // referring to a specific thread here
1575     typename C::flag_t old_spin = flag->unset_sleeping();
1576     if (!flag->is_sleeping_val(old_spin)) {
1577       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1578                    "awake: flag(%p): "
1579                    "%u => %u\n",
1580                    gtid, target_gtid, flag->get(), old_spin, *flag->get()));
1581       status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1582       KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1583       return;
1584     }
1585     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1586                  "sleep bit for flag's loc(%p): "
1587                  "%u => %u\n",
1588                  gtid, target_gtid, flag->get(), old_spin, *flag->get()));
1589   }
1590   TCW_PTR(th->th.th_sleep_loc, NULL);
1591 
1592 #ifdef DEBUG_SUSPEND
1593   {
1594     char buffer[128];
1595     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1596     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1597                  target_gtid, buffer);
1598   }
1599 #endif
1600   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1601   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1602   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1603   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1604   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1605                 " for T#%d\n",
1606                 gtid, target_gtid));
1607 }
1608 
1609 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1610   __kmp_resume_template(target_gtid, flag);
1611 }
1612 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1613   __kmp_resume_template(target_gtid, flag);
1614 }
1615 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1616   __kmp_resume_template(target_gtid, flag);
1617 }
1618 
1619 #if KMP_USE_MONITOR
1620 void __kmp_resume_monitor() {
1621   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1622   int status;
1623 #ifdef KMP_DEBUG
1624   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1625   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1626                 KMP_GTID_MONITOR));
1627   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1628 #endif
1629   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1630   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1631 #ifdef DEBUG_SUSPEND
1632   {
1633     char buffer[128];
1634     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1635     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1636                  KMP_GTID_MONITOR, buffer);
1637   }
1638 #endif
1639   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1640   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1641   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1642   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1643   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1644                 " for T#%d\n",
1645                 gtid, KMP_GTID_MONITOR));
1646 }
1647 #endif // KMP_USE_MONITOR
1648 
1649 void __kmp_yield(int cond) {
1650   if (!cond)
1651     return;
1652 #if KMP_USE_MONITOR
1653   if (!__kmp_yielding_on)
1654     return;
1655 #else
1656   if (__kmp_yield_cycle && !KMP_YIELD_NOW())
1657     return;
1658 #endif
1659   sched_yield();
1660 }
1661 
1662 void __kmp_gtid_set_specific(int gtid) {
1663   if (__kmp_init_gtid) {
1664     int status;
1665     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1666                                  (void *)(intptr_t)(gtid + 1));
1667     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1668   } else {
1669     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1670   }
1671 }
1672 
1673 int __kmp_gtid_get_specific() {
1674   int gtid;
1675   if (!__kmp_init_gtid) {
1676     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1677                   "KMP_GTID_SHUTDOWN\n"));
1678     return KMP_GTID_SHUTDOWN;
1679   }
1680   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1681   if (gtid == 0) {
1682     gtid = KMP_GTID_DNE;
1683   } else {
1684     gtid--;
1685   }
1686   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1687                 __kmp_gtid_threadprivate_key, gtid));
1688   return gtid;
1689 }
1690 
1691 double __kmp_read_cpu_time(void) {
1692   /*clock_t   t;*/
1693   struct tms buffer;
1694 
1695   /*t =*/times(&buffer);
1696 
1697   return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1698 }
1699 
1700 int __kmp_read_system_info(struct kmp_sys_info *info) {
1701   int status;
1702   struct rusage r_usage;
1703 
1704   memset(info, 0, sizeof(*info));
1705 
1706   status = getrusage(RUSAGE_SELF, &r_usage);
1707   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1708 
1709   // The maximum resident set size utilized (in kilobytes)
1710   info->maxrss = r_usage.ru_maxrss;
1711   // The number of page faults serviced without any I/O
1712   info->minflt = r_usage.ru_minflt;
1713   // The number of page faults serviced that required I/O
1714   info->majflt = r_usage.ru_majflt;
1715   // The number of times a process was "swapped" out of memory
1716   info->nswap = r_usage.ru_nswap;
1717   // The number of times the file system had to perform input
1718   info->inblock = r_usage.ru_inblock;
1719   // The number of times the file system had to perform output
1720   info->oublock = r_usage.ru_oublock;
1721   // The number of times a context switch was voluntarily
1722   info->nvcsw = r_usage.ru_nvcsw;
1723   // The number of times a context switch was forced
1724   info->nivcsw = r_usage.ru_nivcsw;
1725 
1726   return (status != 0);
1727 }
1728 
1729 void __kmp_read_system_time(double *delta) {
1730   double t_ns;
1731   struct timeval tval;
1732   struct timespec stop;
1733   int status;
1734 
1735   status = gettimeofday(&tval, NULL);
1736   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1737   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1738   t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1739   *delta = (t_ns * 1e-9);
1740 }
1741 
1742 void __kmp_clear_system_time(void) {
1743   struct timeval tval;
1744   int status;
1745   status = gettimeofday(&tval, NULL);
1746   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1747   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1748 }
1749 
1750 static int __kmp_get_xproc(void) {
1751 
1752   int r = 0;
1753 
1754 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
1755 
1756   r = sysconf(_SC_NPROCESSORS_ONLN);
1757 
1758 #elif KMP_OS_DARWIN
1759 
1760   // Bug C77011 High "OpenMP Threads and number of active cores".
1761 
1762   // Find the number of available CPUs.
1763   kern_return_t rc;
1764   host_basic_info_data_t info;
1765   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1766   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1767   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1768     // Cannot use KA_TRACE() here because this code works before trace support
1769     // is initialized.
1770     r = info.avail_cpus;
1771   } else {
1772     KMP_WARNING(CantGetNumAvailCPU);
1773     KMP_INFORM(AssumedNumCPU);
1774   }
1775 
1776 #else
1777 
1778 #error "Unknown or unsupported OS."
1779 
1780 #endif
1781 
1782   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1783 
1784 } // __kmp_get_xproc
1785 
1786 int __kmp_read_from_file(char const *path, char const *format, ...) {
1787   int result;
1788   va_list args;
1789 
1790   va_start(args, format);
1791   FILE *f = fopen(path, "rb");
1792   if (f == NULL)
1793     return 0;
1794   result = vfscanf(f, format, args);
1795   fclose(f);
1796 
1797   return result;
1798 }
1799 
1800 void __kmp_runtime_initialize(void) {
1801   int status;
1802   pthread_mutexattr_t mutex_attr;
1803   pthread_condattr_t cond_attr;
1804 
1805   if (__kmp_init_runtime) {
1806     return;
1807   }
1808 
1809 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1810   if (!__kmp_cpuinfo.initialized) {
1811     __kmp_query_cpuid(&__kmp_cpuinfo);
1812   }
1813 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1814 
1815   __kmp_xproc = __kmp_get_xproc();
1816 
1817   if (sysconf(_SC_THREADS)) {
1818 
1819     /* Query the maximum number of threads */
1820     __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1821     if (__kmp_sys_max_nth == -1) {
1822       /* Unlimited threads for NPTL */
1823       __kmp_sys_max_nth = INT_MAX;
1824     } else if (__kmp_sys_max_nth <= 1) {
1825       /* Can't tell, just use PTHREAD_THREADS_MAX */
1826       __kmp_sys_max_nth = KMP_MAX_NTH;
1827     }
1828 
1829     /* Query the minimum stack size */
1830     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1831     if (__kmp_sys_min_stksize <= 1) {
1832       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1833     }
1834   }
1835 
1836   /* Set up minimum number of threads to switch to TLS gtid */
1837   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1838 
1839   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1840                               __kmp_internal_end_dest);
1841   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1842   status = pthread_mutexattr_init(&mutex_attr);
1843   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1844   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1845   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1846   status = pthread_condattr_init(&cond_attr);
1847   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1848   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1849   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1850 #if USE_ITT_BUILD
1851   __kmp_itt_initialize();
1852 #endif /* USE_ITT_BUILD */
1853 
1854   __kmp_init_runtime = TRUE;
1855 }
1856 
1857 void __kmp_runtime_destroy(void) {
1858   int status;
1859 
1860   if (!__kmp_init_runtime) {
1861     return; // Nothing to do.
1862   }
1863 
1864 #if USE_ITT_BUILD
1865   __kmp_itt_destroy();
1866 #endif /* USE_ITT_BUILD */
1867 
1868   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1869   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1870 
1871   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1872   if (status != 0 && status != EBUSY) {
1873     KMP_SYSFAIL("pthread_mutex_destroy", status);
1874   }
1875   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1876   if (status != 0 && status != EBUSY) {
1877     KMP_SYSFAIL("pthread_cond_destroy", status);
1878   }
1879 #if KMP_AFFINITY_SUPPORTED
1880   __kmp_affinity_uninitialize();
1881 #endif
1882 
1883   __kmp_init_runtime = FALSE;
1884 }
1885 
1886 /* Put the thread to sleep for a time period */
1887 /* NOTE: not currently used anywhere */
1888 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1889 
1890 /* Calculate the elapsed wall clock time for the user */
1891 void __kmp_elapsed(double *t) {
1892   int status;
1893 #ifdef FIX_SGI_CLOCK
1894   struct timespec ts;
1895 
1896   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1897   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1898   *t =
1899       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1900 #else
1901   struct timeval tv;
1902 
1903   status = gettimeofday(&tv, NULL);
1904   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1905   *t =
1906       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1907 #endif
1908 }
1909 
1910 /* Calculate the elapsed wall clock tick for the user */
1911 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1912 
1913 /* Return the current time stamp in nsec */
1914 kmp_uint64 __kmp_now_nsec() {
1915   struct timeval t;
1916   gettimeofday(&t, NULL);
1917   return KMP_NSEC_PER_SEC * t.tv_sec + 1000 * t.tv_usec;
1918 }
1919 
1920 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1921 /* Measure clock ticks per millisecond */
1922 void __kmp_initialize_system_tick() {
1923   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1924   kmp_uint64 nsec = __kmp_now_nsec();
1925   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1926   kmp_uint64 now;
1927   while ((now = __kmp_hardware_timestamp()) < goal)
1928     ;
1929   __kmp_ticks_per_msec =
1930       (kmp_uint64)(1e6 * (delay + (now - goal)) / (__kmp_now_nsec() - nsec));
1931 }
1932 #endif
1933 
1934 /* Determine whether the given address is mapped into the current address
1935    space. */
1936 
1937 int __kmp_is_address_mapped(void *addr) {
1938 
1939   int found = 0;
1940   int rc;
1941 
1942 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1943 
1944   /* On Linux* OS, read the /proc/<pid>/maps pseudo-file to get all the address
1945      ranges mapped into the address space. */
1946 
1947   char *name = __kmp_str_format("/proc/%d/maps", getpid());
1948   FILE *file = NULL;
1949 
1950   file = fopen(name, "r");
1951   KMP_ASSERT(file != NULL);
1952 
1953   for (;;) {
1954 
1955     void *beginning = NULL;
1956     void *ending = NULL;
1957     char perms[5];
1958 
1959     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1960     if (rc == EOF) {
1961       break;
1962     }
1963     KMP_ASSERT(rc == 3 &&
1964                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1965 
1966     // Ending address is not included in the region, but beginning is.
1967     if ((addr >= beginning) && (addr < ending)) {
1968       perms[2] = 0; // 3th and 4th character does not matter.
1969       if (strcmp(perms, "rw") == 0) {
1970         // Memory we are looking for should be readable and writable.
1971         found = 1;
1972       }
1973       break;
1974     }
1975   }
1976 
1977   // Free resources.
1978   fclose(file);
1979   KMP_INTERNAL_FREE(name);
1980 
1981 #elif KMP_OS_DARWIN
1982 
1983   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
1984      using vm interface. */
1985 
1986   int buffer;
1987   vm_size_t count;
1988   rc = vm_read_overwrite(
1989       mach_task_self(), // Task to read memory of.
1990       (vm_address_t)(addr), // Address to read from.
1991       1, // Number of bytes to be read.
1992       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
1993       &count // Address of var to save number of read bytes in.
1994       );
1995   if (rc == 0) {
1996     // Memory successfully read.
1997     found = 1;
1998   }
1999 
2000 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD
2001 
2002   // FIXME(FreeBSD, NetBSD): Implement this
2003   found = 1;
2004 
2005 #else
2006 
2007 #error "Unknown or unsupported OS"
2008 
2009 #endif
2010 
2011   return found;
2012 
2013 } // __kmp_is_address_mapped
2014 
2015 #ifdef USE_LOAD_BALANCE
2016 
2017 #if KMP_OS_DARWIN
2018 
2019 // The function returns the rounded value of the system load average
2020 // during given time interval which depends on the value of
2021 // __kmp_load_balance_interval variable (default is 60 sec, other values
2022 // may be 300 sec or 900 sec).
2023 // It returns -1 in case of error.
2024 int __kmp_get_load_balance(int max) {
2025   double averages[3];
2026   int ret_avg = 0;
2027 
2028   int res = getloadavg(averages, 3);
2029 
2030   // Check __kmp_load_balance_interval to determine which of averages to use.
2031   // getloadavg() may return the number of samples less than requested that is
2032   // less than 3.
2033   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2034     ret_avg = averages[0]; // 1 min
2035   } else if ((__kmp_load_balance_interval >= 180 &&
2036               __kmp_load_balance_interval < 600) &&
2037              (res >= 2)) {
2038     ret_avg = averages[1]; // 5 min
2039   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2040     ret_avg = averages[2]; // 15 min
2041   } else { // Error occurred
2042     return -1;
2043   }
2044 
2045   return ret_avg;
2046 }
2047 
2048 #else // Linux* OS
2049 
2050 // The fuction returns number of running (not sleeping) threads, or -1 in case
2051 // of error. Error could be reported if Linux* OS kernel too old (without
2052 // "/proc" support). Counting running threads stops if max running threads
2053 // encountered.
2054 int __kmp_get_load_balance(int max) {
2055   static int permanent_error = 0;
2056   static int glb_running_threads = 0; // Saved count of the running threads for
2057   // the thread balance algortihm
2058   static double glb_call_time = 0; /* Thread balance algorithm call time */
2059 
2060   int running_threads = 0; // Number of running threads in the system.
2061 
2062   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2063   struct dirent *proc_entry = NULL;
2064 
2065   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2066   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2067   struct dirent *task_entry = NULL;
2068   int task_path_fixed_len;
2069 
2070   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2071   int stat_file = -1;
2072   int stat_path_fixed_len;
2073 
2074   int total_processes = 0; // Total number of processes in system.
2075   int total_threads = 0; // Total number of threads in system.
2076 
2077   double call_time = 0.0;
2078 
2079   __kmp_str_buf_init(&task_path);
2080   __kmp_str_buf_init(&stat_path);
2081 
2082   __kmp_elapsed(&call_time);
2083 
2084   if (glb_call_time &&
2085       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2086     running_threads = glb_running_threads;
2087     goto finish;
2088   }
2089 
2090   glb_call_time = call_time;
2091 
2092   // Do not spend time on scanning "/proc/" if we have a permanent error.
2093   if (permanent_error) {
2094     running_threads = -1;
2095     goto finish;
2096   }
2097 
2098   if (max <= 0) {
2099     max = INT_MAX;
2100   }
2101 
2102   // Open "/proc/" directory.
2103   proc_dir = opendir("/proc");
2104   if (proc_dir == NULL) {
2105     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2106     // error now and in subsequent calls.
2107     running_threads = -1;
2108     permanent_error = 1;
2109     goto finish;
2110   }
2111 
2112   // Initialize fixed part of task_path. This part will not change.
2113   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2114   task_path_fixed_len = task_path.used; // Remember number of used characters.
2115 
2116   proc_entry = readdir(proc_dir);
2117   while (proc_entry != NULL) {
2118     // Proc entry is a directory and name starts with a digit. Assume it is a
2119     // process' directory.
2120     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2121 
2122       ++total_processes;
2123       // Make sure init process is the very first in "/proc", so we can replace
2124       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2125       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2126       // true (where "=>" is implication). Since C++ does not have => operator,
2127       // let us replace it with its equivalent: a => b == ! a || b.
2128       KMP_DEBUG_ASSERT(total_processes != 1 ||
2129                        strcmp(proc_entry->d_name, "1") == 0);
2130 
2131       // Construct task_path.
2132       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2133       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2134                         KMP_STRLEN(proc_entry->d_name));
2135       __kmp_str_buf_cat(&task_path, "/task", 5);
2136 
2137       task_dir = opendir(task_path.str);
2138       if (task_dir == NULL) {
2139         // Process can finish between reading "/proc/" directory entry and
2140         // opening process' "task/" directory. So, in general case we should not
2141         // complain, but have to skip this process and read the next one. But on
2142         // systems with no "task/" support we will spend lot of time to scan
2143         // "/proc/" tree again and again without any benefit. "init" process
2144         // (its pid is 1) should exist always, so, if we cannot open
2145         // "/proc/1/task/" directory, it means "task/" is not supported by
2146         // kernel. Report an error now and in the future.
2147         if (strcmp(proc_entry->d_name, "1") == 0) {
2148           running_threads = -1;
2149           permanent_error = 1;
2150           goto finish;
2151         }
2152       } else {
2153         // Construct fixed part of stat file path.
2154         __kmp_str_buf_clear(&stat_path);
2155         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2156         __kmp_str_buf_cat(&stat_path, "/", 1);
2157         stat_path_fixed_len = stat_path.used;
2158 
2159         task_entry = readdir(task_dir);
2160         while (task_entry != NULL) {
2161           // It is a directory and name starts with a digit.
2162           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2163             ++total_threads;
2164 
2165             // Consruct complete stat file path. Easiest way would be:
2166             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2167             //  task_entry->d_name );
2168             // but seriae of __kmp_str_buf_cat works a bit faster.
2169             stat_path.used =
2170                 stat_path_fixed_len; // Reset stat path to its fixed part.
2171             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2172                               KMP_STRLEN(task_entry->d_name));
2173             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2174 
2175             // Note: Low-level API (open/read/close) is used. High-level API
2176             // (fopen/fclose)  works ~ 30 % slower.
2177             stat_file = open(stat_path.str, O_RDONLY);
2178             if (stat_file == -1) {
2179               // We cannot report an error because task (thread) can terminate
2180               // just before reading this file.
2181             } else {
2182               /* Content of "stat" file looks like:
2183                  24285 (program) S ...
2184 
2185                  It is a single line (if program name does not include funny
2186                  symbols). First number is a thread id, then name of executable
2187                  file name in paretheses, then state of the thread. We need just
2188                  thread state.
2189 
2190                  Good news: Length of program name is 15 characters max. Longer
2191                  names are truncated.
2192 
2193                  Thus, we need rather short buffer: 15 chars for program name +
2194                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2195 
2196                  Bad news: Program name may contain special symbols like space,
2197                  closing parenthesis, or even new line. This makes parsing
2198                  "stat" file not 100 % reliable. In case of fanny program names
2199                  parsing may fail (report incorrect thread state).
2200 
2201                  Parsing "status" file looks more promissing (due to different
2202                  file structure and escaping special symbols) but reading and
2203                  parsing of "status" file works slower.
2204                   -- ln
2205               */
2206               char buffer[65];
2207               int len;
2208               len = read(stat_file, buffer, sizeof(buffer) - 1);
2209               if (len >= 0) {
2210                 buffer[len] = 0;
2211                 // Using scanf:
2212                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2213                 // looks very nice, but searching for a closing parenthesis
2214                 // works a bit faster.
2215                 char *close_parent = strstr(buffer, ") ");
2216                 if (close_parent != NULL) {
2217                   char state = *(close_parent + 2);
2218                   if (state == 'R') {
2219                     ++running_threads;
2220                     if (running_threads >= max) {
2221                       goto finish;
2222                     }
2223                   }
2224                 }
2225               }
2226               close(stat_file);
2227               stat_file = -1;
2228             }
2229           }
2230           task_entry = readdir(task_dir);
2231         }
2232         closedir(task_dir);
2233         task_dir = NULL;
2234       }
2235     }
2236     proc_entry = readdir(proc_dir);
2237   }
2238 
2239   // There _might_ be a timing hole where the thread executing this
2240   // code get skipped in the load balance, and running_threads is 0.
2241   // Assert in the debug builds only!!!
2242   KMP_DEBUG_ASSERT(running_threads > 0);
2243   if (running_threads <= 0) {
2244     running_threads = 1;
2245   }
2246 
2247 finish: // Clean up and exit.
2248   if (proc_dir != NULL) {
2249     closedir(proc_dir);
2250   }
2251   __kmp_str_buf_free(&task_path);
2252   if (task_dir != NULL) {
2253     closedir(task_dir);
2254   }
2255   __kmp_str_buf_free(&stat_path);
2256   if (stat_file != -1) {
2257     close(stat_file);
2258   }
2259 
2260   glb_running_threads = running_threads;
2261 
2262   return running_threads;
2263 
2264 } // __kmp_get_load_balance
2265 
2266 #endif // KMP_OS_DARWIN
2267 
2268 #endif // USE_LOAD_BALANCE
2269 
2270 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2271       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2272 
2273 // we really only need the case with 1 argument, because CLANG always build
2274 // a struct of pointers to shared variables referenced in the outlined function
2275 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2276                            void *p_argv[]
2277 #if OMPT_SUPPORT
2278                            ,
2279                            void **exit_frame_ptr
2280 #endif
2281                            ) {
2282 #if OMPT_SUPPORT
2283   *exit_frame_ptr = __builtin_frame_address(0);
2284 #endif
2285 
2286   switch (argc) {
2287   default:
2288     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2289     fflush(stderr);
2290     exit(-1);
2291   case 0:
2292     (*pkfn)(&gtid, &tid);
2293     break;
2294   case 1:
2295     (*pkfn)(&gtid, &tid, p_argv[0]);
2296     break;
2297   case 2:
2298     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2299     break;
2300   case 3:
2301     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2302     break;
2303   case 4:
2304     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2305     break;
2306   case 5:
2307     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2308     break;
2309   case 6:
2310     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2311             p_argv[5]);
2312     break;
2313   case 7:
2314     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2315             p_argv[5], p_argv[6]);
2316     break;
2317   case 8:
2318     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2319             p_argv[5], p_argv[6], p_argv[7]);
2320     break;
2321   case 9:
2322     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2323             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2324     break;
2325   case 10:
2326     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2327             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2328     break;
2329   case 11:
2330     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2331             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2332     break;
2333   case 12:
2334     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2335             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2336             p_argv[11]);
2337     break;
2338   case 13:
2339     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2340             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2341             p_argv[11], p_argv[12]);
2342     break;
2343   case 14:
2344     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2345             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2346             p_argv[11], p_argv[12], p_argv[13]);
2347     break;
2348   case 15:
2349     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2350             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2351             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2352     break;
2353   }
2354 
2355 #if OMPT_SUPPORT
2356   *exit_frame_ptr = 0;
2357 #endif
2358 
2359   return 1;
2360 }
2361 
2362 #endif
2363 
2364 // end of file //
2365