1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #include <sys/resource.h> 29 #include <sys/syscall.h> 30 #include <sys/time.h> 31 #include <sys/times.h> 32 #include <unistd.h> 33 34 #if KMP_OS_LINUX 35 #include <sys/sysinfo.h> 36 #if KMP_USE_FUTEX 37 // We should really include <futex.h>, but that causes compatibility problems on 38 // different Linux* OS distributions that either require that you include (or 39 // break when you try to include) <pci/types.h>. Since all we need is the two 40 // macros below (which are part of the kernel ABI, so can't change) we just 41 // define the constants here and don't include <futex.h> 42 #ifndef FUTEX_WAIT 43 #define FUTEX_WAIT 0 44 #endif 45 #ifndef FUTEX_WAKE 46 #define FUTEX_WAKE 1 47 #endif 48 #endif 49 #elif KMP_OS_DARWIN 50 #include <mach/mach.h> 51 #include <sys/sysctl.h> 52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 53 #include <sys/types.h> 54 #include <sys/sysctl.h> 55 #include <sys/user.h> 56 #include <pthread_np.h> 57 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 58 #include <sys/types.h> 59 #include <sys/sysctl.h> 60 #endif 61 62 #include <ctype.h> 63 #include <dirent.h> 64 #include <fcntl.h> 65 66 #include "tsan_annotations.h" 67 68 struct kmp_sys_timer { 69 struct timespec start; 70 }; 71 72 // Convert timespec to nanoseconds. 73 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec) 74 75 static struct kmp_sys_timer __kmp_sys_timer_data; 76 77 #if KMP_HANDLE_SIGNALS 78 typedef void (*sig_func_t)(int); 79 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 80 static sigset_t __kmp_sigset; 81 #endif 82 83 static int __kmp_init_runtime = FALSE; 84 85 static int __kmp_fork_count = 0; 86 87 static pthread_condattr_t __kmp_suspend_cond_attr; 88 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 89 90 static kmp_cond_align_t __kmp_wait_cv; 91 static kmp_mutex_align_t __kmp_wait_mx; 92 93 kmp_uint64 __kmp_ticks_per_msec = 1000000; 94 95 #ifdef DEBUG_SUSPEND 96 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 97 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 98 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 99 cond->c_cond.__c_waiting); 100 } 101 #endif 102 103 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 104 105 /* Affinity support */ 106 107 void __kmp_affinity_bind_thread(int which) { 108 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 109 "Illegal set affinity operation when not capable"); 110 111 kmp_affin_mask_t *mask; 112 KMP_CPU_ALLOC_ON_STACK(mask); 113 KMP_CPU_ZERO(mask); 114 KMP_CPU_SET(which, mask); 115 __kmp_set_system_affinity(mask, TRUE); 116 KMP_CPU_FREE_FROM_STACK(mask); 117 } 118 119 /* Determine if we can access affinity functionality on this version of 120 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 121 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 122 void __kmp_affinity_determine_capable(const char *env_var) { 123 // Check and see if the OS supports thread affinity. 124 125 #if KMP_OS_LINUX 126 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 127 #elif KMP_OS_FREEBSD 128 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 129 #endif 130 131 132 #if KMP_OS_LINUX 133 // If Linux* OS: 134 // If the syscall fails or returns a suggestion for the size, 135 // then we don't have to search for an appropriate size. 136 int gCode; 137 int sCode; 138 unsigned char *buf; 139 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 140 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 141 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 142 "initial getaffinity call returned %d errno = %d\n", 143 gCode, errno)); 144 145 // if ((gCode < 0) && (errno == ENOSYS)) 146 if (gCode < 0) { 147 // System call not supported 148 if (__kmp_affinity_verbose || 149 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 150 (__kmp_affinity_type != affinity_default) && 151 (__kmp_affinity_type != affinity_disabled))) { 152 int error = errno; 153 kmp_msg_t err_code = KMP_ERR(error); 154 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 155 err_code, __kmp_msg_null); 156 if (__kmp_generate_warnings == kmp_warnings_off) { 157 __kmp_str_free(&err_code.str); 158 } 159 } 160 KMP_AFFINITY_DISABLE(); 161 KMP_INTERNAL_FREE(buf); 162 return; 163 } 164 if (gCode > 0) { // Linux* OS only 165 // The optimal situation: the OS returns the size of the buffer it expects. 166 // 167 // A verification of correct behavior is that setaffinity on a NULL 168 // buffer with the same size fails with errno set to EFAULT. 169 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 170 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 171 "setaffinity for mask size %d returned %d errno = %d\n", 172 gCode, sCode, errno)); 173 if (sCode < 0) { 174 if (errno == ENOSYS) { 175 if (__kmp_affinity_verbose || 176 (__kmp_affinity_warnings && 177 (__kmp_affinity_type != affinity_none) && 178 (__kmp_affinity_type != affinity_default) && 179 (__kmp_affinity_type != affinity_disabled))) { 180 int error = errno; 181 kmp_msg_t err_code = KMP_ERR(error); 182 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 183 err_code, __kmp_msg_null); 184 if (__kmp_generate_warnings == kmp_warnings_off) { 185 __kmp_str_free(&err_code.str); 186 } 187 } 188 KMP_AFFINITY_DISABLE(); 189 KMP_INTERNAL_FREE(buf); 190 } 191 if (errno == EFAULT) { 192 KMP_AFFINITY_ENABLE(gCode); 193 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 194 "affinity supported (mask size %d)\n", 195 (int)__kmp_affin_mask_size)); 196 KMP_INTERNAL_FREE(buf); 197 return; 198 } 199 } 200 } 201 202 // Call the getaffinity system call repeatedly with increasing set sizes 203 // until we succeed, or reach an upper bound on the search. 204 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 205 "searching for proper set size\n")); 206 int size; 207 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 208 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 209 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 210 "getaffinity for mask size %d returned %d errno = %d\n", 211 size, gCode, errno)); 212 213 if (gCode < 0) { 214 if (errno == ENOSYS) { 215 // We shouldn't get here 216 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 217 "inconsistent OS call behavior: errno == ENOSYS for mask " 218 "size %d\n", 219 size)); 220 if (__kmp_affinity_verbose || 221 (__kmp_affinity_warnings && 222 (__kmp_affinity_type != affinity_none) && 223 (__kmp_affinity_type != affinity_default) && 224 (__kmp_affinity_type != affinity_disabled))) { 225 int error = errno; 226 kmp_msg_t err_code = KMP_ERR(error); 227 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 228 err_code, __kmp_msg_null); 229 if (__kmp_generate_warnings == kmp_warnings_off) { 230 __kmp_str_free(&err_code.str); 231 } 232 } 233 KMP_AFFINITY_DISABLE(); 234 KMP_INTERNAL_FREE(buf); 235 return; 236 } 237 continue; 238 } 239 240 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 241 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 242 "setaffinity for mask size %d returned %d errno = %d\n", 243 gCode, sCode, errno)); 244 if (sCode < 0) { 245 if (errno == ENOSYS) { // Linux* OS only 246 // We shouldn't get here 247 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 248 "inconsistent OS call behavior: errno == ENOSYS for mask " 249 "size %d\n", 250 size)); 251 if (__kmp_affinity_verbose || 252 (__kmp_affinity_warnings && 253 (__kmp_affinity_type != affinity_none) && 254 (__kmp_affinity_type != affinity_default) && 255 (__kmp_affinity_type != affinity_disabled))) { 256 int error = errno; 257 kmp_msg_t err_code = KMP_ERR(error); 258 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 259 err_code, __kmp_msg_null); 260 if (__kmp_generate_warnings == kmp_warnings_off) { 261 __kmp_str_free(&err_code.str); 262 } 263 } 264 KMP_AFFINITY_DISABLE(); 265 KMP_INTERNAL_FREE(buf); 266 return; 267 } 268 if (errno == EFAULT) { 269 KMP_AFFINITY_ENABLE(gCode); 270 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 271 "affinity supported (mask size %d)\n", 272 (int)__kmp_affin_mask_size)); 273 KMP_INTERNAL_FREE(buf); 274 return; 275 } 276 } 277 } 278 #elif KMP_OS_FREEBSD 279 int gCode; 280 unsigned char *buf; 281 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 282 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, reinterpret_cast<cpuset_t *>(buf)); 283 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 284 "initial getaffinity call returned %d errno = %d\n", 285 gCode, errno)); 286 if (gCode == 0) { 287 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 288 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 289 "affinity supported (mask size %d)\n", 290 (int)__kmp_affin_mask_size)); 291 KMP_INTERNAL_FREE(buf); 292 return; 293 } 294 #endif 295 // save uncaught error code 296 // int error = errno; 297 KMP_INTERNAL_FREE(buf); 298 // restore uncaught error code, will be printed at the next KMP_WARNING below 299 // errno = error; 300 301 // Affinity is not supported 302 KMP_AFFINITY_DISABLE(); 303 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 304 "cannot determine mask size - affinity not supported\n")); 305 if (__kmp_affinity_verbose || 306 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 307 (__kmp_affinity_type != affinity_default) && 308 (__kmp_affinity_type != affinity_disabled))) { 309 KMP_WARNING(AffCantGetMaskSize, env_var); 310 } 311 } 312 313 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 314 315 #if KMP_USE_FUTEX 316 317 int __kmp_futex_determine_capable() { 318 int loc = 0; 319 int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 320 int retval = (rc == 0) || (errno != ENOSYS); 321 322 KA_TRACE(10, 323 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 324 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 325 retval ? "" : " not")); 326 327 return retval; 328 } 329 330 #endif // KMP_USE_FUTEX 331 332 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 333 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 334 use compare_and_store for these routines */ 335 336 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 337 kmp_int8 old_value, new_value; 338 339 old_value = TCR_1(*p); 340 new_value = old_value | d; 341 342 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 343 KMP_CPU_PAUSE(); 344 old_value = TCR_1(*p); 345 new_value = old_value | d; 346 } 347 return old_value; 348 } 349 350 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 351 kmp_int8 old_value, new_value; 352 353 old_value = TCR_1(*p); 354 new_value = old_value & d; 355 356 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 357 KMP_CPU_PAUSE(); 358 old_value = TCR_1(*p); 359 new_value = old_value & d; 360 } 361 return old_value; 362 } 363 364 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 365 kmp_uint32 old_value, new_value; 366 367 old_value = TCR_4(*p); 368 new_value = old_value | d; 369 370 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 371 KMP_CPU_PAUSE(); 372 old_value = TCR_4(*p); 373 new_value = old_value | d; 374 } 375 return old_value; 376 } 377 378 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 379 kmp_uint32 old_value, new_value; 380 381 old_value = TCR_4(*p); 382 new_value = old_value & d; 383 384 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 385 KMP_CPU_PAUSE(); 386 old_value = TCR_4(*p); 387 new_value = old_value & d; 388 } 389 return old_value; 390 } 391 392 #if KMP_ARCH_X86 393 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 394 kmp_int8 old_value, new_value; 395 396 old_value = TCR_1(*p); 397 new_value = old_value + d; 398 399 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 400 KMP_CPU_PAUSE(); 401 old_value = TCR_1(*p); 402 new_value = old_value + d; 403 } 404 return old_value; 405 } 406 407 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 408 kmp_int64 old_value, new_value; 409 410 old_value = TCR_8(*p); 411 new_value = old_value + d; 412 413 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 414 KMP_CPU_PAUSE(); 415 old_value = TCR_8(*p); 416 new_value = old_value + d; 417 } 418 return old_value; 419 } 420 #endif /* KMP_ARCH_X86 */ 421 422 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 423 kmp_uint64 old_value, new_value; 424 425 old_value = TCR_8(*p); 426 new_value = old_value | d; 427 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 428 KMP_CPU_PAUSE(); 429 old_value = TCR_8(*p); 430 new_value = old_value | d; 431 } 432 return old_value; 433 } 434 435 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 436 kmp_uint64 old_value, new_value; 437 438 old_value = TCR_8(*p); 439 new_value = old_value & d; 440 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 441 KMP_CPU_PAUSE(); 442 old_value = TCR_8(*p); 443 new_value = old_value & d; 444 } 445 return old_value; 446 } 447 448 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 449 450 void __kmp_terminate_thread(int gtid) { 451 int status; 452 kmp_info_t *th = __kmp_threads[gtid]; 453 454 if (!th) 455 return; 456 457 #ifdef KMP_CANCEL_THREADS 458 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 459 status = pthread_cancel(th->th.th_info.ds.ds_thread); 460 if (status != 0 && status != ESRCH) { 461 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 462 __kmp_msg_null); 463 } 464 #endif 465 KMP_YIELD(TRUE); 466 } // 467 468 /* Set thread stack info according to values returned by pthread_getattr_np(). 469 If values are unreasonable, assume call failed and use incremental stack 470 refinement method instead. Returns TRUE if the stack parameters could be 471 determined exactly, FALSE if incremental refinement is necessary. */ 472 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 473 int stack_data; 474 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 475 KMP_OS_HURD 476 pthread_attr_t attr; 477 int status; 478 size_t size = 0; 479 void *addr = 0; 480 481 /* Always do incremental stack refinement for ubermaster threads since the 482 initial thread stack range can be reduced by sibling thread creation so 483 pthread_attr_getstack may cause thread gtid aliasing */ 484 if (!KMP_UBER_GTID(gtid)) { 485 486 /* Fetch the real thread attributes */ 487 status = pthread_attr_init(&attr); 488 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 489 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 490 status = pthread_attr_get_np(pthread_self(), &attr); 491 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 492 #else 493 status = pthread_getattr_np(pthread_self(), &attr); 494 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 495 #endif 496 status = pthread_attr_getstack(&attr, &addr, &size); 497 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 498 KA_TRACE(60, 499 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 500 " %lu, low addr: %p\n", 501 gtid, size, addr)); 502 status = pthread_attr_destroy(&attr); 503 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 504 } 505 506 if (size != 0 && addr != 0) { // was stack parameter determination successful? 507 /* Store the correct base and size */ 508 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 509 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 510 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 511 return TRUE; 512 } 513 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 514 KMP_OS_HURD */ 515 /* Use incremental refinement starting from initial conservative estimate */ 516 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 517 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 518 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 519 return FALSE; 520 } 521 522 static void *__kmp_launch_worker(void *thr) { 523 int status, old_type, old_state; 524 #ifdef KMP_BLOCK_SIGNALS 525 sigset_t new_set, old_set; 526 #endif /* KMP_BLOCK_SIGNALS */ 527 void *exit_val; 528 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 529 KMP_OS_OPENBSD || KMP_OS_HURD 530 void *volatile padding = 0; 531 #endif 532 int gtid; 533 534 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 535 __kmp_gtid_set_specific(gtid); 536 #ifdef KMP_TDATA_GTID 537 __kmp_gtid = gtid; 538 #endif 539 #if KMP_STATS_ENABLED 540 // set thread local index to point to thread-specific stats 541 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 542 __kmp_stats_thread_ptr->startLife(); 543 KMP_SET_THREAD_STATE(IDLE); 544 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 545 #endif 546 547 #if USE_ITT_BUILD 548 __kmp_itt_thread_name(gtid); 549 #endif /* USE_ITT_BUILD */ 550 551 #if KMP_AFFINITY_SUPPORTED 552 __kmp_affinity_set_init_mask(gtid, FALSE); 553 #endif 554 555 #ifdef KMP_CANCEL_THREADS 556 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 557 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 558 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 559 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 560 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 561 #endif 562 563 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 564 // Set FP control regs to be a copy of the parallel initialization thread's. 565 __kmp_clear_x87_fpu_status_word(); 566 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 567 __kmp_load_mxcsr(&__kmp_init_mxcsr); 568 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 569 570 #ifdef KMP_BLOCK_SIGNALS 571 status = sigfillset(&new_set); 572 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 573 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 574 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 575 #endif /* KMP_BLOCK_SIGNALS */ 576 577 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 578 KMP_OS_OPENBSD 579 if (__kmp_stkoffset > 0 && gtid > 0) { 580 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 581 } 582 #endif 583 584 KMP_MB(); 585 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 586 587 __kmp_check_stack_overlap((kmp_info_t *)thr); 588 589 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 590 591 #ifdef KMP_BLOCK_SIGNALS 592 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 593 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 594 #endif /* KMP_BLOCK_SIGNALS */ 595 596 return exit_val; 597 } 598 599 #if KMP_USE_MONITOR 600 /* The monitor thread controls all of the threads in the complex */ 601 602 static void *__kmp_launch_monitor(void *thr) { 603 int status, old_type, old_state; 604 #ifdef KMP_BLOCK_SIGNALS 605 sigset_t new_set; 606 #endif /* KMP_BLOCK_SIGNALS */ 607 struct timespec interval; 608 609 KMP_MB(); /* Flush all pending memory write invalidates. */ 610 611 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 612 613 /* register us as the monitor thread */ 614 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 615 #ifdef KMP_TDATA_GTID 616 __kmp_gtid = KMP_GTID_MONITOR; 617 #endif 618 619 KMP_MB(); 620 621 #if USE_ITT_BUILD 622 // Instruct Intel(R) Threading Tools to ignore monitor thread. 623 __kmp_itt_thread_ignore(); 624 #endif /* USE_ITT_BUILD */ 625 626 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 627 (kmp_info_t *)thr); 628 629 __kmp_check_stack_overlap((kmp_info_t *)thr); 630 631 #ifdef KMP_CANCEL_THREADS 632 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 633 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 634 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 635 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 636 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 637 #endif 638 639 #if KMP_REAL_TIME_FIX 640 // This is a potential fix which allows application with real-time scheduling 641 // policy work. However, decision about the fix is not made yet, so it is 642 // disabled by default. 643 { // Are program started with real-time scheduling policy? 644 int sched = sched_getscheduler(0); 645 if (sched == SCHED_FIFO || sched == SCHED_RR) { 646 // Yes, we are a part of real-time application. Try to increase the 647 // priority of the monitor. 648 struct sched_param param; 649 int max_priority = sched_get_priority_max(sched); 650 int rc; 651 KMP_WARNING(RealTimeSchedNotSupported); 652 sched_getparam(0, ¶m); 653 if (param.sched_priority < max_priority) { 654 param.sched_priority += 1; 655 rc = sched_setscheduler(0, sched, ¶m); 656 if (rc != 0) { 657 int error = errno; 658 kmp_msg_t err_code = KMP_ERR(error); 659 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 660 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 661 if (__kmp_generate_warnings == kmp_warnings_off) { 662 __kmp_str_free(&err_code.str); 663 } 664 } 665 } else { 666 // We cannot abort here, because number of CPUs may be enough for all 667 // the threads, including the monitor thread, so application could 668 // potentially work... 669 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 670 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 671 __kmp_msg_null); 672 } 673 } 674 // AC: free thread that waits for monitor started 675 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 676 } 677 #endif // KMP_REAL_TIME_FIX 678 679 KMP_MB(); /* Flush all pending memory write invalidates. */ 680 681 if (__kmp_monitor_wakeups == 1) { 682 interval.tv_sec = 1; 683 interval.tv_nsec = 0; 684 } else { 685 interval.tv_sec = 0; 686 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 687 } 688 689 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 690 691 while (!TCR_4(__kmp_global.g.g_done)) { 692 struct timespec now; 693 struct timeval tval; 694 695 /* This thread monitors the state of the system */ 696 697 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 698 699 status = gettimeofday(&tval, NULL); 700 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 701 TIMEVAL_TO_TIMESPEC(&tval, &now); 702 703 now.tv_sec += interval.tv_sec; 704 now.tv_nsec += interval.tv_nsec; 705 706 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 707 now.tv_sec += 1; 708 now.tv_nsec -= KMP_NSEC_PER_SEC; 709 } 710 711 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 712 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 713 // AC: the monitor should not fall asleep if g_done has been set 714 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 715 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 716 &__kmp_wait_mx.m_mutex, &now); 717 if (status != 0) { 718 if (status != ETIMEDOUT && status != EINTR) { 719 KMP_SYSFAIL("pthread_cond_timedwait", status); 720 } 721 } 722 } 723 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 724 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 725 726 TCW_4(__kmp_global.g.g_time.dt.t_value, 727 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 728 729 KMP_MB(); /* Flush all pending memory write invalidates. */ 730 } 731 732 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 733 734 #ifdef KMP_BLOCK_SIGNALS 735 status = sigfillset(&new_set); 736 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 737 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 738 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 739 #endif /* KMP_BLOCK_SIGNALS */ 740 741 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 742 743 if (__kmp_global.g.g_abort != 0) { 744 /* now we need to terminate the worker threads */ 745 /* the value of t_abort is the signal we caught */ 746 747 int gtid; 748 749 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 750 __kmp_global.g.g_abort)); 751 752 /* terminate the OpenMP worker threads */ 753 /* TODO this is not valid for sibling threads!! 754 * the uber master might not be 0 anymore.. */ 755 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 756 __kmp_terminate_thread(gtid); 757 758 __kmp_cleanup(); 759 760 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 761 __kmp_global.g.g_abort)); 762 763 if (__kmp_global.g.g_abort > 0) 764 raise(__kmp_global.g.g_abort); 765 } 766 767 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 768 769 return thr; 770 } 771 #endif // KMP_USE_MONITOR 772 773 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 774 pthread_t handle; 775 pthread_attr_t thread_attr; 776 int status; 777 778 th->th.th_info.ds.ds_gtid = gtid; 779 780 #if KMP_STATS_ENABLED 781 // sets up worker thread stats 782 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 783 784 // th->th.th_stats is used to transfer thread-specific stats-pointer to 785 // __kmp_launch_worker. So when thread is created (goes into 786 // __kmp_launch_worker) it will set its thread local pointer to 787 // th->th.th_stats 788 if (!KMP_UBER_GTID(gtid)) { 789 th->th.th_stats = __kmp_stats_list->push_back(gtid); 790 } else { 791 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 792 // so set the th->th.th_stats field to it. 793 th->th.th_stats = __kmp_stats_thread_ptr; 794 } 795 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 796 797 #endif // KMP_STATS_ENABLED 798 799 if (KMP_UBER_GTID(gtid)) { 800 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 801 th->th.th_info.ds.ds_thread = pthread_self(); 802 __kmp_set_stack_info(gtid, th); 803 __kmp_check_stack_overlap(th); 804 return; 805 } 806 807 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 808 809 KMP_MB(); /* Flush all pending memory write invalidates. */ 810 811 #ifdef KMP_THREAD_ATTR 812 status = pthread_attr_init(&thread_attr); 813 if (status != 0) { 814 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 815 } 816 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 817 if (status != 0) { 818 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 819 } 820 821 /* Set stack size for this thread now. 822 The multiple of 2 is there because on some machines, requesting an unusual 823 stacksize causes the thread to have an offset before the dummy alloca() 824 takes place to create the offset. Since we want the user to have a 825 sufficient stacksize AND support a stack offset, we alloca() twice the 826 offset so that the upcoming alloca() does not eliminate any premade offset, 827 and also gives the user the stack space they requested for all threads */ 828 stack_size += gtid * __kmp_stkoffset * 2; 829 830 #if defined(__ANDROID__) && __ANDROID_API__ < 19 831 // Round the stack size to a multiple of the page size. Older versions of 832 // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL 833 // if the stack size was not a multiple of the page size. 834 stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 835 #endif 836 837 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 838 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 839 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 840 841 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 842 status = pthread_attr_setstacksize(&thread_attr, stack_size); 843 #ifdef KMP_BACKUP_STKSIZE 844 if (status != 0) { 845 if (!__kmp_env_stksize) { 846 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 847 __kmp_stksize = KMP_BACKUP_STKSIZE; 848 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 849 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 850 "bytes\n", 851 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 852 status = pthread_attr_setstacksize(&thread_attr, stack_size); 853 } 854 } 855 #endif /* KMP_BACKUP_STKSIZE */ 856 if (status != 0) { 857 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 858 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 859 } 860 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 861 862 #endif /* KMP_THREAD_ATTR */ 863 864 status = 865 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 866 if (status != 0 || !handle) { // ??? Why do we check handle?? 867 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 868 if (status == EINVAL) { 869 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 870 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 871 } 872 if (status == ENOMEM) { 873 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 874 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 875 } 876 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 877 if (status == EAGAIN) { 878 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 879 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 880 } 881 KMP_SYSFAIL("pthread_create", status); 882 } 883 884 th->th.th_info.ds.ds_thread = handle; 885 886 #ifdef KMP_THREAD_ATTR 887 status = pthread_attr_destroy(&thread_attr); 888 if (status) { 889 kmp_msg_t err_code = KMP_ERR(status); 890 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 891 __kmp_msg_null); 892 if (__kmp_generate_warnings == kmp_warnings_off) { 893 __kmp_str_free(&err_code.str); 894 } 895 } 896 #endif /* KMP_THREAD_ATTR */ 897 898 KMP_MB(); /* Flush all pending memory write invalidates. */ 899 900 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 901 902 } // __kmp_create_worker 903 904 #if KMP_USE_MONITOR 905 void __kmp_create_monitor(kmp_info_t *th) { 906 pthread_t handle; 907 pthread_attr_t thread_attr; 908 size_t size; 909 int status; 910 int auto_adj_size = FALSE; 911 912 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 913 // We don't need monitor thread in case of MAX_BLOCKTIME 914 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 915 "MAX blocktime\n")); 916 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 917 th->th.th_info.ds.ds_gtid = 0; 918 return; 919 } 920 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 921 922 KMP_MB(); /* Flush all pending memory write invalidates. */ 923 924 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 925 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 926 #if KMP_REAL_TIME_FIX 927 TCW_4(__kmp_global.g.g_time.dt.t_value, 928 -1); // Will use it for synchronization a bit later. 929 #else 930 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 931 #endif // KMP_REAL_TIME_FIX 932 933 #ifdef KMP_THREAD_ATTR 934 if (__kmp_monitor_stksize == 0) { 935 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 936 auto_adj_size = TRUE; 937 } 938 status = pthread_attr_init(&thread_attr); 939 if (status != 0) { 940 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 941 } 942 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 943 if (status != 0) { 944 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 945 } 946 947 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 948 status = pthread_attr_getstacksize(&thread_attr, &size); 949 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 950 #else 951 size = __kmp_sys_min_stksize; 952 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 953 #endif /* KMP_THREAD_ATTR */ 954 955 if (__kmp_monitor_stksize == 0) { 956 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 957 } 958 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 959 __kmp_monitor_stksize = __kmp_sys_min_stksize; 960 } 961 962 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 963 "requested stacksize = %lu bytes\n", 964 size, __kmp_monitor_stksize)); 965 966 retry: 967 968 /* Set stack size for this thread now. */ 969 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 970 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 971 __kmp_monitor_stksize)); 972 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 973 if (status != 0) { 974 if (auto_adj_size) { 975 __kmp_monitor_stksize *= 2; 976 goto retry; 977 } 978 kmp_msg_t err_code = KMP_ERR(status); 979 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 980 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 981 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 982 if (__kmp_generate_warnings == kmp_warnings_off) { 983 __kmp_str_free(&err_code.str); 984 } 985 } 986 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 987 988 status = 989 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 990 991 if (status != 0) { 992 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 993 if (status == EINVAL) { 994 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 995 __kmp_monitor_stksize *= 2; 996 goto retry; 997 } 998 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 999 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 1000 __kmp_msg_null); 1001 } 1002 if (status == ENOMEM) { 1003 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1004 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 1005 __kmp_msg_null); 1006 } 1007 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1008 if (status == EAGAIN) { 1009 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 1010 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 1011 } 1012 KMP_SYSFAIL("pthread_create", status); 1013 } 1014 1015 th->th.th_info.ds.ds_thread = handle; 1016 1017 #if KMP_REAL_TIME_FIX 1018 // Wait for the monitor thread is really started and set its *priority*. 1019 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 1020 sizeof(__kmp_global.g.g_time.dt.t_value)); 1021 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 1022 &__kmp_neq_4, NULL); 1023 #endif // KMP_REAL_TIME_FIX 1024 1025 #ifdef KMP_THREAD_ATTR 1026 status = pthread_attr_destroy(&thread_attr); 1027 if (status != 0) { 1028 kmp_msg_t err_code = KMP_ERR(status); 1029 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 1030 __kmp_msg_null); 1031 if (__kmp_generate_warnings == kmp_warnings_off) { 1032 __kmp_str_free(&err_code.str); 1033 } 1034 } 1035 #endif 1036 1037 KMP_MB(); /* Flush all pending memory write invalidates. */ 1038 1039 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1040 th->th.th_info.ds.ds_thread)); 1041 1042 } // __kmp_create_monitor 1043 #endif // KMP_USE_MONITOR 1044 1045 void __kmp_exit_thread(int exit_status) { 1046 pthread_exit((void *)(intptr_t)exit_status); 1047 } // __kmp_exit_thread 1048 1049 #if KMP_USE_MONITOR 1050 void __kmp_resume_monitor(); 1051 1052 void __kmp_reap_monitor(kmp_info_t *th) { 1053 int status; 1054 void *exit_val; 1055 1056 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1057 " %#.8lx\n", 1058 th->th.th_info.ds.ds_thread)); 1059 1060 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1061 // If both tid and gtid are 0, it means the monitor did not ever start. 1062 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1063 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1064 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1065 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1066 return; 1067 } 1068 1069 KMP_MB(); /* Flush all pending memory write invalidates. */ 1070 1071 /* First, check to see whether the monitor thread exists to wake it up. This 1072 is to avoid performance problem when the monitor sleeps during 1073 blocktime-size interval */ 1074 1075 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1076 if (status != ESRCH) { 1077 __kmp_resume_monitor(); // Wake up the monitor thread 1078 } 1079 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1080 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1081 if (exit_val != th) { 1082 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1083 } 1084 1085 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1086 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1087 1088 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1089 " %#.8lx\n", 1090 th->th.th_info.ds.ds_thread)); 1091 1092 KMP_MB(); /* Flush all pending memory write invalidates. */ 1093 } 1094 #endif // KMP_USE_MONITOR 1095 1096 void __kmp_reap_worker(kmp_info_t *th) { 1097 int status; 1098 void *exit_val; 1099 1100 KMP_MB(); /* Flush all pending memory write invalidates. */ 1101 1102 KA_TRACE( 1103 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1104 1105 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1106 #ifdef KMP_DEBUG 1107 /* Don't expose these to the user until we understand when they trigger */ 1108 if (status != 0) { 1109 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1110 } 1111 if (exit_val != th) { 1112 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1113 "exit_val = %p\n", 1114 th->th.th_info.ds.ds_gtid, exit_val)); 1115 } 1116 #endif /* KMP_DEBUG */ 1117 1118 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1119 th->th.th_info.ds.ds_gtid)); 1120 1121 KMP_MB(); /* Flush all pending memory write invalidates. */ 1122 } 1123 1124 #if KMP_HANDLE_SIGNALS 1125 1126 static void __kmp_null_handler(int signo) { 1127 // Do nothing, for doing SIG_IGN-type actions. 1128 } // __kmp_null_handler 1129 1130 static void __kmp_team_handler(int signo) { 1131 if (__kmp_global.g.g_abort == 0) { 1132 /* Stage 1 signal handler, let's shut down all of the threads */ 1133 #ifdef KMP_DEBUG 1134 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1135 #endif 1136 switch (signo) { 1137 case SIGHUP: 1138 case SIGINT: 1139 case SIGQUIT: 1140 case SIGILL: 1141 case SIGABRT: 1142 case SIGFPE: 1143 case SIGBUS: 1144 case SIGSEGV: 1145 #ifdef SIGSYS 1146 case SIGSYS: 1147 #endif 1148 case SIGTERM: 1149 if (__kmp_debug_buf) { 1150 __kmp_dump_debug_buffer(); 1151 } 1152 KMP_MB(); // Flush all pending memory write invalidates. 1153 TCW_4(__kmp_global.g.g_abort, signo); 1154 KMP_MB(); // Flush all pending memory write invalidates. 1155 TCW_4(__kmp_global.g.g_done, TRUE); 1156 KMP_MB(); // Flush all pending memory write invalidates. 1157 break; 1158 default: 1159 #ifdef KMP_DEBUG 1160 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1161 #endif 1162 break; 1163 } 1164 } 1165 } // __kmp_team_handler 1166 1167 static void __kmp_sigaction(int signum, const struct sigaction *act, 1168 struct sigaction *oldact) { 1169 int rc = sigaction(signum, act, oldact); 1170 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1171 } 1172 1173 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1174 int parallel_init) { 1175 KMP_MB(); // Flush all pending memory write invalidates. 1176 KB_TRACE(60, 1177 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1178 if (parallel_init) { 1179 struct sigaction new_action; 1180 struct sigaction old_action; 1181 new_action.sa_handler = handler_func; 1182 new_action.sa_flags = 0; 1183 sigfillset(&new_action.sa_mask); 1184 __kmp_sigaction(sig, &new_action, &old_action); 1185 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1186 sigaddset(&__kmp_sigset, sig); 1187 } else { 1188 // Restore/keep user's handler if one previously installed. 1189 __kmp_sigaction(sig, &old_action, NULL); 1190 } 1191 } else { 1192 // Save initial/system signal handlers to see if user handlers installed. 1193 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1194 } 1195 KMP_MB(); // Flush all pending memory write invalidates. 1196 } // __kmp_install_one_handler 1197 1198 static void __kmp_remove_one_handler(int sig) { 1199 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1200 if (sigismember(&__kmp_sigset, sig)) { 1201 struct sigaction old; 1202 KMP_MB(); // Flush all pending memory write invalidates. 1203 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1204 if ((old.sa_handler != __kmp_team_handler) && 1205 (old.sa_handler != __kmp_null_handler)) { 1206 // Restore the users signal handler. 1207 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1208 "restoring: sig=%d\n", 1209 sig)); 1210 __kmp_sigaction(sig, &old, NULL); 1211 } 1212 sigdelset(&__kmp_sigset, sig); 1213 KMP_MB(); // Flush all pending memory write invalidates. 1214 } 1215 } // __kmp_remove_one_handler 1216 1217 void __kmp_install_signals(int parallel_init) { 1218 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1219 if (__kmp_handle_signals || !parallel_init) { 1220 // If ! parallel_init, we do not install handlers, just save original 1221 // handlers. Let us do it even __handle_signals is 0. 1222 sigemptyset(&__kmp_sigset); 1223 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1224 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1225 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1226 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1227 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1228 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1229 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1230 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1231 #ifdef SIGSYS 1232 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1233 #endif // SIGSYS 1234 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1235 #ifdef SIGPIPE 1236 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1237 #endif // SIGPIPE 1238 } 1239 } // __kmp_install_signals 1240 1241 void __kmp_remove_signals(void) { 1242 int sig; 1243 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1244 for (sig = 1; sig < NSIG; ++sig) { 1245 __kmp_remove_one_handler(sig); 1246 } 1247 } // __kmp_remove_signals 1248 1249 #endif // KMP_HANDLE_SIGNALS 1250 1251 void __kmp_enable(int new_state) { 1252 #ifdef KMP_CANCEL_THREADS 1253 int status, old_state; 1254 status = pthread_setcancelstate(new_state, &old_state); 1255 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1256 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1257 #endif 1258 } 1259 1260 void __kmp_disable(int *old_state) { 1261 #ifdef KMP_CANCEL_THREADS 1262 int status; 1263 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1264 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1265 #endif 1266 } 1267 1268 static void __kmp_atfork_prepare(void) { 1269 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1270 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1271 } 1272 1273 static void __kmp_atfork_parent(void) { 1274 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1275 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1276 } 1277 1278 /* Reset the library so execution in the child starts "all over again" with 1279 clean data structures in initial states. Don't worry about freeing memory 1280 allocated by parent, just abandon it to be safe. */ 1281 static void __kmp_atfork_child(void) { 1282 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1283 /* TODO make sure this is done right for nested/sibling */ 1284 // ATT: Memory leaks are here? TODO: Check it and fix. 1285 /* KMP_ASSERT( 0 ); */ 1286 1287 ++__kmp_fork_count; 1288 1289 #if KMP_AFFINITY_SUPPORTED 1290 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1291 // reset the affinity in the child to the initial thread 1292 // affinity in the parent 1293 kmp_set_thread_affinity_mask_initial(); 1294 #endif 1295 // Set default not to bind threads tightly in the child (we’re expecting 1296 // over-subscription after the fork and this can improve things for 1297 // scripting languages that use OpenMP inside process-parallel code). 1298 __kmp_affinity_type = affinity_none; 1299 if (__kmp_nested_proc_bind.bind_types != NULL) { 1300 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1301 } 1302 #endif // KMP_AFFINITY_SUPPORTED 1303 1304 __kmp_init_runtime = FALSE; 1305 #if KMP_USE_MONITOR 1306 __kmp_init_monitor = 0; 1307 #endif 1308 __kmp_init_parallel = FALSE; 1309 __kmp_init_middle = FALSE; 1310 __kmp_init_serial = FALSE; 1311 TCW_4(__kmp_init_gtid, FALSE); 1312 __kmp_init_common = FALSE; 1313 1314 TCW_4(__kmp_init_user_locks, FALSE); 1315 #if !KMP_USE_DYNAMIC_LOCK 1316 __kmp_user_lock_table.used = 1; 1317 __kmp_user_lock_table.allocated = 0; 1318 __kmp_user_lock_table.table = NULL; 1319 __kmp_lock_blocks = NULL; 1320 #endif 1321 1322 __kmp_all_nth = 0; 1323 TCW_4(__kmp_nth, 0); 1324 1325 __kmp_thread_pool = NULL; 1326 __kmp_thread_pool_insert_pt = NULL; 1327 __kmp_team_pool = NULL; 1328 1329 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1330 here so threadprivate doesn't use stale data */ 1331 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1332 __kmp_threadpriv_cache_list)); 1333 1334 while (__kmp_threadpriv_cache_list != NULL) { 1335 1336 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1337 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1338 &(*__kmp_threadpriv_cache_list->addr))); 1339 1340 *__kmp_threadpriv_cache_list->addr = NULL; 1341 } 1342 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1343 } 1344 1345 __kmp_init_runtime = FALSE; 1346 1347 /* reset statically initialized locks */ 1348 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1349 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1350 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1351 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1352 1353 #if USE_ITT_BUILD 1354 __kmp_itt_reset(); // reset ITT's global state 1355 #endif /* USE_ITT_BUILD */ 1356 1357 /* This is necessary to make sure no stale data is left around */ 1358 /* AC: customers complain that we use unsafe routines in the atfork 1359 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1360 in dynamic_link when check the presence of shared tbbmalloc library. 1361 Suggestion is to make the library initialization lazier, similar 1362 to what done for __kmpc_begin(). */ 1363 // TODO: synchronize all static initializations with regular library 1364 // startup; look at kmp_global.cpp and etc. 1365 //__kmp_internal_begin (); 1366 } 1367 1368 void __kmp_register_atfork(void) { 1369 if (__kmp_need_register_atfork) { 1370 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1371 __kmp_atfork_child); 1372 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1373 __kmp_need_register_atfork = FALSE; 1374 } 1375 } 1376 1377 void __kmp_suspend_initialize(void) { 1378 int status; 1379 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1380 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1381 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1382 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1383 } 1384 1385 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1386 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1387 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1388 int new_value = __kmp_fork_count + 1; 1389 // Return if already initialized 1390 if (old_value == new_value) 1391 return; 1392 // Wait, then return if being initialized 1393 if (old_value == -1 || 1394 !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value, 1395 -1)) { 1396 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1397 KMP_CPU_PAUSE(); 1398 } 1399 } else { 1400 // Claim to be the initializer and do initializations 1401 int status; 1402 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1403 &__kmp_suspend_cond_attr); 1404 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1405 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1406 &__kmp_suspend_mutex_attr); 1407 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1408 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1409 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1410 } 1411 } 1412 1413 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1414 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1415 /* this means we have initialize the suspension pthread objects for this 1416 thread in this instance of the process */ 1417 int status; 1418 1419 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1420 if (status != 0 && status != EBUSY) { 1421 KMP_SYSFAIL("pthread_cond_destroy", status); 1422 } 1423 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1424 if (status != 0 && status != EBUSY) { 1425 KMP_SYSFAIL("pthread_mutex_destroy", status); 1426 } 1427 --th->th.th_suspend_init_count; 1428 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1429 __kmp_fork_count); 1430 } 1431 } 1432 1433 // return true if lock obtained, false otherwise 1434 int __kmp_try_suspend_mx(kmp_info_t *th) { 1435 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1436 } 1437 1438 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1439 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1440 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1441 } 1442 1443 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1444 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1445 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1446 } 1447 1448 /* This routine puts the calling thread to sleep after setting the 1449 sleep bit for the indicated flag variable to true. */ 1450 template <class C> 1451 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1452 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1453 kmp_info_t *th = __kmp_threads[th_gtid]; 1454 int status; 1455 typename C::flag_t old_spin; 1456 1457 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1458 flag->get())); 1459 1460 __kmp_suspend_initialize_thread(th); 1461 1462 __kmp_lock_suspend_mx(th); 1463 1464 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1465 th_gtid, flag->get())); 1466 1467 /* TODO: shouldn't this use release semantics to ensure that 1468 __kmp_suspend_initialize_thread gets called first? */ 1469 old_spin = flag->set_sleeping(); 1470 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1471 __kmp_pause_status != kmp_soft_paused) { 1472 flag->unset_sleeping(); 1473 __kmp_unlock_suspend_mx(th); 1474 return; 1475 } 1476 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1477 " was %x\n", 1478 th_gtid, flag->get(), flag->load(), old_spin)); 1479 1480 if (flag->done_check_val(old_spin)) { 1481 old_spin = flag->unset_sleeping(); 1482 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1483 "for spin(%p)\n", 1484 th_gtid, flag->get())); 1485 } else { 1486 /* Encapsulate in a loop as the documentation states that this may 1487 "with low probability" return when the condition variable has 1488 not been signaled or broadcast */ 1489 int deactivated = FALSE; 1490 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1491 1492 while (flag->is_sleeping()) { 1493 #ifdef DEBUG_SUSPEND 1494 char buffer[128]; 1495 __kmp_suspend_count++; 1496 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1497 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1498 buffer); 1499 #endif 1500 // Mark the thread as no longer active (only in the first iteration of the 1501 // loop). 1502 if (!deactivated) { 1503 th->th.th_active = FALSE; 1504 if (th->th.th_active_in_pool) { 1505 th->th.th_active_in_pool = FALSE; 1506 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1507 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1508 } 1509 deactivated = TRUE; 1510 } 1511 1512 #if USE_SUSPEND_TIMEOUT 1513 struct timespec now; 1514 struct timeval tval; 1515 int msecs; 1516 1517 status = gettimeofday(&tval, NULL); 1518 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1519 TIMEVAL_TO_TIMESPEC(&tval, &now); 1520 1521 msecs = (4 * __kmp_dflt_blocktime) + 200; 1522 now.tv_sec += msecs / 1000; 1523 now.tv_nsec += (msecs % 1000) * 1000; 1524 1525 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1526 "pthread_cond_timedwait\n", 1527 th_gtid)); 1528 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1529 &th->th.th_suspend_mx.m_mutex, &now); 1530 #else 1531 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1532 " pthread_cond_wait\n", 1533 th_gtid)); 1534 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1535 &th->th.th_suspend_mx.m_mutex); 1536 #endif // USE_SUSPEND_TIMEOUT 1537 1538 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1539 KMP_SYSFAIL("pthread_cond_wait", status); 1540 } 1541 #ifdef KMP_DEBUG 1542 if (status == ETIMEDOUT) { 1543 if (flag->is_sleeping()) { 1544 KF_TRACE(100, 1545 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1546 } else { 1547 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1548 "not set!\n", 1549 th_gtid)); 1550 } 1551 } else if (flag->is_sleeping()) { 1552 KF_TRACE(100, 1553 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1554 } 1555 #endif 1556 } // while 1557 1558 // Mark the thread as active again (if it was previous marked as inactive) 1559 if (deactivated) { 1560 th->th.th_active = TRUE; 1561 if (TCR_4(th->th.th_in_pool)) { 1562 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1563 th->th.th_active_in_pool = TRUE; 1564 } 1565 } 1566 } 1567 #ifdef DEBUG_SUSPEND 1568 { 1569 char buffer[128]; 1570 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1571 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1572 buffer); 1573 } 1574 #endif 1575 1576 __kmp_unlock_suspend_mx(th); 1577 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1578 } 1579 1580 template <bool C, bool S> 1581 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 1582 __kmp_suspend_template(th_gtid, flag); 1583 } 1584 template <bool C, bool S> 1585 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 1586 __kmp_suspend_template(th_gtid, flag); 1587 } 1588 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1589 __kmp_suspend_template(th_gtid, flag); 1590 } 1591 1592 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 1593 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 1594 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 1595 1596 /* This routine signals the thread specified by target_gtid to wake up 1597 after setting the sleep bit indicated by the flag argument to FALSE. 1598 The target thread must already have called __kmp_suspend_template() */ 1599 template <class C> 1600 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1601 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1602 kmp_info_t *th = __kmp_threads[target_gtid]; 1603 int status; 1604 1605 #ifdef KMP_DEBUG 1606 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1607 #endif 1608 1609 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1610 gtid, target_gtid)); 1611 KMP_DEBUG_ASSERT(gtid != target_gtid); 1612 1613 __kmp_suspend_initialize_thread(th); 1614 __kmp_lock_suspend_mx(th); 1615 1616 if (!flag) { // coming from __kmp_null_resume_wrapper 1617 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1618 } 1619 1620 // First, check if the flag is null or its type has changed. If so, someone 1621 // else woke it up. 1622 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1623 // simply shows what flag was cast to 1624 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1625 "awake: flag(%p)\n", 1626 gtid, target_gtid, NULL)); 1627 __kmp_unlock_suspend_mx(th); 1628 return; 1629 } else { // if multiple threads are sleeping, flag should be internally 1630 // referring to a specific thread here 1631 typename C::flag_t old_spin = flag->unset_sleeping(); 1632 if (!flag->is_sleeping_val(old_spin)) { 1633 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1634 "awake: flag(%p): " 1635 "%u => %u\n", 1636 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1637 __kmp_unlock_suspend_mx(th); 1638 return; 1639 } 1640 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1641 "sleep bit for flag's loc(%p): " 1642 "%u => %u\n", 1643 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1644 } 1645 TCW_PTR(th->th.th_sleep_loc, NULL); 1646 1647 #ifdef DEBUG_SUSPEND 1648 { 1649 char buffer[128]; 1650 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1651 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1652 target_gtid, buffer); 1653 } 1654 #endif 1655 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1656 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1657 __kmp_unlock_suspend_mx(th); 1658 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1659 " for T#%d\n", 1660 gtid, target_gtid)); 1661 } 1662 1663 template <bool C, bool S> 1664 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 1665 __kmp_resume_template(target_gtid, flag); 1666 } 1667 template <bool C, bool S> 1668 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 1669 __kmp_resume_template(target_gtid, flag); 1670 } 1671 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1672 __kmp_resume_template(target_gtid, flag); 1673 } 1674 1675 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 1676 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 1677 1678 #if KMP_USE_MONITOR 1679 void __kmp_resume_monitor() { 1680 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1681 int status; 1682 #ifdef KMP_DEBUG 1683 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1684 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1685 KMP_GTID_MONITOR)); 1686 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1687 #endif 1688 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1689 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1690 #ifdef DEBUG_SUSPEND 1691 { 1692 char buffer[128]; 1693 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1694 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1695 KMP_GTID_MONITOR, buffer); 1696 } 1697 #endif 1698 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1699 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1700 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1701 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1702 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1703 " for T#%d\n", 1704 gtid, KMP_GTID_MONITOR)); 1705 } 1706 #endif // KMP_USE_MONITOR 1707 1708 void __kmp_yield() { sched_yield(); } 1709 1710 void __kmp_gtid_set_specific(int gtid) { 1711 if (__kmp_init_gtid) { 1712 int status; 1713 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1714 (void *)(intptr_t)(gtid + 1)); 1715 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1716 } else { 1717 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1718 } 1719 } 1720 1721 int __kmp_gtid_get_specific() { 1722 int gtid; 1723 if (!__kmp_init_gtid) { 1724 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1725 "KMP_GTID_SHUTDOWN\n")); 1726 return KMP_GTID_SHUTDOWN; 1727 } 1728 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1729 if (gtid == 0) { 1730 gtid = KMP_GTID_DNE; 1731 } else { 1732 gtid--; 1733 } 1734 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1735 __kmp_gtid_threadprivate_key, gtid)); 1736 return gtid; 1737 } 1738 1739 double __kmp_read_cpu_time(void) { 1740 /*clock_t t;*/ 1741 struct tms buffer; 1742 1743 /*t =*/times(&buffer); 1744 1745 return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC; 1746 } 1747 1748 int __kmp_read_system_info(struct kmp_sys_info *info) { 1749 int status; 1750 struct rusage r_usage; 1751 1752 memset(info, 0, sizeof(*info)); 1753 1754 status = getrusage(RUSAGE_SELF, &r_usage); 1755 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1756 1757 // The maximum resident set size utilized (in kilobytes) 1758 info->maxrss = r_usage.ru_maxrss; 1759 // The number of page faults serviced without any I/O 1760 info->minflt = r_usage.ru_minflt; 1761 // The number of page faults serviced that required I/O 1762 info->majflt = r_usage.ru_majflt; 1763 // The number of times a process was "swapped" out of memory 1764 info->nswap = r_usage.ru_nswap; 1765 // The number of times the file system had to perform input 1766 info->inblock = r_usage.ru_inblock; 1767 // The number of times the file system had to perform output 1768 info->oublock = r_usage.ru_oublock; 1769 // The number of times a context switch was voluntarily 1770 info->nvcsw = r_usage.ru_nvcsw; 1771 // The number of times a context switch was forced 1772 info->nivcsw = r_usage.ru_nivcsw; 1773 1774 return (status != 0); 1775 } 1776 1777 void __kmp_read_system_time(double *delta) { 1778 double t_ns; 1779 struct timeval tval; 1780 struct timespec stop; 1781 int status; 1782 1783 status = gettimeofday(&tval, NULL); 1784 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1785 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1786 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start); 1787 *delta = (t_ns * 1e-9); 1788 } 1789 1790 void __kmp_clear_system_time(void) { 1791 struct timeval tval; 1792 int status; 1793 status = gettimeofday(&tval, NULL); 1794 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1795 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1796 } 1797 1798 static int __kmp_get_xproc(void) { 1799 1800 int r = 0; 1801 1802 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 1803 KMP_OS_OPENBSD || KMP_OS_HURD 1804 1805 r = sysconf(_SC_NPROCESSORS_ONLN); 1806 1807 #elif KMP_OS_DARWIN 1808 1809 // Bug C77011 High "OpenMP Threads and number of active cores". 1810 1811 // Find the number of available CPUs. 1812 kern_return_t rc; 1813 host_basic_info_data_t info; 1814 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1815 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1816 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1817 // Cannot use KA_TRACE() here because this code works before trace support 1818 // is initialized. 1819 r = info.avail_cpus; 1820 } else { 1821 KMP_WARNING(CantGetNumAvailCPU); 1822 KMP_INFORM(AssumedNumCPU); 1823 } 1824 1825 #else 1826 1827 #error "Unknown or unsupported OS." 1828 1829 #endif 1830 1831 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1832 1833 } // __kmp_get_xproc 1834 1835 int __kmp_read_from_file(char const *path, char const *format, ...) { 1836 int result; 1837 va_list args; 1838 1839 va_start(args, format); 1840 FILE *f = fopen(path, "rb"); 1841 if (f == NULL) 1842 return 0; 1843 result = vfscanf(f, format, args); 1844 fclose(f); 1845 1846 return result; 1847 } 1848 1849 void __kmp_runtime_initialize(void) { 1850 int status; 1851 pthread_mutexattr_t mutex_attr; 1852 pthread_condattr_t cond_attr; 1853 1854 if (__kmp_init_runtime) { 1855 return; 1856 } 1857 1858 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1859 if (!__kmp_cpuinfo.initialized) { 1860 __kmp_query_cpuid(&__kmp_cpuinfo); 1861 } 1862 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1863 1864 __kmp_xproc = __kmp_get_xproc(); 1865 1866 #if ! KMP_32_BIT_ARCH 1867 struct rlimit rlim; 1868 // read stack size of calling thread, save it as default for worker threads; 1869 // this should be done before reading environment variables 1870 status = getrlimit(RLIMIT_STACK, &rlim); 1871 if (status == 0) { // success? 1872 __kmp_stksize = rlim.rlim_cur; 1873 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1874 } 1875 #endif /* KMP_32_BIT_ARCH */ 1876 1877 if (sysconf(_SC_THREADS)) { 1878 1879 /* Query the maximum number of threads */ 1880 __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX); 1881 if (__kmp_sys_max_nth == -1) { 1882 /* Unlimited threads for NPTL */ 1883 __kmp_sys_max_nth = INT_MAX; 1884 } else if (__kmp_sys_max_nth <= 1) { 1885 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1886 __kmp_sys_max_nth = KMP_MAX_NTH; 1887 } 1888 1889 /* Query the minimum stack size */ 1890 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1891 if (__kmp_sys_min_stksize <= 1) { 1892 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1893 } 1894 } 1895 1896 /* Set up minimum number of threads to switch to TLS gtid */ 1897 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1898 1899 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1900 __kmp_internal_end_dest); 1901 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1902 status = pthread_mutexattr_init(&mutex_attr); 1903 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1904 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1905 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1906 status = pthread_condattr_init(&cond_attr); 1907 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1908 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1909 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1910 #if USE_ITT_BUILD 1911 __kmp_itt_initialize(); 1912 #endif /* USE_ITT_BUILD */ 1913 1914 __kmp_init_runtime = TRUE; 1915 } 1916 1917 void __kmp_runtime_destroy(void) { 1918 int status; 1919 1920 if (!__kmp_init_runtime) { 1921 return; // Nothing to do. 1922 } 1923 1924 #if USE_ITT_BUILD 1925 __kmp_itt_destroy(); 1926 #endif /* USE_ITT_BUILD */ 1927 1928 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1929 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1930 1931 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1932 if (status != 0 && status != EBUSY) { 1933 KMP_SYSFAIL("pthread_mutex_destroy", status); 1934 } 1935 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1936 if (status != 0 && status != EBUSY) { 1937 KMP_SYSFAIL("pthread_cond_destroy", status); 1938 } 1939 #if KMP_AFFINITY_SUPPORTED 1940 __kmp_affinity_uninitialize(); 1941 #endif 1942 1943 __kmp_init_runtime = FALSE; 1944 } 1945 1946 /* Put the thread to sleep for a time period */ 1947 /* NOTE: not currently used anywhere */ 1948 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1949 1950 /* Calculate the elapsed wall clock time for the user */ 1951 void __kmp_elapsed(double *t) { 1952 int status; 1953 #ifdef FIX_SGI_CLOCK 1954 struct timespec ts; 1955 1956 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1957 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1958 *t = 1959 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1960 #else 1961 struct timeval tv; 1962 1963 status = gettimeofday(&tv, NULL); 1964 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1965 *t = 1966 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1967 #endif 1968 } 1969 1970 /* Calculate the elapsed wall clock tick for the user */ 1971 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1972 1973 /* Return the current time stamp in nsec */ 1974 kmp_uint64 __kmp_now_nsec() { 1975 struct timeval t; 1976 gettimeofday(&t, NULL); 1977 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 1978 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 1979 return nsec; 1980 } 1981 1982 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1983 /* Measure clock ticks per millisecond */ 1984 void __kmp_initialize_system_tick() { 1985 kmp_uint64 now, nsec2, diff; 1986 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1987 kmp_uint64 nsec = __kmp_now_nsec(); 1988 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1989 while ((now = __kmp_hardware_timestamp()) < goal) 1990 ; 1991 nsec2 = __kmp_now_nsec(); 1992 diff = nsec2 - nsec; 1993 if (diff > 0) { 1994 kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff); 1995 if (tpms > 0) 1996 __kmp_ticks_per_msec = tpms; 1997 } 1998 } 1999 #endif 2000 2001 /* Determine whether the given address is mapped into the current address 2002 space. */ 2003 2004 int __kmp_is_address_mapped(void *addr) { 2005 2006 int found = 0; 2007 int rc; 2008 2009 #if KMP_OS_LINUX || KMP_OS_HURD 2010 2011 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address 2012 ranges mapped into the address space. */ 2013 2014 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 2015 FILE *file = NULL; 2016 2017 file = fopen(name, "r"); 2018 KMP_ASSERT(file != NULL); 2019 2020 for (;;) { 2021 2022 void *beginning = NULL; 2023 void *ending = NULL; 2024 char perms[5]; 2025 2026 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2027 if (rc == EOF) { 2028 break; 2029 } 2030 KMP_ASSERT(rc == 3 && 2031 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2032 2033 // Ending address is not included in the region, but beginning is. 2034 if ((addr >= beginning) && (addr < ending)) { 2035 perms[2] = 0; // 3th and 4th character does not matter. 2036 if (strcmp(perms, "rw") == 0) { 2037 // Memory we are looking for should be readable and writable. 2038 found = 1; 2039 } 2040 break; 2041 } 2042 } 2043 2044 // Free resources. 2045 fclose(file); 2046 KMP_INTERNAL_FREE(name); 2047 #elif KMP_OS_FREEBSD 2048 char *buf; 2049 size_t lstsz; 2050 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 2051 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2052 if (rc < 0) 2053 return 0; 2054 // We pass from number of vm entry's semantic 2055 // to size of whole entry map list. 2056 lstsz = lstsz * 4 / 3; 2057 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2058 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2059 if (rc < 0) { 2060 kmpc_free(buf); 2061 return 0; 2062 } 2063 2064 char *lw = buf; 2065 char *up = buf + lstsz; 2066 2067 while (lw < up) { 2068 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2069 size_t cursz = cur->kve_structsize; 2070 if (cursz == 0) 2071 break; 2072 void *start = reinterpret_cast<void *>(cur->kve_start); 2073 void *end = reinterpret_cast<void *>(cur->kve_end); 2074 // Readable/Writable addresses within current map entry 2075 if ((addr >= start) && (addr < end)) { 2076 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2077 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2078 found = 1; 2079 break; 2080 } 2081 } 2082 lw += cursz; 2083 } 2084 kmpc_free(buf); 2085 2086 #elif KMP_OS_DARWIN 2087 2088 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2089 using vm interface. */ 2090 2091 int buffer; 2092 vm_size_t count; 2093 rc = vm_read_overwrite( 2094 mach_task_self(), // Task to read memory of. 2095 (vm_address_t)(addr), // Address to read from. 2096 1, // Number of bytes to be read. 2097 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2098 &count // Address of var to save number of read bytes in. 2099 ); 2100 if (rc == 0) { 2101 // Memory successfully read. 2102 found = 1; 2103 } 2104 2105 #elif KMP_OS_NETBSD 2106 2107 int mib[5]; 2108 mib[0] = CTL_VM; 2109 mib[1] = VM_PROC; 2110 mib[2] = VM_PROC_MAP; 2111 mib[3] = getpid(); 2112 mib[4] = sizeof(struct kinfo_vmentry); 2113 2114 size_t size; 2115 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2116 KMP_ASSERT(!rc); 2117 KMP_ASSERT(size); 2118 2119 size = size * 4 / 3; 2120 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2121 KMP_ASSERT(kiv); 2122 2123 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2124 KMP_ASSERT(!rc); 2125 KMP_ASSERT(size); 2126 2127 for (size_t i = 0; i < size; i++) { 2128 if (kiv[i].kve_start >= (uint64_t)addr && 2129 kiv[i].kve_end <= (uint64_t)addr) { 2130 found = 1; 2131 break; 2132 } 2133 } 2134 KMP_INTERNAL_FREE(kiv); 2135 #elif KMP_OS_OPENBSD 2136 2137 int mib[3]; 2138 mib[0] = CTL_KERN; 2139 mib[1] = KERN_PROC_VMMAP; 2140 mib[2] = getpid(); 2141 2142 size_t size; 2143 uint64_t end; 2144 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2145 KMP_ASSERT(!rc); 2146 KMP_ASSERT(size); 2147 end = size; 2148 2149 struct kinfo_vmentry kiv = {.kve_start = 0}; 2150 2151 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2152 KMP_ASSERT(size); 2153 if (kiv.kve_end == end) 2154 break; 2155 2156 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2157 found = 1; 2158 break; 2159 } 2160 kiv.kve_start += 1; 2161 } 2162 #elif KMP_OS_DRAGONFLY 2163 2164 // FIXME(DragonFly): Implement this 2165 found = 1; 2166 2167 #else 2168 2169 #error "Unknown or unsupported OS" 2170 2171 #endif 2172 2173 return found; 2174 2175 } // __kmp_is_address_mapped 2176 2177 #ifdef USE_LOAD_BALANCE 2178 2179 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2180 2181 // The function returns the rounded value of the system load average 2182 // during given time interval which depends on the value of 2183 // __kmp_load_balance_interval variable (default is 60 sec, other values 2184 // may be 300 sec or 900 sec). 2185 // It returns -1 in case of error. 2186 int __kmp_get_load_balance(int max) { 2187 double averages[3]; 2188 int ret_avg = 0; 2189 2190 int res = getloadavg(averages, 3); 2191 2192 // Check __kmp_load_balance_interval to determine which of averages to use. 2193 // getloadavg() may return the number of samples less than requested that is 2194 // less than 3. 2195 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2196 ret_avg = averages[0]; // 1 min 2197 } else if ((__kmp_load_balance_interval >= 180 && 2198 __kmp_load_balance_interval < 600) && 2199 (res >= 2)) { 2200 ret_avg = averages[1]; // 5 min 2201 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2202 ret_avg = averages[2]; // 15 min 2203 } else { // Error occurred 2204 return -1; 2205 } 2206 2207 return ret_avg; 2208 } 2209 2210 #else // Linux* OS 2211 2212 // The function returns number of running (not sleeping) threads, or -1 in case 2213 // of error. Error could be reported if Linux* OS kernel too old (without 2214 // "/proc" support). Counting running threads stops if max running threads 2215 // encountered. 2216 int __kmp_get_load_balance(int max) { 2217 static int permanent_error = 0; 2218 static int glb_running_threads = 0; // Saved count of the running threads for 2219 // the thread balance algorithm 2220 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2221 2222 int running_threads = 0; // Number of running threads in the system. 2223 2224 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2225 struct dirent *proc_entry = NULL; 2226 2227 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2228 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2229 struct dirent *task_entry = NULL; 2230 int task_path_fixed_len; 2231 2232 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2233 int stat_file = -1; 2234 int stat_path_fixed_len; 2235 2236 int total_processes = 0; // Total number of processes in system. 2237 int total_threads = 0; // Total number of threads in system. 2238 2239 double call_time = 0.0; 2240 2241 __kmp_str_buf_init(&task_path); 2242 __kmp_str_buf_init(&stat_path); 2243 2244 __kmp_elapsed(&call_time); 2245 2246 if (glb_call_time && 2247 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2248 running_threads = glb_running_threads; 2249 goto finish; 2250 } 2251 2252 glb_call_time = call_time; 2253 2254 // Do not spend time on scanning "/proc/" if we have a permanent error. 2255 if (permanent_error) { 2256 running_threads = -1; 2257 goto finish; 2258 } 2259 2260 if (max <= 0) { 2261 max = INT_MAX; 2262 } 2263 2264 // Open "/proc/" directory. 2265 proc_dir = opendir("/proc"); 2266 if (proc_dir == NULL) { 2267 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2268 // error now and in subsequent calls. 2269 running_threads = -1; 2270 permanent_error = 1; 2271 goto finish; 2272 } 2273 2274 // Initialize fixed part of task_path. This part will not change. 2275 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2276 task_path_fixed_len = task_path.used; // Remember number of used characters. 2277 2278 proc_entry = readdir(proc_dir); 2279 while (proc_entry != NULL) { 2280 // Proc entry is a directory and name starts with a digit. Assume it is a 2281 // process' directory. 2282 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2283 2284 ++total_processes; 2285 // Make sure init process is the very first in "/proc", so we can replace 2286 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2287 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2288 // true (where "=>" is implication). Since C++ does not have => operator, 2289 // let us replace it with its equivalent: a => b == ! a || b. 2290 KMP_DEBUG_ASSERT(total_processes != 1 || 2291 strcmp(proc_entry->d_name, "1") == 0); 2292 2293 // Construct task_path. 2294 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2295 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2296 KMP_STRLEN(proc_entry->d_name)); 2297 __kmp_str_buf_cat(&task_path, "/task", 5); 2298 2299 task_dir = opendir(task_path.str); 2300 if (task_dir == NULL) { 2301 // Process can finish between reading "/proc/" directory entry and 2302 // opening process' "task/" directory. So, in general case we should not 2303 // complain, but have to skip this process and read the next one. But on 2304 // systems with no "task/" support we will spend lot of time to scan 2305 // "/proc/" tree again and again without any benefit. "init" process 2306 // (its pid is 1) should exist always, so, if we cannot open 2307 // "/proc/1/task/" directory, it means "task/" is not supported by 2308 // kernel. Report an error now and in the future. 2309 if (strcmp(proc_entry->d_name, "1") == 0) { 2310 running_threads = -1; 2311 permanent_error = 1; 2312 goto finish; 2313 } 2314 } else { 2315 // Construct fixed part of stat file path. 2316 __kmp_str_buf_clear(&stat_path); 2317 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2318 __kmp_str_buf_cat(&stat_path, "/", 1); 2319 stat_path_fixed_len = stat_path.used; 2320 2321 task_entry = readdir(task_dir); 2322 while (task_entry != NULL) { 2323 // It is a directory and name starts with a digit. 2324 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2325 ++total_threads; 2326 2327 // Construct complete stat file path. Easiest way would be: 2328 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2329 // task_entry->d_name ); 2330 // but seriae of __kmp_str_buf_cat works a bit faster. 2331 stat_path.used = 2332 stat_path_fixed_len; // Reset stat path to its fixed part. 2333 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2334 KMP_STRLEN(task_entry->d_name)); 2335 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2336 2337 // Note: Low-level API (open/read/close) is used. High-level API 2338 // (fopen/fclose) works ~ 30 % slower. 2339 stat_file = open(stat_path.str, O_RDONLY); 2340 if (stat_file == -1) { 2341 // We cannot report an error because task (thread) can terminate 2342 // just before reading this file. 2343 } else { 2344 /* Content of "stat" file looks like: 2345 24285 (program) S ... 2346 2347 It is a single line (if program name does not include funny 2348 symbols). First number is a thread id, then name of executable 2349 file name in paretheses, then state of the thread. We need just 2350 thread state. 2351 2352 Good news: Length of program name is 15 characters max. Longer 2353 names are truncated. 2354 2355 Thus, we need rather short buffer: 15 chars for program name + 2356 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2357 2358 Bad news: Program name may contain special symbols like space, 2359 closing parenthesis, or even new line. This makes parsing 2360 "stat" file not 100 % reliable. In case of fanny program names 2361 parsing may fail (report incorrect thread state). 2362 2363 Parsing "status" file looks more promissing (due to different 2364 file structure and escaping special symbols) but reading and 2365 parsing of "status" file works slower. 2366 -- ln 2367 */ 2368 char buffer[65]; 2369 int len; 2370 len = read(stat_file, buffer, sizeof(buffer) - 1); 2371 if (len >= 0) { 2372 buffer[len] = 0; 2373 // Using scanf: 2374 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2375 // looks very nice, but searching for a closing parenthesis 2376 // works a bit faster. 2377 char *close_parent = strstr(buffer, ") "); 2378 if (close_parent != NULL) { 2379 char state = *(close_parent + 2); 2380 if (state == 'R') { 2381 ++running_threads; 2382 if (running_threads >= max) { 2383 goto finish; 2384 } 2385 } 2386 } 2387 } 2388 close(stat_file); 2389 stat_file = -1; 2390 } 2391 } 2392 task_entry = readdir(task_dir); 2393 } 2394 closedir(task_dir); 2395 task_dir = NULL; 2396 } 2397 } 2398 proc_entry = readdir(proc_dir); 2399 } 2400 2401 // There _might_ be a timing hole where the thread executing this 2402 // code get skipped in the load balance, and running_threads is 0. 2403 // Assert in the debug builds only!!! 2404 KMP_DEBUG_ASSERT(running_threads > 0); 2405 if (running_threads <= 0) { 2406 running_threads = 1; 2407 } 2408 2409 finish: // Clean up and exit. 2410 if (proc_dir != NULL) { 2411 closedir(proc_dir); 2412 } 2413 __kmp_str_buf_free(&task_path); 2414 if (task_dir != NULL) { 2415 closedir(task_dir); 2416 } 2417 __kmp_str_buf_free(&stat_path); 2418 if (stat_file != -1) { 2419 close(stat_file); 2420 } 2421 2422 glb_running_threads = running_threads; 2423 2424 return running_threads; 2425 2426 } // __kmp_get_load_balance 2427 2428 #endif // KMP_OS_DARWIN 2429 2430 #endif // USE_LOAD_BALANCE 2431 2432 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2433 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2434 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64) 2435 2436 // we really only need the case with 1 argument, because CLANG always build 2437 // a struct of pointers to shared variables referenced in the outlined function 2438 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2439 void *p_argv[] 2440 #if OMPT_SUPPORT 2441 , 2442 void **exit_frame_ptr 2443 #endif 2444 ) { 2445 #if OMPT_SUPPORT 2446 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2447 #endif 2448 2449 switch (argc) { 2450 default: 2451 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2452 fflush(stderr); 2453 exit(-1); 2454 case 0: 2455 (*pkfn)(>id, &tid); 2456 break; 2457 case 1: 2458 (*pkfn)(>id, &tid, p_argv[0]); 2459 break; 2460 case 2: 2461 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2462 break; 2463 case 3: 2464 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2465 break; 2466 case 4: 2467 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2468 break; 2469 case 5: 2470 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2471 break; 2472 case 6: 2473 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2474 p_argv[5]); 2475 break; 2476 case 7: 2477 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2478 p_argv[5], p_argv[6]); 2479 break; 2480 case 8: 2481 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2482 p_argv[5], p_argv[6], p_argv[7]); 2483 break; 2484 case 9: 2485 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2486 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2487 break; 2488 case 10: 2489 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2490 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2491 break; 2492 case 11: 2493 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2494 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2495 break; 2496 case 12: 2497 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2498 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2499 p_argv[11]); 2500 break; 2501 case 13: 2502 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2503 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2504 p_argv[11], p_argv[12]); 2505 break; 2506 case 14: 2507 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2508 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2509 p_argv[11], p_argv[12], p_argv[13]); 2510 break; 2511 case 15: 2512 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2513 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2514 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2515 break; 2516 } 2517 2518 return 1; 2519 } 2520 2521 #endif 2522 2523 // end of file // 2524