1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #include <sys/resource.h> 29 #include <sys/syscall.h> 30 #include <sys/time.h> 31 #include <sys/times.h> 32 #include <unistd.h> 33 34 #if KMP_OS_LINUX 35 #include <sys/sysinfo.h> 36 #if KMP_USE_FUTEX 37 // We should really include <futex.h>, but that causes compatibility problems on 38 // different Linux* OS distributions that either require that you include (or 39 // break when you try to include) <pci/types.h>. Since all we need is the two 40 // macros below (which are part of the kernel ABI, so can't change) we just 41 // define the constants here and don't include <futex.h> 42 #ifndef FUTEX_WAIT 43 #define FUTEX_WAIT 0 44 #endif 45 #ifndef FUTEX_WAKE 46 #define FUTEX_WAKE 1 47 #endif 48 #endif 49 #elif KMP_OS_DARWIN 50 #include <mach/mach.h> 51 #include <sys/sysctl.h> 52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 53 #include <sys/types.h> 54 #include <sys/sysctl.h> 55 #include <sys/user.h> 56 #include <pthread_np.h> 57 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 58 #include <sys/types.h> 59 #include <sys/sysctl.h> 60 #endif 61 62 #include <ctype.h> 63 #include <dirent.h> 64 #include <fcntl.h> 65 66 #include "tsan_annotations.h" 67 68 struct kmp_sys_timer { 69 struct timespec start; 70 }; 71 72 // Convert timespec to nanoseconds. 73 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec) 74 75 static struct kmp_sys_timer __kmp_sys_timer_data; 76 77 #if KMP_HANDLE_SIGNALS 78 typedef void (*sig_func_t)(int); 79 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 80 static sigset_t __kmp_sigset; 81 #endif 82 83 static int __kmp_init_runtime = FALSE; 84 85 static int __kmp_fork_count = 0; 86 87 static pthread_condattr_t __kmp_suspend_cond_attr; 88 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 89 90 static kmp_cond_align_t __kmp_wait_cv; 91 static kmp_mutex_align_t __kmp_wait_mx; 92 93 kmp_uint64 __kmp_ticks_per_msec = 1000000; 94 95 #ifdef DEBUG_SUSPEND 96 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 97 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 98 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 99 cond->c_cond.__c_waiting); 100 } 101 #endif 102 103 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 104 105 /* Affinity support */ 106 107 void __kmp_affinity_bind_thread(int which) { 108 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 109 "Illegal set affinity operation when not capable"); 110 111 kmp_affin_mask_t *mask; 112 KMP_CPU_ALLOC_ON_STACK(mask); 113 KMP_CPU_ZERO(mask); 114 KMP_CPU_SET(which, mask); 115 __kmp_set_system_affinity(mask, TRUE); 116 KMP_CPU_FREE_FROM_STACK(mask); 117 } 118 119 /* Determine if we can access affinity functionality on this version of 120 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 121 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 122 void __kmp_affinity_determine_capable(const char *env_var) { 123 // Check and see if the OS supports thread affinity. 124 125 #if KMP_OS_LINUX 126 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 127 #elif KMP_OS_FREEBSD 128 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 129 #endif 130 131 132 #if KMP_OS_LINUX 133 // If Linux* OS: 134 // If the syscall fails or returns a suggestion for the size, 135 // then we don't have to search for an appropriate size. 136 int gCode; 137 int sCode; 138 unsigned char *buf; 139 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 140 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 141 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 142 "initial getaffinity call returned %d errno = %d\n", 143 gCode, errno)); 144 145 // if ((gCode < 0) && (errno == ENOSYS)) 146 if (gCode < 0) { 147 // System call not supported 148 if (__kmp_affinity_verbose || 149 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 150 (__kmp_affinity_type != affinity_default) && 151 (__kmp_affinity_type != affinity_disabled))) { 152 int error = errno; 153 kmp_msg_t err_code = KMP_ERR(error); 154 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 155 err_code, __kmp_msg_null); 156 if (__kmp_generate_warnings == kmp_warnings_off) { 157 __kmp_str_free(&err_code.str); 158 } 159 } 160 KMP_AFFINITY_DISABLE(); 161 KMP_INTERNAL_FREE(buf); 162 return; 163 } 164 if (gCode > 0) { // Linux* OS only 165 // The optimal situation: the OS returns the size of the buffer it expects. 166 // 167 // A verification of correct behavior is that setaffinity on a NULL 168 // buffer with the same size fails with errno set to EFAULT. 169 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 170 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 171 "setaffinity for mask size %d returned %d errno = %d\n", 172 gCode, sCode, errno)); 173 if (sCode < 0) { 174 if (errno == ENOSYS) { 175 if (__kmp_affinity_verbose || 176 (__kmp_affinity_warnings && 177 (__kmp_affinity_type != affinity_none) && 178 (__kmp_affinity_type != affinity_default) && 179 (__kmp_affinity_type != affinity_disabled))) { 180 int error = errno; 181 kmp_msg_t err_code = KMP_ERR(error); 182 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 183 err_code, __kmp_msg_null); 184 if (__kmp_generate_warnings == kmp_warnings_off) { 185 __kmp_str_free(&err_code.str); 186 } 187 } 188 KMP_AFFINITY_DISABLE(); 189 KMP_INTERNAL_FREE(buf); 190 } 191 if (errno == EFAULT) { 192 KMP_AFFINITY_ENABLE(gCode); 193 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 194 "affinity supported (mask size %d)\n", 195 (int)__kmp_affin_mask_size)); 196 KMP_INTERNAL_FREE(buf); 197 return; 198 } 199 } 200 } 201 202 // Call the getaffinity system call repeatedly with increasing set sizes 203 // until we succeed, or reach an upper bound on the search. 204 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 205 "searching for proper set size\n")); 206 int size; 207 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 208 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 209 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 210 "getaffinity for mask size %d returned %d errno = %d\n", 211 size, gCode, errno)); 212 213 if (gCode < 0) { 214 if (errno == ENOSYS) { 215 // We shouldn't get here 216 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 217 "inconsistent OS call behavior: errno == ENOSYS for mask " 218 "size %d\n", 219 size)); 220 if (__kmp_affinity_verbose || 221 (__kmp_affinity_warnings && 222 (__kmp_affinity_type != affinity_none) && 223 (__kmp_affinity_type != affinity_default) && 224 (__kmp_affinity_type != affinity_disabled))) { 225 int error = errno; 226 kmp_msg_t err_code = KMP_ERR(error); 227 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 228 err_code, __kmp_msg_null); 229 if (__kmp_generate_warnings == kmp_warnings_off) { 230 __kmp_str_free(&err_code.str); 231 } 232 } 233 KMP_AFFINITY_DISABLE(); 234 KMP_INTERNAL_FREE(buf); 235 return; 236 } 237 continue; 238 } 239 240 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 241 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 242 "setaffinity for mask size %d returned %d errno = %d\n", 243 gCode, sCode, errno)); 244 if (sCode < 0) { 245 if (errno == ENOSYS) { // Linux* OS only 246 // We shouldn't get here 247 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 248 "inconsistent OS call behavior: errno == ENOSYS for mask " 249 "size %d\n", 250 size)); 251 if (__kmp_affinity_verbose || 252 (__kmp_affinity_warnings && 253 (__kmp_affinity_type != affinity_none) && 254 (__kmp_affinity_type != affinity_default) && 255 (__kmp_affinity_type != affinity_disabled))) { 256 int error = errno; 257 kmp_msg_t err_code = KMP_ERR(error); 258 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 259 err_code, __kmp_msg_null); 260 if (__kmp_generate_warnings == kmp_warnings_off) { 261 __kmp_str_free(&err_code.str); 262 } 263 } 264 KMP_AFFINITY_DISABLE(); 265 KMP_INTERNAL_FREE(buf); 266 return; 267 } 268 if (errno == EFAULT) { 269 KMP_AFFINITY_ENABLE(gCode); 270 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 271 "affinity supported (mask size %d)\n", 272 (int)__kmp_affin_mask_size)); 273 KMP_INTERNAL_FREE(buf); 274 return; 275 } 276 } 277 } 278 #elif KMP_OS_FREEBSD 279 int gCode; 280 unsigned char *buf; 281 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 282 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, reinterpret_cast<cpuset_t *>(buf)); 283 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 284 "initial getaffinity call returned %d errno = %d\n", 285 gCode, errno)); 286 if (gCode == 0) { 287 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 288 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 289 "affinity supported (mask size %d)\n", 290 (int)__kmp_affin_mask_size)); 291 KMP_INTERNAL_FREE(buf); 292 return; 293 } 294 #endif 295 // save uncaught error code 296 // int error = errno; 297 KMP_INTERNAL_FREE(buf); 298 // restore uncaught error code, will be printed at the next KMP_WARNING below 299 // errno = error; 300 301 // Affinity is not supported 302 KMP_AFFINITY_DISABLE(); 303 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 304 "cannot determine mask size - affinity not supported\n")); 305 if (__kmp_affinity_verbose || 306 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 307 (__kmp_affinity_type != affinity_default) && 308 (__kmp_affinity_type != affinity_disabled))) { 309 KMP_WARNING(AffCantGetMaskSize, env_var); 310 } 311 } 312 313 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 314 315 #if KMP_USE_FUTEX 316 317 int __kmp_futex_determine_capable() { 318 int loc = 0; 319 int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 320 int retval = (rc == 0) || (errno != ENOSYS); 321 322 KA_TRACE(10, 323 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 324 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 325 retval ? "" : " not")); 326 327 return retval; 328 } 329 330 #endif // KMP_USE_FUTEX 331 332 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 333 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 334 use compare_and_store for these routines */ 335 336 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 337 kmp_int8 old_value, new_value; 338 339 old_value = TCR_1(*p); 340 new_value = old_value | d; 341 342 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 343 KMP_CPU_PAUSE(); 344 old_value = TCR_1(*p); 345 new_value = old_value | d; 346 } 347 return old_value; 348 } 349 350 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 351 kmp_int8 old_value, new_value; 352 353 old_value = TCR_1(*p); 354 new_value = old_value & d; 355 356 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 357 KMP_CPU_PAUSE(); 358 old_value = TCR_1(*p); 359 new_value = old_value & d; 360 } 361 return old_value; 362 } 363 364 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 365 kmp_uint32 old_value, new_value; 366 367 old_value = TCR_4(*p); 368 new_value = old_value | d; 369 370 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 371 KMP_CPU_PAUSE(); 372 old_value = TCR_4(*p); 373 new_value = old_value | d; 374 } 375 return old_value; 376 } 377 378 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 379 kmp_uint32 old_value, new_value; 380 381 old_value = TCR_4(*p); 382 new_value = old_value & d; 383 384 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 385 KMP_CPU_PAUSE(); 386 old_value = TCR_4(*p); 387 new_value = old_value & d; 388 } 389 return old_value; 390 } 391 392 #if KMP_ARCH_X86 393 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 394 kmp_int8 old_value, new_value; 395 396 old_value = TCR_1(*p); 397 new_value = old_value + d; 398 399 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 400 KMP_CPU_PAUSE(); 401 old_value = TCR_1(*p); 402 new_value = old_value + d; 403 } 404 return old_value; 405 } 406 407 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 408 kmp_int64 old_value, new_value; 409 410 old_value = TCR_8(*p); 411 new_value = old_value + d; 412 413 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 414 KMP_CPU_PAUSE(); 415 old_value = TCR_8(*p); 416 new_value = old_value + d; 417 } 418 return old_value; 419 } 420 #endif /* KMP_ARCH_X86 */ 421 422 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 423 kmp_uint64 old_value, new_value; 424 425 old_value = TCR_8(*p); 426 new_value = old_value | d; 427 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 428 KMP_CPU_PAUSE(); 429 old_value = TCR_8(*p); 430 new_value = old_value | d; 431 } 432 return old_value; 433 } 434 435 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 436 kmp_uint64 old_value, new_value; 437 438 old_value = TCR_8(*p); 439 new_value = old_value & d; 440 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 441 KMP_CPU_PAUSE(); 442 old_value = TCR_8(*p); 443 new_value = old_value & d; 444 } 445 return old_value; 446 } 447 448 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 449 450 void __kmp_terminate_thread(int gtid) { 451 int status; 452 kmp_info_t *th = __kmp_threads[gtid]; 453 454 if (!th) 455 return; 456 457 #ifdef KMP_CANCEL_THREADS 458 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 459 status = pthread_cancel(th->th.th_info.ds.ds_thread); 460 if (status != 0 && status != ESRCH) { 461 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 462 __kmp_msg_null); 463 } 464 #endif 465 KMP_YIELD(TRUE); 466 } // 467 468 /* Set thread stack info according to values returned by pthread_getattr_np(). 469 If values are unreasonable, assume call failed and use incremental stack 470 refinement method instead. Returns TRUE if the stack parameters could be 471 determined exactly, FALSE if incremental refinement is necessary. */ 472 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 473 int stack_data; 474 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 475 KMP_OS_HURD 476 pthread_attr_t attr; 477 int status; 478 size_t size = 0; 479 void *addr = 0; 480 481 /* Always do incremental stack refinement for ubermaster threads since the 482 initial thread stack range can be reduced by sibling thread creation so 483 pthread_attr_getstack may cause thread gtid aliasing */ 484 if (!KMP_UBER_GTID(gtid)) { 485 486 /* Fetch the real thread attributes */ 487 status = pthread_attr_init(&attr); 488 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 489 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 490 status = pthread_attr_get_np(pthread_self(), &attr); 491 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 492 #else 493 status = pthread_getattr_np(pthread_self(), &attr); 494 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 495 #endif 496 status = pthread_attr_getstack(&attr, &addr, &size); 497 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 498 KA_TRACE(60, 499 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 500 " %lu, low addr: %p\n", 501 gtid, size, addr)); 502 status = pthread_attr_destroy(&attr); 503 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 504 } 505 506 if (size != 0 && addr != 0) { // was stack parameter determination successful? 507 /* Store the correct base and size */ 508 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 509 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 510 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 511 return TRUE; 512 } 513 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 514 KMP_OS_HURD */ 515 /* Use incremental refinement starting from initial conservative estimate */ 516 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 517 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 518 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 519 return FALSE; 520 } 521 522 static void *__kmp_launch_worker(void *thr) { 523 int status, old_type, old_state; 524 #ifdef KMP_BLOCK_SIGNALS 525 sigset_t new_set, old_set; 526 #endif /* KMP_BLOCK_SIGNALS */ 527 void *exit_val; 528 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 529 KMP_OS_OPENBSD || KMP_OS_HURD 530 void *volatile padding = 0; 531 #endif 532 int gtid; 533 534 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 535 __kmp_gtid_set_specific(gtid); 536 #ifdef KMP_TDATA_GTID 537 __kmp_gtid = gtid; 538 #endif 539 #if KMP_STATS_ENABLED 540 // set thread local index to point to thread-specific stats 541 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 542 __kmp_stats_thread_ptr->startLife(); 543 KMP_SET_THREAD_STATE(IDLE); 544 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 545 #endif 546 547 #if USE_ITT_BUILD 548 __kmp_itt_thread_name(gtid); 549 #endif /* USE_ITT_BUILD */ 550 551 #if KMP_AFFINITY_SUPPORTED 552 __kmp_affinity_set_init_mask(gtid, FALSE); 553 #endif 554 555 #ifdef KMP_CANCEL_THREADS 556 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 557 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 558 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 559 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 560 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 561 #endif 562 563 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 564 // Set FP control regs to be a copy of the parallel initialization thread's. 565 __kmp_clear_x87_fpu_status_word(); 566 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 567 __kmp_load_mxcsr(&__kmp_init_mxcsr); 568 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 569 570 #ifdef KMP_BLOCK_SIGNALS 571 status = sigfillset(&new_set); 572 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 573 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 574 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 575 #endif /* KMP_BLOCK_SIGNALS */ 576 577 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 578 KMP_OS_OPENBSD 579 if (__kmp_stkoffset > 0 && gtid > 0) { 580 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 581 } 582 #endif 583 584 KMP_MB(); 585 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 586 587 __kmp_check_stack_overlap((kmp_info_t *)thr); 588 589 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 590 591 #ifdef KMP_BLOCK_SIGNALS 592 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 593 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 594 #endif /* KMP_BLOCK_SIGNALS */ 595 596 return exit_val; 597 } 598 599 #if KMP_USE_MONITOR 600 /* The monitor thread controls all of the threads in the complex */ 601 602 static void *__kmp_launch_monitor(void *thr) { 603 int status, old_type, old_state; 604 #ifdef KMP_BLOCK_SIGNALS 605 sigset_t new_set; 606 #endif /* KMP_BLOCK_SIGNALS */ 607 struct timespec interval; 608 609 KMP_MB(); /* Flush all pending memory write invalidates. */ 610 611 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 612 613 /* register us as the monitor thread */ 614 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 615 #ifdef KMP_TDATA_GTID 616 __kmp_gtid = KMP_GTID_MONITOR; 617 #endif 618 619 KMP_MB(); 620 621 #if USE_ITT_BUILD 622 // Instruct Intel(R) Threading Tools to ignore monitor thread. 623 __kmp_itt_thread_ignore(); 624 #endif /* USE_ITT_BUILD */ 625 626 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 627 (kmp_info_t *)thr); 628 629 __kmp_check_stack_overlap((kmp_info_t *)thr); 630 631 #ifdef KMP_CANCEL_THREADS 632 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 633 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 634 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 635 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 636 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 637 #endif 638 639 #if KMP_REAL_TIME_FIX 640 // This is a potential fix which allows application with real-time scheduling 641 // policy work. However, decision about the fix is not made yet, so it is 642 // disabled by default. 643 { // Are program started with real-time scheduling policy? 644 int sched = sched_getscheduler(0); 645 if (sched == SCHED_FIFO || sched == SCHED_RR) { 646 // Yes, we are a part of real-time application. Try to increase the 647 // priority of the monitor. 648 struct sched_param param; 649 int max_priority = sched_get_priority_max(sched); 650 int rc; 651 KMP_WARNING(RealTimeSchedNotSupported); 652 sched_getparam(0, ¶m); 653 if (param.sched_priority < max_priority) { 654 param.sched_priority += 1; 655 rc = sched_setscheduler(0, sched, ¶m); 656 if (rc != 0) { 657 int error = errno; 658 kmp_msg_t err_code = KMP_ERR(error); 659 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 660 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 661 if (__kmp_generate_warnings == kmp_warnings_off) { 662 __kmp_str_free(&err_code.str); 663 } 664 } 665 } else { 666 // We cannot abort here, because number of CPUs may be enough for all 667 // the threads, including the monitor thread, so application could 668 // potentially work... 669 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 670 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 671 __kmp_msg_null); 672 } 673 } 674 // AC: free thread that waits for monitor started 675 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 676 } 677 #endif // KMP_REAL_TIME_FIX 678 679 KMP_MB(); /* Flush all pending memory write invalidates. */ 680 681 if (__kmp_monitor_wakeups == 1) { 682 interval.tv_sec = 1; 683 interval.tv_nsec = 0; 684 } else { 685 interval.tv_sec = 0; 686 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 687 } 688 689 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 690 691 while (!TCR_4(__kmp_global.g.g_done)) { 692 struct timespec now; 693 struct timeval tval; 694 695 /* This thread monitors the state of the system */ 696 697 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 698 699 status = gettimeofday(&tval, NULL); 700 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 701 TIMEVAL_TO_TIMESPEC(&tval, &now); 702 703 now.tv_sec += interval.tv_sec; 704 now.tv_nsec += interval.tv_nsec; 705 706 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 707 now.tv_sec += 1; 708 now.tv_nsec -= KMP_NSEC_PER_SEC; 709 } 710 711 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 712 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 713 // AC: the monitor should not fall asleep if g_done has been set 714 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 715 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 716 &__kmp_wait_mx.m_mutex, &now); 717 if (status != 0) { 718 if (status != ETIMEDOUT && status != EINTR) { 719 KMP_SYSFAIL("pthread_cond_timedwait", status); 720 } 721 } 722 } 723 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 724 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 725 726 TCW_4(__kmp_global.g.g_time.dt.t_value, 727 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 728 729 KMP_MB(); /* Flush all pending memory write invalidates. */ 730 } 731 732 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 733 734 #ifdef KMP_BLOCK_SIGNALS 735 status = sigfillset(&new_set); 736 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 737 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 738 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 739 #endif /* KMP_BLOCK_SIGNALS */ 740 741 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 742 743 if (__kmp_global.g.g_abort != 0) { 744 /* now we need to terminate the worker threads */ 745 /* the value of t_abort is the signal we caught */ 746 747 int gtid; 748 749 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 750 __kmp_global.g.g_abort)); 751 752 /* terminate the OpenMP worker threads */ 753 /* TODO this is not valid for sibling threads!! 754 * the uber master might not be 0 anymore.. */ 755 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 756 __kmp_terminate_thread(gtid); 757 758 __kmp_cleanup(); 759 760 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 761 __kmp_global.g.g_abort)); 762 763 if (__kmp_global.g.g_abort > 0) 764 raise(__kmp_global.g.g_abort); 765 } 766 767 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 768 769 return thr; 770 } 771 #endif // KMP_USE_MONITOR 772 773 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 774 pthread_t handle; 775 pthread_attr_t thread_attr; 776 int status; 777 778 th->th.th_info.ds.ds_gtid = gtid; 779 780 #if KMP_STATS_ENABLED 781 // sets up worker thread stats 782 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 783 784 // th->th.th_stats is used to transfer thread-specific stats-pointer to 785 // __kmp_launch_worker. So when thread is created (goes into 786 // __kmp_launch_worker) it will set its thread local pointer to 787 // th->th.th_stats 788 if (!KMP_UBER_GTID(gtid)) { 789 th->th.th_stats = __kmp_stats_list->push_back(gtid); 790 } else { 791 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 792 // so set the th->th.th_stats field to it. 793 th->th.th_stats = __kmp_stats_thread_ptr; 794 } 795 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 796 797 #endif // KMP_STATS_ENABLED 798 799 if (KMP_UBER_GTID(gtid)) { 800 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 801 th->th.th_info.ds.ds_thread = pthread_self(); 802 __kmp_set_stack_info(gtid, th); 803 __kmp_check_stack_overlap(th); 804 return; 805 } 806 807 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 808 809 KMP_MB(); /* Flush all pending memory write invalidates. */ 810 811 #ifdef KMP_THREAD_ATTR 812 status = pthread_attr_init(&thread_attr); 813 if (status != 0) { 814 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 815 } 816 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 817 if (status != 0) { 818 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 819 } 820 821 /* Set stack size for this thread now. 822 The multiple of 2 is there because on some machines, requesting an unusual 823 stacksize causes the thread to have an offset before the dummy alloca() 824 takes place to create the offset. Since we want the user to have a 825 sufficient stacksize AND support a stack offset, we alloca() twice the 826 offset so that the upcoming alloca() does not eliminate any premade offset, 827 and also gives the user the stack space they requested for all threads */ 828 stack_size += gtid * __kmp_stkoffset * 2; 829 830 #if defined(__ANDROID__) && __ANDROID_API__ < 19 831 // Round the stack size to a multiple of the page size. Older versions of 832 // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL 833 // if the stack size was not a multiple of the page size. 834 stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 835 #endif 836 837 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 838 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 839 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 840 841 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 842 status = pthread_attr_setstacksize(&thread_attr, stack_size); 843 #ifdef KMP_BACKUP_STKSIZE 844 if (status != 0) { 845 if (!__kmp_env_stksize) { 846 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 847 __kmp_stksize = KMP_BACKUP_STKSIZE; 848 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 849 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 850 "bytes\n", 851 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 852 status = pthread_attr_setstacksize(&thread_attr, stack_size); 853 } 854 } 855 #endif /* KMP_BACKUP_STKSIZE */ 856 if (status != 0) { 857 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 858 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 859 } 860 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 861 862 #endif /* KMP_THREAD_ATTR */ 863 864 status = 865 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 866 if (status != 0 || !handle) { // ??? Why do we check handle?? 867 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 868 if (status == EINVAL) { 869 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 870 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 871 } 872 if (status == ENOMEM) { 873 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 874 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 875 } 876 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 877 if (status == EAGAIN) { 878 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 879 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 880 } 881 KMP_SYSFAIL("pthread_create", status); 882 } 883 884 th->th.th_info.ds.ds_thread = handle; 885 886 #ifdef KMP_THREAD_ATTR 887 status = pthread_attr_destroy(&thread_attr); 888 if (status) { 889 kmp_msg_t err_code = KMP_ERR(status); 890 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 891 __kmp_msg_null); 892 if (__kmp_generate_warnings == kmp_warnings_off) { 893 __kmp_str_free(&err_code.str); 894 } 895 } 896 #endif /* KMP_THREAD_ATTR */ 897 898 KMP_MB(); /* Flush all pending memory write invalidates. */ 899 900 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 901 902 } // __kmp_create_worker 903 904 #if KMP_USE_MONITOR 905 void __kmp_create_monitor(kmp_info_t *th) { 906 pthread_t handle; 907 pthread_attr_t thread_attr; 908 size_t size; 909 int status; 910 int auto_adj_size = FALSE; 911 912 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 913 // We don't need monitor thread in case of MAX_BLOCKTIME 914 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 915 "MAX blocktime\n")); 916 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 917 th->th.th_info.ds.ds_gtid = 0; 918 return; 919 } 920 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 921 922 KMP_MB(); /* Flush all pending memory write invalidates. */ 923 924 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 925 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 926 #if KMP_REAL_TIME_FIX 927 TCW_4(__kmp_global.g.g_time.dt.t_value, 928 -1); // Will use it for synchronization a bit later. 929 #else 930 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 931 #endif // KMP_REAL_TIME_FIX 932 933 #ifdef KMP_THREAD_ATTR 934 if (__kmp_monitor_stksize == 0) { 935 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 936 auto_adj_size = TRUE; 937 } 938 status = pthread_attr_init(&thread_attr); 939 if (status != 0) { 940 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 941 } 942 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 943 if (status != 0) { 944 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 945 } 946 947 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 948 status = pthread_attr_getstacksize(&thread_attr, &size); 949 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 950 #else 951 size = __kmp_sys_min_stksize; 952 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 953 #endif /* KMP_THREAD_ATTR */ 954 955 if (__kmp_monitor_stksize == 0) { 956 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 957 } 958 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 959 __kmp_monitor_stksize = __kmp_sys_min_stksize; 960 } 961 962 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 963 "requested stacksize = %lu bytes\n", 964 size, __kmp_monitor_stksize)); 965 966 retry: 967 968 /* Set stack size for this thread now. */ 969 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 970 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 971 __kmp_monitor_stksize)); 972 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 973 if (status != 0) { 974 if (auto_adj_size) { 975 __kmp_monitor_stksize *= 2; 976 goto retry; 977 } 978 kmp_msg_t err_code = KMP_ERR(status); 979 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 980 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 981 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 982 if (__kmp_generate_warnings == kmp_warnings_off) { 983 __kmp_str_free(&err_code.str); 984 } 985 } 986 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 987 988 status = 989 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 990 991 if (status != 0) { 992 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 993 if (status == EINVAL) { 994 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 995 __kmp_monitor_stksize *= 2; 996 goto retry; 997 } 998 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 999 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 1000 __kmp_msg_null); 1001 } 1002 if (status == ENOMEM) { 1003 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1004 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 1005 __kmp_msg_null); 1006 } 1007 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1008 if (status == EAGAIN) { 1009 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 1010 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 1011 } 1012 KMP_SYSFAIL("pthread_create", status); 1013 } 1014 1015 th->th.th_info.ds.ds_thread = handle; 1016 1017 #if KMP_REAL_TIME_FIX 1018 // Wait for the monitor thread is really started and set its *priority*. 1019 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 1020 sizeof(__kmp_global.g.g_time.dt.t_value)); 1021 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 1022 &__kmp_neq_4, NULL); 1023 #endif // KMP_REAL_TIME_FIX 1024 1025 #ifdef KMP_THREAD_ATTR 1026 status = pthread_attr_destroy(&thread_attr); 1027 if (status != 0) { 1028 kmp_msg_t err_code = KMP_ERR(status); 1029 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 1030 __kmp_msg_null); 1031 if (__kmp_generate_warnings == kmp_warnings_off) { 1032 __kmp_str_free(&err_code.str); 1033 } 1034 } 1035 #endif 1036 1037 KMP_MB(); /* Flush all pending memory write invalidates. */ 1038 1039 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1040 th->th.th_info.ds.ds_thread)); 1041 1042 } // __kmp_create_monitor 1043 #endif // KMP_USE_MONITOR 1044 1045 void __kmp_exit_thread(int exit_status) { 1046 pthread_exit((void *)(intptr_t)exit_status); 1047 } // __kmp_exit_thread 1048 1049 #if KMP_USE_MONITOR 1050 void __kmp_resume_monitor(); 1051 1052 void __kmp_reap_monitor(kmp_info_t *th) { 1053 int status; 1054 void *exit_val; 1055 1056 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1057 " %#.8lx\n", 1058 th->th.th_info.ds.ds_thread)); 1059 1060 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1061 // If both tid and gtid are 0, it means the monitor did not ever start. 1062 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1063 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1064 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1065 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1066 return; 1067 } 1068 1069 KMP_MB(); /* Flush all pending memory write invalidates. */ 1070 1071 /* First, check to see whether the monitor thread exists to wake it up. This 1072 is to avoid performance problem when the monitor sleeps during 1073 blocktime-size interval */ 1074 1075 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1076 if (status != ESRCH) { 1077 __kmp_resume_monitor(); // Wake up the monitor thread 1078 } 1079 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1080 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1081 if (exit_val != th) { 1082 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1083 } 1084 1085 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1086 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1087 1088 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1089 " %#.8lx\n", 1090 th->th.th_info.ds.ds_thread)); 1091 1092 KMP_MB(); /* Flush all pending memory write invalidates. */ 1093 } 1094 #endif // KMP_USE_MONITOR 1095 1096 void __kmp_reap_worker(kmp_info_t *th) { 1097 int status; 1098 void *exit_val; 1099 1100 KMP_MB(); /* Flush all pending memory write invalidates. */ 1101 1102 KA_TRACE( 1103 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1104 1105 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1106 #ifdef KMP_DEBUG 1107 /* Don't expose these to the user until we understand when they trigger */ 1108 if (status != 0) { 1109 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1110 } 1111 if (exit_val != th) { 1112 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1113 "exit_val = %p\n", 1114 th->th.th_info.ds.ds_gtid, exit_val)); 1115 } 1116 #endif /* KMP_DEBUG */ 1117 1118 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1119 th->th.th_info.ds.ds_gtid)); 1120 1121 KMP_MB(); /* Flush all pending memory write invalidates. */ 1122 } 1123 1124 #if KMP_HANDLE_SIGNALS 1125 1126 static void __kmp_null_handler(int signo) { 1127 // Do nothing, for doing SIG_IGN-type actions. 1128 } // __kmp_null_handler 1129 1130 static void __kmp_team_handler(int signo) { 1131 if (__kmp_global.g.g_abort == 0) { 1132 /* Stage 1 signal handler, let's shut down all of the threads */ 1133 #ifdef KMP_DEBUG 1134 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1135 #endif 1136 switch (signo) { 1137 case SIGHUP: 1138 case SIGINT: 1139 case SIGQUIT: 1140 case SIGILL: 1141 case SIGABRT: 1142 case SIGFPE: 1143 case SIGBUS: 1144 case SIGSEGV: 1145 #ifdef SIGSYS 1146 case SIGSYS: 1147 #endif 1148 case SIGTERM: 1149 if (__kmp_debug_buf) { 1150 __kmp_dump_debug_buffer(); 1151 } 1152 __kmp_unregister_library(); // cleanup shared memory 1153 KMP_MB(); // Flush all pending memory write invalidates. 1154 TCW_4(__kmp_global.g.g_abort, signo); 1155 KMP_MB(); // Flush all pending memory write invalidates. 1156 TCW_4(__kmp_global.g.g_done, TRUE); 1157 KMP_MB(); // Flush all pending memory write invalidates. 1158 break; 1159 default: 1160 #ifdef KMP_DEBUG 1161 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1162 #endif 1163 break; 1164 } 1165 } 1166 } // __kmp_team_handler 1167 1168 static void __kmp_sigaction(int signum, const struct sigaction *act, 1169 struct sigaction *oldact) { 1170 int rc = sigaction(signum, act, oldact); 1171 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1172 } 1173 1174 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1175 int parallel_init) { 1176 KMP_MB(); // Flush all pending memory write invalidates. 1177 KB_TRACE(60, 1178 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1179 if (parallel_init) { 1180 struct sigaction new_action; 1181 struct sigaction old_action; 1182 new_action.sa_handler = handler_func; 1183 new_action.sa_flags = 0; 1184 sigfillset(&new_action.sa_mask); 1185 __kmp_sigaction(sig, &new_action, &old_action); 1186 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1187 sigaddset(&__kmp_sigset, sig); 1188 } else { 1189 // Restore/keep user's handler if one previously installed. 1190 __kmp_sigaction(sig, &old_action, NULL); 1191 } 1192 } else { 1193 // Save initial/system signal handlers to see if user handlers installed. 1194 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1195 } 1196 KMP_MB(); // Flush all pending memory write invalidates. 1197 } // __kmp_install_one_handler 1198 1199 static void __kmp_remove_one_handler(int sig) { 1200 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1201 if (sigismember(&__kmp_sigset, sig)) { 1202 struct sigaction old; 1203 KMP_MB(); // Flush all pending memory write invalidates. 1204 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1205 if ((old.sa_handler != __kmp_team_handler) && 1206 (old.sa_handler != __kmp_null_handler)) { 1207 // Restore the users signal handler. 1208 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1209 "restoring: sig=%d\n", 1210 sig)); 1211 __kmp_sigaction(sig, &old, NULL); 1212 } 1213 sigdelset(&__kmp_sigset, sig); 1214 KMP_MB(); // Flush all pending memory write invalidates. 1215 } 1216 } // __kmp_remove_one_handler 1217 1218 void __kmp_install_signals(int parallel_init) { 1219 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1220 if (__kmp_handle_signals || !parallel_init) { 1221 // If ! parallel_init, we do not install handlers, just save original 1222 // handlers. Let us do it even __handle_signals is 0. 1223 sigemptyset(&__kmp_sigset); 1224 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1225 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1226 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1227 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1228 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1229 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1230 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1231 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1232 #ifdef SIGSYS 1233 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1234 #endif // SIGSYS 1235 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1236 #ifdef SIGPIPE 1237 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1238 #endif // SIGPIPE 1239 } 1240 } // __kmp_install_signals 1241 1242 void __kmp_remove_signals(void) { 1243 int sig; 1244 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1245 for (sig = 1; sig < NSIG; ++sig) { 1246 __kmp_remove_one_handler(sig); 1247 } 1248 } // __kmp_remove_signals 1249 1250 #endif // KMP_HANDLE_SIGNALS 1251 1252 void __kmp_enable(int new_state) { 1253 #ifdef KMP_CANCEL_THREADS 1254 int status, old_state; 1255 status = pthread_setcancelstate(new_state, &old_state); 1256 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1257 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1258 #endif 1259 } 1260 1261 void __kmp_disable(int *old_state) { 1262 #ifdef KMP_CANCEL_THREADS 1263 int status; 1264 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1265 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1266 #endif 1267 } 1268 1269 static void __kmp_atfork_prepare(void) { 1270 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1271 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1272 } 1273 1274 static void __kmp_atfork_parent(void) { 1275 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1276 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1277 } 1278 1279 /* Reset the library so execution in the child starts "all over again" with 1280 clean data structures in initial states. Don't worry about freeing memory 1281 allocated by parent, just abandon it to be safe. */ 1282 static void __kmp_atfork_child(void) { 1283 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1284 /* TODO make sure this is done right for nested/sibling */ 1285 // ATT: Memory leaks are here? TODO: Check it and fix. 1286 /* KMP_ASSERT( 0 ); */ 1287 1288 ++__kmp_fork_count; 1289 1290 #if KMP_AFFINITY_SUPPORTED 1291 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1292 // reset the affinity in the child to the initial thread 1293 // affinity in the parent 1294 kmp_set_thread_affinity_mask_initial(); 1295 #endif 1296 // Set default not to bind threads tightly in the child (we’re expecting 1297 // over-subscription after the fork and this can improve things for 1298 // scripting languages that use OpenMP inside process-parallel code). 1299 __kmp_affinity_type = affinity_none; 1300 if (__kmp_nested_proc_bind.bind_types != NULL) { 1301 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1302 } 1303 #endif // KMP_AFFINITY_SUPPORTED 1304 1305 __kmp_init_runtime = FALSE; 1306 #if KMP_USE_MONITOR 1307 __kmp_init_monitor = 0; 1308 #endif 1309 __kmp_init_parallel = FALSE; 1310 __kmp_init_middle = FALSE; 1311 __kmp_init_serial = FALSE; 1312 TCW_4(__kmp_init_gtid, FALSE); 1313 __kmp_init_common = FALSE; 1314 1315 TCW_4(__kmp_init_user_locks, FALSE); 1316 #if !KMP_USE_DYNAMIC_LOCK 1317 __kmp_user_lock_table.used = 1; 1318 __kmp_user_lock_table.allocated = 0; 1319 __kmp_user_lock_table.table = NULL; 1320 __kmp_lock_blocks = NULL; 1321 #endif 1322 1323 __kmp_all_nth = 0; 1324 TCW_4(__kmp_nth, 0); 1325 1326 __kmp_thread_pool = NULL; 1327 __kmp_thread_pool_insert_pt = NULL; 1328 __kmp_team_pool = NULL; 1329 1330 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1331 here so threadprivate doesn't use stale data */ 1332 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1333 __kmp_threadpriv_cache_list)); 1334 1335 while (__kmp_threadpriv_cache_list != NULL) { 1336 1337 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1338 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1339 &(*__kmp_threadpriv_cache_list->addr))); 1340 1341 *__kmp_threadpriv_cache_list->addr = NULL; 1342 } 1343 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1344 } 1345 1346 __kmp_init_runtime = FALSE; 1347 1348 /* reset statically initialized locks */ 1349 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1350 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1351 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1352 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1353 1354 #if USE_ITT_BUILD 1355 __kmp_itt_reset(); // reset ITT's global state 1356 #endif /* USE_ITT_BUILD */ 1357 1358 /* This is necessary to make sure no stale data is left around */ 1359 /* AC: customers complain that we use unsafe routines in the atfork 1360 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1361 in dynamic_link when check the presence of shared tbbmalloc library. 1362 Suggestion is to make the library initialization lazier, similar 1363 to what done for __kmpc_begin(). */ 1364 // TODO: synchronize all static initializations with regular library 1365 // startup; look at kmp_global.cpp and etc. 1366 //__kmp_internal_begin (); 1367 } 1368 1369 void __kmp_register_atfork(void) { 1370 if (__kmp_need_register_atfork) { 1371 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1372 __kmp_atfork_child); 1373 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1374 __kmp_need_register_atfork = FALSE; 1375 } 1376 } 1377 1378 void __kmp_suspend_initialize(void) { 1379 int status; 1380 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1381 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1382 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1383 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1384 } 1385 1386 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1387 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1388 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1389 int new_value = __kmp_fork_count + 1; 1390 // Return if already initialized 1391 if (old_value == new_value) 1392 return; 1393 // Wait, then return if being initialized 1394 if (old_value == -1 || 1395 !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value, 1396 -1)) { 1397 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1398 KMP_CPU_PAUSE(); 1399 } 1400 } else { 1401 // Claim to be the initializer and do initializations 1402 int status; 1403 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1404 &__kmp_suspend_cond_attr); 1405 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1406 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1407 &__kmp_suspend_mutex_attr); 1408 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1409 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1410 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1411 } 1412 } 1413 1414 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1415 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1416 /* this means we have initialize the suspension pthread objects for this 1417 thread in this instance of the process */ 1418 int status; 1419 1420 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1421 if (status != 0 && status != EBUSY) { 1422 KMP_SYSFAIL("pthread_cond_destroy", status); 1423 } 1424 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1425 if (status != 0 && status != EBUSY) { 1426 KMP_SYSFAIL("pthread_mutex_destroy", status); 1427 } 1428 --th->th.th_suspend_init_count; 1429 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1430 __kmp_fork_count); 1431 } 1432 } 1433 1434 // return true if lock obtained, false otherwise 1435 int __kmp_try_suspend_mx(kmp_info_t *th) { 1436 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1437 } 1438 1439 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1440 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1441 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1442 } 1443 1444 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1445 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1446 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1447 } 1448 1449 /* This routine puts the calling thread to sleep after setting the 1450 sleep bit for the indicated flag variable to true. */ 1451 template <class C> 1452 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1453 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1454 kmp_info_t *th = __kmp_threads[th_gtid]; 1455 int status; 1456 typename C::flag_t old_spin; 1457 1458 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1459 flag->get())); 1460 1461 __kmp_suspend_initialize_thread(th); 1462 1463 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1464 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1465 1466 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1467 th_gtid, flag->get())); 1468 1469 /* TODO: shouldn't this use release semantics to ensure that 1470 __kmp_suspend_initialize_thread gets called first? */ 1471 old_spin = flag->set_sleeping(); 1472 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1473 __kmp_pause_status != kmp_soft_paused) { 1474 flag->unset_sleeping(); 1475 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1476 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1477 return; 1478 } 1479 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1480 " was %x\n", 1481 th_gtid, flag->get(), flag->load(), old_spin)); 1482 1483 if (flag->done_check_val(old_spin)) { 1484 old_spin = flag->unset_sleeping(); 1485 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1486 "for spin(%p)\n", 1487 th_gtid, flag->get())); 1488 } else { 1489 /* Encapsulate in a loop as the documentation states that this may 1490 "with low probability" return when the condition variable has 1491 not been signaled or broadcast */ 1492 int deactivated = FALSE; 1493 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1494 1495 while (flag->is_sleeping()) { 1496 #ifdef DEBUG_SUSPEND 1497 char buffer[128]; 1498 __kmp_suspend_count++; 1499 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1500 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1501 buffer); 1502 #endif 1503 // Mark the thread as no longer active (only in the first iteration of the 1504 // loop). 1505 if (!deactivated) { 1506 th->th.th_active = FALSE; 1507 if (th->th.th_active_in_pool) { 1508 th->th.th_active_in_pool = FALSE; 1509 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1510 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1511 } 1512 deactivated = TRUE; 1513 } 1514 1515 #if USE_SUSPEND_TIMEOUT 1516 struct timespec now; 1517 struct timeval tval; 1518 int msecs; 1519 1520 status = gettimeofday(&tval, NULL); 1521 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1522 TIMEVAL_TO_TIMESPEC(&tval, &now); 1523 1524 msecs = (4 * __kmp_dflt_blocktime) + 200; 1525 now.tv_sec += msecs / 1000; 1526 now.tv_nsec += (msecs % 1000) * 1000; 1527 1528 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1529 "pthread_cond_timedwait\n", 1530 th_gtid)); 1531 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1532 &th->th.th_suspend_mx.m_mutex, &now); 1533 #else 1534 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1535 " pthread_cond_wait\n", 1536 th_gtid)); 1537 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1538 &th->th.th_suspend_mx.m_mutex); 1539 #endif 1540 1541 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1542 KMP_SYSFAIL("pthread_cond_wait", status); 1543 } 1544 #ifdef KMP_DEBUG 1545 if (status == ETIMEDOUT) { 1546 if (flag->is_sleeping()) { 1547 KF_TRACE(100, 1548 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1549 } else { 1550 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1551 "not set!\n", 1552 th_gtid)); 1553 } 1554 } else if (flag->is_sleeping()) { 1555 KF_TRACE(100, 1556 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1557 } 1558 #endif 1559 } // while 1560 1561 // Mark the thread as active again (if it was previous marked as inactive) 1562 if (deactivated) { 1563 th->th.th_active = TRUE; 1564 if (TCR_4(th->th.th_in_pool)) { 1565 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1566 th->th.th_active_in_pool = TRUE; 1567 } 1568 } 1569 } 1570 #ifdef DEBUG_SUSPEND 1571 { 1572 char buffer[128]; 1573 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1574 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1575 buffer); 1576 } 1577 #endif 1578 1579 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1580 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1581 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1582 } 1583 1584 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 1585 __kmp_suspend_template(th_gtid, flag); 1586 } 1587 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 1588 __kmp_suspend_template(th_gtid, flag); 1589 } 1590 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1591 __kmp_suspend_template(th_gtid, flag); 1592 } 1593 1594 /* This routine signals the thread specified by target_gtid to wake up 1595 after setting the sleep bit indicated by the flag argument to FALSE. 1596 The target thread must already have called __kmp_suspend_template() */ 1597 template <class C> 1598 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1599 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1600 kmp_info_t *th = __kmp_threads[target_gtid]; 1601 int status; 1602 1603 #ifdef KMP_DEBUG 1604 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1605 #endif 1606 1607 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1608 gtid, target_gtid)); 1609 KMP_DEBUG_ASSERT(gtid != target_gtid); 1610 1611 __kmp_suspend_initialize_thread(th); 1612 1613 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1614 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1615 1616 if (!flag) { // coming from __kmp_null_resume_wrapper 1617 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1618 } 1619 1620 // First, check if the flag is null or its type has changed. If so, someone 1621 // else woke it up. 1622 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1623 // simply shows what 1624 // flag was cast to 1625 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1626 "awake: flag(%p)\n", 1627 gtid, target_gtid, NULL)); 1628 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1629 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1630 return; 1631 } else { // if multiple threads are sleeping, flag should be internally 1632 // referring to a specific thread here 1633 typename C::flag_t old_spin = flag->unset_sleeping(); 1634 if (!flag->is_sleeping_val(old_spin)) { 1635 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1636 "awake: flag(%p): " 1637 "%u => %u\n", 1638 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1639 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1640 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1641 return; 1642 } 1643 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1644 "sleep bit for flag's loc(%p): " 1645 "%u => %u\n", 1646 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1647 } 1648 TCW_PTR(th->th.th_sleep_loc, NULL); 1649 1650 #ifdef DEBUG_SUSPEND 1651 { 1652 char buffer[128]; 1653 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1654 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1655 target_gtid, buffer); 1656 } 1657 #endif 1658 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1659 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1660 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1661 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1662 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1663 " for T#%d\n", 1664 gtid, target_gtid)); 1665 } 1666 1667 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 1668 __kmp_resume_template(target_gtid, flag); 1669 } 1670 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 1671 __kmp_resume_template(target_gtid, flag); 1672 } 1673 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1674 __kmp_resume_template(target_gtid, flag); 1675 } 1676 1677 #if KMP_USE_MONITOR 1678 void __kmp_resume_monitor() { 1679 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1680 int status; 1681 #ifdef KMP_DEBUG 1682 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1683 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1684 KMP_GTID_MONITOR)); 1685 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1686 #endif 1687 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1688 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1689 #ifdef DEBUG_SUSPEND 1690 { 1691 char buffer[128]; 1692 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1693 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1694 KMP_GTID_MONITOR, buffer); 1695 } 1696 #endif 1697 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1698 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1699 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1700 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1701 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1702 " for T#%d\n", 1703 gtid, KMP_GTID_MONITOR)); 1704 } 1705 #endif // KMP_USE_MONITOR 1706 1707 void __kmp_yield() { sched_yield(); } 1708 1709 void __kmp_gtid_set_specific(int gtid) { 1710 if (__kmp_init_gtid) { 1711 int status; 1712 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1713 (void *)(intptr_t)(gtid + 1)); 1714 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1715 } else { 1716 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1717 } 1718 } 1719 1720 int __kmp_gtid_get_specific() { 1721 int gtid; 1722 if (!__kmp_init_gtid) { 1723 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1724 "KMP_GTID_SHUTDOWN\n")); 1725 return KMP_GTID_SHUTDOWN; 1726 } 1727 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1728 if (gtid == 0) { 1729 gtid = KMP_GTID_DNE; 1730 } else { 1731 gtid--; 1732 } 1733 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1734 __kmp_gtid_threadprivate_key, gtid)); 1735 return gtid; 1736 } 1737 1738 double __kmp_read_cpu_time(void) { 1739 /*clock_t t;*/ 1740 struct tms buffer; 1741 1742 /*t =*/times(&buffer); 1743 1744 return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC; 1745 } 1746 1747 int __kmp_read_system_info(struct kmp_sys_info *info) { 1748 int status; 1749 struct rusage r_usage; 1750 1751 memset(info, 0, sizeof(*info)); 1752 1753 status = getrusage(RUSAGE_SELF, &r_usage); 1754 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1755 1756 // The maximum resident set size utilized (in kilobytes) 1757 info->maxrss = r_usage.ru_maxrss; 1758 // The number of page faults serviced without any I/O 1759 info->minflt = r_usage.ru_minflt; 1760 // The number of page faults serviced that required I/O 1761 info->majflt = r_usage.ru_majflt; 1762 // The number of times a process was "swapped" out of memory 1763 info->nswap = r_usage.ru_nswap; 1764 // The number of times the file system had to perform input 1765 info->inblock = r_usage.ru_inblock; 1766 // The number of times the file system had to perform output 1767 info->oublock = r_usage.ru_oublock; 1768 // The number of times a context switch was voluntarily 1769 info->nvcsw = r_usage.ru_nvcsw; 1770 // The number of times a context switch was forced 1771 info->nivcsw = r_usage.ru_nivcsw; 1772 1773 return (status != 0); 1774 } 1775 1776 void __kmp_read_system_time(double *delta) { 1777 double t_ns; 1778 struct timeval tval; 1779 struct timespec stop; 1780 int status; 1781 1782 status = gettimeofday(&tval, NULL); 1783 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1784 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1785 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start); 1786 *delta = (t_ns * 1e-9); 1787 } 1788 1789 void __kmp_clear_system_time(void) { 1790 struct timeval tval; 1791 int status; 1792 status = gettimeofday(&tval, NULL); 1793 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1794 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1795 } 1796 1797 static int __kmp_get_xproc(void) { 1798 1799 int r = 0; 1800 1801 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 1802 KMP_OS_OPENBSD || KMP_OS_HURD 1803 1804 r = sysconf(_SC_NPROCESSORS_ONLN); 1805 1806 #elif KMP_OS_DARWIN 1807 1808 // Bug C77011 High "OpenMP Threads and number of active cores". 1809 1810 // Find the number of available CPUs. 1811 kern_return_t rc; 1812 host_basic_info_data_t info; 1813 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1814 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1815 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1816 // Cannot use KA_TRACE() here because this code works before trace support 1817 // is initialized. 1818 r = info.avail_cpus; 1819 } else { 1820 KMP_WARNING(CantGetNumAvailCPU); 1821 KMP_INFORM(AssumedNumCPU); 1822 } 1823 1824 #else 1825 1826 #error "Unknown or unsupported OS." 1827 1828 #endif 1829 1830 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1831 1832 } // __kmp_get_xproc 1833 1834 int __kmp_read_from_file(char const *path, char const *format, ...) { 1835 int result; 1836 va_list args; 1837 1838 va_start(args, format); 1839 FILE *f = fopen(path, "rb"); 1840 if (f == NULL) 1841 return 0; 1842 result = vfscanf(f, format, args); 1843 fclose(f); 1844 1845 return result; 1846 } 1847 1848 void __kmp_runtime_initialize(void) { 1849 int status; 1850 pthread_mutexattr_t mutex_attr; 1851 pthread_condattr_t cond_attr; 1852 1853 if (__kmp_init_runtime) { 1854 return; 1855 } 1856 1857 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1858 if (!__kmp_cpuinfo.initialized) { 1859 __kmp_query_cpuid(&__kmp_cpuinfo); 1860 } 1861 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1862 1863 __kmp_xproc = __kmp_get_xproc(); 1864 1865 #if ! KMP_32_BIT_ARCH 1866 struct rlimit rlim; 1867 // read stack size of calling thread, save it as default for worker threads; 1868 // this should be done before reading environment variables 1869 status = getrlimit(RLIMIT_STACK, &rlim); 1870 if (status == 0) { // success? 1871 __kmp_stksize = rlim.rlim_cur; 1872 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1873 } 1874 #endif /* KMP_32_BIT_ARCH */ 1875 1876 if (sysconf(_SC_THREADS)) { 1877 1878 /* Query the maximum number of threads */ 1879 __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX); 1880 if (__kmp_sys_max_nth == -1) { 1881 /* Unlimited threads for NPTL */ 1882 __kmp_sys_max_nth = INT_MAX; 1883 } else if (__kmp_sys_max_nth <= 1) { 1884 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1885 __kmp_sys_max_nth = KMP_MAX_NTH; 1886 } 1887 1888 /* Query the minimum stack size */ 1889 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1890 if (__kmp_sys_min_stksize <= 1) { 1891 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1892 } 1893 } 1894 1895 /* Set up minimum number of threads to switch to TLS gtid */ 1896 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1897 1898 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1899 __kmp_internal_end_dest); 1900 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1901 status = pthread_mutexattr_init(&mutex_attr); 1902 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1903 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1904 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1905 status = pthread_condattr_init(&cond_attr); 1906 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1907 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1908 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1909 #if USE_ITT_BUILD 1910 __kmp_itt_initialize(); 1911 #endif /* USE_ITT_BUILD */ 1912 1913 __kmp_init_runtime = TRUE; 1914 } 1915 1916 void __kmp_runtime_destroy(void) { 1917 int status; 1918 1919 if (!__kmp_init_runtime) { 1920 return; // Nothing to do. 1921 } 1922 1923 #if USE_ITT_BUILD 1924 __kmp_itt_destroy(); 1925 #endif /* USE_ITT_BUILD */ 1926 1927 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1928 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1929 1930 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1931 if (status != 0 && status != EBUSY) { 1932 KMP_SYSFAIL("pthread_mutex_destroy", status); 1933 } 1934 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1935 if (status != 0 && status != EBUSY) { 1936 KMP_SYSFAIL("pthread_cond_destroy", status); 1937 } 1938 #if KMP_AFFINITY_SUPPORTED 1939 __kmp_affinity_uninitialize(); 1940 #endif 1941 1942 __kmp_init_runtime = FALSE; 1943 } 1944 1945 /* Put the thread to sleep for a time period */ 1946 /* NOTE: not currently used anywhere */ 1947 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1948 1949 /* Calculate the elapsed wall clock time for the user */ 1950 void __kmp_elapsed(double *t) { 1951 int status; 1952 #ifdef FIX_SGI_CLOCK 1953 struct timespec ts; 1954 1955 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1956 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1957 *t = 1958 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1959 #else 1960 struct timeval tv; 1961 1962 status = gettimeofday(&tv, NULL); 1963 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1964 *t = 1965 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1966 #endif 1967 } 1968 1969 /* Calculate the elapsed wall clock tick for the user */ 1970 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1971 1972 /* Return the current time stamp in nsec */ 1973 kmp_uint64 __kmp_now_nsec() { 1974 struct timeval t; 1975 gettimeofday(&t, NULL); 1976 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 1977 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 1978 return nsec; 1979 } 1980 1981 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1982 /* Measure clock ticks per millisecond */ 1983 void __kmp_initialize_system_tick() { 1984 kmp_uint64 now, nsec2, diff; 1985 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1986 kmp_uint64 nsec = __kmp_now_nsec(); 1987 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1988 while ((now = __kmp_hardware_timestamp()) < goal) 1989 ; 1990 nsec2 = __kmp_now_nsec(); 1991 diff = nsec2 - nsec; 1992 if (diff > 0) { 1993 kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff); 1994 if (tpms > 0) 1995 __kmp_ticks_per_msec = tpms; 1996 } 1997 } 1998 #endif 1999 2000 /* Determine whether the given address is mapped into the current address 2001 space. */ 2002 2003 int __kmp_is_address_mapped(void *addr) { 2004 2005 int found = 0; 2006 int rc; 2007 2008 #if KMP_OS_LINUX || KMP_OS_HURD 2009 2010 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address 2011 ranges mapped into the address space. */ 2012 2013 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 2014 FILE *file = NULL; 2015 2016 file = fopen(name, "r"); 2017 KMP_ASSERT(file != NULL); 2018 2019 for (;;) { 2020 2021 void *beginning = NULL; 2022 void *ending = NULL; 2023 char perms[5]; 2024 2025 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2026 if (rc == EOF) { 2027 break; 2028 } 2029 KMP_ASSERT(rc == 3 && 2030 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2031 2032 // Ending address is not included in the region, but beginning is. 2033 if ((addr >= beginning) && (addr < ending)) { 2034 perms[2] = 0; // 3th and 4th character does not matter. 2035 if (strcmp(perms, "rw") == 0) { 2036 // Memory we are looking for should be readable and writable. 2037 found = 1; 2038 } 2039 break; 2040 } 2041 } 2042 2043 // Free resources. 2044 fclose(file); 2045 KMP_INTERNAL_FREE(name); 2046 #elif KMP_OS_FREEBSD 2047 char *buf; 2048 size_t lstsz; 2049 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 2050 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2051 if (rc < 0) 2052 return 0; 2053 // We pass from number of vm entry's semantic 2054 // to size of whole entry map list. 2055 lstsz = lstsz * 4 / 3; 2056 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2057 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2058 if (rc < 0) { 2059 kmpc_free(buf); 2060 return 0; 2061 } 2062 2063 char *lw = buf; 2064 char *up = buf + lstsz; 2065 2066 while (lw < up) { 2067 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2068 size_t cursz = cur->kve_structsize; 2069 if (cursz == 0) 2070 break; 2071 void *start = reinterpret_cast<void *>(cur->kve_start); 2072 void *end = reinterpret_cast<void *>(cur->kve_end); 2073 // Readable/Writable addresses within current map entry 2074 if ((addr >= start) && (addr < end)) { 2075 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2076 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2077 found = 1; 2078 break; 2079 } 2080 } 2081 lw += cursz; 2082 } 2083 kmpc_free(buf); 2084 2085 #elif KMP_OS_DARWIN 2086 2087 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2088 using vm interface. */ 2089 2090 int buffer; 2091 vm_size_t count; 2092 rc = vm_read_overwrite( 2093 mach_task_self(), // Task to read memory of. 2094 (vm_address_t)(addr), // Address to read from. 2095 1, // Number of bytes to be read. 2096 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2097 &count // Address of var to save number of read bytes in. 2098 ); 2099 if (rc == 0) { 2100 // Memory successfully read. 2101 found = 1; 2102 } 2103 2104 #elif KMP_OS_NETBSD 2105 2106 int mib[5]; 2107 mib[0] = CTL_VM; 2108 mib[1] = VM_PROC; 2109 mib[2] = VM_PROC_MAP; 2110 mib[3] = getpid(); 2111 mib[4] = sizeof(struct kinfo_vmentry); 2112 2113 size_t size; 2114 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2115 KMP_ASSERT(!rc); 2116 KMP_ASSERT(size); 2117 2118 size = size * 4 / 3; 2119 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2120 KMP_ASSERT(kiv); 2121 2122 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2123 KMP_ASSERT(!rc); 2124 KMP_ASSERT(size); 2125 2126 for (size_t i = 0; i < size; i++) { 2127 if (kiv[i].kve_start >= (uint64_t)addr && 2128 kiv[i].kve_end <= (uint64_t)addr) { 2129 found = 1; 2130 break; 2131 } 2132 } 2133 KMP_INTERNAL_FREE(kiv); 2134 #elif KMP_OS_OPENBSD 2135 2136 int mib[3]; 2137 mib[0] = CTL_KERN; 2138 mib[1] = KERN_PROC_VMMAP; 2139 mib[2] = getpid(); 2140 2141 size_t size; 2142 uint64_t end; 2143 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2144 KMP_ASSERT(!rc); 2145 KMP_ASSERT(size); 2146 end = size; 2147 2148 struct kinfo_vmentry kiv = {.kve_start = 0}; 2149 2150 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2151 KMP_ASSERT(size); 2152 if (kiv.kve_end == end) 2153 break; 2154 2155 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2156 found = 1; 2157 break; 2158 } 2159 kiv.kve_start += 1; 2160 } 2161 #elif KMP_OS_DRAGONFLY 2162 2163 // FIXME(DragonFly): Implement this 2164 found = 1; 2165 2166 #else 2167 2168 #error "Unknown or unsupported OS" 2169 2170 #endif 2171 2172 return found; 2173 2174 } // __kmp_is_address_mapped 2175 2176 #ifdef USE_LOAD_BALANCE 2177 2178 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2179 2180 // The function returns the rounded value of the system load average 2181 // during given time interval which depends on the value of 2182 // __kmp_load_balance_interval variable (default is 60 sec, other values 2183 // may be 300 sec or 900 sec). 2184 // It returns -1 in case of error. 2185 int __kmp_get_load_balance(int max) { 2186 double averages[3]; 2187 int ret_avg = 0; 2188 2189 int res = getloadavg(averages, 3); 2190 2191 // Check __kmp_load_balance_interval to determine which of averages to use. 2192 // getloadavg() may return the number of samples less than requested that is 2193 // less than 3. 2194 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2195 ret_avg = averages[0]; // 1 min 2196 } else if ((__kmp_load_balance_interval >= 180 && 2197 __kmp_load_balance_interval < 600) && 2198 (res >= 2)) { 2199 ret_avg = averages[1]; // 5 min 2200 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2201 ret_avg = averages[2]; // 15 min 2202 } else { // Error occurred 2203 return -1; 2204 } 2205 2206 return ret_avg; 2207 } 2208 2209 #else // Linux* OS 2210 2211 // The function returns number of running (not sleeping) threads, or -1 in case 2212 // of error. Error could be reported if Linux* OS kernel too old (without 2213 // "/proc" support). Counting running threads stops if max running threads 2214 // encountered. 2215 int __kmp_get_load_balance(int max) { 2216 static int permanent_error = 0; 2217 static int glb_running_threads = 0; // Saved count of the running threads for 2218 // the thread balance algorithm 2219 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2220 2221 int running_threads = 0; // Number of running threads in the system. 2222 2223 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2224 struct dirent *proc_entry = NULL; 2225 2226 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2227 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2228 struct dirent *task_entry = NULL; 2229 int task_path_fixed_len; 2230 2231 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2232 int stat_file = -1; 2233 int stat_path_fixed_len; 2234 2235 int total_processes = 0; // Total number of processes in system. 2236 int total_threads = 0; // Total number of threads in system. 2237 2238 double call_time = 0.0; 2239 2240 __kmp_str_buf_init(&task_path); 2241 __kmp_str_buf_init(&stat_path); 2242 2243 __kmp_elapsed(&call_time); 2244 2245 if (glb_call_time && 2246 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2247 running_threads = glb_running_threads; 2248 goto finish; 2249 } 2250 2251 glb_call_time = call_time; 2252 2253 // Do not spend time on scanning "/proc/" if we have a permanent error. 2254 if (permanent_error) { 2255 running_threads = -1; 2256 goto finish; 2257 } 2258 2259 if (max <= 0) { 2260 max = INT_MAX; 2261 } 2262 2263 // Open "/proc/" directory. 2264 proc_dir = opendir("/proc"); 2265 if (proc_dir == NULL) { 2266 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2267 // error now and in subsequent calls. 2268 running_threads = -1; 2269 permanent_error = 1; 2270 goto finish; 2271 } 2272 2273 // Initialize fixed part of task_path. This part will not change. 2274 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2275 task_path_fixed_len = task_path.used; // Remember number of used characters. 2276 2277 proc_entry = readdir(proc_dir); 2278 while (proc_entry != NULL) { 2279 // Proc entry is a directory and name starts with a digit. Assume it is a 2280 // process' directory. 2281 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2282 2283 ++total_processes; 2284 // Make sure init process is the very first in "/proc", so we can replace 2285 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2286 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2287 // true (where "=>" is implication). Since C++ does not have => operator, 2288 // let us replace it with its equivalent: a => b == ! a || b. 2289 KMP_DEBUG_ASSERT(total_processes != 1 || 2290 strcmp(proc_entry->d_name, "1") == 0); 2291 2292 // Construct task_path. 2293 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2294 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2295 KMP_STRLEN(proc_entry->d_name)); 2296 __kmp_str_buf_cat(&task_path, "/task", 5); 2297 2298 task_dir = opendir(task_path.str); 2299 if (task_dir == NULL) { 2300 // Process can finish between reading "/proc/" directory entry and 2301 // opening process' "task/" directory. So, in general case we should not 2302 // complain, but have to skip this process and read the next one. But on 2303 // systems with no "task/" support we will spend lot of time to scan 2304 // "/proc/" tree again and again without any benefit. "init" process 2305 // (its pid is 1) should exist always, so, if we cannot open 2306 // "/proc/1/task/" directory, it means "task/" is not supported by 2307 // kernel. Report an error now and in the future. 2308 if (strcmp(proc_entry->d_name, "1") == 0) { 2309 running_threads = -1; 2310 permanent_error = 1; 2311 goto finish; 2312 } 2313 } else { 2314 // Construct fixed part of stat file path. 2315 __kmp_str_buf_clear(&stat_path); 2316 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2317 __kmp_str_buf_cat(&stat_path, "/", 1); 2318 stat_path_fixed_len = stat_path.used; 2319 2320 task_entry = readdir(task_dir); 2321 while (task_entry != NULL) { 2322 // It is a directory and name starts with a digit. 2323 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2324 ++total_threads; 2325 2326 // Construct complete stat file path. Easiest way would be: 2327 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2328 // task_entry->d_name ); 2329 // but seriae of __kmp_str_buf_cat works a bit faster. 2330 stat_path.used = 2331 stat_path_fixed_len; // Reset stat path to its fixed part. 2332 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2333 KMP_STRLEN(task_entry->d_name)); 2334 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2335 2336 // Note: Low-level API (open/read/close) is used. High-level API 2337 // (fopen/fclose) works ~ 30 % slower. 2338 stat_file = open(stat_path.str, O_RDONLY); 2339 if (stat_file == -1) { 2340 // We cannot report an error because task (thread) can terminate 2341 // just before reading this file. 2342 } else { 2343 /* Content of "stat" file looks like: 2344 24285 (program) S ... 2345 2346 It is a single line (if program name does not include funny 2347 symbols). First number is a thread id, then name of executable 2348 file name in paretheses, then state of the thread. We need just 2349 thread state. 2350 2351 Good news: Length of program name is 15 characters max. Longer 2352 names are truncated. 2353 2354 Thus, we need rather short buffer: 15 chars for program name + 2355 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2356 2357 Bad news: Program name may contain special symbols like space, 2358 closing parenthesis, or even new line. This makes parsing 2359 "stat" file not 100 % reliable. In case of fanny program names 2360 parsing may fail (report incorrect thread state). 2361 2362 Parsing "status" file looks more promissing (due to different 2363 file structure and escaping special symbols) but reading and 2364 parsing of "status" file works slower. 2365 -- ln 2366 */ 2367 char buffer[65]; 2368 int len; 2369 len = read(stat_file, buffer, sizeof(buffer) - 1); 2370 if (len >= 0) { 2371 buffer[len] = 0; 2372 // Using scanf: 2373 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2374 // looks very nice, but searching for a closing parenthesis 2375 // works a bit faster. 2376 char *close_parent = strstr(buffer, ") "); 2377 if (close_parent != NULL) { 2378 char state = *(close_parent + 2); 2379 if (state == 'R') { 2380 ++running_threads; 2381 if (running_threads >= max) { 2382 goto finish; 2383 } 2384 } 2385 } 2386 } 2387 close(stat_file); 2388 stat_file = -1; 2389 } 2390 } 2391 task_entry = readdir(task_dir); 2392 } 2393 closedir(task_dir); 2394 task_dir = NULL; 2395 } 2396 } 2397 proc_entry = readdir(proc_dir); 2398 } 2399 2400 // There _might_ be a timing hole where the thread executing this 2401 // code get skipped in the load balance, and running_threads is 0. 2402 // Assert in the debug builds only!!! 2403 KMP_DEBUG_ASSERT(running_threads > 0); 2404 if (running_threads <= 0) { 2405 running_threads = 1; 2406 } 2407 2408 finish: // Clean up and exit. 2409 if (proc_dir != NULL) { 2410 closedir(proc_dir); 2411 } 2412 __kmp_str_buf_free(&task_path); 2413 if (task_dir != NULL) { 2414 closedir(task_dir); 2415 } 2416 __kmp_str_buf_free(&stat_path); 2417 if (stat_file != -1) { 2418 close(stat_file); 2419 } 2420 2421 glb_running_threads = running_threads; 2422 2423 return running_threads; 2424 2425 } // __kmp_get_load_balance 2426 2427 #endif // KMP_OS_DARWIN 2428 2429 #endif // USE_LOAD_BALANCE 2430 2431 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2432 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2433 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64) 2434 2435 // we really only need the case with 1 argument, because CLANG always build 2436 // a struct of pointers to shared variables referenced in the outlined function 2437 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2438 void *p_argv[] 2439 #if OMPT_SUPPORT 2440 , 2441 void **exit_frame_ptr 2442 #endif 2443 ) { 2444 #if OMPT_SUPPORT 2445 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2446 #endif 2447 2448 switch (argc) { 2449 default: 2450 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2451 fflush(stderr); 2452 exit(-1); 2453 case 0: 2454 (*pkfn)(>id, &tid); 2455 break; 2456 case 1: 2457 (*pkfn)(>id, &tid, p_argv[0]); 2458 break; 2459 case 2: 2460 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2461 break; 2462 case 3: 2463 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2464 break; 2465 case 4: 2466 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2467 break; 2468 case 5: 2469 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2470 break; 2471 case 6: 2472 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2473 p_argv[5]); 2474 break; 2475 case 7: 2476 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2477 p_argv[5], p_argv[6]); 2478 break; 2479 case 8: 2480 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2481 p_argv[5], p_argv[6], p_argv[7]); 2482 break; 2483 case 9: 2484 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2485 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2486 break; 2487 case 10: 2488 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2489 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2490 break; 2491 case 11: 2492 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2493 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2494 break; 2495 case 12: 2496 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2497 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2498 p_argv[11]); 2499 break; 2500 case 13: 2501 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2502 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2503 p_argv[11], p_argv[12]); 2504 break; 2505 case 14: 2506 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2507 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2508 p_argv[11], p_argv[12], p_argv[13]); 2509 break; 2510 case 15: 2511 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2512 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2513 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2514 break; 2515 } 2516 2517 return 1; 2518 } 2519 2520 #endif 2521 2522 // end of file // 2523