1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #include <semaphore.h>
29 #include <sys/resource.h>
30 #include <sys/syscall.h>
31 #include <sys/time.h>
32 #include <sys/times.h>
33 #include <unistd.h>
34 
35 #if KMP_OS_LINUX
36 #include <sys/sysinfo.h>
37 #if KMP_USE_FUTEX
38 // We should really include <futex.h>, but that causes compatibility problems on
39 // different Linux* OS distributions that either require that you include (or
40 // break when you try to include) <pci/types.h>. Since all we need is the two
41 // macros below (which are part of the kernel ABI, so can't change) we just
42 // define the constants here and don't include <futex.h>
43 #ifndef FUTEX_WAIT
44 #define FUTEX_WAIT 0
45 #endif
46 #ifndef FUTEX_WAKE
47 #define FUTEX_WAKE 1
48 #endif
49 #endif
50 #elif KMP_OS_DARWIN
51 #include <mach/mach.h>
52 #include <sys/sysctl.h>
53 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
54 #include <sys/types.h>
55 #include <sys/sysctl.h>
56 #include <sys/user.h>
57 #include <pthread_np.h>
58 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
59 #include <sys/types.h>
60 #include <sys/sysctl.h>
61 #endif
62 
63 #include <ctype.h>
64 #include <dirent.h>
65 #include <fcntl.h>
66 
67 #include "tsan_annotations.h"
68 
69 struct kmp_sys_timer {
70   struct timespec start;
71 };
72 
73 // Convert timespec to nanoseconds.
74 #define TS2NS(timespec)                                                        \
75   (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
76 
77 static struct kmp_sys_timer __kmp_sys_timer_data;
78 
79 #if KMP_HANDLE_SIGNALS
80 typedef void (*sig_func_t)(int);
81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
82 static sigset_t __kmp_sigset;
83 #endif
84 
85 static int __kmp_init_runtime = FALSE;
86 
87 static int __kmp_fork_count = 0;
88 
89 static pthread_condattr_t __kmp_suspend_cond_attr;
90 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
91 
92 static kmp_cond_align_t __kmp_wait_cv;
93 static kmp_mutex_align_t __kmp_wait_mx;
94 
95 kmp_uint64 __kmp_ticks_per_msec = 1000000;
96 
97 #ifdef DEBUG_SUSPEND
98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
99   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
100                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
101                cond->c_cond.__c_waiting);
102 }
103 #endif
104 
105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
106 
107 /* Affinity support */
108 
109 void __kmp_affinity_bind_thread(int which) {
110   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
111               "Illegal set affinity operation when not capable");
112 
113   kmp_affin_mask_t *mask;
114   KMP_CPU_ALLOC_ON_STACK(mask);
115   KMP_CPU_ZERO(mask);
116   KMP_CPU_SET(which, mask);
117   __kmp_set_system_affinity(mask, TRUE);
118   KMP_CPU_FREE_FROM_STACK(mask);
119 }
120 
121 /* Determine if we can access affinity functionality on this version of
122  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
123  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
124 void __kmp_affinity_determine_capable(const char *env_var) {
125   // Check and see if the OS supports thread affinity.
126 
127 #if KMP_OS_LINUX
128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
129 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE
130 #elif KMP_OS_FREEBSD
131 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
132 #endif
133 
134 #if KMP_OS_LINUX
135   long gCode;
136   unsigned char *buf;
137   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
138 
139   // If the syscall returns a suggestion for the size,
140   // then we don't have to search for an appropriate size.
141   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
142   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
143                 "initial getaffinity call returned %ld errno = %d\n",
144                 gCode, errno));
145 
146   if (gCode < 0 && errno != EINVAL) {
147     // System call not supported
148     if (__kmp_affinity_verbose ||
149         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
150          (__kmp_affinity_type != affinity_default) &&
151          (__kmp_affinity_type != affinity_disabled))) {
152       int error = errno;
153       kmp_msg_t err_code = KMP_ERR(error);
154       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
155                 err_code, __kmp_msg_null);
156       if (__kmp_generate_warnings == kmp_warnings_off) {
157         __kmp_str_free(&err_code.str);
158       }
159     }
160     KMP_AFFINITY_DISABLE();
161     KMP_INTERNAL_FREE(buf);
162     return;
163   } else if (gCode > 0) {
164     // The optimal situation: the OS returns the size of the buffer it expects.
165     KMP_AFFINITY_ENABLE(gCode);
166     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
167                   "affinity supported (mask size %d)\n",
168                   (int)__kmp_affin_mask_size));
169     KMP_INTERNAL_FREE(buf);
170     return;
171   }
172 
173   // Call the getaffinity system call repeatedly with increasing set sizes
174   // until we succeed, or reach an upper bound on the search.
175   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
176                 "searching for proper set size\n"));
177   int size;
178   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
179     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
180     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
181                   "getaffinity for mask size %ld returned %ld errno = %d\n",
182                   size, gCode, errno));
183 
184     if (gCode < 0) {
185       if (errno == ENOSYS) {
186         // We shouldn't get here
187         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
188                       "inconsistent OS call behavior: errno == ENOSYS for mask "
189                       "size %d\n",
190                       size));
191         if (__kmp_affinity_verbose ||
192             (__kmp_affinity_warnings &&
193              (__kmp_affinity_type != affinity_none) &&
194              (__kmp_affinity_type != affinity_default) &&
195              (__kmp_affinity_type != affinity_disabled))) {
196           int error = errno;
197           kmp_msg_t err_code = KMP_ERR(error);
198           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
199                     err_code, __kmp_msg_null);
200           if (__kmp_generate_warnings == kmp_warnings_off) {
201             __kmp_str_free(&err_code.str);
202           }
203         }
204         KMP_AFFINITY_DISABLE();
205         KMP_INTERNAL_FREE(buf);
206         return;
207       }
208       continue;
209     }
210 
211     KMP_AFFINITY_ENABLE(gCode);
212     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
213                   "affinity supported (mask size %d)\n",
214                   (int)__kmp_affin_mask_size));
215     KMP_INTERNAL_FREE(buf);
216     return;
217   }
218 #elif KMP_OS_FREEBSD
219   long gCode;
220   unsigned char *buf;
221   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
222   gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
223                                  reinterpret_cast<cpuset_t *>(buf));
224   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
225                 "initial getaffinity call returned %d errno = %d\n",
226                 gCode, errno));
227   if (gCode == 0) {
228     KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
229     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
230                   "affinity supported (mask size %d)\n",
231                   (int)__kmp_affin_mask_size));
232     KMP_INTERNAL_FREE(buf);
233     return;
234   }
235 #endif
236   KMP_INTERNAL_FREE(buf);
237 
238   // Affinity is not supported
239   KMP_AFFINITY_DISABLE();
240   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
241                 "cannot determine mask size - affinity not supported\n"));
242   if (__kmp_affinity_verbose ||
243       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
244        (__kmp_affinity_type != affinity_default) &&
245        (__kmp_affinity_type != affinity_disabled))) {
246     KMP_WARNING(AffCantGetMaskSize, env_var);
247   }
248 }
249 
250 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
251 
252 #if KMP_USE_FUTEX
253 
254 int __kmp_futex_determine_capable() {
255   int loc = 0;
256   long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
257   int retval = (rc == 0) || (errno != ENOSYS);
258 
259   KA_TRACE(10,
260            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
261   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
262                 retval ? "" : " not"));
263 
264   return retval;
265 }
266 
267 #endif // KMP_USE_FUTEX
268 
269 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
270 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
271    use compare_and_store for these routines */
272 
273 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
274   kmp_int8 old_value, new_value;
275 
276   old_value = TCR_1(*p);
277   new_value = old_value | d;
278 
279   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
280     KMP_CPU_PAUSE();
281     old_value = TCR_1(*p);
282     new_value = old_value | d;
283   }
284   return old_value;
285 }
286 
287 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
288   kmp_int8 old_value, new_value;
289 
290   old_value = TCR_1(*p);
291   new_value = old_value & d;
292 
293   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
294     KMP_CPU_PAUSE();
295     old_value = TCR_1(*p);
296     new_value = old_value & d;
297   }
298   return old_value;
299 }
300 
301 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
302   kmp_uint32 old_value, new_value;
303 
304   old_value = TCR_4(*p);
305   new_value = old_value | d;
306 
307   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
308     KMP_CPU_PAUSE();
309     old_value = TCR_4(*p);
310     new_value = old_value | d;
311   }
312   return old_value;
313 }
314 
315 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
316   kmp_uint32 old_value, new_value;
317 
318   old_value = TCR_4(*p);
319   new_value = old_value & d;
320 
321   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
322     KMP_CPU_PAUSE();
323     old_value = TCR_4(*p);
324     new_value = old_value & d;
325   }
326   return old_value;
327 }
328 
329 #if KMP_ARCH_X86
330 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
331   kmp_int8 old_value, new_value;
332 
333   old_value = TCR_1(*p);
334   new_value = old_value + d;
335 
336   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
337     KMP_CPU_PAUSE();
338     old_value = TCR_1(*p);
339     new_value = old_value + d;
340   }
341   return old_value;
342 }
343 
344 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
345   kmp_int64 old_value, new_value;
346 
347   old_value = TCR_8(*p);
348   new_value = old_value + d;
349 
350   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
351     KMP_CPU_PAUSE();
352     old_value = TCR_8(*p);
353     new_value = old_value + d;
354   }
355   return old_value;
356 }
357 #endif /* KMP_ARCH_X86 */
358 
359 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
360   kmp_uint64 old_value, new_value;
361 
362   old_value = TCR_8(*p);
363   new_value = old_value | d;
364   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
365     KMP_CPU_PAUSE();
366     old_value = TCR_8(*p);
367     new_value = old_value | d;
368   }
369   return old_value;
370 }
371 
372 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
373   kmp_uint64 old_value, new_value;
374 
375   old_value = TCR_8(*p);
376   new_value = old_value & d;
377   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
378     KMP_CPU_PAUSE();
379     old_value = TCR_8(*p);
380     new_value = old_value & d;
381   }
382   return old_value;
383 }
384 
385 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
386 
387 void __kmp_terminate_thread(int gtid) {
388   int status;
389   kmp_info_t *th = __kmp_threads[gtid];
390 
391   if (!th)
392     return;
393 
394 #ifdef KMP_CANCEL_THREADS
395   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
396   status = pthread_cancel(th->th.th_info.ds.ds_thread);
397   if (status != 0 && status != ESRCH) {
398     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
399                 __kmp_msg_null);
400   }
401 #endif
402   KMP_YIELD(TRUE);
403 } //
404 
405 /* Set thread stack info according to values returned by pthread_getattr_np().
406    If values are unreasonable, assume call failed and use incremental stack
407    refinement method instead. Returns TRUE if the stack parameters could be
408    determined exactly, FALSE if incremental refinement is necessary. */
409 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
410   int stack_data;
411 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
412     KMP_OS_HURD
413   pthread_attr_t attr;
414   int status;
415   size_t size = 0;
416   void *addr = 0;
417 
418   /* Always do incremental stack refinement for ubermaster threads since the
419      initial thread stack range can be reduced by sibling thread creation so
420      pthread_attr_getstack may cause thread gtid aliasing */
421   if (!KMP_UBER_GTID(gtid)) {
422 
423     /* Fetch the real thread attributes */
424     status = pthread_attr_init(&attr);
425     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
426 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
427     status = pthread_attr_get_np(pthread_self(), &attr);
428     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
429 #else
430     status = pthread_getattr_np(pthread_self(), &attr);
431     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
432 #endif
433     status = pthread_attr_getstack(&attr, &addr, &size);
434     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
435     KA_TRACE(60,
436              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
437               " %lu, low addr: %p\n",
438               gtid, size, addr));
439     status = pthread_attr_destroy(&attr);
440     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
441   }
442 
443   if (size != 0 && addr != 0) { // was stack parameter determination successful?
444     /* Store the correct base and size */
445     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
446     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
447     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
448     return TRUE;
449   }
450 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD  \
451           || KMP_OS_HURD */
452   /* Use incremental refinement starting from initial conservative estimate */
453   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
454   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
455   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
456   return FALSE;
457 }
458 
459 static void *__kmp_launch_worker(void *thr) {
460   int status, old_type, old_state;
461 #ifdef KMP_BLOCK_SIGNALS
462   sigset_t new_set, old_set;
463 #endif /* KMP_BLOCK_SIGNALS */
464   void *exit_val;
465 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
466     KMP_OS_OPENBSD || KMP_OS_HURD
467   void *volatile padding = 0;
468 #endif
469   int gtid;
470 
471   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
472   __kmp_gtid_set_specific(gtid);
473 #ifdef KMP_TDATA_GTID
474   __kmp_gtid = gtid;
475 #endif
476 #if KMP_STATS_ENABLED
477   // set thread local index to point to thread-specific stats
478   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
479   __kmp_stats_thread_ptr->startLife();
480   KMP_SET_THREAD_STATE(IDLE);
481   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
482 #endif
483 
484 #if USE_ITT_BUILD
485   __kmp_itt_thread_name(gtid);
486 #endif /* USE_ITT_BUILD */
487 
488 #if KMP_AFFINITY_SUPPORTED
489   __kmp_affinity_set_init_mask(gtid, FALSE);
490 #endif
491 
492 #ifdef KMP_CANCEL_THREADS
493   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
494   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
495   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
496   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
497   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
498 #endif
499 
500 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
501   // Set FP control regs to be a copy of the parallel initialization thread's.
502   __kmp_clear_x87_fpu_status_word();
503   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
504   __kmp_load_mxcsr(&__kmp_init_mxcsr);
505 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
506 
507 #ifdef KMP_BLOCK_SIGNALS
508   status = sigfillset(&new_set);
509   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
510   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
511   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
512 #endif /* KMP_BLOCK_SIGNALS */
513 
514 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
515     KMP_OS_OPENBSD
516   if (__kmp_stkoffset > 0 && gtid > 0) {
517     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
518   }
519 #endif
520 
521   KMP_MB();
522   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
523 
524   __kmp_check_stack_overlap((kmp_info_t *)thr);
525 
526   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
527 
528 #ifdef KMP_BLOCK_SIGNALS
529   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
530   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
531 #endif /* KMP_BLOCK_SIGNALS */
532 
533   return exit_val;
534 }
535 
536 #if KMP_USE_MONITOR
537 /* The monitor thread controls all of the threads in the complex */
538 
539 static void *__kmp_launch_monitor(void *thr) {
540   int status, old_type, old_state;
541 #ifdef KMP_BLOCK_SIGNALS
542   sigset_t new_set;
543 #endif /* KMP_BLOCK_SIGNALS */
544   struct timespec interval;
545 
546   KMP_MB(); /* Flush all pending memory write invalidates.  */
547 
548   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
549 
550   /* register us as the monitor thread */
551   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
552 #ifdef KMP_TDATA_GTID
553   __kmp_gtid = KMP_GTID_MONITOR;
554 #endif
555 
556   KMP_MB();
557 
558 #if USE_ITT_BUILD
559   // Instruct Intel(R) Threading Tools to ignore monitor thread.
560   __kmp_itt_thread_ignore();
561 #endif /* USE_ITT_BUILD */
562 
563   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
564                        (kmp_info_t *)thr);
565 
566   __kmp_check_stack_overlap((kmp_info_t *)thr);
567 
568 #ifdef KMP_CANCEL_THREADS
569   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
570   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
571   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
572   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
573   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
574 #endif
575 
576 #if KMP_REAL_TIME_FIX
577   // This is a potential fix which allows application with real-time scheduling
578   // policy work. However, decision about the fix is not made yet, so it is
579   // disabled by default.
580   { // Are program started with real-time scheduling policy?
581     int sched = sched_getscheduler(0);
582     if (sched == SCHED_FIFO || sched == SCHED_RR) {
583       // Yes, we are a part of real-time application. Try to increase the
584       // priority of the monitor.
585       struct sched_param param;
586       int max_priority = sched_get_priority_max(sched);
587       int rc;
588       KMP_WARNING(RealTimeSchedNotSupported);
589       sched_getparam(0, &param);
590       if (param.sched_priority < max_priority) {
591         param.sched_priority += 1;
592         rc = sched_setscheduler(0, sched, &param);
593         if (rc != 0) {
594           int error = errno;
595           kmp_msg_t err_code = KMP_ERR(error);
596           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
597                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
598           if (__kmp_generate_warnings == kmp_warnings_off) {
599             __kmp_str_free(&err_code.str);
600           }
601         }
602       } else {
603         // We cannot abort here, because number of CPUs may be enough for all
604         // the threads, including the monitor thread, so application could
605         // potentially work...
606         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
607                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
608                   __kmp_msg_null);
609       }
610     }
611     // AC: free thread that waits for monitor started
612     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
613   }
614 #endif // KMP_REAL_TIME_FIX
615 
616   KMP_MB(); /* Flush all pending memory write invalidates.  */
617 
618   if (__kmp_monitor_wakeups == 1) {
619     interval.tv_sec = 1;
620     interval.tv_nsec = 0;
621   } else {
622     interval.tv_sec = 0;
623     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
624   }
625 
626   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
627 
628   while (!TCR_4(__kmp_global.g.g_done)) {
629     struct timespec now;
630     struct timeval tval;
631 
632     /*  This thread monitors the state of the system */
633 
634     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
635 
636     status = gettimeofday(&tval, NULL);
637     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
638     TIMEVAL_TO_TIMESPEC(&tval, &now);
639 
640     now.tv_sec += interval.tv_sec;
641     now.tv_nsec += interval.tv_nsec;
642 
643     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
644       now.tv_sec += 1;
645       now.tv_nsec -= KMP_NSEC_PER_SEC;
646     }
647 
648     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
649     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
650     // AC: the monitor should not fall asleep if g_done has been set
651     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
652       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
653                                       &__kmp_wait_mx.m_mutex, &now);
654       if (status != 0) {
655         if (status != ETIMEDOUT && status != EINTR) {
656           KMP_SYSFAIL("pthread_cond_timedwait", status);
657         }
658       }
659     }
660     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
661     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
662 
663     TCW_4(__kmp_global.g.g_time.dt.t_value,
664           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
665 
666     KMP_MB(); /* Flush all pending memory write invalidates.  */
667   }
668 
669   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
670 
671 #ifdef KMP_BLOCK_SIGNALS
672   status = sigfillset(&new_set);
673   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
674   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
675   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
676 #endif /* KMP_BLOCK_SIGNALS */
677 
678   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
679 
680   if (__kmp_global.g.g_abort != 0) {
681     /* now we need to terminate the worker threads  */
682     /* the value of t_abort is the signal we caught */
683 
684     int gtid;
685 
686     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
687                   __kmp_global.g.g_abort));
688 
689     /* terminate the OpenMP worker threads */
690     /* TODO this is not valid for sibling threads!!
691      * the uber master might not be 0 anymore.. */
692     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
693       __kmp_terminate_thread(gtid);
694 
695     __kmp_cleanup();
696 
697     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
698                   __kmp_global.g.g_abort));
699 
700     if (__kmp_global.g.g_abort > 0)
701       raise(__kmp_global.g.g_abort);
702   }
703 
704   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
705 
706   return thr;
707 }
708 #endif // KMP_USE_MONITOR
709 
710 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
711   pthread_t handle;
712   pthread_attr_t thread_attr;
713   int status;
714 
715   th->th.th_info.ds.ds_gtid = gtid;
716 
717 #if KMP_STATS_ENABLED
718   // sets up worker thread stats
719   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
720 
721   // th->th.th_stats is used to transfer thread-specific stats-pointer to
722   // __kmp_launch_worker. So when thread is created (goes into
723   // __kmp_launch_worker) it will set its thread local pointer to
724   // th->th.th_stats
725   if (!KMP_UBER_GTID(gtid)) {
726     th->th.th_stats = __kmp_stats_list->push_back(gtid);
727   } else {
728     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
729     // so set the th->th.th_stats field to it.
730     th->th.th_stats = __kmp_stats_thread_ptr;
731   }
732   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
733 
734 #endif // KMP_STATS_ENABLED
735 
736   if (KMP_UBER_GTID(gtid)) {
737     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
738     th->th.th_info.ds.ds_thread = pthread_self();
739     __kmp_set_stack_info(gtid, th);
740     __kmp_check_stack_overlap(th);
741     return;
742   }
743 
744   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
745 
746   KMP_MB(); /* Flush all pending memory write invalidates.  */
747 
748 #ifdef KMP_THREAD_ATTR
749   status = pthread_attr_init(&thread_attr);
750   if (status != 0) {
751     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
752   }
753   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
754   if (status != 0) {
755     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
756   }
757 
758   /* Set stack size for this thread now.
759      The multiple of 2 is there because on some machines, requesting an unusual
760      stacksize causes the thread to have an offset before the dummy alloca()
761      takes place to create the offset.  Since we want the user to have a
762      sufficient stacksize AND support a stack offset, we alloca() twice the
763      offset so that the upcoming alloca() does not eliminate any premade offset,
764      and also gives the user the stack space they requested for all threads */
765   stack_size += gtid * __kmp_stkoffset * 2;
766 
767 #if defined(__ANDROID__) && __ANDROID_API__ < 19
768   // Round the stack size to a multiple of the page size. Older versions of
769   // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
770   // if the stack size was not a multiple of the page size.
771   stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
772 #endif
773 
774   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
775                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
776                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
777 
778 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
779   status = pthread_attr_setstacksize(&thread_attr, stack_size);
780 #ifdef KMP_BACKUP_STKSIZE
781   if (status != 0) {
782     if (!__kmp_env_stksize) {
783       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
784       __kmp_stksize = KMP_BACKUP_STKSIZE;
785       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
786                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
787                     "bytes\n",
788                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
789       status = pthread_attr_setstacksize(&thread_attr, stack_size);
790     }
791   }
792 #endif /* KMP_BACKUP_STKSIZE */
793   if (status != 0) {
794     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
795                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
796   }
797 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
798 
799 #endif /* KMP_THREAD_ATTR */
800 
801   status =
802       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
803   if (status != 0 || !handle) { // ??? Why do we check handle??
804 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
805     if (status == EINVAL) {
806       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
807                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
808     }
809     if (status == ENOMEM) {
810       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
811                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
812     }
813 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
814     if (status == EAGAIN) {
815       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
816                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
817     }
818     KMP_SYSFAIL("pthread_create", status);
819   }
820 
821   th->th.th_info.ds.ds_thread = handle;
822 
823 #ifdef KMP_THREAD_ATTR
824   status = pthread_attr_destroy(&thread_attr);
825   if (status) {
826     kmp_msg_t err_code = KMP_ERR(status);
827     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
828               __kmp_msg_null);
829     if (__kmp_generate_warnings == kmp_warnings_off) {
830       __kmp_str_free(&err_code.str);
831     }
832   }
833 #endif /* KMP_THREAD_ATTR */
834 
835   KMP_MB(); /* Flush all pending memory write invalidates.  */
836 
837   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
838 
839 } // __kmp_create_worker
840 
841 #if KMP_USE_MONITOR
842 void __kmp_create_monitor(kmp_info_t *th) {
843   pthread_t handle;
844   pthread_attr_t thread_attr;
845   size_t size;
846   int status;
847   int auto_adj_size = FALSE;
848 
849   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
850     // We don't need monitor thread in case of MAX_BLOCKTIME
851     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
852                   "MAX blocktime\n"));
853     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
854     th->th.th_info.ds.ds_gtid = 0;
855     return;
856   }
857   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
858 
859   KMP_MB(); /* Flush all pending memory write invalidates.  */
860 
861   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
862   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
863 #if KMP_REAL_TIME_FIX
864   TCW_4(__kmp_global.g.g_time.dt.t_value,
865         -1); // Will use it for synchronization a bit later.
866 #else
867   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
868 #endif // KMP_REAL_TIME_FIX
869 
870 #ifdef KMP_THREAD_ATTR
871   if (__kmp_monitor_stksize == 0) {
872     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
873     auto_adj_size = TRUE;
874   }
875   status = pthread_attr_init(&thread_attr);
876   if (status != 0) {
877     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
878   }
879   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
880   if (status != 0) {
881     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
882   }
883 
884 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
885   status = pthread_attr_getstacksize(&thread_attr, &size);
886   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
887 #else
888   size = __kmp_sys_min_stksize;
889 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
890 #endif /* KMP_THREAD_ATTR */
891 
892   if (__kmp_monitor_stksize == 0) {
893     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
894   }
895   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
896     __kmp_monitor_stksize = __kmp_sys_min_stksize;
897   }
898 
899   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
900                 "requested stacksize = %lu bytes\n",
901                 size, __kmp_monitor_stksize));
902 
903 retry:
904 
905 /* Set stack size for this thread now. */
906 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
907   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
908                 __kmp_monitor_stksize));
909   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
910   if (status != 0) {
911     if (auto_adj_size) {
912       __kmp_monitor_stksize *= 2;
913       goto retry;
914     }
915     kmp_msg_t err_code = KMP_ERR(status);
916     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
917               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
918               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
919     if (__kmp_generate_warnings == kmp_warnings_off) {
920       __kmp_str_free(&err_code.str);
921     }
922   }
923 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
924 
925   status =
926       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
927 
928   if (status != 0) {
929 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
930     if (status == EINVAL) {
931       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
932         __kmp_monitor_stksize *= 2;
933         goto retry;
934       }
935       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
936                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
937                   __kmp_msg_null);
938     }
939     if (status == ENOMEM) {
940       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
941                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
942                   __kmp_msg_null);
943     }
944 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
945     if (status == EAGAIN) {
946       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
947                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
948     }
949     KMP_SYSFAIL("pthread_create", status);
950   }
951 
952   th->th.th_info.ds.ds_thread = handle;
953 
954 #if KMP_REAL_TIME_FIX
955   // Wait for the monitor thread is really started and set its *priority*.
956   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
957                    sizeof(__kmp_global.g.g_time.dt.t_value));
958   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
959                &__kmp_neq_4, NULL);
960 #endif // KMP_REAL_TIME_FIX
961 
962 #ifdef KMP_THREAD_ATTR
963   status = pthread_attr_destroy(&thread_attr);
964   if (status != 0) {
965     kmp_msg_t err_code = KMP_ERR(status);
966     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
967               __kmp_msg_null);
968     if (__kmp_generate_warnings == kmp_warnings_off) {
969       __kmp_str_free(&err_code.str);
970     }
971   }
972 #endif
973 
974   KMP_MB(); /* Flush all pending memory write invalidates.  */
975 
976   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
977                 th->th.th_info.ds.ds_thread));
978 
979 } // __kmp_create_monitor
980 #endif // KMP_USE_MONITOR
981 
982 void __kmp_exit_thread(int exit_status) {
983   pthread_exit((void *)(intptr_t)exit_status);
984 } // __kmp_exit_thread
985 
986 #if KMP_USE_MONITOR
987 void __kmp_resume_monitor();
988 
989 void __kmp_reap_monitor(kmp_info_t *th) {
990   int status;
991   void *exit_val;
992 
993   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
994                 " %#.8lx\n",
995                 th->th.th_info.ds.ds_thread));
996 
997   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
998   // If both tid and gtid are 0, it means the monitor did not ever start.
999   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1000   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1001   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1002     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1003     return;
1004   }
1005 
1006   KMP_MB(); /* Flush all pending memory write invalidates.  */
1007 
1008   /* First, check to see whether the monitor thread exists to wake it up. This
1009      is to avoid performance problem when the monitor sleeps during
1010      blocktime-size interval */
1011 
1012   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1013   if (status != ESRCH) {
1014     __kmp_resume_monitor(); // Wake up the monitor thread
1015   }
1016   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1017   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1018   if (exit_val != th) {
1019     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1020   }
1021 
1022   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1023   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1024 
1025   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1026                 " %#.8lx\n",
1027                 th->th.th_info.ds.ds_thread));
1028 
1029   KMP_MB(); /* Flush all pending memory write invalidates.  */
1030 }
1031 #endif // KMP_USE_MONITOR
1032 
1033 void __kmp_reap_worker(kmp_info_t *th) {
1034   int status;
1035   void *exit_val;
1036 
1037   KMP_MB(); /* Flush all pending memory write invalidates.  */
1038 
1039   KA_TRACE(
1040       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1041 
1042   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1043 #ifdef KMP_DEBUG
1044   /* Don't expose these to the user until we understand when they trigger */
1045   if (status != 0) {
1046     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1047   }
1048   if (exit_val != th) {
1049     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1050                   "exit_val = %p\n",
1051                   th->th.th_info.ds.ds_gtid, exit_val));
1052   }
1053 #endif /* KMP_DEBUG */
1054 
1055   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1056                 th->th.th_info.ds.ds_gtid));
1057 
1058   KMP_MB(); /* Flush all pending memory write invalidates.  */
1059 }
1060 
1061 #if KMP_HANDLE_SIGNALS
1062 
1063 static void __kmp_null_handler(int signo) {
1064   //  Do nothing, for doing SIG_IGN-type actions.
1065 } // __kmp_null_handler
1066 
1067 static void __kmp_team_handler(int signo) {
1068   if (__kmp_global.g.g_abort == 0) {
1069 /* Stage 1 signal handler, let's shut down all of the threads */
1070 #ifdef KMP_DEBUG
1071     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1072 #endif
1073     switch (signo) {
1074     case SIGHUP:
1075     case SIGINT:
1076     case SIGQUIT:
1077     case SIGILL:
1078     case SIGABRT:
1079     case SIGFPE:
1080     case SIGBUS:
1081     case SIGSEGV:
1082 #ifdef SIGSYS
1083     case SIGSYS:
1084 #endif
1085     case SIGTERM:
1086       if (__kmp_debug_buf) {
1087         __kmp_dump_debug_buffer();
1088       }
1089       __kmp_unregister_library(); // cleanup shared memory
1090       KMP_MB(); // Flush all pending memory write invalidates.
1091       TCW_4(__kmp_global.g.g_abort, signo);
1092       KMP_MB(); // Flush all pending memory write invalidates.
1093       TCW_4(__kmp_global.g.g_done, TRUE);
1094       KMP_MB(); // Flush all pending memory write invalidates.
1095       break;
1096     default:
1097 #ifdef KMP_DEBUG
1098       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1099 #endif
1100       break;
1101     }
1102   }
1103 } // __kmp_team_handler
1104 
1105 static void __kmp_sigaction(int signum, const struct sigaction *act,
1106                             struct sigaction *oldact) {
1107   int rc = sigaction(signum, act, oldact);
1108   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1109 }
1110 
1111 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1112                                       int parallel_init) {
1113   KMP_MB(); // Flush all pending memory write invalidates.
1114   KB_TRACE(60,
1115            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1116   if (parallel_init) {
1117     struct sigaction new_action;
1118     struct sigaction old_action;
1119     new_action.sa_handler = handler_func;
1120     new_action.sa_flags = 0;
1121     sigfillset(&new_action.sa_mask);
1122     __kmp_sigaction(sig, &new_action, &old_action);
1123     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1124       sigaddset(&__kmp_sigset, sig);
1125     } else {
1126       // Restore/keep user's handler if one previously installed.
1127       __kmp_sigaction(sig, &old_action, NULL);
1128     }
1129   } else {
1130     // Save initial/system signal handlers to see if user handlers installed.
1131     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1132   }
1133   KMP_MB(); // Flush all pending memory write invalidates.
1134 } // __kmp_install_one_handler
1135 
1136 static void __kmp_remove_one_handler(int sig) {
1137   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1138   if (sigismember(&__kmp_sigset, sig)) {
1139     struct sigaction old;
1140     KMP_MB(); // Flush all pending memory write invalidates.
1141     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1142     if ((old.sa_handler != __kmp_team_handler) &&
1143         (old.sa_handler != __kmp_null_handler)) {
1144       // Restore the users signal handler.
1145       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1146                     "restoring: sig=%d\n",
1147                     sig));
1148       __kmp_sigaction(sig, &old, NULL);
1149     }
1150     sigdelset(&__kmp_sigset, sig);
1151     KMP_MB(); // Flush all pending memory write invalidates.
1152   }
1153 } // __kmp_remove_one_handler
1154 
1155 void __kmp_install_signals(int parallel_init) {
1156   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1157   if (__kmp_handle_signals || !parallel_init) {
1158     // If ! parallel_init, we do not install handlers, just save original
1159     // handlers. Let us do it even __handle_signals is 0.
1160     sigemptyset(&__kmp_sigset);
1161     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1162     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1163     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1164     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1165     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1166     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1167     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1168     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1169 #ifdef SIGSYS
1170     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1171 #endif // SIGSYS
1172     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1173 #ifdef SIGPIPE
1174     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1175 #endif // SIGPIPE
1176   }
1177 } // __kmp_install_signals
1178 
1179 void __kmp_remove_signals(void) {
1180   int sig;
1181   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1182   for (sig = 1; sig < NSIG; ++sig) {
1183     __kmp_remove_one_handler(sig);
1184   }
1185 } // __kmp_remove_signals
1186 
1187 #endif // KMP_HANDLE_SIGNALS
1188 
1189 void __kmp_enable(int new_state) {
1190 #ifdef KMP_CANCEL_THREADS
1191   int status, old_state;
1192   status = pthread_setcancelstate(new_state, &old_state);
1193   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1194   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1195 #endif
1196 }
1197 
1198 void __kmp_disable(int *old_state) {
1199 #ifdef KMP_CANCEL_THREADS
1200   int status;
1201   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1202   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1203 #endif
1204 }
1205 
1206 static void __kmp_atfork_prepare(void) {
1207   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1208   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1209 }
1210 
1211 static void __kmp_atfork_parent(void) {
1212   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1213   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1214 }
1215 
1216 /* Reset the library so execution in the child starts "all over again" with
1217    clean data structures in initial states.  Don't worry about freeing memory
1218    allocated by parent, just abandon it to be safe. */
1219 static void __kmp_atfork_child(void) {
1220   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1221   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1222   /* TODO make sure this is done right for nested/sibling */
1223   // ATT:  Memory leaks are here? TODO: Check it and fix.
1224   /* KMP_ASSERT( 0 ); */
1225 
1226   ++__kmp_fork_count;
1227 
1228 #if KMP_AFFINITY_SUPPORTED
1229 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1230   // reset the affinity in the child to the initial thread
1231   // affinity in the parent
1232   kmp_set_thread_affinity_mask_initial();
1233 #endif
1234   // Set default not to bind threads tightly in the child (we’re expecting
1235   // over-subscription after the fork and this can improve things for
1236   // scripting languages that use OpenMP inside process-parallel code).
1237   __kmp_affinity_type = affinity_none;
1238   if (__kmp_nested_proc_bind.bind_types != NULL) {
1239     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1240   }
1241   __kmp_affinity_masks = NULL;
1242   __kmp_affinity_num_masks = 0;
1243 #endif // KMP_AFFINITY_SUPPORTED
1244 
1245 #if KMP_USE_MONITOR
1246   __kmp_init_monitor = 0;
1247 #endif
1248   __kmp_init_parallel = FALSE;
1249   __kmp_init_middle = FALSE;
1250   __kmp_init_serial = FALSE;
1251   TCW_4(__kmp_init_gtid, FALSE);
1252   __kmp_init_common = FALSE;
1253 
1254   TCW_4(__kmp_init_user_locks, FALSE);
1255 #if !KMP_USE_DYNAMIC_LOCK
1256   __kmp_user_lock_table.used = 1;
1257   __kmp_user_lock_table.allocated = 0;
1258   __kmp_user_lock_table.table = NULL;
1259   __kmp_lock_blocks = NULL;
1260 #endif
1261 
1262   __kmp_all_nth = 0;
1263   TCW_4(__kmp_nth, 0);
1264 
1265   __kmp_thread_pool = NULL;
1266   __kmp_thread_pool_insert_pt = NULL;
1267   __kmp_team_pool = NULL;
1268 
1269   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1270      here so threadprivate doesn't use stale data */
1271   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1272                 __kmp_threadpriv_cache_list));
1273 
1274   while (__kmp_threadpriv_cache_list != NULL) {
1275 
1276     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1277       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1278                     &(*__kmp_threadpriv_cache_list->addr)));
1279 
1280       *__kmp_threadpriv_cache_list->addr = NULL;
1281     }
1282     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1283   }
1284 
1285   __kmp_init_runtime = FALSE;
1286 
1287   /* reset statically initialized locks */
1288   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1289   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1290   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1291   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1292 
1293 #if USE_ITT_BUILD
1294   __kmp_itt_reset(); // reset ITT's global state
1295 #endif /* USE_ITT_BUILD */
1296 
1297   __kmp_serial_initialize();
1298 
1299   /* This is necessary to make sure no stale data is left around */
1300   /* AC: customers complain that we use unsafe routines in the atfork
1301      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1302      in dynamic_link when check the presence of shared tbbmalloc library.
1303      Suggestion is to make the library initialization lazier, similar
1304      to what done for __kmpc_begin(). */
1305   // TODO: synchronize all static initializations with regular library
1306   //       startup; look at kmp_global.cpp and etc.
1307   //__kmp_internal_begin ();
1308 }
1309 
1310 void __kmp_register_atfork(void) {
1311   if (__kmp_need_register_atfork) {
1312     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1313                                 __kmp_atfork_child);
1314     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1315     __kmp_need_register_atfork = FALSE;
1316   }
1317 }
1318 
1319 void __kmp_suspend_initialize(void) {
1320   int status;
1321   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1322   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1323   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1324   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1325 }
1326 
1327 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1328   ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1329   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1330   int new_value = __kmp_fork_count + 1;
1331   // Return if already initialized
1332   if (old_value == new_value)
1333     return;
1334   // Wait, then return if being initialized
1335   if (old_value == -1 || !__kmp_atomic_compare_store(
1336                              &th->th.th_suspend_init_count, old_value, -1)) {
1337     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1338       KMP_CPU_PAUSE();
1339     }
1340   } else {
1341     // Claim to be the initializer and do initializations
1342     int status;
1343     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1344                                &__kmp_suspend_cond_attr);
1345     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1346     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1347                                 &__kmp_suspend_mutex_attr);
1348     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1349     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1350     ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1351   }
1352 }
1353 
1354 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1355   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1356     /* this means we have initialize the suspension pthread objects for this
1357        thread in this instance of the process */
1358     int status;
1359 
1360     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1361     if (status != 0 && status != EBUSY) {
1362       KMP_SYSFAIL("pthread_cond_destroy", status);
1363     }
1364     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1365     if (status != 0 && status != EBUSY) {
1366       KMP_SYSFAIL("pthread_mutex_destroy", status);
1367     }
1368     --th->th.th_suspend_init_count;
1369     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1370                      __kmp_fork_count);
1371   }
1372 }
1373 
1374 // return true if lock obtained, false otherwise
1375 int __kmp_try_suspend_mx(kmp_info_t *th) {
1376   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1377 }
1378 
1379 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1380   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1381   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1382 }
1383 
1384 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1385   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1386   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1387 }
1388 
1389 /* This routine puts the calling thread to sleep after setting the
1390    sleep bit for the indicated flag variable to true. */
1391 template <class C>
1392 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1393   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1394   kmp_info_t *th = __kmp_threads[th_gtid];
1395   int status;
1396   typename C::flag_t old_spin;
1397 
1398   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1399                 flag->get()));
1400 
1401   __kmp_suspend_initialize_thread(th);
1402 
1403   __kmp_lock_suspend_mx(th);
1404 
1405   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1406                 th_gtid, flag->get()));
1407 
1408   /* TODO: shouldn't this use release semantics to ensure that
1409      __kmp_suspend_initialize_thread gets called first? */
1410   old_spin = flag->set_sleeping();
1411   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1412       __kmp_pause_status != kmp_soft_paused) {
1413     flag->unset_sleeping();
1414     __kmp_unlock_suspend_mx(th);
1415     return;
1416   }
1417   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1418                " was %x\n",
1419                th_gtid, flag->get(), flag->load(), old_spin));
1420 
1421   if (flag->done_check_val(old_spin)) {
1422     old_spin = flag->unset_sleeping();
1423     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1424                  "for spin(%p)\n",
1425                  th_gtid, flag->get()));
1426   } else {
1427     /* Encapsulate in a loop as the documentation states that this may
1428        "with low probability" return when the condition variable has
1429        not been signaled or broadcast */
1430     int deactivated = FALSE;
1431     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1432 
1433     while (flag->is_sleeping()) {
1434 #ifdef DEBUG_SUSPEND
1435       char buffer[128];
1436       __kmp_suspend_count++;
1437       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1438       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1439                    buffer);
1440 #endif
1441       // Mark the thread as no longer active (only in the first iteration of the
1442       // loop).
1443       if (!deactivated) {
1444         th->th.th_active = FALSE;
1445         if (th->th.th_active_in_pool) {
1446           th->th.th_active_in_pool = FALSE;
1447           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1448           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1449         }
1450         deactivated = TRUE;
1451       }
1452 
1453 #if USE_SUSPEND_TIMEOUT
1454       struct timespec now;
1455       struct timeval tval;
1456       int msecs;
1457 
1458       status = gettimeofday(&tval, NULL);
1459       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1460       TIMEVAL_TO_TIMESPEC(&tval, &now);
1461 
1462       msecs = (4 * __kmp_dflt_blocktime) + 200;
1463       now.tv_sec += msecs / 1000;
1464       now.tv_nsec += (msecs % 1000) * 1000;
1465 
1466       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1467                     "pthread_cond_timedwait\n",
1468                     th_gtid));
1469       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1470                                       &th->th.th_suspend_mx.m_mutex, &now);
1471 #else
1472       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1473                     " pthread_cond_wait\n",
1474                     th_gtid));
1475       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1476                                  &th->th.th_suspend_mx.m_mutex);
1477 #endif // USE_SUSPEND_TIMEOUT
1478 
1479       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1480         KMP_SYSFAIL("pthread_cond_wait", status);
1481       }
1482 #ifdef KMP_DEBUG
1483       if (status == ETIMEDOUT) {
1484         if (flag->is_sleeping()) {
1485           KF_TRACE(100,
1486                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1487         } else {
1488           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1489                        "not set!\n",
1490                        th_gtid));
1491         }
1492       } else if (flag->is_sleeping()) {
1493         KF_TRACE(100,
1494                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1495       }
1496 #endif
1497     } // while
1498 
1499     // Mark the thread as active again (if it was previous marked as inactive)
1500     if (deactivated) {
1501       th->th.th_active = TRUE;
1502       if (TCR_4(th->th.th_in_pool)) {
1503         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1504         th->th.th_active_in_pool = TRUE;
1505       }
1506     }
1507   }
1508 #ifdef DEBUG_SUSPEND
1509   {
1510     char buffer[128];
1511     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1512     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1513                  buffer);
1514   }
1515 #endif
1516 
1517   __kmp_unlock_suspend_mx(th);
1518   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1519 }
1520 
1521 template <bool C, bool S>
1522 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1523   __kmp_suspend_template(th_gtid, flag);
1524 }
1525 template <bool C, bool S>
1526 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1527   __kmp_suspend_template(th_gtid, flag);
1528 }
1529 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1530   __kmp_suspend_template(th_gtid, flag);
1531 }
1532 
1533 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1534 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1535 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1536 
1537 /* This routine signals the thread specified by target_gtid to wake up
1538    after setting the sleep bit indicated by the flag argument to FALSE.
1539    The target thread must already have called __kmp_suspend_template() */
1540 template <class C>
1541 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1542   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1543   kmp_info_t *th = __kmp_threads[target_gtid];
1544   int status;
1545 
1546 #ifdef KMP_DEBUG
1547   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1548 #endif
1549 
1550   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1551                 gtid, target_gtid));
1552   KMP_DEBUG_ASSERT(gtid != target_gtid);
1553 
1554   __kmp_suspend_initialize_thread(th);
1555 
1556   __kmp_lock_suspend_mx(th);
1557 
1558   if (!flag) { // coming from __kmp_null_resume_wrapper
1559     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1560   }
1561 
1562   // First, check if the flag is null or its type has changed. If so, someone
1563   // else woke it up.
1564   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1565     // simply shows what flag was cast to
1566     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1567                  "awake: flag(%p)\n",
1568                  gtid, target_gtid, NULL));
1569     __kmp_unlock_suspend_mx(th);
1570     return;
1571   } else { // if multiple threads are sleeping, flag should be internally
1572     // referring to a specific thread here
1573     typename C::flag_t old_spin = flag->unset_sleeping();
1574     if (!flag->is_sleeping_val(old_spin)) {
1575       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1576                    "awake: flag(%p): "
1577                    "%u => %u\n",
1578                    gtid, target_gtid, flag->get(), old_spin, flag->load()));
1579       __kmp_unlock_suspend_mx(th);
1580       return;
1581     }
1582     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1583                  "sleep bit for flag's loc(%p): "
1584                  "%u => %u\n",
1585                  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1586   }
1587   TCW_PTR(th->th.th_sleep_loc, NULL);
1588 
1589 #ifdef DEBUG_SUSPEND
1590   {
1591     char buffer[128];
1592     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1593     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1594                  target_gtid, buffer);
1595   }
1596 #endif
1597   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1598   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1599   __kmp_unlock_suspend_mx(th);
1600   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1601                 " for T#%d\n",
1602                 gtid, target_gtid));
1603 }
1604 
1605 template <bool C, bool S>
1606 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1607   __kmp_resume_template(target_gtid, flag);
1608 }
1609 template <bool C, bool S>
1610 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1611   __kmp_resume_template(target_gtid, flag);
1612 }
1613 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1614   __kmp_resume_template(target_gtid, flag);
1615 }
1616 
1617 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1618 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1619 
1620 #if KMP_USE_MONITOR
1621 void __kmp_resume_monitor() {
1622   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1623   int status;
1624 #ifdef KMP_DEBUG
1625   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1626   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1627                 KMP_GTID_MONITOR));
1628   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1629 #endif
1630   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1631   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1632 #ifdef DEBUG_SUSPEND
1633   {
1634     char buffer[128];
1635     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1636     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1637                  KMP_GTID_MONITOR, buffer);
1638   }
1639 #endif
1640   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1641   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1642   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1643   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1644   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1645                 " for T#%d\n",
1646                 gtid, KMP_GTID_MONITOR));
1647 }
1648 #endif // KMP_USE_MONITOR
1649 
1650 void __kmp_yield() { sched_yield(); }
1651 
1652 void __kmp_gtid_set_specific(int gtid) {
1653   if (__kmp_init_gtid) {
1654     int status;
1655     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1656                                  (void *)(intptr_t)(gtid + 1));
1657     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1658   } else {
1659     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1660   }
1661 }
1662 
1663 int __kmp_gtid_get_specific() {
1664   int gtid;
1665   if (!__kmp_init_gtid) {
1666     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1667                   "KMP_GTID_SHUTDOWN\n"));
1668     return KMP_GTID_SHUTDOWN;
1669   }
1670   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1671   if (gtid == 0) {
1672     gtid = KMP_GTID_DNE;
1673   } else {
1674     gtid--;
1675   }
1676   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1677                 __kmp_gtid_threadprivate_key, gtid));
1678   return gtid;
1679 }
1680 
1681 double __kmp_read_cpu_time(void) {
1682   /*clock_t   t;*/
1683   struct tms buffer;
1684 
1685   /*t =*/times(&buffer);
1686 
1687   return (double)(buffer.tms_utime + buffer.tms_cutime) /
1688          (double)CLOCKS_PER_SEC;
1689 }
1690 
1691 int __kmp_read_system_info(struct kmp_sys_info *info) {
1692   int status;
1693   struct rusage r_usage;
1694 
1695   memset(info, 0, sizeof(*info));
1696 
1697   status = getrusage(RUSAGE_SELF, &r_usage);
1698   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1699 
1700   // The maximum resident set size utilized (in kilobytes)
1701   info->maxrss = r_usage.ru_maxrss;
1702   // The number of page faults serviced without any I/O
1703   info->minflt = r_usage.ru_minflt;
1704   // The number of page faults serviced that required I/O
1705   info->majflt = r_usage.ru_majflt;
1706   // The number of times a process was "swapped" out of memory
1707   info->nswap = r_usage.ru_nswap;
1708   // The number of times the file system had to perform input
1709   info->inblock = r_usage.ru_inblock;
1710   // The number of times the file system had to perform output
1711   info->oublock = r_usage.ru_oublock;
1712   // The number of times a context switch was voluntarily
1713   info->nvcsw = r_usage.ru_nvcsw;
1714   // The number of times a context switch was forced
1715   info->nivcsw = r_usage.ru_nivcsw;
1716 
1717   return (status != 0);
1718 }
1719 
1720 void __kmp_read_system_time(double *delta) {
1721   double t_ns;
1722   struct timeval tval;
1723   struct timespec stop;
1724   int status;
1725 
1726   status = gettimeofday(&tval, NULL);
1727   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1728   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1729   t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1730   *delta = (t_ns * 1e-9);
1731 }
1732 
1733 void __kmp_clear_system_time(void) {
1734   struct timeval tval;
1735   int status;
1736   status = gettimeofday(&tval, NULL);
1737   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1738   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1739 }
1740 
1741 static int __kmp_get_xproc(void) {
1742 
1743   int r = 0;
1744 
1745 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
1746     KMP_OS_OPENBSD || KMP_OS_HURD
1747 
1748   __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1749 
1750 #elif KMP_OS_DARWIN
1751 
1752   // Bug C77011 High "OpenMP Threads and number of active cores".
1753 
1754   // Find the number of available CPUs.
1755   kern_return_t rc;
1756   host_basic_info_data_t info;
1757   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1758   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1759   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1760     // Cannot use KA_TRACE() here because this code works before trace support
1761     // is initialized.
1762     r = info.avail_cpus;
1763   } else {
1764     KMP_WARNING(CantGetNumAvailCPU);
1765     KMP_INFORM(AssumedNumCPU);
1766   }
1767 
1768 #else
1769 
1770 #error "Unknown or unsupported OS."
1771 
1772 #endif
1773 
1774   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1775 
1776 } // __kmp_get_xproc
1777 
1778 int __kmp_read_from_file(char const *path, char const *format, ...) {
1779   int result;
1780   va_list args;
1781 
1782   va_start(args, format);
1783   FILE *f = fopen(path, "rb");
1784   if (f == NULL)
1785     return 0;
1786   result = vfscanf(f, format, args);
1787   fclose(f);
1788 
1789   return result;
1790 }
1791 
1792 void __kmp_runtime_initialize(void) {
1793   int status;
1794   pthread_mutexattr_t mutex_attr;
1795   pthread_condattr_t cond_attr;
1796 
1797   if (__kmp_init_runtime) {
1798     return;
1799   }
1800 
1801 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1802   if (!__kmp_cpuinfo.initialized) {
1803     __kmp_query_cpuid(&__kmp_cpuinfo);
1804   }
1805 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1806 
1807   __kmp_xproc = __kmp_get_xproc();
1808 
1809 #if !KMP_32_BIT_ARCH
1810   struct rlimit rlim;
1811   // read stack size of calling thread, save it as default for worker threads;
1812   // this should be done before reading environment variables
1813   status = getrlimit(RLIMIT_STACK, &rlim);
1814   if (status == 0) { // success?
1815     __kmp_stksize = rlim.rlim_cur;
1816     __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1817   }
1818 #endif /* KMP_32_BIT_ARCH */
1819 
1820   if (sysconf(_SC_THREADS)) {
1821 
1822     /* Query the maximum number of threads */
1823     __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1824     if (__kmp_sys_max_nth == -1) {
1825       /* Unlimited threads for NPTL */
1826       __kmp_sys_max_nth = INT_MAX;
1827     } else if (__kmp_sys_max_nth <= 1) {
1828       /* Can't tell, just use PTHREAD_THREADS_MAX */
1829       __kmp_sys_max_nth = KMP_MAX_NTH;
1830     }
1831 
1832     /* Query the minimum stack size */
1833     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1834     if (__kmp_sys_min_stksize <= 1) {
1835       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1836     }
1837   }
1838 
1839   /* Set up minimum number of threads to switch to TLS gtid */
1840   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1841 
1842   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1843                               __kmp_internal_end_dest);
1844   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1845   status = pthread_mutexattr_init(&mutex_attr);
1846   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1847   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1848   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1849   status = pthread_mutexattr_destroy(&mutex_attr);
1850   KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1851   status = pthread_condattr_init(&cond_attr);
1852   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1853   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1854   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1855   status = pthread_condattr_destroy(&cond_attr);
1856   KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1857 #if USE_ITT_BUILD
1858   __kmp_itt_initialize();
1859 #endif /* USE_ITT_BUILD */
1860 
1861   __kmp_init_runtime = TRUE;
1862 }
1863 
1864 void __kmp_runtime_destroy(void) {
1865   int status;
1866 
1867   if (!__kmp_init_runtime) {
1868     return; // Nothing to do.
1869   }
1870 
1871 #if USE_ITT_BUILD
1872   __kmp_itt_destroy();
1873 #endif /* USE_ITT_BUILD */
1874 
1875   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1876   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1877 
1878   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1879   if (status != 0 && status != EBUSY) {
1880     KMP_SYSFAIL("pthread_mutex_destroy", status);
1881   }
1882   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1883   if (status != 0 && status != EBUSY) {
1884     KMP_SYSFAIL("pthread_cond_destroy", status);
1885   }
1886 #if KMP_AFFINITY_SUPPORTED
1887   __kmp_affinity_uninitialize();
1888 #endif
1889 
1890   __kmp_init_runtime = FALSE;
1891 }
1892 
1893 /* Put the thread to sleep for a time period */
1894 /* NOTE: not currently used anywhere */
1895 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1896 
1897 /* Calculate the elapsed wall clock time for the user */
1898 void __kmp_elapsed(double *t) {
1899   int status;
1900 #ifdef FIX_SGI_CLOCK
1901   struct timespec ts;
1902 
1903   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1904   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1905   *t =
1906       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1907 #else
1908   struct timeval tv;
1909 
1910   status = gettimeofday(&tv, NULL);
1911   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1912   *t =
1913       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1914 #endif
1915 }
1916 
1917 /* Calculate the elapsed wall clock tick for the user */
1918 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1919 
1920 /* Return the current time stamp in nsec */
1921 kmp_uint64 __kmp_now_nsec() {
1922   struct timeval t;
1923   gettimeofday(&t, NULL);
1924   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1925                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1926   return nsec;
1927 }
1928 
1929 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1930 /* Measure clock ticks per millisecond */
1931 void __kmp_initialize_system_tick() {
1932   kmp_uint64 now, nsec2, diff;
1933   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1934   kmp_uint64 nsec = __kmp_now_nsec();
1935   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1936   while ((now = __kmp_hardware_timestamp()) < goal)
1937     ;
1938   nsec2 = __kmp_now_nsec();
1939   diff = nsec2 - nsec;
1940   if (diff > 0) {
1941     kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff);
1942     if (tpms > 0)
1943       __kmp_ticks_per_msec = tpms;
1944   }
1945 }
1946 #endif
1947 
1948 /* Determine whether the given address is mapped into the current address
1949    space. */
1950 
1951 int __kmp_is_address_mapped(void *addr) {
1952 
1953   int found = 0;
1954   int rc;
1955 
1956 #if KMP_OS_LINUX || KMP_OS_HURD
1957 
1958   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
1959      address ranges mapped into the address space. */
1960 
1961   char *name = __kmp_str_format("/proc/%d/maps", getpid());
1962   FILE *file = NULL;
1963 
1964   file = fopen(name, "r");
1965   KMP_ASSERT(file != NULL);
1966 
1967   for (;;) {
1968 
1969     void *beginning = NULL;
1970     void *ending = NULL;
1971     char perms[5];
1972 
1973     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1974     if (rc == EOF) {
1975       break;
1976     }
1977     KMP_ASSERT(rc == 3 &&
1978                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1979 
1980     // Ending address is not included in the region, but beginning is.
1981     if ((addr >= beginning) && (addr < ending)) {
1982       perms[2] = 0; // 3th and 4th character does not matter.
1983       if (strcmp(perms, "rw") == 0) {
1984         // Memory we are looking for should be readable and writable.
1985         found = 1;
1986       }
1987       break;
1988     }
1989   }
1990 
1991   // Free resources.
1992   fclose(file);
1993   KMP_INTERNAL_FREE(name);
1994 #elif KMP_OS_FREEBSD
1995   char *buf;
1996   size_t lstsz;
1997   int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
1998   rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
1999   if (rc < 0)
2000     return 0;
2001   // We pass from number of vm entry's semantic
2002   // to size of whole entry map list.
2003   lstsz = lstsz * 4 / 3;
2004   buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2005   rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2006   if (rc < 0) {
2007     kmpc_free(buf);
2008     return 0;
2009   }
2010 
2011   char *lw = buf;
2012   char *up = buf + lstsz;
2013 
2014   while (lw < up) {
2015     struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2016     size_t cursz = cur->kve_structsize;
2017     if (cursz == 0)
2018       break;
2019     void *start = reinterpret_cast<void *>(cur->kve_start);
2020     void *end = reinterpret_cast<void *>(cur->kve_end);
2021     // Readable/Writable addresses within current map entry
2022     if ((addr >= start) && (addr < end)) {
2023       if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2024           (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2025         found = 1;
2026         break;
2027       }
2028     }
2029     lw += cursz;
2030   }
2031   kmpc_free(buf);
2032 
2033 #elif KMP_OS_DARWIN
2034 
2035   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2036      using vm interface. */
2037 
2038   int buffer;
2039   vm_size_t count;
2040   rc = vm_read_overwrite(
2041       mach_task_self(), // Task to read memory of.
2042       (vm_address_t)(addr), // Address to read from.
2043       1, // Number of bytes to be read.
2044       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2045       &count // Address of var to save number of read bytes in.
2046   );
2047   if (rc == 0) {
2048     // Memory successfully read.
2049     found = 1;
2050   }
2051 
2052 #elif KMP_OS_NETBSD
2053 
2054   int mib[5];
2055   mib[0] = CTL_VM;
2056   mib[1] = VM_PROC;
2057   mib[2] = VM_PROC_MAP;
2058   mib[3] = getpid();
2059   mib[4] = sizeof(struct kinfo_vmentry);
2060 
2061   size_t size;
2062   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2063   KMP_ASSERT(!rc);
2064   KMP_ASSERT(size);
2065 
2066   size = size * 4 / 3;
2067   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2068   KMP_ASSERT(kiv);
2069 
2070   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2071   KMP_ASSERT(!rc);
2072   KMP_ASSERT(size);
2073 
2074   for (size_t i = 0; i < size; i++) {
2075     if (kiv[i].kve_start >= (uint64_t)addr &&
2076         kiv[i].kve_end <= (uint64_t)addr) {
2077       found = 1;
2078       break;
2079     }
2080   }
2081   KMP_INTERNAL_FREE(kiv);
2082 #elif KMP_OS_OPENBSD
2083 
2084   int mib[3];
2085   mib[0] = CTL_KERN;
2086   mib[1] = KERN_PROC_VMMAP;
2087   mib[2] = getpid();
2088 
2089   size_t size;
2090   uint64_t end;
2091   rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2092   KMP_ASSERT(!rc);
2093   KMP_ASSERT(size);
2094   end = size;
2095 
2096   struct kinfo_vmentry kiv = {.kve_start = 0};
2097 
2098   while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2099     KMP_ASSERT(size);
2100     if (kiv.kve_end == end)
2101       break;
2102 
2103     if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2104       found = 1;
2105       break;
2106     }
2107     kiv.kve_start += 1;
2108   }
2109 #elif KMP_OS_DRAGONFLY
2110 
2111   // FIXME(DragonFly): Implement this
2112   found = 1;
2113 
2114 #else
2115 
2116 #error "Unknown or unsupported OS"
2117 
2118 #endif
2119 
2120   return found;
2121 
2122 } // __kmp_is_address_mapped
2123 
2124 #ifdef USE_LOAD_BALANCE
2125 
2126 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2127 
2128 // The function returns the rounded value of the system load average
2129 // during given time interval which depends on the value of
2130 // __kmp_load_balance_interval variable (default is 60 sec, other values
2131 // may be 300 sec or 900 sec).
2132 // It returns -1 in case of error.
2133 int __kmp_get_load_balance(int max) {
2134   double averages[3];
2135   int ret_avg = 0;
2136 
2137   int res = getloadavg(averages, 3);
2138 
2139   // Check __kmp_load_balance_interval to determine which of averages to use.
2140   // getloadavg() may return the number of samples less than requested that is
2141   // less than 3.
2142   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2143     ret_avg = (int)averages[0]; // 1 min
2144   } else if ((__kmp_load_balance_interval >= 180 &&
2145               __kmp_load_balance_interval < 600) &&
2146              (res >= 2)) {
2147     ret_avg = (int)averages[1]; // 5 min
2148   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2149     ret_avg = (int)averages[2]; // 15 min
2150   } else { // Error occurred
2151     return -1;
2152   }
2153 
2154   return ret_avg;
2155 }
2156 
2157 #else // Linux* OS
2158 
2159 // The function returns number of running (not sleeping) threads, or -1 in case
2160 // of error. Error could be reported if Linux* OS kernel too old (without
2161 // "/proc" support). Counting running threads stops if max running threads
2162 // encountered.
2163 int __kmp_get_load_balance(int max) {
2164   static int permanent_error = 0;
2165   static int glb_running_threads = 0; // Saved count of the running threads for
2166   // the thread balance algorithm
2167   static double glb_call_time = 0; /* Thread balance algorithm call time */
2168 
2169   int running_threads = 0; // Number of running threads in the system.
2170 
2171   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2172   struct dirent *proc_entry = NULL;
2173 
2174   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2175   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2176   struct dirent *task_entry = NULL;
2177   int task_path_fixed_len;
2178 
2179   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2180   int stat_file = -1;
2181   int stat_path_fixed_len;
2182 
2183   int total_processes = 0; // Total number of processes in system.
2184   int total_threads = 0; // Total number of threads in system.
2185 
2186   double call_time = 0.0;
2187 
2188   __kmp_str_buf_init(&task_path);
2189   __kmp_str_buf_init(&stat_path);
2190 
2191   __kmp_elapsed(&call_time);
2192 
2193   if (glb_call_time &&
2194       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2195     running_threads = glb_running_threads;
2196     goto finish;
2197   }
2198 
2199   glb_call_time = call_time;
2200 
2201   // Do not spend time on scanning "/proc/" if we have a permanent error.
2202   if (permanent_error) {
2203     running_threads = -1;
2204     goto finish;
2205   }
2206 
2207   if (max <= 0) {
2208     max = INT_MAX;
2209   }
2210 
2211   // Open "/proc/" directory.
2212   proc_dir = opendir("/proc");
2213   if (proc_dir == NULL) {
2214     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2215     // error now and in subsequent calls.
2216     running_threads = -1;
2217     permanent_error = 1;
2218     goto finish;
2219   }
2220 
2221   // Initialize fixed part of task_path. This part will not change.
2222   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2223   task_path_fixed_len = task_path.used; // Remember number of used characters.
2224 
2225   proc_entry = readdir(proc_dir);
2226   while (proc_entry != NULL) {
2227     // Proc entry is a directory and name starts with a digit. Assume it is a
2228     // process' directory.
2229     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2230 
2231       ++total_processes;
2232       // Make sure init process is the very first in "/proc", so we can replace
2233       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2234       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2235       // true (where "=>" is implication). Since C++ does not have => operator,
2236       // let us replace it with its equivalent: a => b == ! a || b.
2237       KMP_DEBUG_ASSERT(total_processes != 1 ||
2238                        strcmp(proc_entry->d_name, "1") == 0);
2239 
2240       // Construct task_path.
2241       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2242       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2243                         KMP_STRLEN(proc_entry->d_name));
2244       __kmp_str_buf_cat(&task_path, "/task", 5);
2245 
2246       task_dir = opendir(task_path.str);
2247       if (task_dir == NULL) {
2248         // Process can finish between reading "/proc/" directory entry and
2249         // opening process' "task/" directory. So, in general case we should not
2250         // complain, but have to skip this process and read the next one. But on
2251         // systems with no "task/" support we will spend lot of time to scan
2252         // "/proc/" tree again and again without any benefit. "init" process
2253         // (its pid is 1) should exist always, so, if we cannot open
2254         // "/proc/1/task/" directory, it means "task/" is not supported by
2255         // kernel. Report an error now and in the future.
2256         if (strcmp(proc_entry->d_name, "1") == 0) {
2257           running_threads = -1;
2258           permanent_error = 1;
2259           goto finish;
2260         }
2261       } else {
2262         // Construct fixed part of stat file path.
2263         __kmp_str_buf_clear(&stat_path);
2264         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2265         __kmp_str_buf_cat(&stat_path, "/", 1);
2266         stat_path_fixed_len = stat_path.used;
2267 
2268         task_entry = readdir(task_dir);
2269         while (task_entry != NULL) {
2270           // It is a directory and name starts with a digit.
2271           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2272             ++total_threads;
2273 
2274             // Construct complete stat file path. Easiest way would be:
2275             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2276             //  task_entry->d_name );
2277             // but seriae of __kmp_str_buf_cat works a bit faster.
2278             stat_path.used =
2279                 stat_path_fixed_len; // Reset stat path to its fixed part.
2280             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2281                               KMP_STRLEN(task_entry->d_name));
2282             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2283 
2284             // Note: Low-level API (open/read/close) is used. High-level API
2285             // (fopen/fclose)  works ~ 30 % slower.
2286             stat_file = open(stat_path.str, O_RDONLY);
2287             if (stat_file == -1) {
2288               // We cannot report an error because task (thread) can terminate
2289               // just before reading this file.
2290             } else {
2291               /* Content of "stat" file looks like:
2292                  24285 (program) S ...
2293 
2294                  It is a single line (if program name does not include funny
2295                  symbols). First number is a thread id, then name of executable
2296                  file name in paretheses, then state of the thread. We need just
2297                  thread state.
2298 
2299                  Good news: Length of program name is 15 characters max. Longer
2300                  names are truncated.
2301 
2302                  Thus, we need rather short buffer: 15 chars for program name +
2303                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2304 
2305                  Bad news: Program name may contain special symbols like space,
2306                  closing parenthesis, or even new line. This makes parsing
2307                  "stat" file not 100 % reliable. In case of fanny program names
2308                  parsing may fail (report incorrect thread state).
2309 
2310                  Parsing "status" file looks more promissing (due to different
2311                  file structure and escaping special symbols) but reading and
2312                  parsing of "status" file works slower.
2313                   -- ln
2314               */
2315               char buffer[65];
2316               ssize_t len;
2317               len = read(stat_file, buffer, sizeof(buffer) - 1);
2318               if (len >= 0) {
2319                 buffer[len] = 0;
2320                 // Using scanf:
2321                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2322                 // looks very nice, but searching for a closing parenthesis
2323                 // works a bit faster.
2324                 char *close_parent = strstr(buffer, ") ");
2325                 if (close_parent != NULL) {
2326                   char state = *(close_parent + 2);
2327                   if (state == 'R') {
2328                     ++running_threads;
2329                     if (running_threads >= max) {
2330                       goto finish;
2331                     }
2332                   }
2333                 }
2334               }
2335               close(stat_file);
2336               stat_file = -1;
2337             }
2338           }
2339           task_entry = readdir(task_dir);
2340         }
2341         closedir(task_dir);
2342         task_dir = NULL;
2343       }
2344     }
2345     proc_entry = readdir(proc_dir);
2346   }
2347 
2348   // There _might_ be a timing hole where the thread executing this
2349   // code get skipped in the load balance, and running_threads is 0.
2350   // Assert in the debug builds only!!!
2351   KMP_DEBUG_ASSERT(running_threads > 0);
2352   if (running_threads <= 0) {
2353     running_threads = 1;
2354   }
2355 
2356 finish: // Clean up and exit.
2357   if (proc_dir != NULL) {
2358     closedir(proc_dir);
2359   }
2360   __kmp_str_buf_free(&task_path);
2361   if (task_dir != NULL) {
2362     closedir(task_dir);
2363   }
2364   __kmp_str_buf_free(&stat_path);
2365   if (stat_file != -1) {
2366     close(stat_file);
2367   }
2368 
2369   glb_running_threads = running_threads;
2370 
2371   return running_threads;
2372 
2373 } // __kmp_get_load_balance
2374 
2375 #endif // KMP_OS_DARWIN
2376 
2377 #endif // USE_LOAD_BALANCE
2378 
2379 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2380       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) ||                 \
2381       KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2382 
2383 // we really only need the case with 1 argument, because CLANG always build
2384 // a struct of pointers to shared variables referenced in the outlined function
2385 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2386                            void *p_argv[]
2387 #if OMPT_SUPPORT
2388                            ,
2389                            void **exit_frame_ptr
2390 #endif
2391 ) {
2392 #if OMPT_SUPPORT
2393   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2394 #endif
2395 
2396   switch (argc) {
2397   default:
2398     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2399     fflush(stderr);
2400     exit(-1);
2401   case 0:
2402     (*pkfn)(&gtid, &tid);
2403     break;
2404   case 1:
2405     (*pkfn)(&gtid, &tid, p_argv[0]);
2406     break;
2407   case 2:
2408     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2409     break;
2410   case 3:
2411     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2412     break;
2413   case 4:
2414     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2415     break;
2416   case 5:
2417     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2418     break;
2419   case 6:
2420     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2421             p_argv[5]);
2422     break;
2423   case 7:
2424     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2425             p_argv[5], p_argv[6]);
2426     break;
2427   case 8:
2428     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2429             p_argv[5], p_argv[6], p_argv[7]);
2430     break;
2431   case 9:
2432     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2433             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2434     break;
2435   case 10:
2436     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2437             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2438     break;
2439   case 11:
2440     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2441             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2442     break;
2443   case 12:
2444     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2445             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2446             p_argv[11]);
2447     break;
2448   case 13:
2449     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2450             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2451             p_argv[11], p_argv[12]);
2452     break;
2453   case 14:
2454     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2455             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2456             p_argv[11], p_argv[12], p_argv[13]);
2457     break;
2458   case 15:
2459     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2460             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2461             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2462     break;
2463   }
2464 
2465   return 1;
2466 }
2467 
2468 #endif
2469 
2470 // Functions for hidden helper task
2471 namespace {
2472 // Condition variable for initializing hidden helper team
2473 pthread_cond_t hidden_helper_threads_initz_cond_var;
2474 pthread_mutex_t hidden_helper_threads_initz_lock;
2475 volatile int hidden_helper_initz_signaled = FALSE;
2476 
2477 // Condition variable for deinitializing hidden helper team
2478 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2479 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2480 volatile int hidden_helper_deinitz_signaled = FALSE;
2481 
2482 // Condition variable for the wrapper function of main thread
2483 pthread_cond_t hidden_helper_main_thread_cond_var;
2484 pthread_mutex_t hidden_helper_main_thread_lock;
2485 volatile int hidden_helper_main_thread_signaled = FALSE;
2486 
2487 // Semaphore for worker threads. We don't use condition variable here in case
2488 // that when multiple signals are sent at the same time, only one thread might
2489 // be waken.
2490 sem_t hidden_helper_task_sem;
2491 } // namespace
2492 
2493 void __kmp_hidden_helper_worker_thread_wait() {
2494   int status = sem_wait(&hidden_helper_task_sem);
2495   KMP_CHECK_SYSFAIL("sem_wait", status);
2496 }
2497 
2498 void __kmp_do_initialize_hidden_helper_threads() {
2499   // Initialize condition variable
2500   int status =
2501       pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2502   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2503 
2504   status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2505   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2506 
2507   status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2508   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2509 
2510   status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2511   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2512 
2513   status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2514   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2515 
2516   status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2517   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2518 
2519   // Initialize the semaphore
2520   status = sem_init(&hidden_helper_task_sem, 0, 0);
2521   KMP_CHECK_SYSFAIL("sem_init", status);
2522 
2523   // Create a new thread to finish initialization
2524   pthread_t handle;
2525   status = pthread_create(
2526       &handle, nullptr,
2527       [](void *) -> void * {
2528         __kmp_hidden_helper_threads_initz_routine();
2529         return nullptr;
2530       },
2531       nullptr);
2532   KMP_CHECK_SYSFAIL("pthread_create", status);
2533 }
2534 
2535 void __kmp_hidden_helper_threads_initz_wait() {
2536   // Initial thread waits here for the completion of the initialization. The
2537   // condition variable will be notified by main thread of hidden helper teams.
2538   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2539   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2540 
2541   if (!TCR_4(hidden_helper_initz_signaled)) {
2542     status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2543                                &hidden_helper_threads_initz_lock);
2544     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2545   }
2546 
2547   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2548   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2549 }
2550 
2551 void __kmp_hidden_helper_initz_release() {
2552   // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2553   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2554   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2555 
2556   status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2557   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2558 
2559   TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2560 
2561   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2562   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2563 }
2564 
2565 void __kmp_hidden_helper_main_thread_wait() {
2566   // The main thread of hidden helper team will be blocked here. The
2567   // condition variable can only be signal in the destructor of RTL.
2568   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2569   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2570 
2571   if (!TCR_4(hidden_helper_main_thread_signaled)) {
2572     status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2573                                &hidden_helper_main_thread_lock);
2574     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2575   }
2576 
2577   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2578   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2579 }
2580 
2581 void __kmp_hidden_helper_main_thread_release() {
2582   // The initial thread of OpenMP RTL should call this function to wake up the
2583   // main thread of hidden helper team.
2584   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2585   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2586 
2587   status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2588   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2589 
2590   // The hidden helper team is done here
2591   TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2592 
2593   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2594   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2595 }
2596 
2597 void __kmp_hidden_helper_worker_thread_signal() {
2598   int status = sem_post(&hidden_helper_task_sem);
2599   KMP_CHECK_SYSFAIL("sem_post", status);
2600 }
2601 
2602 void __kmp_hidden_helper_threads_deinitz_wait() {
2603   // Initial thread waits here for the completion of the deinitialization. The
2604   // condition variable will be notified by main thread of hidden helper teams.
2605   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2606   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2607 
2608   if (!TCR_4(hidden_helper_deinitz_signaled)) {
2609     status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2610                                &hidden_helper_threads_deinitz_lock);
2611     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2612   }
2613 
2614   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2615   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2616 }
2617 
2618 void __kmp_hidden_helper_threads_deinitz_release() {
2619   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2620   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2621 
2622   status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2623   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2624 
2625   TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2626 
2627   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2628   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2629 }
2630 
2631 // end of file //
2632