1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #include <sys/resource.h> 29 #include <sys/syscall.h> 30 #include <sys/time.h> 31 #include <sys/times.h> 32 #include <unistd.h> 33 34 #if KMP_OS_LINUX && !KMP_OS_CNK 35 #include <sys/sysinfo.h> 36 #if KMP_USE_FUTEX 37 // We should really include <futex.h>, but that causes compatibility problems on 38 // different Linux* OS distributions that either require that you include (or 39 // break when you try to include) <pci/types.h>. Since all we need is the two 40 // macros below (which are part of the kernel ABI, so can't change) we just 41 // define the constants here and don't include <futex.h> 42 #ifndef FUTEX_WAIT 43 #define FUTEX_WAIT 0 44 #endif 45 #ifndef FUTEX_WAKE 46 #define FUTEX_WAKE 1 47 #endif 48 #endif 49 #elif KMP_OS_DARWIN 50 #include <mach/mach.h> 51 #include <sys/sysctl.h> 52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 53 #include <pthread_np.h> 54 #elif KMP_OS_NETBSD 55 #include <sys/types.h> 56 #include <sys/sysctl.h> 57 #endif 58 59 #include <ctype.h> 60 #include <dirent.h> 61 #include <fcntl.h> 62 63 #include "tsan_annotations.h" 64 65 struct kmp_sys_timer { 66 struct timespec start; 67 }; 68 69 // Convert timespec to nanoseconds. 70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec) 71 72 static struct kmp_sys_timer __kmp_sys_timer_data; 73 74 #if KMP_HANDLE_SIGNALS 75 typedef void (*sig_func_t)(int); 76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 77 static sigset_t __kmp_sigset; 78 #endif 79 80 static int __kmp_init_runtime = FALSE; 81 82 static int __kmp_fork_count = 0; 83 84 static pthread_condattr_t __kmp_suspend_cond_attr; 85 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 86 87 static kmp_cond_align_t __kmp_wait_cv; 88 static kmp_mutex_align_t __kmp_wait_mx; 89 90 kmp_uint64 __kmp_ticks_per_msec = 1000000; 91 92 #ifdef DEBUG_SUSPEND 93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 94 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 95 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 96 cond->c_cond.__c_waiting); 97 } 98 #endif 99 100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED) 101 102 /* Affinity support */ 103 104 void __kmp_affinity_bind_thread(int which) { 105 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 106 "Illegal set affinity operation when not capable"); 107 108 kmp_affin_mask_t *mask; 109 KMP_CPU_ALLOC_ON_STACK(mask); 110 KMP_CPU_ZERO(mask); 111 KMP_CPU_SET(which, mask); 112 __kmp_set_system_affinity(mask, TRUE); 113 KMP_CPU_FREE_FROM_STACK(mask); 114 } 115 116 /* Determine if we can access affinity functionality on this version of 117 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 118 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 119 void __kmp_affinity_determine_capable(const char *env_var) { 120 // Check and see if the OS supports thread affinity. 121 122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 123 124 int gCode; 125 int sCode; 126 unsigned char *buf; 127 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 128 129 // If Linux* OS: 130 // If the syscall fails or returns a suggestion for the size, 131 // then we don't have to search for an appropriate size. 132 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 133 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 134 "initial getaffinity call returned %d errno = %d\n", 135 gCode, errno)); 136 137 // if ((gCode < 0) && (errno == ENOSYS)) 138 if (gCode < 0) { 139 // System call not supported 140 if (__kmp_affinity_verbose || 141 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 142 (__kmp_affinity_type != affinity_default) && 143 (__kmp_affinity_type != affinity_disabled))) { 144 int error = errno; 145 kmp_msg_t err_code = KMP_ERR(error); 146 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 147 err_code, __kmp_msg_null); 148 if (__kmp_generate_warnings == kmp_warnings_off) { 149 __kmp_str_free(&err_code.str); 150 } 151 } 152 KMP_AFFINITY_DISABLE(); 153 KMP_INTERNAL_FREE(buf); 154 return; 155 } 156 if (gCode > 0) { // Linux* OS only 157 // The optimal situation: the OS returns the size of the buffer it expects. 158 // 159 // A verification of correct behavior is that Isetaffinity on a NULL 160 // buffer with the same size fails with errno set to EFAULT. 161 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 162 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 163 "setaffinity for mask size %d returned %d errno = %d\n", 164 gCode, sCode, errno)); 165 if (sCode < 0) { 166 if (errno == ENOSYS) { 167 if (__kmp_affinity_verbose || 168 (__kmp_affinity_warnings && 169 (__kmp_affinity_type != affinity_none) && 170 (__kmp_affinity_type != affinity_default) && 171 (__kmp_affinity_type != affinity_disabled))) { 172 int error = errno; 173 kmp_msg_t err_code = KMP_ERR(error); 174 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 175 err_code, __kmp_msg_null); 176 if (__kmp_generate_warnings == kmp_warnings_off) { 177 __kmp_str_free(&err_code.str); 178 } 179 } 180 KMP_AFFINITY_DISABLE(); 181 KMP_INTERNAL_FREE(buf); 182 } 183 if (errno == EFAULT) { 184 KMP_AFFINITY_ENABLE(gCode); 185 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 186 "affinity supported (mask size %d)\n", 187 (int)__kmp_affin_mask_size)); 188 KMP_INTERNAL_FREE(buf); 189 return; 190 } 191 } 192 } 193 194 // Call the getaffinity system call repeatedly with increasing set sizes 195 // until we succeed, or reach an upper bound on the search. 196 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 197 "searching for proper set size\n")); 198 int size; 199 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 200 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 201 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 202 "getaffinity for mask size %d returned %d errno = %d\n", 203 size, gCode, errno)); 204 205 if (gCode < 0) { 206 if (errno == ENOSYS) { 207 // We shouldn't get here 208 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 209 "inconsistent OS call behavior: errno == ENOSYS for mask " 210 "size %d\n", 211 size)); 212 if (__kmp_affinity_verbose || 213 (__kmp_affinity_warnings && 214 (__kmp_affinity_type != affinity_none) && 215 (__kmp_affinity_type != affinity_default) && 216 (__kmp_affinity_type != affinity_disabled))) { 217 int error = errno; 218 kmp_msg_t err_code = KMP_ERR(error); 219 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 220 err_code, __kmp_msg_null); 221 if (__kmp_generate_warnings == kmp_warnings_off) { 222 __kmp_str_free(&err_code.str); 223 } 224 } 225 KMP_AFFINITY_DISABLE(); 226 KMP_INTERNAL_FREE(buf); 227 return; 228 } 229 continue; 230 } 231 232 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 233 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 234 "setaffinity for mask size %d returned %d errno = %d\n", 235 gCode, sCode, errno)); 236 if (sCode < 0) { 237 if (errno == ENOSYS) { // Linux* OS only 238 // We shouldn't get here 239 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 240 "inconsistent OS call behavior: errno == ENOSYS for mask " 241 "size %d\n", 242 size)); 243 if (__kmp_affinity_verbose || 244 (__kmp_affinity_warnings && 245 (__kmp_affinity_type != affinity_none) && 246 (__kmp_affinity_type != affinity_default) && 247 (__kmp_affinity_type != affinity_disabled))) { 248 int error = errno; 249 kmp_msg_t err_code = KMP_ERR(error); 250 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 251 err_code, __kmp_msg_null); 252 if (__kmp_generate_warnings == kmp_warnings_off) { 253 __kmp_str_free(&err_code.str); 254 } 255 } 256 KMP_AFFINITY_DISABLE(); 257 KMP_INTERNAL_FREE(buf); 258 return; 259 } 260 if (errno == EFAULT) { 261 KMP_AFFINITY_ENABLE(gCode); 262 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 263 "affinity supported (mask size %d)\n", 264 (int)__kmp_affin_mask_size)); 265 KMP_INTERNAL_FREE(buf); 266 return; 267 } 268 } 269 } 270 // save uncaught error code 271 // int error = errno; 272 KMP_INTERNAL_FREE(buf); 273 // restore uncaught error code, will be printed at the next KMP_WARNING below 274 // errno = error; 275 276 // Affinity is not supported 277 KMP_AFFINITY_DISABLE(); 278 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 279 "cannot determine mask size - affinity not supported\n")); 280 if (__kmp_affinity_verbose || 281 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 282 (__kmp_affinity_type != affinity_default) && 283 (__kmp_affinity_type != affinity_disabled))) { 284 KMP_WARNING(AffCantGetMaskSize, env_var); 285 } 286 } 287 288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 289 290 #if KMP_USE_FUTEX 291 292 int __kmp_futex_determine_capable() { 293 int loc = 0; 294 int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 295 int retval = (rc == 0) || (errno != ENOSYS); 296 297 KA_TRACE(10, 298 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 299 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 300 retval ? "" : " not")); 301 302 return retval; 303 } 304 305 #endif // KMP_USE_FUTEX 306 307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 309 use compare_and_store for these routines */ 310 311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 312 kmp_int8 old_value, new_value; 313 314 old_value = TCR_1(*p); 315 new_value = old_value | d; 316 317 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 318 KMP_CPU_PAUSE(); 319 old_value = TCR_1(*p); 320 new_value = old_value | d; 321 } 322 return old_value; 323 } 324 325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 326 kmp_int8 old_value, new_value; 327 328 old_value = TCR_1(*p); 329 new_value = old_value & d; 330 331 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 332 KMP_CPU_PAUSE(); 333 old_value = TCR_1(*p); 334 new_value = old_value & d; 335 } 336 return old_value; 337 } 338 339 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 340 kmp_uint32 old_value, new_value; 341 342 old_value = TCR_4(*p); 343 new_value = old_value | d; 344 345 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 346 KMP_CPU_PAUSE(); 347 old_value = TCR_4(*p); 348 new_value = old_value | d; 349 } 350 return old_value; 351 } 352 353 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 354 kmp_uint32 old_value, new_value; 355 356 old_value = TCR_4(*p); 357 new_value = old_value & d; 358 359 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 360 KMP_CPU_PAUSE(); 361 old_value = TCR_4(*p); 362 new_value = old_value & d; 363 } 364 return old_value; 365 } 366 367 #if KMP_ARCH_X86 368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 369 kmp_int8 old_value, new_value; 370 371 old_value = TCR_1(*p); 372 new_value = old_value + d; 373 374 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 375 KMP_CPU_PAUSE(); 376 old_value = TCR_1(*p); 377 new_value = old_value + d; 378 } 379 return old_value; 380 } 381 382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 383 kmp_int64 old_value, new_value; 384 385 old_value = TCR_8(*p); 386 new_value = old_value + d; 387 388 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 389 KMP_CPU_PAUSE(); 390 old_value = TCR_8(*p); 391 new_value = old_value + d; 392 } 393 return old_value; 394 } 395 #endif /* KMP_ARCH_X86 */ 396 397 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 398 kmp_uint64 old_value, new_value; 399 400 old_value = TCR_8(*p); 401 new_value = old_value | d; 402 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 403 KMP_CPU_PAUSE(); 404 old_value = TCR_8(*p); 405 new_value = old_value | d; 406 } 407 return old_value; 408 } 409 410 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 411 kmp_uint64 old_value, new_value; 412 413 old_value = TCR_8(*p); 414 new_value = old_value & d; 415 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 416 KMP_CPU_PAUSE(); 417 old_value = TCR_8(*p); 418 new_value = old_value & d; 419 } 420 return old_value; 421 } 422 423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 424 425 void __kmp_terminate_thread(int gtid) { 426 int status; 427 kmp_info_t *th = __kmp_threads[gtid]; 428 429 if (!th) 430 return; 431 432 #ifdef KMP_CANCEL_THREADS 433 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 434 status = pthread_cancel(th->th.th_info.ds.ds_thread); 435 if (status != 0 && status != ESRCH) { 436 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 437 __kmp_msg_null); 438 } 439 #endif 440 KMP_YIELD(TRUE); 441 } // 442 443 /* Set thread stack info according to values returned by pthread_getattr_np(). 444 If values are unreasonable, assume call failed and use incremental stack 445 refinement method instead. Returns TRUE if the stack parameters could be 446 determined exactly, FALSE if incremental refinement is necessary. */ 447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 448 int stack_data; 449 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 450 KMP_OS_HURD 451 pthread_attr_t attr; 452 int status; 453 size_t size = 0; 454 void *addr = 0; 455 456 /* Always do incremental stack refinement for ubermaster threads since the 457 initial thread stack range can be reduced by sibling thread creation so 458 pthread_attr_getstack may cause thread gtid aliasing */ 459 if (!KMP_UBER_GTID(gtid)) { 460 461 /* Fetch the real thread attributes */ 462 status = pthread_attr_init(&attr); 463 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 464 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 465 status = pthread_attr_get_np(pthread_self(), &attr); 466 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 467 #else 468 status = pthread_getattr_np(pthread_self(), &attr); 469 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 470 #endif 471 status = pthread_attr_getstack(&attr, &addr, &size); 472 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 473 KA_TRACE(60, 474 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 475 " %lu, low addr: %p\n", 476 gtid, size, addr)); 477 status = pthread_attr_destroy(&attr); 478 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 479 } 480 481 if (size != 0 && addr != 0) { // was stack parameter determination successful? 482 /* Store the correct base and size */ 483 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 484 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 485 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 486 return TRUE; 487 } 488 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 489 KMP_OS_HURD */ 490 /* Use incremental refinement starting from initial conservative estimate */ 491 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 492 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 493 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 494 return FALSE; 495 } 496 497 static void *__kmp_launch_worker(void *thr) { 498 int status, old_type, old_state; 499 #ifdef KMP_BLOCK_SIGNALS 500 sigset_t new_set, old_set; 501 #endif /* KMP_BLOCK_SIGNALS */ 502 void *exit_val; 503 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 504 KMP_OS_OPENBSD || KMP_OS_HURD 505 void *volatile padding = 0; 506 #endif 507 int gtid; 508 509 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 510 __kmp_gtid_set_specific(gtid); 511 #ifdef KMP_TDATA_GTID 512 __kmp_gtid = gtid; 513 #endif 514 #if KMP_STATS_ENABLED 515 // set thread local index to point to thread-specific stats 516 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 517 __kmp_stats_thread_ptr->startLife(); 518 KMP_SET_THREAD_STATE(IDLE); 519 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 520 #endif 521 522 #if USE_ITT_BUILD 523 __kmp_itt_thread_name(gtid); 524 #endif /* USE_ITT_BUILD */ 525 526 #if KMP_AFFINITY_SUPPORTED 527 __kmp_affinity_set_init_mask(gtid, FALSE); 528 #endif 529 530 #ifdef KMP_CANCEL_THREADS 531 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 532 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 533 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 534 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 535 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 536 #endif 537 538 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 539 // Set FP control regs to be a copy of the parallel initialization thread's. 540 __kmp_clear_x87_fpu_status_word(); 541 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 542 __kmp_load_mxcsr(&__kmp_init_mxcsr); 543 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 544 545 #ifdef KMP_BLOCK_SIGNALS 546 status = sigfillset(&new_set); 547 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 548 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 549 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 550 #endif /* KMP_BLOCK_SIGNALS */ 551 552 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 553 KMP_OS_OPENBSD 554 if (__kmp_stkoffset > 0 && gtid > 0) { 555 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 556 } 557 #endif 558 559 KMP_MB(); 560 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 561 562 __kmp_check_stack_overlap((kmp_info_t *)thr); 563 564 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 565 566 #ifdef KMP_BLOCK_SIGNALS 567 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 568 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 569 #endif /* KMP_BLOCK_SIGNALS */ 570 571 return exit_val; 572 } 573 574 #if KMP_USE_MONITOR 575 /* The monitor thread controls all of the threads in the complex */ 576 577 static void *__kmp_launch_monitor(void *thr) { 578 int status, old_type, old_state; 579 #ifdef KMP_BLOCK_SIGNALS 580 sigset_t new_set; 581 #endif /* KMP_BLOCK_SIGNALS */ 582 struct timespec interval; 583 584 KMP_MB(); /* Flush all pending memory write invalidates. */ 585 586 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 587 588 /* register us as the monitor thread */ 589 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 590 #ifdef KMP_TDATA_GTID 591 __kmp_gtid = KMP_GTID_MONITOR; 592 #endif 593 594 KMP_MB(); 595 596 #if USE_ITT_BUILD 597 // Instruct Intel(R) Threading Tools to ignore monitor thread. 598 __kmp_itt_thread_ignore(); 599 #endif /* USE_ITT_BUILD */ 600 601 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 602 (kmp_info_t *)thr); 603 604 __kmp_check_stack_overlap((kmp_info_t *)thr); 605 606 #ifdef KMP_CANCEL_THREADS 607 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 608 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 609 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 610 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 611 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 612 #endif 613 614 #if KMP_REAL_TIME_FIX 615 // This is a potential fix which allows application with real-time scheduling 616 // policy work. However, decision about the fix is not made yet, so it is 617 // disabled by default. 618 { // Are program started with real-time scheduling policy? 619 int sched = sched_getscheduler(0); 620 if (sched == SCHED_FIFO || sched == SCHED_RR) { 621 // Yes, we are a part of real-time application. Try to increase the 622 // priority of the monitor. 623 struct sched_param param; 624 int max_priority = sched_get_priority_max(sched); 625 int rc; 626 KMP_WARNING(RealTimeSchedNotSupported); 627 sched_getparam(0, ¶m); 628 if (param.sched_priority < max_priority) { 629 param.sched_priority += 1; 630 rc = sched_setscheduler(0, sched, ¶m); 631 if (rc != 0) { 632 int error = errno; 633 kmp_msg_t err_code = KMP_ERR(error); 634 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 635 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 636 if (__kmp_generate_warnings == kmp_warnings_off) { 637 __kmp_str_free(&err_code.str); 638 } 639 } 640 } else { 641 // We cannot abort here, because number of CPUs may be enough for all 642 // the threads, including the monitor thread, so application could 643 // potentially work... 644 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 645 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 646 __kmp_msg_null); 647 } 648 } 649 // AC: free thread that waits for monitor started 650 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 651 } 652 #endif // KMP_REAL_TIME_FIX 653 654 KMP_MB(); /* Flush all pending memory write invalidates. */ 655 656 if (__kmp_monitor_wakeups == 1) { 657 interval.tv_sec = 1; 658 interval.tv_nsec = 0; 659 } else { 660 interval.tv_sec = 0; 661 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 662 } 663 664 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 665 666 while (!TCR_4(__kmp_global.g.g_done)) { 667 struct timespec now; 668 struct timeval tval; 669 670 /* This thread monitors the state of the system */ 671 672 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 673 674 status = gettimeofday(&tval, NULL); 675 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 676 TIMEVAL_TO_TIMESPEC(&tval, &now); 677 678 now.tv_sec += interval.tv_sec; 679 now.tv_nsec += interval.tv_nsec; 680 681 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 682 now.tv_sec += 1; 683 now.tv_nsec -= KMP_NSEC_PER_SEC; 684 } 685 686 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 687 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 688 // AC: the monitor should not fall asleep if g_done has been set 689 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 690 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 691 &__kmp_wait_mx.m_mutex, &now); 692 if (status != 0) { 693 if (status != ETIMEDOUT && status != EINTR) { 694 KMP_SYSFAIL("pthread_cond_timedwait", status); 695 } 696 } 697 } 698 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 699 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 700 701 TCW_4(__kmp_global.g.g_time.dt.t_value, 702 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 703 704 KMP_MB(); /* Flush all pending memory write invalidates. */ 705 } 706 707 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 708 709 #ifdef KMP_BLOCK_SIGNALS 710 status = sigfillset(&new_set); 711 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 712 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 713 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 714 #endif /* KMP_BLOCK_SIGNALS */ 715 716 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 717 718 if (__kmp_global.g.g_abort != 0) { 719 /* now we need to terminate the worker threads */ 720 /* the value of t_abort is the signal we caught */ 721 722 int gtid; 723 724 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 725 __kmp_global.g.g_abort)); 726 727 /* terminate the OpenMP worker threads */ 728 /* TODO this is not valid for sibling threads!! 729 * the uber master might not be 0 anymore.. */ 730 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 731 __kmp_terminate_thread(gtid); 732 733 __kmp_cleanup(); 734 735 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 736 __kmp_global.g.g_abort)); 737 738 if (__kmp_global.g.g_abort > 0) 739 raise(__kmp_global.g.g_abort); 740 } 741 742 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 743 744 return thr; 745 } 746 #endif // KMP_USE_MONITOR 747 748 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 749 pthread_t handle; 750 pthread_attr_t thread_attr; 751 int status; 752 753 th->th.th_info.ds.ds_gtid = gtid; 754 755 #if KMP_STATS_ENABLED 756 // sets up worker thread stats 757 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 758 759 // th->th.th_stats is used to transfer thread-specific stats-pointer to 760 // __kmp_launch_worker. So when thread is created (goes into 761 // __kmp_launch_worker) it will set its thread local pointer to 762 // th->th.th_stats 763 if (!KMP_UBER_GTID(gtid)) { 764 th->th.th_stats = __kmp_stats_list->push_back(gtid); 765 } else { 766 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 767 // so set the th->th.th_stats field to it. 768 th->th.th_stats = __kmp_stats_thread_ptr; 769 } 770 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 771 772 #endif // KMP_STATS_ENABLED 773 774 if (KMP_UBER_GTID(gtid)) { 775 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 776 th->th.th_info.ds.ds_thread = pthread_self(); 777 __kmp_set_stack_info(gtid, th); 778 __kmp_check_stack_overlap(th); 779 return; 780 } 781 782 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 783 784 KMP_MB(); /* Flush all pending memory write invalidates. */ 785 786 #ifdef KMP_THREAD_ATTR 787 status = pthread_attr_init(&thread_attr); 788 if (status != 0) { 789 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 790 } 791 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 792 if (status != 0) { 793 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 794 } 795 796 /* Set stack size for this thread now. 797 The multiple of 2 is there because on some machines, requesting an unusual 798 stacksize causes the thread to have an offset before the dummy alloca() 799 takes place to create the offset. Since we want the user to have a 800 sufficient stacksize AND support a stack offset, we alloca() twice the 801 offset so that the upcoming alloca() does not eliminate any premade offset, 802 and also gives the user the stack space they requested for all threads */ 803 stack_size += gtid * __kmp_stkoffset * 2; 804 805 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 806 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 807 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 808 809 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 810 status = pthread_attr_setstacksize(&thread_attr, stack_size); 811 #ifdef KMP_BACKUP_STKSIZE 812 if (status != 0) { 813 if (!__kmp_env_stksize) { 814 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 815 __kmp_stksize = KMP_BACKUP_STKSIZE; 816 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 817 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 818 "bytes\n", 819 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 820 status = pthread_attr_setstacksize(&thread_attr, stack_size); 821 } 822 } 823 #endif /* KMP_BACKUP_STKSIZE */ 824 if (status != 0) { 825 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 826 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 827 } 828 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 829 830 #endif /* KMP_THREAD_ATTR */ 831 832 status = 833 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 834 if (status != 0 || !handle) { // ??? Why do we check handle?? 835 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 836 if (status == EINVAL) { 837 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 838 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 839 } 840 if (status == ENOMEM) { 841 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 842 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 843 } 844 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 845 if (status == EAGAIN) { 846 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 847 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 848 } 849 KMP_SYSFAIL("pthread_create", status); 850 } 851 852 th->th.th_info.ds.ds_thread = handle; 853 854 #ifdef KMP_THREAD_ATTR 855 status = pthread_attr_destroy(&thread_attr); 856 if (status) { 857 kmp_msg_t err_code = KMP_ERR(status); 858 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 859 __kmp_msg_null); 860 if (__kmp_generate_warnings == kmp_warnings_off) { 861 __kmp_str_free(&err_code.str); 862 } 863 } 864 #endif /* KMP_THREAD_ATTR */ 865 866 KMP_MB(); /* Flush all pending memory write invalidates. */ 867 868 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 869 870 } // __kmp_create_worker 871 872 #if KMP_USE_MONITOR 873 void __kmp_create_monitor(kmp_info_t *th) { 874 pthread_t handle; 875 pthread_attr_t thread_attr; 876 size_t size; 877 int status; 878 int auto_adj_size = FALSE; 879 880 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 881 // We don't need monitor thread in case of MAX_BLOCKTIME 882 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 883 "MAX blocktime\n")); 884 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 885 th->th.th_info.ds.ds_gtid = 0; 886 return; 887 } 888 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 889 890 KMP_MB(); /* Flush all pending memory write invalidates. */ 891 892 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 893 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 894 #if KMP_REAL_TIME_FIX 895 TCW_4(__kmp_global.g.g_time.dt.t_value, 896 -1); // Will use it for synchronization a bit later. 897 #else 898 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 899 #endif // KMP_REAL_TIME_FIX 900 901 #ifdef KMP_THREAD_ATTR 902 if (__kmp_monitor_stksize == 0) { 903 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 904 auto_adj_size = TRUE; 905 } 906 status = pthread_attr_init(&thread_attr); 907 if (status != 0) { 908 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 909 } 910 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 911 if (status != 0) { 912 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 913 } 914 915 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 916 status = pthread_attr_getstacksize(&thread_attr, &size); 917 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 918 #else 919 size = __kmp_sys_min_stksize; 920 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 921 #endif /* KMP_THREAD_ATTR */ 922 923 if (__kmp_monitor_stksize == 0) { 924 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 925 } 926 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 927 __kmp_monitor_stksize = __kmp_sys_min_stksize; 928 } 929 930 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 931 "requested stacksize = %lu bytes\n", 932 size, __kmp_monitor_stksize)); 933 934 retry: 935 936 /* Set stack size for this thread now. */ 937 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 938 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 939 __kmp_monitor_stksize)); 940 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 941 if (status != 0) { 942 if (auto_adj_size) { 943 __kmp_monitor_stksize *= 2; 944 goto retry; 945 } 946 kmp_msg_t err_code = KMP_ERR(status); 947 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 948 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 949 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 950 if (__kmp_generate_warnings == kmp_warnings_off) { 951 __kmp_str_free(&err_code.str); 952 } 953 } 954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 955 956 status = 957 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 958 959 if (status != 0) { 960 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 961 if (status == EINVAL) { 962 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 963 __kmp_monitor_stksize *= 2; 964 goto retry; 965 } 966 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 967 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 968 __kmp_msg_null); 969 } 970 if (status == ENOMEM) { 971 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 972 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 973 __kmp_msg_null); 974 } 975 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 976 if (status == EAGAIN) { 977 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 978 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 979 } 980 KMP_SYSFAIL("pthread_create", status); 981 } 982 983 th->th.th_info.ds.ds_thread = handle; 984 985 #if KMP_REAL_TIME_FIX 986 // Wait for the monitor thread is really started and set its *priority*. 987 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 988 sizeof(__kmp_global.g.g_time.dt.t_value)); 989 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 990 &__kmp_neq_4, NULL); 991 #endif // KMP_REAL_TIME_FIX 992 993 #ifdef KMP_THREAD_ATTR 994 status = pthread_attr_destroy(&thread_attr); 995 if (status != 0) { 996 kmp_msg_t err_code = KMP_ERR(status); 997 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 998 __kmp_msg_null); 999 if (__kmp_generate_warnings == kmp_warnings_off) { 1000 __kmp_str_free(&err_code.str); 1001 } 1002 } 1003 #endif 1004 1005 KMP_MB(); /* Flush all pending memory write invalidates. */ 1006 1007 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1008 th->th.th_info.ds.ds_thread)); 1009 1010 } // __kmp_create_monitor 1011 #endif // KMP_USE_MONITOR 1012 1013 void __kmp_exit_thread(int exit_status) { 1014 pthread_exit((void *)(intptr_t)exit_status); 1015 } // __kmp_exit_thread 1016 1017 #if KMP_USE_MONITOR 1018 void __kmp_resume_monitor(); 1019 1020 void __kmp_reap_monitor(kmp_info_t *th) { 1021 int status; 1022 void *exit_val; 1023 1024 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1025 " %#.8lx\n", 1026 th->th.th_info.ds.ds_thread)); 1027 1028 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1029 // If both tid and gtid are 0, it means the monitor did not ever start. 1030 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1031 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1032 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1033 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1034 return; 1035 } 1036 1037 KMP_MB(); /* Flush all pending memory write invalidates. */ 1038 1039 /* First, check to see whether the monitor thread exists to wake it up. This 1040 is to avoid performance problem when the monitor sleeps during 1041 blocktime-size interval */ 1042 1043 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1044 if (status != ESRCH) { 1045 __kmp_resume_monitor(); // Wake up the monitor thread 1046 } 1047 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1048 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1049 if (exit_val != th) { 1050 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1051 } 1052 1053 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1054 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1055 1056 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1057 " %#.8lx\n", 1058 th->th.th_info.ds.ds_thread)); 1059 1060 KMP_MB(); /* Flush all pending memory write invalidates. */ 1061 } 1062 #endif // KMP_USE_MONITOR 1063 1064 void __kmp_reap_worker(kmp_info_t *th) { 1065 int status; 1066 void *exit_val; 1067 1068 KMP_MB(); /* Flush all pending memory write invalidates. */ 1069 1070 KA_TRACE( 1071 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1072 1073 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1074 #ifdef KMP_DEBUG 1075 /* Don't expose these to the user until we understand when they trigger */ 1076 if (status != 0) { 1077 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1078 } 1079 if (exit_val != th) { 1080 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1081 "exit_val = %p\n", 1082 th->th.th_info.ds.ds_gtid, exit_val)); 1083 } 1084 #endif /* KMP_DEBUG */ 1085 1086 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1087 th->th.th_info.ds.ds_gtid)); 1088 1089 KMP_MB(); /* Flush all pending memory write invalidates. */ 1090 } 1091 1092 #if KMP_HANDLE_SIGNALS 1093 1094 static void __kmp_null_handler(int signo) { 1095 // Do nothing, for doing SIG_IGN-type actions. 1096 } // __kmp_null_handler 1097 1098 static void __kmp_team_handler(int signo) { 1099 if (__kmp_global.g.g_abort == 0) { 1100 /* Stage 1 signal handler, let's shut down all of the threads */ 1101 #ifdef KMP_DEBUG 1102 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1103 #endif 1104 switch (signo) { 1105 case SIGHUP: 1106 case SIGINT: 1107 case SIGQUIT: 1108 case SIGILL: 1109 case SIGABRT: 1110 case SIGFPE: 1111 case SIGBUS: 1112 case SIGSEGV: 1113 #ifdef SIGSYS 1114 case SIGSYS: 1115 #endif 1116 case SIGTERM: 1117 if (__kmp_debug_buf) { 1118 __kmp_dump_debug_buffer(); 1119 } 1120 KMP_MB(); // Flush all pending memory write invalidates. 1121 TCW_4(__kmp_global.g.g_abort, signo); 1122 KMP_MB(); // Flush all pending memory write invalidates. 1123 TCW_4(__kmp_global.g.g_done, TRUE); 1124 KMP_MB(); // Flush all pending memory write invalidates. 1125 break; 1126 default: 1127 #ifdef KMP_DEBUG 1128 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1129 #endif 1130 break; 1131 } 1132 } 1133 } // __kmp_team_handler 1134 1135 static void __kmp_sigaction(int signum, const struct sigaction *act, 1136 struct sigaction *oldact) { 1137 int rc = sigaction(signum, act, oldact); 1138 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1139 } 1140 1141 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1142 int parallel_init) { 1143 KMP_MB(); // Flush all pending memory write invalidates. 1144 KB_TRACE(60, 1145 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1146 if (parallel_init) { 1147 struct sigaction new_action; 1148 struct sigaction old_action; 1149 new_action.sa_handler = handler_func; 1150 new_action.sa_flags = 0; 1151 sigfillset(&new_action.sa_mask); 1152 __kmp_sigaction(sig, &new_action, &old_action); 1153 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1154 sigaddset(&__kmp_sigset, sig); 1155 } else { 1156 // Restore/keep user's handler if one previously installed. 1157 __kmp_sigaction(sig, &old_action, NULL); 1158 } 1159 } else { 1160 // Save initial/system signal handlers to see if user handlers installed. 1161 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1162 } 1163 KMP_MB(); // Flush all pending memory write invalidates. 1164 } // __kmp_install_one_handler 1165 1166 static void __kmp_remove_one_handler(int sig) { 1167 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1168 if (sigismember(&__kmp_sigset, sig)) { 1169 struct sigaction old; 1170 KMP_MB(); // Flush all pending memory write invalidates. 1171 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1172 if ((old.sa_handler != __kmp_team_handler) && 1173 (old.sa_handler != __kmp_null_handler)) { 1174 // Restore the users signal handler. 1175 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1176 "restoring: sig=%d\n", 1177 sig)); 1178 __kmp_sigaction(sig, &old, NULL); 1179 } 1180 sigdelset(&__kmp_sigset, sig); 1181 KMP_MB(); // Flush all pending memory write invalidates. 1182 } 1183 } // __kmp_remove_one_handler 1184 1185 void __kmp_install_signals(int parallel_init) { 1186 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1187 if (__kmp_handle_signals || !parallel_init) { 1188 // If ! parallel_init, we do not install handlers, just save original 1189 // handlers. Let us do it even __handle_signals is 0. 1190 sigemptyset(&__kmp_sigset); 1191 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1192 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1193 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1194 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1195 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1196 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1197 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1198 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1199 #ifdef SIGSYS 1200 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1201 #endif // SIGSYS 1202 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1203 #ifdef SIGPIPE 1204 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1205 #endif // SIGPIPE 1206 } 1207 } // __kmp_install_signals 1208 1209 void __kmp_remove_signals(void) { 1210 int sig; 1211 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1212 for (sig = 1; sig < NSIG; ++sig) { 1213 __kmp_remove_one_handler(sig); 1214 } 1215 } // __kmp_remove_signals 1216 1217 #endif // KMP_HANDLE_SIGNALS 1218 1219 void __kmp_enable(int new_state) { 1220 #ifdef KMP_CANCEL_THREADS 1221 int status, old_state; 1222 status = pthread_setcancelstate(new_state, &old_state); 1223 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1224 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1225 #endif 1226 } 1227 1228 void __kmp_disable(int *old_state) { 1229 #ifdef KMP_CANCEL_THREADS 1230 int status; 1231 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1232 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1233 #endif 1234 } 1235 1236 static void __kmp_atfork_prepare(void) { 1237 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1238 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1239 } 1240 1241 static void __kmp_atfork_parent(void) { 1242 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1243 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1244 } 1245 1246 /* Reset the library so execution in the child starts "all over again" with 1247 clean data structures in initial states. Don't worry about freeing memory 1248 allocated by parent, just abandon it to be safe. */ 1249 static void __kmp_atfork_child(void) { 1250 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1251 /* TODO make sure this is done right for nested/sibling */ 1252 // ATT: Memory leaks are here? TODO: Check it and fix. 1253 /* KMP_ASSERT( 0 ); */ 1254 1255 ++__kmp_fork_count; 1256 1257 #if KMP_AFFINITY_SUPPORTED 1258 #if KMP_OS_LINUX 1259 // reset the affinity in the child to the initial thread 1260 // affinity in the parent 1261 kmp_set_thread_affinity_mask_initial(); 1262 #endif 1263 // Set default not to bind threads tightly in the child (we’re expecting 1264 // over-subscription after the fork and this can improve things for 1265 // scripting languages that use OpenMP inside process-parallel code). 1266 __kmp_affinity_type = affinity_none; 1267 #if OMP_40_ENABLED 1268 if (__kmp_nested_proc_bind.bind_types != NULL) { 1269 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1270 } 1271 #endif // OMP_40_ENABLED 1272 #endif // KMP_AFFINITY_SUPPORTED 1273 1274 __kmp_init_runtime = FALSE; 1275 #if KMP_USE_MONITOR 1276 __kmp_init_monitor = 0; 1277 #endif 1278 __kmp_init_parallel = FALSE; 1279 __kmp_init_middle = FALSE; 1280 __kmp_init_serial = FALSE; 1281 TCW_4(__kmp_init_gtid, FALSE); 1282 __kmp_init_common = FALSE; 1283 1284 TCW_4(__kmp_init_user_locks, FALSE); 1285 #if !KMP_USE_DYNAMIC_LOCK 1286 __kmp_user_lock_table.used = 1; 1287 __kmp_user_lock_table.allocated = 0; 1288 __kmp_user_lock_table.table = NULL; 1289 __kmp_lock_blocks = NULL; 1290 #endif 1291 1292 __kmp_all_nth = 0; 1293 TCW_4(__kmp_nth, 0); 1294 1295 __kmp_thread_pool = NULL; 1296 __kmp_thread_pool_insert_pt = NULL; 1297 __kmp_team_pool = NULL; 1298 1299 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1300 here so threadprivate doesn't use stale data */ 1301 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1302 __kmp_threadpriv_cache_list)); 1303 1304 while (__kmp_threadpriv_cache_list != NULL) { 1305 1306 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1307 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1308 &(*__kmp_threadpriv_cache_list->addr))); 1309 1310 *__kmp_threadpriv_cache_list->addr = NULL; 1311 } 1312 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1313 } 1314 1315 __kmp_init_runtime = FALSE; 1316 1317 /* reset statically initialized locks */ 1318 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1319 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1320 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1321 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1322 1323 #if USE_ITT_BUILD 1324 __kmp_itt_reset(); // reset ITT's global state 1325 #endif /* USE_ITT_BUILD */ 1326 1327 /* This is necessary to make sure no stale data is left around */ 1328 /* AC: customers complain that we use unsafe routines in the atfork 1329 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1330 in dynamic_link when check the presence of shared tbbmalloc library. 1331 Suggestion is to make the library initialization lazier, similar 1332 to what done for __kmpc_begin(). */ 1333 // TODO: synchronize all static initializations with regular library 1334 // startup; look at kmp_global.cpp and etc. 1335 //__kmp_internal_begin (); 1336 } 1337 1338 void __kmp_register_atfork(void) { 1339 if (__kmp_need_register_atfork) { 1340 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1341 __kmp_atfork_child); 1342 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1343 __kmp_need_register_atfork = FALSE; 1344 } 1345 } 1346 1347 void __kmp_suspend_initialize(void) { 1348 int status; 1349 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1350 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1351 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1352 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1353 } 1354 1355 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1356 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1357 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1358 int new_value = __kmp_fork_count + 1; 1359 // Return if already initialized 1360 if (old_value == new_value) 1361 return; 1362 // Wait, then return if being initialized 1363 if (old_value == -1 || 1364 !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value, 1365 -1)) { 1366 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1367 KMP_CPU_PAUSE(); 1368 } 1369 } else { 1370 // Claim to be the initializer and do initializations 1371 int status; 1372 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1373 &__kmp_suspend_cond_attr); 1374 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1375 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1376 &__kmp_suspend_mutex_attr); 1377 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1378 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1379 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1380 } 1381 } 1382 1383 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1384 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1385 /* this means we have initialize the suspension pthread objects for this 1386 thread in this instance of the process */ 1387 int status; 1388 1389 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1390 if (status != 0 && status != EBUSY) { 1391 KMP_SYSFAIL("pthread_cond_destroy", status); 1392 } 1393 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1394 if (status != 0 && status != EBUSY) { 1395 KMP_SYSFAIL("pthread_mutex_destroy", status); 1396 } 1397 --th->th.th_suspend_init_count; 1398 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1399 __kmp_fork_count); 1400 } 1401 } 1402 1403 // return true if lock obtained, false otherwise 1404 int __kmp_try_suspend_mx(kmp_info_t *th) { 1405 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1406 } 1407 1408 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1409 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1410 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1411 } 1412 1413 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1414 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1415 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1416 } 1417 1418 /* This routine puts the calling thread to sleep after setting the 1419 sleep bit for the indicated flag variable to true. */ 1420 template <class C> 1421 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1422 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1423 kmp_info_t *th = __kmp_threads[th_gtid]; 1424 int status; 1425 typename C::flag_t old_spin; 1426 1427 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1428 flag->get())); 1429 1430 __kmp_suspend_initialize_thread(th); 1431 1432 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1433 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1434 1435 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1436 th_gtid, flag->get())); 1437 1438 /* TODO: shouldn't this use release semantics to ensure that 1439 __kmp_suspend_initialize_thread gets called first? */ 1440 old_spin = flag->set_sleeping(); 1441 #if OMP_50_ENABLED 1442 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1443 __kmp_pause_status != kmp_soft_paused) { 1444 flag->unset_sleeping(); 1445 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1446 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1447 return; 1448 } 1449 #endif 1450 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1451 " was %x\n", 1452 th_gtid, flag->get(), flag->load(), old_spin)); 1453 1454 if (flag->done_check_val(old_spin)) { 1455 old_spin = flag->unset_sleeping(); 1456 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1457 "for spin(%p)\n", 1458 th_gtid, flag->get())); 1459 } else { 1460 /* Encapsulate in a loop as the documentation states that this may 1461 "with low probability" return when the condition variable has 1462 not been signaled or broadcast */ 1463 int deactivated = FALSE; 1464 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1465 1466 while (flag->is_sleeping()) { 1467 #ifdef DEBUG_SUSPEND 1468 char buffer[128]; 1469 __kmp_suspend_count++; 1470 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1471 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1472 buffer); 1473 #endif 1474 // Mark the thread as no longer active (only in the first iteration of the 1475 // loop). 1476 if (!deactivated) { 1477 th->th.th_active = FALSE; 1478 if (th->th.th_active_in_pool) { 1479 th->th.th_active_in_pool = FALSE; 1480 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1481 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1482 } 1483 deactivated = TRUE; 1484 } 1485 1486 #if USE_SUSPEND_TIMEOUT 1487 struct timespec now; 1488 struct timeval tval; 1489 int msecs; 1490 1491 status = gettimeofday(&tval, NULL); 1492 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1493 TIMEVAL_TO_TIMESPEC(&tval, &now); 1494 1495 msecs = (4 * __kmp_dflt_blocktime) + 200; 1496 now.tv_sec += msecs / 1000; 1497 now.tv_nsec += (msecs % 1000) * 1000; 1498 1499 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1500 "pthread_cond_timedwait\n", 1501 th_gtid)); 1502 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1503 &th->th.th_suspend_mx.m_mutex, &now); 1504 #else 1505 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1506 " pthread_cond_wait\n", 1507 th_gtid)); 1508 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1509 &th->th.th_suspend_mx.m_mutex); 1510 #endif 1511 1512 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1513 KMP_SYSFAIL("pthread_cond_wait", status); 1514 } 1515 #ifdef KMP_DEBUG 1516 if (status == ETIMEDOUT) { 1517 if (flag->is_sleeping()) { 1518 KF_TRACE(100, 1519 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1520 } else { 1521 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1522 "not set!\n", 1523 th_gtid)); 1524 } 1525 } else if (flag->is_sleeping()) { 1526 KF_TRACE(100, 1527 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1528 } 1529 #endif 1530 } // while 1531 1532 // Mark the thread as active again (if it was previous marked as inactive) 1533 if (deactivated) { 1534 th->th.th_active = TRUE; 1535 if (TCR_4(th->th.th_in_pool)) { 1536 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1537 th->th.th_active_in_pool = TRUE; 1538 } 1539 } 1540 } 1541 #ifdef DEBUG_SUSPEND 1542 { 1543 char buffer[128]; 1544 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1545 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1546 buffer); 1547 } 1548 #endif 1549 1550 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1551 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1552 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1553 } 1554 1555 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 1556 __kmp_suspend_template(th_gtid, flag); 1557 } 1558 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 1559 __kmp_suspend_template(th_gtid, flag); 1560 } 1561 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1562 __kmp_suspend_template(th_gtid, flag); 1563 } 1564 1565 /* This routine signals the thread specified by target_gtid to wake up 1566 after setting the sleep bit indicated by the flag argument to FALSE. 1567 The target thread must already have called __kmp_suspend_template() */ 1568 template <class C> 1569 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1570 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1571 kmp_info_t *th = __kmp_threads[target_gtid]; 1572 int status; 1573 1574 #ifdef KMP_DEBUG 1575 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1576 #endif 1577 1578 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1579 gtid, target_gtid)); 1580 KMP_DEBUG_ASSERT(gtid != target_gtid); 1581 1582 __kmp_suspend_initialize_thread(th); 1583 1584 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1585 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1586 1587 if (!flag) { // coming from __kmp_null_resume_wrapper 1588 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1589 } 1590 1591 // First, check if the flag is null or its type has changed. If so, someone 1592 // else woke it up. 1593 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1594 // simply shows what 1595 // flag was cast to 1596 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1597 "awake: flag(%p)\n", 1598 gtid, target_gtid, NULL)); 1599 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1600 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1601 return; 1602 } else { // if multiple threads are sleeping, flag should be internally 1603 // referring to a specific thread here 1604 typename C::flag_t old_spin = flag->unset_sleeping(); 1605 if (!flag->is_sleeping_val(old_spin)) { 1606 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1607 "awake: flag(%p): " 1608 "%u => %u\n", 1609 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1610 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1611 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1612 return; 1613 } 1614 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1615 "sleep bit for flag's loc(%p): " 1616 "%u => %u\n", 1617 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1618 } 1619 TCW_PTR(th->th.th_sleep_loc, NULL); 1620 1621 #ifdef DEBUG_SUSPEND 1622 { 1623 char buffer[128]; 1624 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1625 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1626 target_gtid, buffer); 1627 } 1628 #endif 1629 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1630 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1631 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1632 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1633 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1634 " for T#%d\n", 1635 gtid, target_gtid)); 1636 } 1637 1638 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 1639 __kmp_resume_template(target_gtid, flag); 1640 } 1641 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 1642 __kmp_resume_template(target_gtid, flag); 1643 } 1644 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1645 __kmp_resume_template(target_gtid, flag); 1646 } 1647 1648 #if KMP_USE_MONITOR 1649 void __kmp_resume_monitor() { 1650 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1651 int status; 1652 #ifdef KMP_DEBUG 1653 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1654 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1655 KMP_GTID_MONITOR)); 1656 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1657 #endif 1658 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1659 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1660 #ifdef DEBUG_SUSPEND 1661 { 1662 char buffer[128]; 1663 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1664 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1665 KMP_GTID_MONITOR, buffer); 1666 } 1667 #endif 1668 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1669 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1670 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1671 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1672 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1673 " for T#%d\n", 1674 gtid, KMP_GTID_MONITOR)); 1675 } 1676 #endif // KMP_USE_MONITOR 1677 1678 void __kmp_yield() { sched_yield(); } 1679 1680 void __kmp_gtid_set_specific(int gtid) { 1681 if (__kmp_init_gtid) { 1682 int status; 1683 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1684 (void *)(intptr_t)(gtid + 1)); 1685 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1686 } else { 1687 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1688 } 1689 } 1690 1691 int __kmp_gtid_get_specific() { 1692 int gtid; 1693 if (!__kmp_init_gtid) { 1694 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1695 "KMP_GTID_SHUTDOWN\n")); 1696 return KMP_GTID_SHUTDOWN; 1697 } 1698 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1699 if (gtid == 0) { 1700 gtid = KMP_GTID_DNE; 1701 } else { 1702 gtid--; 1703 } 1704 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1705 __kmp_gtid_threadprivate_key, gtid)); 1706 return gtid; 1707 } 1708 1709 double __kmp_read_cpu_time(void) { 1710 /*clock_t t;*/ 1711 struct tms buffer; 1712 1713 /*t =*/times(&buffer); 1714 1715 return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC; 1716 } 1717 1718 int __kmp_read_system_info(struct kmp_sys_info *info) { 1719 int status; 1720 struct rusage r_usage; 1721 1722 memset(info, 0, sizeof(*info)); 1723 1724 status = getrusage(RUSAGE_SELF, &r_usage); 1725 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1726 1727 // The maximum resident set size utilized (in kilobytes) 1728 info->maxrss = r_usage.ru_maxrss; 1729 // The number of page faults serviced without any I/O 1730 info->minflt = r_usage.ru_minflt; 1731 // The number of page faults serviced that required I/O 1732 info->majflt = r_usage.ru_majflt; 1733 // The number of times a process was "swapped" out of memory 1734 info->nswap = r_usage.ru_nswap; 1735 // The number of times the file system had to perform input 1736 info->inblock = r_usage.ru_inblock; 1737 // The number of times the file system had to perform output 1738 info->oublock = r_usage.ru_oublock; 1739 // The number of times a context switch was voluntarily 1740 info->nvcsw = r_usage.ru_nvcsw; 1741 // The number of times a context switch was forced 1742 info->nivcsw = r_usage.ru_nivcsw; 1743 1744 return (status != 0); 1745 } 1746 1747 void __kmp_read_system_time(double *delta) { 1748 double t_ns; 1749 struct timeval tval; 1750 struct timespec stop; 1751 int status; 1752 1753 status = gettimeofday(&tval, NULL); 1754 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1755 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1756 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start); 1757 *delta = (t_ns * 1e-9); 1758 } 1759 1760 void __kmp_clear_system_time(void) { 1761 struct timeval tval; 1762 int status; 1763 status = gettimeofday(&tval, NULL); 1764 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1765 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1766 } 1767 1768 static int __kmp_get_xproc(void) { 1769 1770 int r = 0; 1771 1772 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 1773 KMP_OS_OPENBSD || KMP_OS_HURD 1774 1775 r = sysconf(_SC_NPROCESSORS_ONLN); 1776 1777 #elif KMP_OS_DARWIN 1778 1779 // Bug C77011 High "OpenMP Threads and number of active cores". 1780 1781 // Find the number of available CPUs. 1782 kern_return_t rc; 1783 host_basic_info_data_t info; 1784 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1785 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1786 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1787 // Cannot use KA_TRACE() here because this code works before trace support 1788 // is initialized. 1789 r = info.avail_cpus; 1790 } else { 1791 KMP_WARNING(CantGetNumAvailCPU); 1792 KMP_INFORM(AssumedNumCPU); 1793 } 1794 1795 #else 1796 1797 #error "Unknown or unsupported OS." 1798 1799 #endif 1800 1801 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1802 1803 } // __kmp_get_xproc 1804 1805 int __kmp_read_from_file(char const *path, char const *format, ...) { 1806 int result; 1807 va_list args; 1808 1809 va_start(args, format); 1810 FILE *f = fopen(path, "rb"); 1811 if (f == NULL) 1812 return 0; 1813 result = vfscanf(f, format, args); 1814 fclose(f); 1815 1816 return result; 1817 } 1818 1819 void __kmp_runtime_initialize(void) { 1820 int status; 1821 pthread_mutexattr_t mutex_attr; 1822 pthread_condattr_t cond_attr; 1823 1824 if (__kmp_init_runtime) { 1825 return; 1826 } 1827 1828 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1829 if (!__kmp_cpuinfo.initialized) { 1830 __kmp_query_cpuid(&__kmp_cpuinfo); 1831 } 1832 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1833 1834 __kmp_xproc = __kmp_get_xproc(); 1835 1836 #if ! KMP_32_BIT_ARCH 1837 struct rlimit rlim; 1838 // read stack size of calling thread, save it as default for worker threads; 1839 // this should be done before reading environment variables 1840 status = getrlimit(RLIMIT_STACK, &rlim); 1841 if (status == 0) { // success? 1842 __kmp_stksize = rlim.rlim_cur; 1843 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1844 } 1845 #endif /* KMP_32_BIT_ARCH */ 1846 1847 if (sysconf(_SC_THREADS)) { 1848 1849 /* Query the maximum number of threads */ 1850 __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX); 1851 if (__kmp_sys_max_nth == -1) { 1852 /* Unlimited threads for NPTL */ 1853 __kmp_sys_max_nth = INT_MAX; 1854 } else if (__kmp_sys_max_nth <= 1) { 1855 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1856 __kmp_sys_max_nth = KMP_MAX_NTH; 1857 } 1858 1859 /* Query the minimum stack size */ 1860 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1861 if (__kmp_sys_min_stksize <= 1) { 1862 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1863 } 1864 } 1865 1866 /* Set up minimum number of threads to switch to TLS gtid */ 1867 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1868 1869 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1870 __kmp_internal_end_dest); 1871 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1872 status = pthread_mutexattr_init(&mutex_attr); 1873 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1874 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1875 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1876 status = pthread_condattr_init(&cond_attr); 1877 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1878 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1879 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1880 #if USE_ITT_BUILD 1881 __kmp_itt_initialize(); 1882 #endif /* USE_ITT_BUILD */ 1883 1884 __kmp_init_runtime = TRUE; 1885 } 1886 1887 void __kmp_runtime_destroy(void) { 1888 int status; 1889 1890 if (!__kmp_init_runtime) { 1891 return; // Nothing to do. 1892 } 1893 1894 #if USE_ITT_BUILD 1895 __kmp_itt_destroy(); 1896 #endif /* USE_ITT_BUILD */ 1897 1898 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1899 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1900 1901 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1902 if (status != 0 && status != EBUSY) { 1903 KMP_SYSFAIL("pthread_mutex_destroy", status); 1904 } 1905 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1906 if (status != 0 && status != EBUSY) { 1907 KMP_SYSFAIL("pthread_cond_destroy", status); 1908 } 1909 #if KMP_AFFINITY_SUPPORTED 1910 __kmp_affinity_uninitialize(); 1911 #endif 1912 1913 __kmp_init_runtime = FALSE; 1914 } 1915 1916 /* Put the thread to sleep for a time period */ 1917 /* NOTE: not currently used anywhere */ 1918 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1919 1920 /* Calculate the elapsed wall clock time for the user */ 1921 void __kmp_elapsed(double *t) { 1922 int status; 1923 #ifdef FIX_SGI_CLOCK 1924 struct timespec ts; 1925 1926 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1927 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1928 *t = 1929 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1930 #else 1931 struct timeval tv; 1932 1933 status = gettimeofday(&tv, NULL); 1934 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1935 *t = 1936 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1937 #endif 1938 } 1939 1940 /* Calculate the elapsed wall clock tick for the user */ 1941 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1942 1943 /* Return the current time stamp in nsec */ 1944 kmp_uint64 __kmp_now_nsec() { 1945 struct timeval t; 1946 gettimeofday(&t, NULL); 1947 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 1948 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 1949 return nsec; 1950 } 1951 1952 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1953 /* Measure clock ticks per millisecond */ 1954 void __kmp_initialize_system_tick() { 1955 kmp_uint64 now, nsec2, diff; 1956 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1957 kmp_uint64 nsec = __kmp_now_nsec(); 1958 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1959 while ((now = __kmp_hardware_timestamp()) < goal) 1960 ; 1961 nsec2 = __kmp_now_nsec(); 1962 diff = nsec2 - nsec; 1963 if (diff > 0) { 1964 kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff); 1965 if (tpms > 0) 1966 __kmp_ticks_per_msec = tpms; 1967 } 1968 } 1969 #endif 1970 1971 /* Determine whether the given address is mapped into the current address 1972 space. */ 1973 1974 int __kmp_is_address_mapped(void *addr) { 1975 1976 int found = 0; 1977 int rc; 1978 1979 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_HURD 1980 1981 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address 1982 ranges mapped into the address space. */ 1983 1984 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 1985 FILE *file = NULL; 1986 1987 file = fopen(name, "r"); 1988 KMP_ASSERT(file != NULL); 1989 1990 for (;;) { 1991 1992 void *beginning = NULL; 1993 void *ending = NULL; 1994 char perms[5]; 1995 1996 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 1997 if (rc == EOF) { 1998 break; 1999 } 2000 KMP_ASSERT(rc == 3 && 2001 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2002 2003 // Ending address is not included in the region, but beginning is. 2004 if ((addr >= beginning) && (addr < ending)) { 2005 perms[2] = 0; // 3th and 4th character does not matter. 2006 if (strcmp(perms, "rw") == 0) { 2007 // Memory we are looking for should be readable and writable. 2008 found = 1; 2009 } 2010 break; 2011 } 2012 } 2013 2014 // Free resources. 2015 fclose(file); 2016 KMP_INTERNAL_FREE(name); 2017 2018 #elif KMP_OS_DARWIN 2019 2020 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2021 using vm interface. */ 2022 2023 int buffer; 2024 vm_size_t count; 2025 rc = vm_read_overwrite( 2026 mach_task_self(), // Task to read memory of. 2027 (vm_address_t)(addr), // Address to read from. 2028 1, // Number of bytes to be read. 2029 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2030 &count // Address of var to save number of read bytes in. 2031 ); 2032 if (rc == 0) { 2033 // Memory successfully read. 2034 found = 1; 2035 } 2036 2037 #elif KMP_OS_NETBSD 2038 2039 int mib[5]; 2040 mib[0] = CTL_VM; 2041 mib[1] = VM_PROC; 2042 mib[2] = VM_PROC_MAP; 2043 mib[3] = getpid(); 2044 mib[4] = sizeof(struct kinfo_vmentry); 2045 2046 size_t size; 2047 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2048 KMP_ASSERT(!rc); 2049 KMP_ASSERT(size); 2050 2051 size = size * 4 / 3; 2052 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2053 KMP_ASSERT(kiv); 2054 2055 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2056 KMP_ASSERT(!rc); 2057 KMP_ASSERT(size); 2058 2059 for (size_t i = 0; i < size; i++) { 2060 if (kiv[i].kve_start >= (uint64_t)addr && 2061 kiv[i].kve_end <= (uint64_t)addr) { 2062 found = 1; 2063 break; 2064 } 2065 } 2066 KMP_INTERNAL_FREE(kiv); 2067 #elif KMP_OS_DRAGONFLY || KMP_OS_OPENBSD 2068 2069 // FIXME(DragonFly, OpenBSD): Implement this 2070 found = 1; 2071 2072 #else 2073 2074 #error "Unknown or unsupported OS" 2075 2076 #endif 2077 2078 return found; 2079 2080 } // __kmp_is_address_mapped 2081 2082 #ifdef USE_LOAD_BALANCE 2083 2084 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2085 2086 // The function returns the rounded value of the system load average 2087 // during given time interval which depends on the value of 2088 // __kmp_load_balance_interval variable (default is 60 sec, other values 2089 // may be 300 sec or 900 sec). 2090 // It returns -1 in case of error. 2091 int __kmp_get_load_balance(int max) { 2092 double averages[3]; 2093 int ret_avg = 0; 2094 2095 int res = getloadavg(averages, 3); 2096 2097 // Check __kmp_load_balance_interval to determine which of averages to use. 2098 // getloadavg() may return the number of samples less than requested that is 2099 // less than 3. 2100 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2101 ret_avg = averages[0]; // 1 min 2102 } else if ((__kmp_load_balance_interval >= 180 && 2103 __kmp_load_balance_interval < 600) && 2104 (res >= 2)) { 2105 ret_avg = averages[1]; // 5 min 2106 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2107 ret_avg = averages[2]; // 15 min 2108 } else { // Error occurred 2109 return -1; 2110 } 2111 2112 return ret_avg; 2113 } 2114 2115 #else // Linux* OS 2116 2117 // The fuction returns number of running (not sleeping) threads, or -1 in case 2118 // of error. Error could be reported if Linux* OS kernel too old (without 2119 // "/proc" support). Counting running threads stops if max running threads 2120 // encountered. 2121 int __kmp_get_load_balance(int max) { 2122 static int permanent_error = 0; 2123 static int glb_running_threads = 0; // Saved count of the running threads for 2124 // the thread balance algortihm 2125 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2126 2127 int running_threads = 0; // Number of running threads in the system. 2128 2129 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2130 struct dirent *proc_entry = NULL; 2131 2132 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2133 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2134 struct dirent *task_entry = NULL; 2135 int task_path_fixed_len; 2136 2137 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2138 int stat_file = -1; 2139 int stat_path_fixed_len; 2140 2141 int total_processes = 0; // Total number of processes in system. 2142 int total_threads = 0; // Total number of threads in system. 2143 2144 double call_time = 0.0; 2145 2146 __kmp_str_buf_init(&task_path); 2147 __kmp_str_buf_init(&stat_path); 2148 2149 __kmp_elapsed(&call_time); 2150 2151 if (glb_call_time && 2152 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2153 running_threads = glb_running_threads; 2154 goto finish; 2155 } 2156 2157 glb_call_time = call_time; 2158 2159 // Do not spend time on scanning "/proc/" if we have a permanent error. 2160 if (permanent_error) { 2161 running_threads = -1; 2162 goto finish; 2163 } 2164 2165 if (max <= 0) { 2166 max = INT_MAX; 2167 } 2168 2169 // Open "/proc/" directory. 2170 proc_dir = opendir("/proc"); 2171 if (proc_dir == NULL) { 2172 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2173 // error now and in subsequent calls. 2174 running_threads = -1; 2175 permanent_error = 1; 2176 goto finish; 2177 } 2178 2179 // Initialize fixed part of task_path. This part will not change. 2180 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2181 task_path_fixed_len = task_path.used; // Remember number of used characters. 2182 2183 proc_entry = readdir(proc_dir); 2184 while (proc_entry != NULL) { 2185 // Proc entry is a directory and name starts with a digit. Assume it is a 2186 // process' directory. 2187 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2188 2189 ++total_processes; 2190 // Make sure init process is the very first in "/proc", so we can replace 2191 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2192 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2193 // true (where "=>" is implication). Since C++ does not have => operator, 2194 // let us replace it with its equivalent: a => b == ! a || b. 2195 KMP_DEBUG_ASSERT(total_processes != 1 || 2196 strcmp(proc_entry->d_name, "1") == 0); 2197 2198 // Construct task_path. 2199 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2200 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2201 KMP_STRLEN(proc_entry->d_name)); 2202 __kmp_str_buf_cat(&task_path, "/task", 5); 2203 2204 task_dir = opendir(task_path.str); 2205 if (task_dir == NULL) { 2206 // Process can finish between reading "/proc/" directory entry and 2207 // opening process' "task/" directory. So, in general case we should not 2208 // complain, but have to skip this process and read the next one. But on 2209 // systems with no "task/" support we will spend lot of time to scan 2210 // "/proc/" tree again and again without any benefit. "init" process 2211 // (its pid is 1) should exist always, so, if we cannot open 2212 // "/proc/1/task/" directory, it means "task/" is not supported by 2213 // kernel. Report an error now and in the future. 2214 if (strcmp(proc_entry->d_name, "1") == 0) { 2215 running_threads = -1; 2216 permanent_error = 1; 2217 goto finish; 2218 } 2219 } else { 2220 // Construct fixed part of stat file path. 2221 __kmp_str_buf_clear(&stat_path); 2222 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2223 __kmp_str_buf_cat(&stat_path, "/", 1); 2224 stat_path_fixed_len = stat_path.used; 2225 2226 task_entry = readdir(task_dir); 2227 while (task_entry != NULL) { 2228 // It is a directory and name starts with a digit. 2229 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2230 ++total_threads; 2231 2232 // Consruct complete stat file path. Easiest way would be: 2233 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2234 // task_entry->d_name ); 2235 // but seriae of __kmp_str_buf_cat works a bit faster. 2236 stat_path.used = 2237 stat_path_fixed_len; // Reset stat path to its fixed part. 2238 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2239 KMP_STRLEN(task_entry->d_name)); 2240 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2241 2242 // Note: Low-level API (open/read/close) is used. High-level API 2243 // (fopen/fclose) works ~ 30 % slower. 2244 stat_file = open(stat_path.str, O_RDONLY); 2245 if (stat_file == -1) { 2246 // We cannot report an error because task (thread) can terminate 2247 // just before reading this file. 2248 } else { 2249 /* Content of "stat" file looks like: 2250 24285 (program) S ... 2251 2252 It is a single line (if program name does not include funny 2253 symbols). First number is a thread id, then name of executable 2254 file name in paretheses, then state of the thread. We need just 2255 thread state. 2256 2257 Good news: Length of program name is 15 characters max. Longer 2258 names are truncated. 2259 2260 Thus, we need rather short buffer: 15 chars for program name + 2261 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2262 2263 Bad news: Program name may contain special symbols like space, 2264 closing parenthesis, or even new line. This makes parsing 2265 "stat" file not 100 % reliable. In case of fanny program names 2266 parsing may fail (report incorrect thread state). 2267 2268 Parsing "status" file looks more promissing (due to different 2269 file structure and escaping special symbols) but reading and 2270 parsing of "status" file works slower. 2271 -- ln 2272 */ 2273 char buffer[65]; 2274 int len; 2275 len = read(stat_file, buffer, sizeof(buffer) - 1); 2276 if (len >= 0) { 2277 buffer[len] = 0; 2278 // Using scanf: 2279 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2280 // looks very nice, but searching for a closing parenthesis 2281 // works a bit faster. 2282 char *close_parent = strstr(buffer, ") "); 2283 if (close_parent != NULL) { 2284 char state = *(close_parent + 2); 2285 if (state == 'R') { 2286 ++running_threads; 2287 if (running_threads >= max) { 2288 goto finish; 2289 } 2290 } 2291 } 2292 } 2293 close(stat_file); 2294 stat_file = -1; 2295 } 2296 } 2297 task_entry = readdir(task_dir); 2298 } 2299 closedir(task_dir); 2300 task_dir = NULL; 2301 } 2302 } 2303 proc_entry = readdir(proc_dir); 2304 } 2305 2306 // There _might_ be a timing hole where the thread executing this 2307 // code get skipped in the load balance, and running_threads is 0. 2308 // Assert in the debug builds only!!! 2309 KMP_DEBUG_ASSERT(running_threads > 0); 2310 if (running_threads <= 0) { 2311 running_threads = 1; 2312 } 2313 2314 finish: // Clean up and exit. 2315 if (proc_dir != NULL) { 2316 closedir(proc_dir); 2317 } 2318 __kmp_str_buf_free(&task_path); 2319 if (task_dir != NULL) { 2320 closedir(task_dir); 2321 } 2322 __kmp_str_buf_free(&stat_path); 2323 if (stat_file != -1) { 2324 close(stat_file); 2325 } 2326 2327 glb_running_threads = running_threads; 2328 2329 return running_threads; 2330 2331 } // __kmp_get_load_balance 2332 2333 #endif // KMP_OS_DARWIN 2334 2335 #endif // USE_LOAD_BALANCE 2336 2337 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2338 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64) 2339 2340 // we really only need the case with 1 argument, because CLANG always build 2341 // a struct of pointers to shared variables referenced in the outlined function 2342 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2343 void *p_argv[] 2344 #if OMPT_SUPPORT 2345 , 2346 void **exit_frame_ptr 2347 #endif 2348 ) { 2349 #if OMPT_SUPPORT 2350 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2351 #endif 2352 2353 switch (argc) { 2354 default: 2355 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2356 fflush(stderr); 2357 exit(-1); 2358 case 0: 2359 (*pkfn)(>id, &tid); 2360 break; 2361 case 1: 2362 (*pkfn)(>id, &tid, p_argv[0]); 2363 break; 2364 case 2: 2365 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2366 break; 2367 case 3: 2368 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2369 break; 2370 case 4: 2371 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2372 break; 2373 case 5: 2374 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2375 break; 2376 case 6: 2377 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2378 p_argv[5]); 2379 break; 2380 case 7: 2381 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2382 p_argv[5], p_argv[6]); 2383 break; 2384 case 8: 2385 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2386 p_argv[5], p_argv[6], p_argv[7]); 2387 break; 2388 case 9: 2389 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2390 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2391 break; 2392 case 10: 2393 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2394 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2395 break; 2396 case 11: 2397 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2398 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2399 break; 2400 case 12: 2401 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2402 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2403 p_argv[11]); 2404 break; 2405 case 13: 2406 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2407 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2408 p_argv[11], p_argv[12]); 2409 break; 2410 case 14: 2411 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2412 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2413 p_argv[11], p_argv[12], p_argv[13]); 2414 break; 2415 case 15: 2416 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2417 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2418 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2419 break; 2420 } 2421 2422 #if OMPT_SUPPORT 2423 *exit_frame_ptr = 0; 2424 #endif 2425 2426 return 1; 2427 } 2428 2429 #endif 2430 2431 // end of file // 2432