1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #include <semaphore.h> 29 #include <sys/resource.h> 30 #include <sys/syscall.h> 31 #include <sys/time.h> 32 #include <sys/times.h> 33 #include <unistd.h> 34 35 #if KMP_OS_LINUX 36 #include <sys/sysinfo.h> 37 #if KMP_USE_FUTEX 38 // We should really include <futex.h>, but that causes compatibility problems on 39 // different Linux* OS distributions that either require that you include (or 40 // break when you try to include) <pci/types.h>. Since all we need is the two 41 // macros below (which are part of the kernel ABI, so can't change) we just 42 // define the constants here and don't include <futex.h> 43 #ifndef FUTEX_WAIT 44 #define FUTEX_WAIT 0 45 #endif 46 #ifndef FUTEX_WAKE 47 #define FUTEX_WAKE 1 48 #endif 49 #endif 50 #elif KMP_OS_DARWIN 51 #include <mach/mach.h> 52 #include <sys/sysctl.h> 53 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 54 #include <sys/types.h> 55 #include <sys/sysctl.h> 56 #include <sys/user.h> 57 #include <pthread_np.h> 58 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 59 #include <sys/types.h> 60 #include <sys/sysctl.h> 61 #endif 62 63 #include <ctype.h> 64 #include <dirent.h> 65 #include <fcntl.h> 66 67 #include "tsan_annotations.h" 68 69 struct kmp_sys_timer { 70 struct timespec start; 71 }; 72 73 // Convert timespec to nanoseconds. 74 #define TS2NS(timespec) \ 75 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec) 76 77 static struct kmp_sys_timer __kmp_sys_timer_data; 78 79 #if KMP_HANDLE_SIGNALS 80 typedef void (*sig_func_t)(int); 81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 82 static sigset_t __kmp_sigset; 83 #endif 84 85 static int __kmp_init_runtime = FALSE; 86 87 static int __kmp_fork_count = 0; 88 89 static pthread_condattr_t __kmp_suspend_cond_attr; 90 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 91 92 static kmp_cond_align_t __kmp_wait_cv; 93 static kmp_mutex_align_t __kmp_wait_mx; 94 95 kmp_uint64 __kmp_ticks_per_msec = 1000000; 96 97 #ifdef DEBUG_SUSPEND 98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 99 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 100 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 101 cond->c_cond.__c_waiting); 102 } 103 #endif 104 105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 106 107 /* Affinity support */ 108 109 void __kmp_affinity_bind_thread(int which) { 110 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 111 "Illegal set affinity operation when not capable"); 112 113 kmp_affin_mask_t *mask; 114 KMP_CPU_ALLOC_ON_STACK(mask); 115 KMP_CPU_ZERO(mask); 116 KMP_CPU_SET(which, mask); 117 __kmp_set_system_affinity(mask, TRUE); 118 KMP_CPU_FREE_FROM_STACK(mask); 119 } 120 121 /* Determine if we can access affinity functionality on this version of 122 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 123 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 124 void __kmp_affinity_determine_capable(const char *env_var) { 125 // Check and see if the OS supports thread affinity. 126 127 #if KMP_OS_LINUX 128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 129 #elif KMP_OS_FREEBSD 130 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 131 #endif 132 133 #if KMP_OS_LINUX 134 // If Linux* OS: 135 // If the syscall fails or returns a suggestion for the size, 136 // then we don't have to search for an appropriate size. 137 long gCode; 138 long sCode; 139 unsigned char *buf; 140 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 141 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 142 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 143 "initial getaffinity call returned %ld errno = %d\n", 144 gCode, errno)); 145 146 // if ((gCode < 0) && (errno == ENOSYS)) 147 if (gCode < 0) { 148 // System call not supported 149 if (__kmp_affinity_verbose || 150 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 151 (__kmp_affinity_type != affinity_default) && 152 (__kmp_affinity_type != affinity_disabled))) { 153 int error = errno; 154 kmp_msg_t err_code = KMP_ERR(error); 155 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 156 err_code, __kmp_msg_null); 157 if (__kmp_generate_warnings == kmp_warnings_off) { 158 __kmp_str_free(&err_code.str); 159 } 160 } 161 KMP_AFFINITY_DISABLE(); 162 KMP_INTERNAL_FREE(buf); 163 return; 164 } 165 if (gCode > 0) { // Linux* OS only 166 // The optimal situation: the OS returns the size of the buffer it expects. 167 // 168 // A verification of correct behavior is that setaffinity on a NULL 169 // buffer with the same size fails with errno set to EFAULT. 170 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 171 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 172 "setaffinity for mask size %ld returned %ld errno = %d\n", 173 gCode, sCode, errno)); 174 if (sCode < 0) { 175 if (errno == ENOSYS) { 176 if (__kmp_affinity_verbose || 177 (__kmp_affinity_warnings && 178 (__kmp_affinity_type != affinity_none) && 179 (__kmp_affinity_type != affinity_default) && 180 (__kmp_affinity_type != affinity_disabled))) { 181 int error = errno; 182 kmp_msg_t err_code = KMP_ERR(error); 183 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 184 err_code, __kmp_msg_null); 185 if (__kmp_generate_warnings == kmp_warnings_off) { 186 __kmp_str_free(&err_code.str); 187 } 188 } 189 KMP_AFFINITY_DISABLE(); 190 KMP_INTERNAL_FREE(buf); 191 } 192 if (errno == EFAULT) { 193 KMP_AFFINITY_ENABLE(gCode); 194 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 195 "affinity supported (mask size %d)\n", 196 (int)__kmp_affin_mask_size)); 197 KMP_INTERNAL_FREE(buf); 198 return; 199 } 200 } 201 } 202 203 // Call the getaffinity system call repeatedly with increasing set sizes 204 // until we succeed, or reach an upper bound on the search. 205 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 206 "searching for proper set size\n")); 207 int size; 208 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 209 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 210 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 211 "getaffinity for mask size %ld returned %ld errno = %d\n", 212 size, gCode, errno)); 213 214 if (gCode < 0) { 215 if (errno == ENOSYS) { 216 // We shouldn't get here 217 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 218 "inconsistent OS call behavior: errno == ENOSYS for mask " 219 "size %d\n", 220 size)); 221 if (__kmp_affinity_verbose || 222 (__kmp_affinity_warnings && 223 (__kmp_affinity_type != affinity_none) && 224 (__kmp_affinity_type != affinity_default) && 225 (__kmp_affinity_type != affinity_disabled))) { 226 int error = errno; 227 kmp_msg_t err_code = KMP_ERR(error); 228 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 229 err_code, __kmp_msg_null); 230 if (__kmp_generate_warnings == kmp_warnings_off) { 231 __kmp_str_free(&err_code.str); 232 } 233 } 234 KMP_AFFINITY_DISABLE(); 235 KMP_INTERNAL_FREE(buf); 236 return; 237 } 238 continue; 239 } 240 241 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 242 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 243 "setaffinity for mask size %ld returned %ld errno = %d\n", 244 gCode, sCode, errno)); 245 if (sCode < 0) { 246 if (errno == ENOSYS) { // Linux* OS only 247 // We shouldn't get here 248 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 249 "inconsistent OS call behavior: errno == ENOSYS for mask " 250 "size %d\n", 251 size)); 252 if (__kmp_affinity_verbose || 253 (__kmp_affinity_warnings && 254 (__kmp_affinity_type != affinity_none) && 255 (__kmp_affinity_type != affinity_default) && 256 (__kmp_affinity_type != affinity_disabled))) { 257 int error = errno; 258 kmp_msg_t err_code = KMP_ERR(error); 259 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 260 err_code, __kmp_msg_null); 261 if (__kmp_generate_warnings == kmp_warnings_off) { 262 __kmp_str_free(&err_code.str); 263 } 264 } 265 KMP_AFFINITY_DISABLE(); 266 KMP_INTERNAL_FREE(buf); 267 return; 268 } 269 if (errno == EFAULT) { 270 KMP_AFFINITY_ENABLE(gCode); 271 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 272 "affinity supported (mask size %d)\n", 273 (int)__kmp_affin_mask_size)); 274 KMP_INTERNAL_FREE(buf); 275 return; 276 } 277 } 278 } 279 #elif KMP_OS_FREEBSD 280 long gCode; 281 unsigned char *buf; 282 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 283 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, 284 reinterpret_cast<cpuset_t *>(buf)); 285 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 286 "initial getaffinity call returned %d errno = %d\n", 287 gCode, errno)); 288 if (gCode == 0) { 289 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 290 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 291 "affinity supported (mask size %d)\n", 292 (int)__kmp_affin_mask_size)); 293 KMP_INTERNAL_FREE(buf); 294 return; 295 } 296 #endif 297 // save uncaught error code 298 // int error = errno; 299 KMP_INTERNAL_FREE(buf); 300 // restore uncaught error code, will be printed at the next KMP_WARNING below 301 // errno = error; 302 303 // Affinity is not supported 304 KMP_AFFINITY_DISABLE(); 305 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 306 "cannot determine mask size - affinity not supported\n")); 307 if (__kmp_affinity_verbose || 308 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 309 (__kmp_affinity_type != affinity_default) && 310 (__kmp_affinity_type != affinity_disabled))) { 311 KMP_WARNING(AffCantGetMaskSize, env_var); 312 } 313 } 314 315 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 316 317 #if KMP_USE_FUTEX 318 319 int __kmp_futex_determine_capable() { 320 int loc = 0; 321 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 322 int retval = (rc == 0) || (errno != ENOSYS); 323 324 KA_TRACE(10, 325 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 326 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 327 retval ? "" : " not")); 328 329 return retval; 330 } 331 332 #endif // KMP_USE_FUTEX 333 334 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 335 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 336 use compare_and_store for these routines */ 337 338 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 339 kmp_int8 old_value, new_value; 340 341 old_value = TCR_1(*p); 342 new_value = old_value | d; 343 344 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 345 KMP_CPU_PAUSE(); 346 old_value = TCR_1(*p); 347 new_value = old_value | d; 348 } 349 return old_value; 350 } 351 352 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 353 kmp_int8 old_value, new_value; 354 355 old_value = TCR_1(*p); 356 new_value = old_value & d; 357 358 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 359 KMP_CPU_PAUSE(); 360 old_value = TCR_1(*p); 361 new_value = old_value & d; 362 } 363 return old_value; 364 } 365 366 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 367 kmp_uint32 old_value, new_value; 368 369 old_value = TCR_4(*p); 370 new_value = old_value | d; 371 372 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 373 KMP_CPU_PAUSE(); 374 old_value = TCR_4(*p); 375 new_value = old_value | d; 376 } 377 return old_value; 378 } 379 380 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 381 kmp_uint32 old_value, new_value; 382 383 old_value = TCR_4(*p); 384 new_value = old_value & d; 385 386 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 387 KMP_CPU_PAUSE(); 388 old_value = TCR_4(*p); 389 new_value = old_value & d; 390 } 391 return old_value; 392 } 393 394 #if KMP_ARCH_X86 395 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 396 kmp_int8 old_value, new_value; 397 398 old_value = TCR_1(*p); 399 new_value = old_value + d; 400 401 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 402 KMP_CPU_PAUSE(); 403 old_value = TCR_1(*p); 404 new_value = old_value + d; 405 } 406 return old_value; 407 } 408 409 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 410 kmp_int64 old_value, new_value; 411 412 old_value = TCR_8(*p); 413 new_value = old_value + d; 414 415 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 416 KMP_CPU_PAUSE(); 417 old_value = TCR_8(*p); 418 new_value = old_value + d; 419 } 420 return old_value; 421 } 422 #endif /* KMP_ARCH_X86 */ 423 424 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 425 kmp_uint64 old_value, new_value; 426 427 old_value = TCR_8(*p); 428 new_value = old_value | d; 429 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 430 KMP_CPU_PAUSE(); 431 old_value = TCR_8(*p); 432 new_value = old_value | d; 433 } 434 return old_value; 435 } 436 437 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 438 kmp_uint64 old_value, new_value; 439 440 old_value = TCR_8(*p); 441 new_value = old_value & d; 442 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 443 KMP_CPU_PAUSE(); 444 old_value = TCR_8(*p); 445 new_value = old_value & d; 446 } 447 return old_value; 448 } 449 450 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 451 452 void __kmp_terminate_thread(int gtid) { 453 int status; 454 kmp_info_t *th = __kmp_threads[gtid]; 455 456 if (!th) 457 return; 458 459 #ifdef KMP_CANCEL_THREADS 460 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 461 status = pthread_cancel(th->th.th_info.ds.ds_thread); 462 if (status != 0 && status != ESRCH) { 463 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 464 __kmp_msg_null); 465 } 466 #endif 467 KMP_YIELD(TRUE); 468 } // 469 470 /* Set thread stack info according to values returned by pthread_getattr_np(). 471 If values are unreasonable, assume call failed and use incremental stack 472 refinement method instead. Returns TRUE if the stack parameters could be 473 determined exactly, FALSE if incremental refinement is necessary. */ 474 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 475 int stack_data; 476 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 477 KMP_OS_HURD 478 pthread_attr_t attr; 479 int status; 480 size_t size = 0; 481 void *addr = 0; 482 483 /* Always do incremental stack refinement for ubermaster threads since the 484 initial thread stack range can be reduced by sibling thread creation so 485 pthread_attr_getstack may cause thread gtid aliasing */ 486 if (!KMP_UBER_GTID(gtid)) { 487 488 /* Fetch the real thread attributes */ 489 status = pthread_attr_init(&attr); 490 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 491 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 492 status = pthread_attr_get_np(pthread_self(), &attr); 493 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 494 #else 495 status = pthread_getattr_np(pthread_self(), &attr); 496 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 497 #endif 498 status = pthread_attr_getstack(&attr, &addr, &size); 499 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 500 KA_TRACE(60, 501 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 502 " %lu, low addr: %p\n", 503 gtid, size, addr)); 504 status = pthread_attr_destroy(&attr); 505 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 506 } 507 508 if (size != 0 && addr != 0) { // was stack parameter determination successful? 509 /* Store the correct base and size */ 510 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 511 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 512 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 513 return TRUE; 514 } 515 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \ 516 || KMP_OS_HURD */ 517 /* Use incremental refinement starting from initial conservative estimate */ 518 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 519 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 520 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 521 return FALSE; 522 } 523 524 static void *__kmp_launch_worker(void *thr) { 525 int status, old_type, old_state; 526 #ifdef KMP_BLOCK_SIGNALS 527 sigset_t new_set, old_set; 528 #endif /* KMP_BLOCK_SIGNALS */ 529 void *exit_val; 530 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 531 KMP_OS_OPENBSD || KMP_OS_HURD 532 void *volatile padding = 0; 533 #endif 534 int gtid; 535 536 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 537 __kmp_gtid_set_specific(gtid); 538 #ifdef KMP_TDATA_GTID 539 __kmp_gtid = gtid; 540 #endif 541 #if KMP_STATS_ENABLED 542 // set thread local index to point to thread-specific stats 543 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 544 __kmp_stats_thread_ptr->startLife(); 545 KMP_SET_THREAD_STATE(IDLE); 546 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 547 #endif 548 549 #if USE_ITT_BUILD 550 __kmp_itt_thread_name(gtid); 551 #endif /* USE_ITT_BUILD */ 552 553 #if KMP_AFFINITY_SUPPORTED 554 __kmp_affinity_set_init_mask(gtid, FALSE); 555 #endif 556 557 #ifdef KMP_CANCEL_THREADS 558 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 559 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 560 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 561 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 562 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 563 #endif 564 565 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 566 // Set FP control regs to be a copy of the parallel initialization thread's. 567 __kmp_clear_x87_fpu_status_word(); 568 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 569 __kmp_load_mxcsr(&__kmp_init_mxcsr); 570 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 571 572 #ifdef KMP_BLOCK_SIGNALS 573 status = sigfillset(&new_set); 574 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 575 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 576 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 577 #endif /* KMP_BLOCK_SIGNALS */ 578 579 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 580 KMP_OS_OPENBSD 581 if (__kmp_stkoffset > 0 && gtid > 0) { 582 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 583 } 584 #endif 585 586 KMP_MB(); 587 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 588 589 __kmp_check_stack_overlap((kmp_info_t *)thr); 590 591 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 592 593 #ifdef KMP_BLOCK_SIGNALS 594 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 595 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 596 #endif /* KMP_BLOCK_SIGNALS */ 597 598 return exit_val; 599 } 600 601 #if KMP_USE_MONITOR 602 /* The monitor thread controls all of the threads in the complex */ 603 604 static void *__kmp_launch_monitor(void *thr) { 605 int status, old_type, old_state; 606 #ifdef KMP_BLOCK_SIGNALS 607 sigset_t new_set; 608 #endif /* KMP_BLOCK_SIGNALS */ 609 struct timespec interval; 610 611 KMP_MB(); /* Flush all pending memory write invalidates. */ 612 613 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 614 615 /* register us as the monitor thread */ 616 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 617 #ifdef KMP_TDATA_GTID 618 __kmp_gtid = KMP_GTID_MONITOR; 619 #endif 620 621 KMP_MB(); 622 623 #if USE_ITT_BUILD 624 // Instruct Intel(R) Threading Tools to ignore monitor thread. 625 __kmp_itt_thread_ignore(); 626 #endif /* USE_ITT_BUILD */ 627 628 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 629 (kmp_info_t *)thr); 630 631 __kmp_check_stack_overlap((kmp_info_t *)thr); 632 633 #ifdef KMP_CANCEL_THREADS 634 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 635 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 636 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 637 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 638 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 639 #endif 640 641 #if KMP_REAL_TIME_FIX 642 // This is a potential fix which allows application with real-time scheduling 643 // policy work. However, decision about the fix is not made yet, so it is 644 // disabled by default. 645 { // Are program started with real-time scheduling policy? 646 int sched = sched_getscheduler(0); 647 if (sched == SCHED_FIFO || sched == SCHED_RR) { 648 // Yes, we are a part of real-time application. Try to increase the 649 // priority of the monitor. 650 struct sched_param param; 651 int max_priority = sched_get_priority_max(sched); 652 int rc; 653 KMP_WARNING(RealTimeSchedNotSupported); 654 sched_getparam(0, ¶m); 655 if (param.sched_priority < max_priority) { 656 param.sched_priority += 1; 657 rc = sched_setscheduler(0, sched, ¶m); 658 if (rc != 0) { 659 int error = errno; 660 kmp_msg_t err_code = KMP_ERR(error); 661 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 662 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 663 if (__kmp_generate_warnings == kmp_warnings_off) { 664 __kmp_str_free(&err_code.str); 665 } 666 } 667 } else { 668 // We cannot abort here, because number of CPUs may be enough for all 669 // the threads, including the monitor thread, so application could 670 // potentially work... 671 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 672 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 673 __kmp_msg_null); 674 } 675 } 676 // AC: free thread that waits for monitor started 677 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 678 } 679 #endif // KMP_REAL_TIME_FIX 680 681 KMP_MB(); /* Flush all pending memory write invalidates. */ 682 683 if (__kmp_monitor_wakeups == 1) { 684 interval.tv_sec = 1; 685 interval.tv_nsec = 0; 686 } else { 687 interval.tv_sec = 0; 688 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 689 } 690 691 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 692 693 while (!TCR_4(__kmp_global.g.g_done)) { 694 struct timespec now; 695 struct timeval tval; 696 697 /* This thread monitors the state of the system */ 698 699 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 700 701 status = gettimeofday(&tval, NULL); 702 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 703 TIMEVAL_TO_TIMESPEC(&tval, &now); 704 705 now.tv_sec += interval.tv_sec; 706 now.tv_nsec += interval.tv_nsec; 707 708 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 709 now.tv_sec += 1; 710 now.tv_nsec -= KMP_NSEC_PER_SEC; 711 } 712 713 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 714 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 715 // AC: the monitor should not fall asleep if g_done has been set 716 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 717 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 718 &__kmp_wait_mx.m_mutex, &now); 719 if (status != 0) { 720 if (status != ETIMEDOUT && status != EINTR) { 721 KMP_SYSFAIL("pthread_cond_timedwait", status); 722 } 723 } 724 } 725 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 726 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 727 728 TCW_4(__kmp_global.g.g_time.dt.t_value, 729 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 730 731 KMP_MB(); /* Flush all pending memory write invalidates. */ 732 } 733 734 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 735 736 #ifdef KMP_BLOCK_SIGNALS 737 status = sigfillset(&new_set); 738 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 739 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 740 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 741 #endif /* KMP_BLOCK_SIGNALS */ 742 743 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 744 745 if (__kmp_global.g.g_abort != 0) { 746 /* now we need to terminate the worker threads */ 747 /* the value of t_abort is the signal we caught */ 748 749 int gtid; 750 751 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 752 __kmp_global.g.g_abort)); 753 754 /* terminate the OpenMP worker threads */ 755 /* TODO this is not valid for sibling threads!! 756 * the uber master might not be 0 anymore.. */ 757 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 758 __kmp_terminate_thread(gtid); 759 760 __kmp_cleanup(); 761 762 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 763 __kmp_global.g.g_abort)); 764 765 if (__kmp_global.g.g_abort > 0) 766 raise(__kmp_global.g.g_abort); 767 } 768 769 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 770 771 return thr; 772 } 773 #endif // KMP_USE_MONITOR 774 775 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 776 pthread_t handle; 777 pthread_attr_t thread_attr; 778 int status; 779 780 th->th.th_info.ds.ds_gtid = gtid; 781 782 #if KMP_STATS_ENABLED 783 // sets up worker thread stats 784 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 785 786 // th->th.th_stats is used to transfer thread-specific stats-pointer to 787 // __kmp_launch_worker. So when thread is created (goes into 788 // __kmp_launch_worker) it will set its thread local pointer to 789 // th->th.th_stats 790 if (!KMP_UBER_GTID(gtid)) { 791 th->th.th_stats = __kmp_stats_list->push_back(gtid); 792 } else { 793 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 794 // so set the th->th.th_stats field to it. 795 th->th.th_stats = __kmp_stats_thread_ptr; 796 } 797 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 798 799 #endif // KMP_STATS_ENABLED 800 801 if (KMP_UBER_GTID(gtid)) { 802 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 803 th->th.th_info.ds.ds_thread = pthread_self(); 804 __kmp_set_stack_info(gtid, th); 805 __kmp_check_stack_overlap(th); 806 return; 807 } 808 809 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 810 811 KMP_MB(); /* Flush all pending memory write invalidates. */ 812 813 #ifdef KMP_THREAD_ATTR 814 status = pthread_attr_init(&thread_attr); 815 if (status != 0) { 816 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 817 } 818 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 819 if (status != 0) { 820 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 821 } 822 823 /* Set stack size for this thread now. 824 The multiple of 2 is there because on some machines, requesting an unusual 825 stacksize causes the thread to have an offset before the dummy alloca() 826 takes place to create the offset. Since we want the user to have a 827 sufficient stacksize AND support a stack offset, we alloca() twice the 828 offset so that the upcoming alloca() does not eliminate any premade offset, 829 and also gives the user the stack space they requested for all threads */ 830 stack_size += gtid * __kmp_stkoffset * 2; 831 832 #if defined(__ANDROID__) && __ANDROID_API__ < 19 833 // Round the stack size to a multiple of the page size. Older versions of 834 // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL 835 // if the stack size was not a multiple of the page size. 836 stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 837 #endif 838 839 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 840 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 841 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 842 843 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 844 status = pthread_attr_setstacksize(&thread_attr, stack_size); 845 #ifdef KMP_BACKUP_STKSIZE 846 if (status != 0) { 847 if (!__kmp_env_stksize) { 848 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 849 __kmp_stksize = KMP_BACKUP_STKSIZE; 850 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 851 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 852 "bytes\n", 853 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 854 status = pthread_attr_setstacksize(&thread_attr, stack_size); 855 } 856 } 857 #endif /* KMP_BACKUP_STKSIZE */ 858 if (status != 0) { 859 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 860 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 861 } 862 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 863 864 #endif /* KMP_THREAD_ATTR */ 865 866 status = 867 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 868 if (status != 0 || !handle) { // ??? Why do we check handle?? 869 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 870 if (status == EINVAL) { 871 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 872 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 873 } 874 if (status == ENOMEM) { 875 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 876 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 877 } 878 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 879 if (status == EAGAIN) { 880 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 881 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 882 } 883 KMP_SYSFAIL("pthread_create", status); 884 } 885 886 th->th.th_info.ds.ds_thread = handle; 887 888 #ifdef KMP_THREAD_ATTR 889 status = pthread_attr_destroy(&thread_attr); 890 if (status) { 891 kmp_msg_t err_code = KMP_ERR(status); 892 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 893 __kmp_msg_null); 894 if (__kmp_generate_warnings == kmp_warnings_off) { 895 __kmp_str_free(&err_code.str); 896 } 897 } 898 #endif /* KMP_THREAD_ATTR */ 899 900 KMP_MB(); /* Flush all pending memory write invalidates. */ 901 902 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 903 904 } // __kmp_create_worker 905 906 #if KMP_USE_MONITOR 907 void __kmp_create_monitor(kmp_info_t *th) { 908 pthread_t handle; 909 pthread_attr_t thread_attr; 910 size_t size; 911 int status; 912 int auto_adj_size = FALSE; 913 914 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 915 // We don't need monitor thread in case of MAX_BLOCKTIME 916 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 917 "MAX blocktime\n")); 918 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 919 th->th.th_info.ds.ds_gtid = 0; 920 return; 921 } 922 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 923 924 KMP_MB(); /* Flush all pending memory write invalidates. */ 925 926 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 927 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 928 #if KMP_REAL_TIME_FIX 929 TCW_4(__kmp_global.g.g_time.dt.t_value, 930 -1); // Will use it for synchronization a bit later. 931 #else 932 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 933 #endif // KMP_REAL_TIME_FIX 934 935 #ifdef KMP_THREAD_ATTR 936 if (__kmp_monitor_stksize == 0) { 937 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 938 auto_adj_size = TRUE; 939 } 940 status = pthread_attr_init(&thread_attr); 941 if (status != 0) { 942 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 943 } 944 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 945 if (status != 0) { 946 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 947 } 948 949 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 950 status = pthread_attr_getstacksize(&thread_attr, &size); 951 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 952 #else 953 size = __kmp_sys_min_stksize; 954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 955 #endif /* KMP_THREAD_ATTR */ 956 957 if (__kmp_monitor_stksize == 0) { 958 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 959 } 960 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 961 __kmp_monitor_stksize = __kmp_sys_min_stksize; 962 } 963 964 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 965 "requested stacksize = %lu bytes\n", 966 size, __kmp_monitor_stksize)); 967 968 retry: 969 970 /* Set stack size for this thread now. */ 971 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 972 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 973 __kmp_monitor_stksize)); 974 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 975 if (status != 0) { 976 if (auto_adj_size) { 977 __kmp_monitor_stksize *= 2; 978 goto retry; 979 } 980 kmp_msg_t err_code = KMP_ERR(status); 981 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 982 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 983 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 984 if (__kmp_generate_warnings == kmp_warnings_off) { 985 __kmp_str_free(&err_code.str); 986 } 987 } 988 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 989 990 status = 991 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 992 993 if (status != 0) { 994 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 995 if (status == EINVAL) { 996 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 997 __kmp_monitor_stksize *= 2; 998 goto retry; 999 } 1000 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1001 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 1002 __kmp_msg_null); 1003 } 1004 if (status == ENOMEM) { 1005 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1006 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 1007 __kmp_msg_null); 1008 } 1009 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1010 if (status == EAGAIN) { 1011 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 1012 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 1013 } 1014 KMP_SYSFAIL("pthread_create", status); 1015 } 1016 1017 th->th.th_info.ds.ds_thread = handle; 1018 1019 #if KMP_REAL_TIME_FIX 1020 // Wait for the monitor thread is really started and set its *priority*. 1021 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 1022 sizeof(__kmp_global.g.g_time.dt.t_value)); 1023 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 1024 &__kmp_neq_4, NULL); 1025 #endif // KMP_REAL_TIME_FIX 1026 1027 #ifdef KMP_THREAD_ATTR 1028 status = pthread_attr_destroy(&thread_attr); 1029 if (status != 0) { 1030 kmp_msg_t err_code = KMP_ERR(status); 1031 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 1032 __kmp_msg_null); 1033 if (__kmp_generate_warnings == kmp_warnings_off) { 1034 __kmp_str_free(&err_code.str); 1035 } 1036 } 1037 #endif 1038 1039 KMP_MB(); /* Flush all pending memory write invalidates. */ 1040 1041 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1042 th->th.th_info.ds.ds_thread)); 1043 1044 } // __kmp_create_monitor 1045 #endif // KMP_USE_MONITOR 1046 1047 void __kmp_exit_thread(int exit_status) { 1048 pthread_exit((void *)(intptr_t)exit_status); 1049 } // __kmp_exit_thread 1050 1051 #if KMP_USE_MONITOR 1052 void __kmp_resume_monitor(); 1053 1054 void __kmp_reap_monitor(kmp_info_t *th) { 1055 int status; 1056 void *exit_val; 1057 1058 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1059 " %#.8lx\n", 1060 th->th.th_info.ds.ds_thread)); 1061 1062 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1063 // If both tid and gtid are 0, it means the monitor did not ever start. 1064 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1065 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1066 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1067 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1068 return; 1069 } 1070 1071 KMP_MB(); /* Flush all pending memory write invalidates. */ 1072 1073 /* First, check to see whether the monitor thread exists to wake it up. This 1074 is to avoid performance problem when the monitor sleeps during 1075 blocktime-size interval */ 1076 1077 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1078 if (status != ESRCH) { 1079 __kmp_resume_monitor(); // Wake up the monitor thread 1080 } 1081 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1082 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1083 if (exit_val != th) { 1084 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1085 } 1086 1087 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1088 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1089 1090 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1091 " %#.8lx\n", 1092 th->th.th_info.ds.ds_thread)); 1093 1094 KMP_MB(); /* Flush all pending memory write invalidates. */ 1095 } 1096 #endif // KMP_USE_MONITOR 1097 1098 void __kmp_reap_worker(kmp_info_t *th) { 1099 int status; 1100 void *exit_val; 1101 1102 KMP_MB(); /* Flush all pending memory write invalidates. */ 1103 1104 KA_TRACE( 1105 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1106 1107 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1108 #ifdef KMP_DEBUG 1109 /* Don't expose these to the user until we understand when they trigger */ 1110 if (status != 0) { 1111 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1112 } 1113 if (exit_val != th) { 1114 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1115 "exit_val = %p\n", 1116 th->th.th_info.ds.ds_gtid, exit_val)); 1117 } 1118 #endif /* KMP_DEBUG */ 1119 1120 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1121 th->th.th_info.ds.ds_gtid)); 1122 1123 KMP_MB(); /* Flush all pending memory write invalidates. */ 1124 } 1125 1126 #if KMP_HANDLE_SIGNALS 1127 1128 static void __kmp_null_handler(int signo) { 1129 // Do nothing, for doing SIG_IGN-type actions. 1130 } // __kmp_null_handler 1131 1132 static void __kmp_team_handler(int signo) { 1133 if (__kmp_global.g.g_abort == 0) { 1134 /* Stage 1 signal handler, let's shut down all of the threads */ 1135 #ifdef KMP_DEBUG 1136 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1137 #endif 1138 switch (signo) { 1139 case SIGHUP: 1140 case SIGINT: 1141 case SIGQUIT: 1142 case SIGILL: 1143 case SIGABRT: 1144 case SIGFPE: 1145 case SIGBUS: 1146 case SIGSEGV: 1147 #ifdef SIGSYS 1148 case SIGSYS: 1149 #endif 1150 case SIGTERM: 1151 if (__kmp_debug_buf) { 1152 __kmp_dump_debug_buffer(); 1153 } 1154 __kmp_unregister_library(); // cleanup shared memory 1155 KMP_MB(); // Flush all pending memory write invalidates. 1156 TCW_4(__kmp_global.g.g_abort, signo); 1157 KMP_MB(); // Flush all pending memory write invalidates. 1158 TCW_4(__kmp_global.g.g_done, TRUE); 1159 KMP_MB(); // Flush all pending memory write invalidates. 1160 break; 1161 default: 1162 #ifdef KMP_DEBUG 1163 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1164 #endif 1165 break; 1166 } 1167 } 1168 } // __kmp_team_handler 1169 1170 static void __kmp_sigaction(int signum, const struct sigaction *act, 1171 struct sigaction *oldact) { 1172 int rc = sigaction(signum, act, oldact); 1173 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1174 } 1175 1176 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1177 int parallel_init) { 1178 KMP_MB(); // Flush all pending memory write invalidates. 1179 KB_TRACE(60, 1180 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1181 if (parallel_init) { 1182 struct sigaction new_action; 1183 struct sigaction old_action; 1184 new_action.sa_handler = handler_func; 1185 new_action.sa_flags = 0; 1186 sigfillset(&new_action.sa_mask); 1187 __kmp_sigaction(sig, &new_action, &old_action); 1188 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1189 sigaddset(&__kmp_sigset, sig); 1190 } else { 1191 // Restore/keep user's handler if one previously installed. 1192 __kmp_sigaction(sig, &old_action, NULL); 1193 } 1194 } else { 1195 // Save initial/system signal handlers to see if user handlers installed. 1196 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1197 } 1198 KMP_MB(); // Flush all pending memory write invalidates. 1199 } // __kmp_install_one_handler 1200 1201 static void __kmp_remove_one_handler(int sig) { 1202 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1203 if (sigismember(&__kmp_sigset, sig)) { 1204 struct sigaction old; 1205 KMP_MB(); // Flush all pending memory write invalidates. 1206 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1207 if ((old.sa_handler != __kmp_team_handler) && 1208 (old.sa_handler != __kmp_null_handler)) { 1209 // Restore the users signal handler. 1210 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1211 "restoring: sig=%d\n", 1212 sig)); 1213 __kmp_sigaction(sig, &old, NULL); 1214 } 1215 sigdelset(&__kmp_sigset, sig); 1216 KMP_MB(); // Flush all pending memory write invalidates. 1217 } 1218 } // __kmp_remove_one_handler 1219 1220 void __kmp_install_signals(int parallel_init) { 1221 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1222 if (__kmp_handle_signals || !parallel_init) { 1223 // If ! parallel_init, we do not install handlers, just save original 1224 // handlers. Let us do it even __handle_signals is 0. 1225 sigemptyset(&__kmp_sigset); 1226 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1227 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1228 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1229 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1230 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1231 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1232 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1233 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1234 #ifdef SIGSYS 1235 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1236 #endif // SIGSYS 1237 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1238 #ifdef SIGPIPE 1239 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1240 #endif // SIGPIPE 1241 } 1242 } // __kmp_install_signals 1243 1244 void __kmp_remove_signals(void) { 1245 int sig; 1246 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1247 for (sig = 1; sig < NSIG; ++sig) { 1248 __kmp_remove_one_handler(sig); 1249 } 1250 } // __kmp_remove_signals 1251 1252 #endif // KMP_HANDLE_SIGNALS 1253 1254 void __kmp_enable(int new_state) { 1255 #ifdef KMP_CANCEL_THREADS 1256 int status, old_state; 1257 status = pthread_setcancelstate(new_state, &old_state); 1258 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1259 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1260 #endif 1261 } 1262 1263 void __kmp_disable(int *old_state) { 1264 #ifdef KMP_CANCEL_THREADS 1265 int status; 1266 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1267 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1268 #endif 1269 } 1270 1271 static void __kmp_atfork_prepare(void) { 1272 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1273 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1274 } 1275 1276 static void __kmp_atfork_parent(void) { 1277 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1278 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1279 } 1280 1281 /* Reset the library so execution in the child starts "all over again" with 1282 clean data structures in initial states. Don't worry about freeing memory 1283 allocated by parent, just abandon it to be safe. */ 1284 static void __kmp_atfork_child(void) { 1285 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1286 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1287 /* TODO make sure this is done right for nested/sibling */ 1288 // ATT: Memory leaks are here? TODO: Check it and fix. 1289 /* KMP_ASSERT( 0 ); */ 1290 1291 ++__kmp_fork_count; 1292 1293 #if KMP_AFFINITY_SUPPORTED 1294 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1295 // reset the affinity in the child to the initial thread 1296 // affinity in the parent 1297 kmp_set_thread_affinity_mask_initial(); 1298 #endif 1299 // Set default not to bind threads tightly in the child (we’re expecting 1300 // over-subscription after the fork and this can improve things for 1301 // scripting languages that use OpenMP inside process-parallel code). 1302 __kmp_affinity_type = affinity_none; 1303 if (__kmp_nested_proc_bind.bind_types != NULL) { 1304 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1305 } 1306 __kmp_affinity_masks = NULL; 1307 __kmp_affinity_num_masks = 0; 1308 #endif // KMP_AFFINITY_SUPPORTED 1309 1310 #if KMP_USE_MONITOR 1311 __kmp_init_monitor = 0; 1312 #endif 1313 __kmp_init_parallel = FALSE; 1314 __kmp_init_middle = FALSE; 1315 __kmp_init_serial = FALSE; 1316 TCW_4(__kmp_init_gtid, FALSE); 1317 __kmp_init_common = FALSE; 1318 1319 TCW_4(__kmp_init_user_locks, FALSE); 1320 #if !KMP_USE_DYNAMIC_LOCK 1321 __kmp_user_lock_table.used = 1; 1322 __kmp_user_lock_table.allocated = 0; 1323 __kmp_user_lock_table.table = NULL; 1324 __kmp_lock_blocks = NULL; 1325 #endif 1326 1327 __kmp_all_nth = 0; 1328 TCW_4(__kmp_nth, 0); 1329 1330 __kmp_thread_pool = NULL; 1331 __kmp_thread_pool_insert_pt = NULL; 1332 __kmp_team_pool = NULL; 1333 1334 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1335 here so threadprivate doesn't use stale data */ 1336 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1337 __kmp_threadpriv_cache_list)); 1338 1339 while (__kmp_threadpriv_cache_list != NULL) { 1340 1341 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1342 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1343 &(*__kmp_threadpriv_cache_list->addr))); 1344 1345 *__kmp_threadpriv_cache_list->addr = NULL; 1346 } 1347 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1348 } 1349 1350 __kmp_init_runtime = FALSE; 1351 1352 /* reset statically initialized locks */ 1353 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1354 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1355 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1356 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1357 1358 #if USE_ITT_BUILD 1359 __kmp_itt_reset(); // reset ITT's global state 1360 #endif /* USE_ITT_BUILD */ 1361 1362 __kmp_serial_initialize(); 1363 1364 /* This is necessary to make sure no stale data is left around */ 1365 /* AC: customers complain that we use unsafe routines in the atfork 1366 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1367 in dynamic_link when check the presence of shared tbbmalloc library. 1368 Suggestion is to make the library initialization lazier, similar 1369 to what done for __kmpc_begin(). */ 1370 // TODO: synchronize all static initializations with regular library 1371 // startup; look at kmp_global.cpp and etc. 1372 //__kmp_internal_begin (); 1373 } 1374 1375 void __kmp_register_atfork(void) { 1376 if (__kmp_need_register_atfork) { 1377 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1378 __kmp_atfork_child); 1379 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1380 __kmp_need_register_atfork = FALSE; 1381 } 1382 } 1383 1384 void __kmp_suspend_initialize(void) { 1385 int status; 1386 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1387 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1388 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1389 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1390 } 1391 1392 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1393 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1394 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1395 int new_value = __kmp_fork_count + 1; 1396 // Return if already initialized 1397 if (old_value == new_value) 1398 return; 1399 // Wait, then return if being initialized 1400 if (old_value == -1 || !__kmp_atomic_compare_store( 1401 &th->th.th_suspend_init_count, old_value, -1)) { 1402 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1403 KMP_CPU_PAUSE(); 1404 } 1405 } else { 1406 // Claim to be the initializer and do initializations 1407 int status; 1408 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1409 &__kmp_suspend_cond_attr); 1410 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1411 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1412 &__kmp_suspend_mutex_attr); 1413 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1414 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1415 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1416 } 1417 } 1418 1419 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1420 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1421 /* this means we have initialize the suspension pthread objects for this 1422 thread in this instance of the process */ 1423 int status; 1424 1425 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1426 if (status != 0 && status != EBUSY) { 1427 KMP_SYSFAIL("pthread_cond_destroy", status); 1428 } 1429 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1430 if (status != 0 && status != EBUSY) { 1431 KMP_SYSFAIL("pthread_mutex_destroy", status); 1432 } 1433 --th->th.th_suspend_init_count; 1434 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1435 __kmp_fork_count); 1436 } 1437 } 1438 1439 // return true if lock obtained, false otherwise 1440 int __kmp_try_suspend_mx(kmp_info_t *th) { 1441 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1442 } 1443 1444 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1445 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1446 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1447 } 1448 1449 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1450 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1451 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1452 } 1453 1454 /* This routine puts the calling thread to sleep after setting the 1455 sleep bit for the indicated flag variable to true. */ 1456 template <class C> 1457 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1458 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1459 kmp_info_t *th = __kmp_threads[th_gtid]; 1460 int status; 1461 typename C::flag_t old_spin; 1462 1463 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1464 flag->get())); 1465 1466 __kmp_suspend_initialize_thread(th); 1467 1468 __kmp_lock_suspend_mx(th); 1469 1470 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1471 th_gtid, flag->get())); 1472 1473 /* TODO: shouldn't this use release semantics to ensure that 1474 __kmp_suspend_initialize_thread gets called first? */ 1475 old_spin = flag->set_sleeping(); 1476 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1477 __kmp_pause_status != kmp_soft_paused) { 1478 flag->unset_sleeping(); 1479 __kmp_unlock_suspend_mx(th); 1480 return; 1481 } 1482 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1483 " was %x\n", 1484 th_gtid, flag->get(), flag->load(), old_spin)); 1485 1486 if (flag->done_check_val(old_spin)) { 1487 old_spin = flag->unset_sleeping(); 1488 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1489 "for spin(%p)\n", 1490 th_gtid, flag->get())); 1491 } else { 1492 /* Encapsulate in a loop as the documentation states that this may 1493 "with low probability" return when the condition variable has 1494 not been signaled or broadcast */ 1495 int deactivated = FALSE; 1496 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1497 1498 while (flag->is_sleeping()) { 1499 #ifdef DEBUG_SUSPEND 1500 char buffer[128]; 1501 __kmp_suspend_count++; 1502 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1503 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1504 buffer); 1505 #endif 1506 // Mark the thread as no longer active (only in the first iteration of the 1507 // loop). 1508 if (!deactivated) { 1509 th->th.th_active = FALSE; 1510 if (th->th.th_active_in_pool) { 1511 th->th.th_active_in_pool = FALSE; 1512 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1513 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1514 } 1515 deactivated = TRUE; 1516 } 1517 1518 #if USE_SUSPEND_TIMEOUT 1519 struct timespec now; 1520 struct timeval tval; 1521 int msecs; 1522 1523 status = gettimeofday(&tval, NULL); 1524 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1525 TIMEVAL_TO_TIMESPEC(&tval, &now); 1526 1527 msecs = (4 * __kmp_dflt_blocktime) + 200; 1528 now.tv_sec += msecs / 1000; 1529 now.tv_nsec += (msecs % 1000) * 1000; 1530 1531 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1532 "pthread_cond_timedwait\n", 1533 th_gtid)); 1534 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1535 &th->th.th_suspend_mx.m_mutex, &now); 1536 #else 1537 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1538 " pthread_cond_wait\n", 1539 th_gtid)); 1540 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1541 &th->th.th_suspend_mx.m_mutex); 1542 #endif // USE_SUSPEND_TIMEOUT 1543 1544 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1545 KMP_SYSFAIL("pthread_cond_wait", status); 1546 } 1547 #ifdef KMP_DEBUG 1548 if (status == ETIMEDOUT) { 1549 if (flag->is_sleeping()) { 1550 KF_TRACE(100, 1551 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1552 } else { 1553 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1554 "not set!\n", 1555 th_gtid)); 1556 } 1557 } else if (flag->is_sleeping()) { 1558 KF_TRACE(100, 1559 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1560 } 1561 #endif 1562 } // while 1563 1564 // Mark the thread as active again (if it was previous marked as inactive) 1565 if (deactivated) { 1566 th->th.th_active = TRUE; 1567 if (TCR_4(th->th.th_in_pool)) { 1568 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1569 th->th.th_active_in_pool = TRUE; 1570 } 1571 } 1572 } 1573 #ifdef DEBUG_SUSPEND 1574 { 1575 char buffer[128]; 1576 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1577 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1578 buffer); 1579 } 1580 #endif 1581 1582 __kmp_unlock_suspend_mx(th); 1583 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1584 } 1585 1586 template <bool C, bool S> 1587 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 1588 __kmp_suspend_template(th_gtid, flag); 1589 } 1590 template <bool C, bool S> 1591 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 1592 __kmp_suspend_template(th_gtid, flag); 1593 } 1594 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1595 __kmp_suspend_template(th_gtid, flag); 1596 } 1597 1598 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 1599 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 1600 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 1601 1602 /* This routine signals the thread specified by target_gtid to wake up 1603 after setting the sleep bit indicated by the flag argument to FALSE. 1604 The target thread must already have called __kmp_suspend_template() */ 1605 template <class C> 1606 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1607 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1608 kmp_info_t *th = __kmp_threads[target_gtid]; 1609 int status; 1610 1611 #ifdef KMP_DEBUG 1612 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1613 #endif 1614 1615 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1616 gtid, target_gtid)); 1617 KMP_DEBUG_ASSERT(gtid != target_gtid); 1618 1619 __kmp_suspend_initialize_thread(th); 1620 1621 __kmp_lock_suspend_mx(th); 1622 1623 if (!flag) { // coming from __kmp_null_resume_wrapper 1624 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1625 } 1626 1627 // First, check if the flag is null or its type has changed. If so, someone 1628 // else woke it up. 1629 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1630 // simply shows what flag was cast to 1631 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1632 "awake: flag(%p)\n", 1633 gtid, target_gtid, NULL)); 1634 __kmp_unlock_suspend_mx(th); 1635 return; 1636 } else { // if multiple threads are sleeping, flag should be internally 1637 // referring to a specific thread here 1638 typename C::flag_t old_spin = flag->unset_sleeping(); 1639 if (!flag->is_sleeping_val(old_spin)) { 1640 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1641 "awake: flag(%p): " 1642 "%u => %u\n", 1643 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1644 __kmp_unlock_suspend_mx(th); 1645 return; 1646 } 1647 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1648 "sleep bit for flag's loc(%p): " 1649 "%u => %u\n", 1650 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1651 } 1652 TCW_PTR(th->th.th_sleep_loc, NULL); 1653 1654 #ifdef DEBUG_SUSPEND 1655 { 1656 char buffer[128]; 1657 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1658 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1659 target_gtid, buffer); 1660 } 1661 #endif 1662 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1663 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1664 __kmp_unlock_suspend_mx(th); 1665 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1666 " for T#%d\n", 1667 gtid, target_gtid)); 1668 } 1669 1670 template <bool C, bool S> 1671 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 1672 __kmp_resume_template(target_gtid, flag); 1673 } 1674 template <bool C, bool S> 1675 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 1676 __kmp_resume_template(target_gtid, flag); 1677 } 1678 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1679 __kmp_resume_template(target_gtid, flag); 1680 } 1681 1682 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 1683 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 1684 1685 #if KMP_USE_MONITOR 1686 void __kmp_resume_monitor() { 1687 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1688 int status; 1689 #ifdef KMP_DEBUG 1690 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1691 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1692 KMP_GTID_MONITOR)); 1693 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1694 #endif 1695 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1696 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1697 #ifdef DEBUG_SUSPEND 1698 { 1699 char buffer[128]; 1700 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1701 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1702 KMP_GTID_MONITOR, buffer); 1703 } 1704 #endif 1705 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1706 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1707 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1708 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1709 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1710 " for T#%d\n", 1711 gtid, KMP_GTID_MONITOR)); 1712 } 1713 #endif // KMP_USE_MONITOR 1714 1715 void __kmp_yield() { sched_yield(); } 1716 1717 void __kmp_gtid_set_specific(int gtid) { 1718 if (__kmp_init_gtid) { 1719 int status; 1720 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1721 (void *)(intptr_t)(gtid + 1)); 1722 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1723 } else { 1724 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1725 } 1726 } 1727 1728 int __kmp_gtid_get_specific() { 1729 int gtid; 1730 if (!__kmp_init_gtid) { 1731 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1732 "KMP_GTID_SHUTDOWN\n")); 1733 return KMP_GTID_SHUTDOWN; 1734 } 1735 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1736 if (gtid == 0) { 1737 gtid = KMP_GTID_DNE; 1738 } else { 1739 gtid--; 1740 } 1741 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1742 __kmp_gtid_threadprivate_key, gtid)); 1743 return gtid; 1744 } 1745 1746 double __kmp_read_cpu_time(void) { 1747 /*clock_t t;*/ 1748 struct tms buffer; 1749 1750 /*t =*/times(&buffer); 1751 1752 return (double)(buffer.tms_utime + buffer.tms_cutime) / 1753 (double)CLOCKS_PER_SEC; 1754 } 1755 1756 int __kmp_read_system_info(struct kmp_sys_info *info) { 1757 int status; 1758 struct rusage r_usage; 1759 1760 memset(info, 0, sizeof(*info)); 1761 1762 status = getrusage(RUSAGE_SELF, &r_usage); 1763 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1764 1765 // The maximum resident set size utilized (in kilobytes) 1766 info->maxrss = r_usage.ru_maxrss; 1767 // The number of page faults serviced without any I/O 1768 info->minflt = r_usage.ru_minflt; 1769 // The number of page faults serviced that required I/O 1770 info->majflt = r_usage.ru_majflt; 1771 // The number of times a process was "swapped" out of memory 1772 info->nswap = r_usage.ru_nswap; 1773 // The number of times the file system had to perform input 1774 info->inblock = r_usage.ru_inblock; 1775 // The number of times the file system had to perform output 1776 info->oublock = r_usage.ru_oublock; 1777 // The number of times a context switch was voluntarily 1778 info->nvcsw = r_usage.ru_nvcsw; 1779 // The number of times a context switch was forced 1780 info->nivcsw = r_usage.ru_nivcsw; 1781 1782 return (status != 0); 1783 } 1784 1785 void __kmp_read_system_time(double *delta) { 1786 double t_ns; 1787 struct timeval tval; 1788 struct timespec stop; 1789 int status; 1790 1791 status = gettimeofday(&tval, NULL); 1792 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1793 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1794 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start)); 1795 *delta = (t_ns * 1e-9); 1796 } 1797 1798 void __kmp_clear_system_time(void) { 1799 struct timeval tval; 1800 int status; 1801 status = gettimeofday(&tval, NULL); 1802 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1803 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1804 } 1805 1806 static int __kmp_get_xproc(void) { 1807 1808 int r = 0; 1809 1810 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 1811 KMP_OS_OPENBSD || KMP_OS_HURD 1812 1813 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r)); 1814 1815 #elif KMP_OS_DARWIN 1816 1817 // Bug C77011 High "OpenMP Threads and number of active cores". 1818 1819 // Find the number of available CPUs. 1820 kern_return_t rc; 1821 host_basic_info_data_t info; 1822 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1823 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1824 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1825 // Cannot use KA_TRACE() here because this code works before trace support 1826 // is initialized. 1827 r = info.avail_cpus; 1828 } else { 1829 KMP_WARNING(CantGetNumAvailCPU); 1830 KMP_INFORM(AssumedNumCPU); 1831 } 1832 1833 #else 1834 1835 #error "Unknown or unsupported OS." 1836 1837 #endif 1838 1839 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1840 1841 } // __kmp_get_xproc 1842 1843 int __kmp_read_from_file(char const *path, char const *format, ...) { 1844 int result; 1845 va_list args; 1846 1847 va_start(args, format); 1848 FILE *f = fopen(path, "rb"); 1849 if (f == NULL) 1850 return 0; 1851 result = vfscanf(f, format, args); 1852 fclose(f); 1853 1854 return result; 1855 } 1856 1857 void __kmp_runtime_initialize(void) { 1858 int status; 1859 pthread_mutexattr_t mutex_attr; 1860 pthread_condattr_t cond_attr; 1861 1862 if (__kmp_init_runtime) { 1863 return; 1864 } 1865 1866 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1867 if (!__kmp_cpuinfo.initialized) { 1868 __kmp_query_cpuid(&__kmp_cpuinfo); 1869 } 1870 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1871 1872 __kmp_xproc = __kmp_get_xproc(); 1873 1874 #if !KMP_32_BIT_ARCH 1875 struct rlimit rlim; 1876 // read stack size of calling thread, save it as default for worker threads; 1877 // this should be done before reading environment variables 1878 status = getrlimit(RLIMIT_STACK, &rlim); 1879 if (status == 0) { // success? 1880 __kmp_stksize = rlim.rlim_cur; 1881 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1882 } 1883 #endif /* KMP_32_BIT_ARCH */ 1884 1885 if (sysconf(_SC_THREADS)) { 1886 1887 /* Query the maximum number of threads */ 1888 __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth)); 1889 if (__kmp_sys_max_nth == -1) { 1890 /* Unlimited threads for NPTL */ 1891 __kmp_sys_max_nth = INT_MAX; 1892 } else if (__kmp_sys_max_nth <= 1) { 1893 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1894 __kmp_sys_max_nth = KMP_MAX_NTH; 1895 } 1896 1897 /* Query the minimum stack size */ 1898 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1899 if (__kmp_sys_min_stksize <= 1) { 1900 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1901 } 1902 } 1903 1904 /* Set up minimum number of threads to switch to TLS gtid */ 1905 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1906 1907 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1908 __kmp_internal_end_dest); 1909 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1910 status = pthread_mutexattr_init(&mutex_attr); 1911 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1912 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1913 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1914 status = pthread_mutexattr_destroy(&mutex_attr); 1915 KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status); 1916 status = pthread_condattr_init(&cond_attr); 1917 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1918 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1919 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1920 status = pthread_condattr_destroy(&cond_attr); 1921 KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status); 1922 #if USE_ITT_BUILD 1923 __kmp_itt_initialize(); 1924 #endif /* USE_ITT_BUILD */ 1925 1926 __kmp_init_runtime = TRUE; 1927 } 1928 1929 void __kmp_runtime_destroy(void) { 1930 int status; 1931 1932 if (!__kmp_init_runtime) { 1933 return; // Nothing to do. 1934 } 1935 1936 #if USE_ITT_BUILD 1937 __kmp_itt_destroy(); 1938 #endif /* USE_ITT_BUILD */ 1939 1940 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1941 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1942 1943 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1944 if (status != 0 && status != EBUSY) { 1945 KMP_SYSFAIL("pthread_mutex_destroy", status); 1946 } 1947 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1948 if (status != 0 && status != EBUSY) { 1949 KMP_SYSFAIL("pthread_cond_destroy", status); 1950 } 1951 #if KMP_AFFINITY_SUPPORTED 1952 __kmp_affinity_uninitialize(); 1953 #endif 1954 1955 __kmp_init_runtime = FALSE; 1956 } 1957 1958 /* Put the thread to sleep for a time period */ 1959 /* NOTE: not currently used anywhere */ 1960 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1961 1962 /* Calculate the elapsed wall clock time for the user */ 1963 void __kmp_elapsed(double *t) { 1964 int status; 1965 #ifdef FIX_SGI_CLOCK 1966 struct timespec ts; 1967 1968 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1969 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1970 *t = 1971 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1972 #else 1973 struct timeval tv; 1974 1975 status = gettimeofday(&tv, NULL); 1976 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1977 *t = 1978 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1979 #endif 1980 } 1981 1982 /* Calculate the elapsed wall clock tick for the user */ 1983 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1984 1985 /* Return the current time stamp in nsec */ 1986 kmp_uint64 __kmp_now_nsec() { 1987 struct timeval t; 1988 gettimeofday(&t, NULL); 1989 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 1990 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 1991 return nsec; 1992 } 1993 1994 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1995 /* Measure clock ticks per millisecond */ 1996 void __kmp_initialize_system_tick() { 1997 kmp_uint64 now, nsec2, diff; 1998 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1999 kmp_uint64 nsec = __kmp_now_nsec(); 2000 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 2001 while ((now = __kmp_hardware_timestamp()) < goal) 2002 ; 2003 nsec2 = __kmp_now_nsec(); 2004 diff = nsec2 - nsec; 2005 if (diff > 0) { 2006 kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff); 2007 if (tpms > 0) 2008 __kmp_ticks_per_msec = tpms; 2009 } 2010 } 2011 #endif 2012 2013 /* Determine whether the given address is mapped into the current address 2014 space. */ 2015 2016 int __kmp_is_address_mapped(void *addr) { 2017 2018 int found = 0; 2019 int rc; 2020 2021 #if KMP_OS_LINUX || KMP_OS_HURD 2022 2023 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the 2024 address ranges mapped into the address space. */ 2025 2026 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 2027 FILE *file = NULL; 2028 2029 file = fopen(name, "r"); 2030 KMP_ASSERT(file != NULL); 2031 2032 for (;;) { 2033 2034 void *beginning = NULL; 2035 void *ending = NULL; 2036 char perms[5]; 2037 2038 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2039 if (rc == EOF) { 2040 break; 2041 } 2042 KMP_ASSERT(rc == 3 && 2043 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2044 2045 // Ending address is not included in the region, but beginning is. 2046 if ((addr >= beginning) && (addr < ending)) { 2047 perms[2] = 0; // 3th and 4th character does not matter. 2048 if (strcmp(perms, "rw") == 0) { 2049 // Memory we are looking for should be readable and writable. 2050 found = 1; 2051 } 2052 break; 2053 } 2054 } 2055 2056 // Free resources. 2057 fclose(file); 2058 KMP_INTERNAL_FREE(name); 2059 #elif KMP_OS_FREEBSD 2060 char *buf; 2061 size_t lstsz; 2062 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 2063 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2064 if (rc < 0) 2065 return 0; 2066 // We pass from number of vm entry's semantic 2067 // to size of whole entry map list. 2068 lstsz = lstsz * 4 / 3; 2069 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2070 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2071 if (rc < 0) { 2072 kmpc_free(buf); 2073 return 0; 2074 } 2075 2076 char *lw = buf; 2077 char *up = buf + lstsz; 2078 2079 while (lw < up) { 2080 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2081 size_t cursz = cur->kve_structsize; 2082 if (cursz == 0) 2083 break; 2084 void *start = reinterpret_cast<void *>(cur->kve_start); 2085 void *end = reinterpret_cast<void *>(cur->kve_end); 2086 // Readable/Writable addresses within current map entry 2087 if ((addr >= start) && (addr < end)) { 2088 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2089 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2090 found = 1; 2091 break; 2092 } 2093 } 2094 lw += cursz; 2095 } 2096 kmpc_free(buf); 2097 2098 #elif KMP_OS_DARWIN 2099 2100 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2101 using vm interface. */ 2102 2103 int buffer; 2104 vm_size_t count; 2105 rc = vm_read_overwrite( 2106 mach_task_self(), // Task to read memory of. 2107 (vm_address_t)(addr), // Address to read from. 2108 1, // Number of bytes to be read. 2109 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2110 &count // Address of var to save number of read bytes in. 2111 ); 2112 if (rc == 0) { 2113 // Memory successfully read. 2114 found = 1; 2115 } 2116 2117 #elif KMP_OS_NETBSD 2118 2119 int mib[5]; 2120 mib[0] = CTL_VM; 2121 mib[1] = VM_PROC; 2122 mib[2] = VM_PROC_MAP; 2123 mib[3] = getpid(); 2124 mib[4] = sizeof(struct kinfo_vmentry); 2125 2126 size_t size; 2127 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2128 KMP_ASSERT(!rc); 2129 KMP_ASSERT(size); 2130 2131 size = size * 4 / 3; 2132 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2133 KMP_ASSERT(kiv); 2134 2135 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2136 KMP_ASSERT(!rc); 2137 KMP_ASSERT(size); 2138 2139 for (size_t i = 0; i < size; i++) { 2140 if (kiv[i].kve_start >= (uint64_t)addr && 2141 kiv[i].kve_end <= (uint64_t)addr) { 2142 found = 1; 2143 break; 2144 } 2145 } 2146 KMP_INTERNAL_FREE(kiv); 2147 #elif KMP_OS_OPENBSD 2148 2149 int mib[3]; 2150 mib[0] = CTL_KERN; 2151 mib[1] = KERN_PROC_VMMAP; 2152 mib[2] = getpid(); 2153 2154 size_t size; 2155 uint64_t end; 2156 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2157 KMP_ASSERT(!rc); 2158 KMP_ASSERT(size); 2159 end = size; 2160 2161 struct kinfo_vmentry kiv = {.kve_start = 0}; 2162 2163 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2164 KMP_ASSERT(size); 2165 if (kiv.kve_end == end) 2166 break; 2167 2168 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2169 found = 1; 2170 break; 2171 } 2172 kiv.kve_start += 1; 2173 } 2174 #elif KMP_OS_DRAGONFLY 2175 2176 // FIXME(DragonFly): Implement this 2177 found = 1; 2178 2179 #else 2180 2181 #error "Unknown or unsupported OS" 2182 2183 #endif 2184 2185 return found; 2186 2187 } // __kmp_is_address_mapped 2188 2189 #ifdef USE_LOAD_BALANCE 2190 2191 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2192 2193 // The function returns the rounded value of the system load average 2194 // during given time interval which depends on the value of 2195 // __kmp_load_balance_interval variable (default is 60 sec, other values 2196 // may be 300 sec or 900 sec). 2197 // It returns -1 in case of error. 2198 int __kmp_get_load_balance(int max) { 2199 double averages[3]; 2200 int ret_avg = 0; 2201 2202 int res = getloadavg(averages, 3); 2203 2204 // Check __kmp_load_balance_interval to determine which of averages to use. 2205 // getloadavg() may return the number of samples less than requested that is 2206 // less than 3. 2207 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2208 ret_avg = (int)averages[0]; // 1 min 2209 } else if ((__kmp_load_balance_interval >= 180 && 2210 __kmp_load_balance_interval < 600) && 2211 (res >= 2)) { 2212 ret_avg = (int)averages[1]; // 5 min 2213 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2214 ret_avg = (int)averages[2]; // 15 min 2215 } else { // Error occurred 2216 return -1; 2217 } 2218 2219 return ret_avg; 2220 } 2221 2222 #else // Linux* OS 2223 2224 // The function returns number of running (not sleeping) threads, or -1 in case 2225 // of error. Error could be reported if Linux* OS kernel too old (without 2226 // "/proc" support). Counting running threads stops if max running threads 2227 // encountered. 2228 int __kmp_get_load_balance(int max) { 2229 static int permanent_error = 0; 2230 static int glb_running_threads = 0; // Saved count of the running threads for 2231 // the thread balance algorithm 2232 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2233 2234 int running_threads = 0; // Number of running threads in the system. 2235 2236 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2237 struct dirent *proc_entry = NULL; 2238 2239 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2240 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2241 struct dirent *task_entry = NULL; 2242 int task_path_fixed_len; 2243 2244 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2245 int stat_file = -1; 2246 int stat_path_fixed_len; 2247 2248 int total_processes = 0; // Total number of processes in system. 2249 int total_threads = 0; // Total number of threads in system. 2250 2251 double call_time = 0.0; 2252 2253 __kmp_str_buf_init(&task_path); 2254 __kmp_str_buf_init(&stat_path); 2255 2256 __kmp_elapsed(&call_time); 2257 2258 if (glb_call_time && 2259 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2260 running_threads = glb_running_threads; 2261 goto finish; 2262 } 2263 2264 glb_call_time = call_time; 2265 2266 // Do not spend time on scanning "/proc/" if we have a permanent error. 2267 if (permanent_error) { 2268 running_threads = -1; 2269 goto finish; 2270 } 2271 2272 if (max <= 0) { 2273 max = INT_MAX; 2274 } 2275 2276 // Open "/proc/" directory. 2277 proc_dir = opendir("/proc"); 2278 if (proc_dir == NULL) { 2279 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2280 // error now and in subsequent calls. 2281 running_threads = -1; 2282 permanent_error = 1; 2283 goto finish; 2284 } 2285 2286 // Initialize fixed part of task_path. This part will not change. 2287 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2288 task_path_fixed_len = task_path.used; // Remember number of used characters. 2289 2290 proc_entry = readdir(proc_dir); 2291 while (proc_entry != NULL) { 2292 // Proc entry is a directory and name starts with a digit. Assume it is a 2293 // process' directory. 2294 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2295 2296 ++total_processes; 2297 // Make sure init process is the very first in "/proc", so we can replace 2298 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2299 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2300 // true (where "=>" is implication). Since C++ does not have => operator, 2301 // let us replace it with its equivalent: a => b == ! a || b. 2302 KMP_DEBUG_ASSERT(total_processes != 1 || 2303 strcmp(proc_entry->d_name, "1") == 0); 2304 2305 // Construct task_path. 2306 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2307 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2308 KMP_STRLEN(proc_entry->d_name)); 2309 __kmp_str_buf_cat(&task_path, "/task", 5); 2310 2311 task_dir = opendir(task_path.str); 2312 if (task_dir == NULL) { 2313 // Process can finish between reading "/proc/" directory entry and 2314 // opening process' "task/" directory. So, in general case we should not 2315 // complain, but have to skip this process and read the next one. But on 2316 // systems with no "task/" support we will spend lot of time to scan 2317 // "/proc/" tree again and again without any benefit. "init" process 2318 // (its pid is 1) should exist always, so, if we cannot open 2319 // "/proc/1/task/" directory, it means "task/" is not supported by 2320 // kernel. Report an error now and in the future. 2321 if (strcmp(proc_entry->d_name, "1") == 0) { 2322 running_threads = -1; 2323 permanent_error = 1; 2324 goto finish; 2325 } 2326 } else { 2327 // Construct fixed part of stat file path. 2328 __kmp_str_buf_clear(&stat_path); 2329 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2330 __kmp_str_buf_cat(&stat_path, "/", 1); 2331 stat_path_fixed_len = stat_path.used; 2332 2333 task_entry = readdir(task_dir); 2334 while (task_entry != NULL) { 2335 // It is a directory and name starts with a digit. 2336 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2337 ++total_threads; 2338 2339 // Construct complete stat file path. Easiest way would be: 2340 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2341 // task_entry->d_name ); 2342 // but seriae of __kmp_str_buf_cat works a bit faster. 2343 stat_path.used = 2344 stat_path_fixed_len; // Reset stat path to its fixed part. 2345 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2346 KMP_STRLEN(task_entry->d_name)); 2347 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2348 2349 // Note: Low-level API (open/read/close) is used. High-level API 2350 // (fopen/fclose) works ~ 30 % slower. 2351 stat_file = open(stat_path.str, O_RDONLY); 2352 if (stat_file == -1) { 2353 // We cannot report an error because task (thread) can terminate 2354 // just before reading this file. 2355 } else { 2356 /* Content of "stat" file looks like: 2357 24285 (program) S ... 2358 2359 It is a single line (if program name does not include funny 2360 symbols). First number is a thread id, then name of executable 2361 file name in paretheses, then state of the thread. We need just 2362 thread state. 2363 2364 Good news: Length of program name is 15 characters max. Longer 2365 names are truncated. 2366 2367 Thus, we need rather short buffer: 15 chars for program name + 2368 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2369 2370 Bad news: Program name may contain special symbols like space, 2371 closing parenthesis, or even new line. This makes parsing 2372 "stat" file not 100 % reliable. In case of fanny program names 2373 parsing may fail (report incorrect thread state). 2374 2375 Parsing "status" file looks more promissing (due to different 2376 file structure and escaping special symbols) but reading and 2377 parsing of "status" file works slower. 2378 -- ln 2379 */ 2380 char buffer[65]; 2381 ssize_t len; 2382 len = read(stat_file, buffer, sizeof(buffer) - 1); 2383 if (len >= 0) { 2384 buffer[len] = 0; 2385 // Using scanf: 2386 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2387 // looks very nice, but searching for a closing parenthesis 2388 // works a bit faster. 2389 char *close_parent = strstr(buffer, ") "); 2390 if (close_parent != NULL) { 2391 char state = *(close_parent + 2); 2392 if (state == 'R') { 2393 ++running_threads; 2394 if (running_threads >= max) { 2395 goto finish; 2396 } 2397 } 2398 } 2399 } 2400 close(stat_file); 2401 stat_file = -1; 2402 } 2403 } 2404 task_entry = readdir(task_dir); 2405 } 2406 closedir(task_dir); 2407 task_dir = NULL; 2408 } 2409 } 2410 proc_entry = readdir(proc_dir); 2411 } 2412 2413 // There _might_ be a timing hole where the thread executing this 2414 // code get skipped in the load balance, and running_threads is 0. 2415 // Assert in the debug builds only!!! 2416 KMP_DEBUG_ASSERT(running_threads > 0); 2417 if (running_threads <= 0) { 2418 running_threads = 1; 2419 } 2420 2421 finish: // Clean up and exit. 2422 if (proc_dir != NULL) { 2423 closedir(proc_dir); 2424 } 2425 __kmp_str_buf_free(&task_path); 2426 if (task_dir != NULL) { 2427 closedir(task_dir); 2428 } 2429 __kmp_str_buf_free(&stat_path); 2430 if (stat_file != -1) { 2431 close(stat_file); 2432 } 2433 2434 glb_running_threads = running_threads; 2435 2436 return running_threads; 2437 2438 } // __kmp_get_load_balance 2439 2440 #endif // KMP_OS_DARWIN 2441 2442 #endif // USE_LOAD_BALANCE 2443 2444 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2445 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2446 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64) 2447 2448 // we really only need the case with 1 argument, because CLANG always build 2449 // a struct of pointers to shared variables referenced in the outlined function 2450 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2451 void *p_argv[] 2452 #if OMPT_SUPPORT 2453 , 2454 void **exit_frame_ptr 2455 #endif 2456 ) { 2457 #if OMPT_SUPPORT 2458 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2459 #endif 2460 2461 switch (argc) { 2462 default: 2463 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2464 fflush(stderr); 2465 exit(-1); 2466 case 0: 2467 (*pkfn)(>id, &tid); 2468 break; 2469 case 1: 2470 (*pkfn)(>id, &tid, p_argv[0]); 2471 break; 2472 case 2: 2473 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2474 break; 2475 case 3: 2476 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2477 break; 2478 case 4: 2479 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2480 break; 2481 case 5: 2482 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2483 break; 2484 case 6: 2485 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2486 p_argv[5]); 2487 break; 2488 case 7: 2489 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2490 p_argv[5], p_argv[6]); 2491 break; 2492 case 8: 2493 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2494 p_argv[5], p_argv[6], p_argv[7]); 2495 break; 2496 case 9: 2497 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2498 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2499 break; 2500 case 10: 2501 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2502 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2503 break; 2504 case 11: 2505 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2506 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2507 break; 2508 case 12: 2509 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2510 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2511 p_argv[11]); 2512 break; 2513 case 13: 2514 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2515 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2516 p_argv[11], p_argv[12]); 2517 break; 2518 case 14: 2519 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2520 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2521 p_argv[11], p_argv[12], p_argv[13]); 2522 break; 2523 case 15: 2524 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2525 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2526 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2527 break; 2528 } 2529 2530 return 1; 2531 } 2532 2533 #endif 2534 2535 // Functions for hidden helper task 2536 namespace { 2537 // Condition variable for initializing hidden helper team 2538 pthread_cond_t hidden_helper_threads_initz_cond_var; 2539 pthread_mutex_t hidden_helper_threads_initz_lock; 2540 volatile int hidden_helper_initz_signaled = FALSE; 2541 2542 // Condition variable for deinitializing hidden helper team 2543 pthread_cond_t hidden_helper_threads_deinitz_cond_var; 2544 pthread_mutex_t hidden_helper_threads_deinitz_lock; 2545 volatile int hidden_helper_deinitz_signaled = FALSE; 2546 2547 // Condition variable for the wrapper function of main thread 2548 pthread_cond_t hidden_helper_main_thread_cond_var; 2549 pthread_mutex_t hidden_helper_main_thread_lock; 2550 volatile int hidden_helper_main_thread_signaled = FALSE; 2551 2552 // Semaphore for worker threads. We don't use condition variable here in case 2553 // that when multiple signals are sent at the same time, only one thread might 2554 // be waken. 2555 sem_t hidden_helper_task_sem; 2556 } // namespace 2557 2558 void __kmp_hidden_helper_worker_thread_wait() { 2559 int status = sem_wait(&hidden_helper_task_sem); 2560 KMP_CHECK_SYSFAIL("sem_wait", status); 2561 } 2562 2563 void __kmp_do_initialize_hidden_helper_threads() { 2564 // Initialize condition variable 2565 int status = 2566 pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr); 2567 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2568 2569 status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr); 2570 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2571 2572 status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr); 2573 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2574 2575 status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr); 2576 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2577 2578 status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr); 2579 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2580 2581 status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr); 2582 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2583 2584 // Initialize the semaphore 2585 status = sem_init(&hidden_helper_task_sem, 0, 0); 2586 KMP_CHECK_SYSFAIL("sem_init", status); 2587 2588 // Create a new thread to finish initialization 2589 pthread_t handle; 2590 status = pthread_create( 2591 &handle, nullptr, 2592 [](void *) -> void * { 2593 __kmp_hidden_helper_threads_initz_routine(); 2594 return nullptr; 2595 }, 2596 nullptr); 2597 KMP_CHECK_SYSFAIL("pthread_create", status); 2598 } 2599 2600 void __kmp_hidden_helper_threads_initz_wait() { 2601 // Initial thread waits here for the completion of the initialization. The 2602 // condition variable will be notified by main thread of hidden helper teams. 2603 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2604 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2605 2606 if (!TCR_4(hidden_helper_initz_signaled)) { 2607 status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var, 2608 &hidden_helper_threads_initz_lock); 2609 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2610 } 2611 2612 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2613 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2614 } 2615 2616 void __kmp_hidden_helper_initz_release() { 2617 // After all initialization, reset __kmp_init_hidden_helper_threads to false. 2618 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2619 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2620 2621 status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var); 2622 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2623 2624 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE); 2625 2626 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2627 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2628 } 2629 2630 void __kmp_hidden_helper_main_thread_wait() { 2631 // The main thread of hidden helper team will be blocked here. The 2632 // condition variable can only be signal in the destructor of RTL. 2633 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2634 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2635 2636 if (!TCR_4(hidden_helper_main_thread_signaled)) { 2637 status = pthread_cond_wait(&hidden_helper_main_thread_cond_var, 2638 &hidden_helper_main_thread_lock); 2639 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2640 } 2641 2642 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2643 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2644 } 2645 2646 void __kmp_hidden_helper_main_thread_release() { 2647 // The initial thread of OpenMP RTL should call this function to wake up the 2648 // main thread of hidden helper team. 2649 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2650 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2651 2652 status = pthread_cond_signal(&hidden_helper_main_thread_cond_var); 2653 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 2654 2655 // The hidden helper team is done here 2656 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE); 2657 2658 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2659 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2660 } 2661 2662 void __kmp_hidden_helper_worker_thread_signal() { 2663 int status = sem_post(&hidden_helper_task_sem); 2664 KMP_CHECK_SYSFAIL("sem_post", status); 2665 } 2666 2667 void __kmp_hidden_helper_threads_deinitz_wait() { 2668 // Initial thread waits here for the completion of the deinitialization. The 2669 // condition variable will be notified by main thread of hidden helper teams. 2670 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2671 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2672 2673 if (!TCR_4(hidden_helper_deinitz_signaled)) { 2674 status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var, 2675 &hidden_helper_threads_deinitz_lock); 2676 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2677 } 2678 2679 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2680 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2681 } 2682 2683 void __kmp_hidden_helper_threads_deinitz_release() { 2684 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2685 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2686 2687 status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var); 2688 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2689 2690 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE); 2691 2692 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2693 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2694 } 2695 2696 // end of file // 2697