1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #include <semaphore.h> 29 #include <sys/resource.h> 30 #include <sys/syscall.h> 31 #include <sys/time.h> 32 #include <sys/times.h> 33 #include <unistd.h> 34 35 #if KMP_OS_LINUX 36 #include <sys/sysinfo.h> 37 #if KMP_USE_FUTEX 38 // We should really include <futex.h>, but that causes compatibility problems on 39 // different Linux* OS distributions that either require that you include (or 40 // break when you try to include) <pci/types.h>. Since all we need is the two 41 // macros below (which are part of the kernel ABI, so can't change) we just 42 // define the constants here and don't include <futex.h> 43 #ifndef FUTEX_WAIT 44 #define FUTEX_WAIT 0 45 #endif 46 #ifndef FUTEX_WAKE 47 #define FUTEX_WAKE 1 48 #endif 49 #endif 50 #elif KMP_OS_DARWIN 51 #include <mach/mach.h> 52 #include <sys/sysctl.h> 53 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 54 #include <sys/types.h> 55 #include <sys/sysctl.h> 56 #include <sys/user.h> 57 #include <pthread_np.h> 58 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 59 #include <sys/types.h> 60 #include <sys/sysctl.h> 61 #endif 62 63 #include <ctype.h> 64 #include <dirent.h> 65 #include <fcntl.h> 66 67 #include "tsan_annotations.h" 68 69 struct kmp_sys_timer { 70 struct timespec start; 71 }; 72 73 // Convert timespec to nanoseconds. 74 #define TS2NS(timespec) \ 75 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec) 76 77 static struct kmp_sys_timer __kmp_sys_timer_data; 78 79 #if KMP_HANDLE_SIGNALS 80 typedef void (*sig_func_t)(int); 81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 82 static sigset_t __kmp_sigset; 83 #endif 84 85 static int __kmp_init_runtime = FALSE; 86 87 static int __kmp_fork_count = 0; 88 89 static pthread_condattr_t __kmp_suspend_cond_attr; 90 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 91 92 static kmp_cond_align_t __kmp_wait_cv; 93 static kmp_mutex_align_t __kmp_wait_mx; 94 95 kmp_uint64 __kmp_ticks_per_msec = 1000000; 96 97 #ifdef DEBUG_SUSPEND 98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 99 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 100 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 101 cond->c_cond.__c_waiting); 102 } 103 #endif 104 105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 106 107 /* Affinity support */ 108 109 void __kmp_affinity_bind_thread(int which) { 110 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 111 "Illegal set affinity operation when not capable"); 112 113 kmp_affin_mask_t *mask; 114 KMP_CPU_ALLOC_ON_STACK(mask); 115 KMP_CPU_ZERO(mask); 116 KMP_CPU_SET(which, mask); 117 __kmp_set_system_affinity(mask, TRUE); 118 KMP_CPU_FREE_FROM_STACK(mask); 119 } 120 121 /* Determine if we can access affinity functionality on this version of 122 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 123 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 124 void __kmp_affinity_determine_capable(const char *env_var) { 125 // Check and see if the OS supports thread affinity. 126 127 #if KMP_OS_LINUX 128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 129 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE 130 #elif KMP_OS_FREEBSD 131 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 132 #endif 133 134 #if KMP_OS_LINUX 135 long gCode; 136 unsigned char *buf; 137 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 138 139 // If the syscall returns a suggestion for the size, 140 // then we don't have to search for an appropriate size. 141 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf); 142 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 143 "initial getaffinity call returned %ld errno = %d\n", 144 gCode, errno)); 145 146 if (gCode < 0 && errno != EINVAL) { 147 // System call not supported 148 if (__kmp_affinity_verbose || 149 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 150 (__kmp_affinity_type != affinity_default) && 151 (__kmp_affinity_type != affinity_disabled))) { 152 int error = errno; 153 kmp_msg_t err_code = KMP_ERR(error); 154 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 155 err_code, __kmp_msg_null); 156 if (__kmp_generate_warnings == kmp_warnings_off) { 157 __kmp_str_free(&err_code.str); 158 } 159 } 160 KMP_AFFINITY_DISABLE(); 161 KMP_INTERNAL_FREE(buf); 162 return; 163 } else if (gCode > 0) { 164 // The optimal situation: the OS returns the size of the buffer it expects. 165 KMP_AFFINITY_ENABLE(gCode); 166 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 167 "affinity supported (mask size %d)\n", 168 (int)__kmp_affin_mask_size)); 169 KMP_INTERNAL_FREE(buf); 170 return; 171 } 172 173 // Call the getaffinity system call repeatedly with increasing set sizes 174 // until we succeed, or reach an upper bound on the search. 175 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 176 "searching for proper set size\n")); 177 int size; 178 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 179 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 180 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 181 "getaffinity for mask size %ld returned %ld errno = %d\n", 182 size, gCode, errno)); 183 184 if (gCode < 0) { 185 if (errno == ENOSYS) { 186 // We shouldn't get here 187 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 188 "inconsistent OS call behavior: errno == ENOSYS for mask " 189 "size %d\n", 190 size)); 191 if (__kmp_affinity_verbose || 192 (__kmp_affinity_warnings && 193 (__kmp_affinity_type != affinity_none) && 194 (__kmp_affinity_type != affinity_default) && 195 (__kmp_affinity_type != affinity_disabled))) { 196 int error = errno; 197 kmp_msg_t err_code = KMP_ERR(error); 198 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 199 err_code, __kmp_msg_null); 200 if (__kmp_generate_warnings == kmp_warnings_off) { 201 __kmp_str_free(&err_code.str); 202 } 203 } 204 KMP_AFFINITY_DISABLE(); 205 KMP_INTERNAL_FREE(buf); 206 return; 207 } 208 continue; 209 } 210 211 KMP_AFFINITY_ENABLE(gCode); 212 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 213 "affinity supported (mask size %d)\n", 214 (int)__kmp_affin_mask_size)); 215 KMP_INTERNAL_FREE(buf); 216 return; 217 } 218 #elif KMP_OS_FREEBSD 219 long gCode; 220 unsigned char *buf; 221 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 222 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, 223 reinterpret_cast<cpuset_t *>(buf)); 224 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 225 "initial getaffinity call returned %d errno = %d\n", 226 gCode, errno)); 227 if (gCode == 0) { 228 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 229 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 230 "affinity supported (mask size %d)\n", 231 (int)__kmp_affin_mask_size)); 232 KMP_INTERNAL_FREE(buf); 233 return; 234 } 235 #endif 236 KMP_INTERNAL_FREE(buf); 237 238 // Affinity is not supported 239 KMP_AFFINITY_DISABLE(); 240 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 241 "cannot determine mask size - affinity not supported\n")); 242 if (__kmp_affinity_verbose || 243 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 244 (__kmp_affinity_type != affinity_default) && 245 (__kmp_affinity_type != affinity_disabled))) { 246 KMP_WARNING(AffCantGetMaskSize, env_var); 247 } 248 } 249 250 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 251 252 #if KMP_USE_FUTEX 253 254 int __kmp_futex_determine_capable() { 255 int loc = 0; 256 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 257 int retval = (rc == 0) || (errno != ENOSYS); 258 259 KA_TRACE(10, 260 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 261 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 262 retval ? "" : " not")); 263 264 return retval; 265 } 266 267 #endif // KMP_USE_FUTEX 268 269 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 270 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 271 use compare_and_store for these routines */ 272 273 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 274 kmp_int8 old_value, new_value; 275 276 old_value = TCR_1(*p); 277 new_value = old_value | d; 278 279 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 280 KMP_CPU_PAUSE(); 281 old_value = TCR_1(*p); 282 new_value = old_value | d; 283 } 284 return old_value; 285 } 286 287 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 288 kmp_int8 old_value, new_value; 289 290 old_value = TCR_1(*p); 291 new_value = old_value & d; 292 293 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 294 KMP_CPU_PAUSE(); 295 old_value = TCR_1(*p); 296 new_value = old_value & d; 297 } 298 return old_value; 299 } 300 301 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 302 kmp_uint32 old_value, new_value; 303 304 old_value = TCR_4(*p); 305 new_value = old_value | d; 306 307 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 308 KMP_CPU_PAUSE(); 309 old_value = TCR_4(*p); 310 new_value = old_value | d; 311 } 312 return old_value; 313 } 314 315 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 316 kmp_uint32 old_value, new_value; 317 318 old_value = TCR_4(*p); 319 new_value = old_value & d; 320 321 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 322 KMP_CPU_PAUSE(); 323 old_value = TCR_4(*p); 324 new_value = old_value & d; 325 } 326 return old_value; 327 } 328 329 #if KMP_ARCH_X86 330 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 331 kmp_int8 old_value, new_value; 332 333 old_value = TCR_1(*p); 334 new_value = old_value + d; 335 336 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 337 KMP_CPU_PAUSE(); 338 old_value = TCR_1(*p); 339 new_value = old_value + d; 340 } 341 return old_value; 342 } 343 344 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 345 kmp_int64 old_value, new_value; 346 347 old_value = TCR_8(*p); 348 new_value = old_value + d; 349 350 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 351 KMP_CPU_PAUSE(); 352 old_value = TCR_8(*p); 353 new_value = old_value + d; 354 } 355 return old_value; 356 } 357 #endif /* KMP_ARCH_X86 */ 358 359 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 360 kmp_uint64 old_value, new_value; 361 362 old_value = TCR_8(*p); 363 new_value = old_value | d; 364 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 365 KMP_CPU_PAUSE(); 366 old_value = TCR_8(*p); 367 new_value = old_value | d; 368 } 369 return old_value; 370 } 371 372 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 373 kmp_uint64 old_value, new_value; 374 375 old_value = TCR_8(*p); 376 new_value = old_value & d; 377 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 378 KMP_CPU_PAUSE(); 379 old_value = TCR_8(*p); 380 new_value = old_value & d; 381 } 382 return old_value; 383 } 384 385 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 386 387 void __kmp_terminate_thread(int gtid) { 388 int status; 389 kmp_info_t *th = __kmp_threads[gtid]; 390 391 if (!th) 392 return; 393 394 #ifdef KMP_CANCEL_THREADS 395 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 396 status = pthread_cancel(th->th.th_info.ds.ds_thread); 397 if (status != 0 && status != ESRCH) { 398 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 399 __kmp_msg_null); 400 } 401 #endif 402 KMP_YIELD(TRUE); 403 } // 404 405 /* Set thread stack info according to values returned by pthread_getattr_np(). 406 If values are unreasonable, assume call failed and use incremental stack 407 refinement method instead. Returns TRUE if the stack parameters could be 408 determined exactly, FALSE if incremental refinement is necessary. */ 409 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 410 int stack_data; 411 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 412 KMP_OS_HURD 413 pthread_attr_t attr; 414 int status; 415 size_t size = 0; 416 void *addr = 0; 417 418 /* Always do incremental stack refinement for ubermaster threads since the 419 initial thread stack range can be reduced by sibling thread creation so 420 pthread_attr_getstack may cause thread gtid aliasing */ 421 if (!KMP_UBER_GTID(gtid)) { 422 423 /* Fetch the real thread attributes */ 424 status = pthread_attr_init(&attr); 425 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 426 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 427 status = pthread_attr_get_np(pthread_self(), &attr); 428 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 429 #else 430 status = pthread_getattr_np(pthread_self(), &attr); 431 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 432 #endif 433 status = pthread_attr_getstack(&attr, &addr, &size); 434 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 435 KA_TRACE(60, 436 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 437 " %lu, low addr: %p\n", 438 gtid, size, addr)); 439 status = pthread_attr_destroy(&attr); 440 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 441 } 442 443 if (size != 0 && addr != 0) { // was stack parameter determination successful? 444 /* Store the correct base and size */ 445 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 446 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 447 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 448 return TRUE; 449 } 450 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \ 451 || KMP_OS_HURD */ 452 /* Use incremental refinement starting from initial conservative estimate */ 453 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 454 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 455 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 456 return FALSE; 457 } 458 459 static void *__kmp_launch_worker(void *thr) { 460 int status, old_type, old_state; 461 #ifdef KMP_BLOCK_SIGNALS 462 sigset_t new_set, old_set; 463 #endif /* KMP_BLOCK_SIGNALS */ 464 void *exit_val; 465 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 466 KMP_OS_OPENBSD || KMP_OS_HURD 467 void *volatile padding = 0; 468 #endif 469 int gtid; 470 471 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 472 __kmp_gtid_set_specific(gtid); 473 #ifdef KMP_TDATA_GTID 474 __kmp_gtid = gtid; 475 #endif 476 #if KMP_STATS_ENABLED 477 // set thread local index to point to thread-specific stats 478 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 479 __kmp_stats_thread_ptr->startLife(); 480 KMP_SET_THREAD_STATE(IDLE); 481 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 482 #endif 483 484 #if USE_ITT_BUILD 485 __kmp_itt_thread_name(gtid); 486 #endif /* USE_ITT_BUILD */ 487 488 #if KMP_AFFINITY_SUPPORTED 489 __kmp_affinity_set_init_mask(gtid, FALSE); 490 #endif 491 492 #ifdef KMP_CANCEL_THREADS 493 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 494 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 495 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 496 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 497 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 498 #endif 499 500 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 501 // Set FP control regs to be a copy of the parallel initialization thread's. 502 __kmp_clear_x87_fpu_status_word(); 503 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 504 __kmp_load_mxcsr(&__kmp_init_mxcsr); 505 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 506 507 #ifdef KMP_BLOCK_SIGNALS 508 status = sigfillset(&new_set); 509 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 510 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 511 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 512 #endif /* KMP_BLOCK_SIGNALS */ 513 514 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 515 KMP_OS_OPENBSD 516 if (__kmp_stkoffset > 0 && gtid > 0) { 517 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 518 (void)padding; 519 } 520 #endif 521 522 KMP_MB(); 523 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 524 525 __kmp_check_stack_overlap((kmp_info_t *)thr); 526 527 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 528 529 #ifdef KMP_BLOCK_SIGNALS 530 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 531 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 532 #endif /* KMP_BLOCK_SIGNALS */ 533 534 return exit_val; 535 } 536 537 #if KMP_USE_MONITOR 538 /* The monitor thread controls all of the threads in the complex */ 539 540 static void *__kmp_launch_monitor(void *thr) { 541 int status, old_type, old_state; 542 #ifdef KMP_BLOCK_SIGNALS 543 sigset_t new_set; 544 #endif /* KMP_BLOCK_SIGNALS */ 545 struct timespec interval; 546 547 KMP_MB(); /* Flush all pending memory write invalidates. */ 548 549 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 550 551 /* register us as the monitor thread */ 552 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 553 #ifdef KMP_TDATA_GTID 554 __kmp_gtid = KMP_GTID_MONITOR; 555 #endif 556 557 KMP_MB(); 558 559 #if USE_ITT_BUILD 560 // Instruct Intel(R) Threading Tools to ignore monitor thread. 561 __kmp_itt_thread_ignore(); 562 #endif /* USE_ITT_BUILD */ 563 564 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 565 (kmp_info_t *)thr); 566 567 __kmp_check_stack_overlap((kmp_info_t *)thr); 568 569 #ifdef KMP_CANCEL_THREADS 570 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 571 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 572 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 573 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 574 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 575 #endif 576 577 #if KMP_REAL_TIME_FIX 578 // This is a potential fix which allows application with real-time scheduling 579 // policy work. However, decision about the fix is not made yet, so it is 580 // disabled by default. 581 { // Are program started with real-time scheduling policy? 582 int sched = sched_getscheduler(0); 583 if (sched == SCHED_FIFO || sched == SCHED_RR) { 584 // Yes, we are a part of real-time application. Try to increase the 585 // priority of the monitor. 586 struct sched_param param; 587 int max_priority = sched_get_priority_max(sched); 588 int rc; 589 KMP_WARNING(RealTimeSchedNotSupported); 590 sched_getparam(0, ¶m); 591 if (param.sched_priority < max_priority) { 592 param.sched_priority += 1; 593 rc = sched_setscheduler(0, sched, ¶m); 594 if (rc != 0) { 595 int error = errno; 596 kmp_msg_t err_code = KMP_ERR(error); 597 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 598 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 599 if (__kmp_generate_warnings == kmp_warnings_off) { 600 __kmp_str_free(&err_code.str); 601 } 602 } 603 } else { 604 // We cannot abort here, because number of CPUs may be enough for all 605 // the threads, including the monitor thread, so application could 606 // potentially work... 607 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 608 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 609 __kmp_msg_null); 610 } 611 } 612 // AC: free thread that waits for monitor started 613 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 614 } 615 #endif // KMP_REAL_TIME_FIX 616 617 KMP_MB(); /* Flush all pending memory write invalidates. */ 618 619 if (__kmp_monitor_wakeups == 1) { 620 interval.tv_sec = 1; 621 interval.tv_nsec = 0; 622 } else { 623 interval.tv_sec = 0; 624 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 625 } 626 627 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 628 629 while (!TCR_4(__kmp_global.g.g_done)) { 630 struct timespec now; 631 struct timeval tval; 632 633 /* This thread monitors the state of the system */ 634 635 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 636 637 status = gettimeofday(&tval, NULL); 638 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 639 TIMEVAL_TO_TIMESPEC(&tval, &now); 640 641 now.tv_sec += interval.tv_sec; 642 now.tv_nsec += interval.tv_nsec; 643 644 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 645 now.tv_sec += 1; 646 now.tv_nsec -= KMP_NSEC_PER_SEC; 647 } 648 649 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 650 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 651 // AC: the monitor should not fall asleep if g_done has been set 652 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 653 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 654 &__kmp_wait_mx.m_mutex, &now); 655 if (status != 0) { 656 if (status != ETIMEDOUT && status != EINTR) { 657 KMP_SYSFAIL("pthread_cond_timedwait", status); 658 } 659 } 660 } 661 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 662 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 663 664 TCW_4(__kmp_global.g.g_time.dt.t_value, 665 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 666 667 KMP_MB(); /* Flush all pending memory write invalidates. */ 668 } 669 670 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 671 672 #ifdef KMP_BLOCK_SIGNALS 673 status = sigfillset(&new_set); 674 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 675 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 676 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 677 #endif /* KMP_BLOCK_SIGNALS */ 678 679 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 680 681 if (__kmp_global.g.g_abort != 0) { 682 /* now we need to terminate the worker threads */ 683 /* the value of t_abort is the signal we caught */ 684 685 int gtid; 686 687 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 688 __kmp_global.g.g_abort)); 689 690 /* terminate the OpenMP worker threads */ 691 /* TODO this is not valid for sibling threads!! 692 * the uber master might not be 0 anymore.. */ 693 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 694 __kmp_terminate_thread(gtid); 695 696 __kmp_cleanup(); 697 698 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 699 __kmp_global.g.g_abort)); 700 701 if (__kmp_global.g.g_abort > 0) 702 raise(__kmp_global.g.g_abort); 703 } 704 705 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 706 707 return thr; 708 } 709 #endif // KMP_USE_MONITOR 710 711 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 712 pthread_t handle; 713 pthread_attr_t thread_attr; 714 int status; 715 716 th->th.th_info.ds.ds_gtid = gtid; 717 718 #if KMP_STATS_ENABLED 719 // sets up worker thread stats 720 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 721 722 // th->th.th_stats is used to transfer thread-specific stats-pointer to 723 // __kmp_launch_worker. So when thread is created (goes into 724 // __kmp_launch_worker) it will set its thread local pointer to 725 // th->th.th_stats 726 if (!KMP_UBER_GTID(gtid)) { 727 th->th.th_stats = __kmp_stats_list->push_back(gtid); 728 } else { 729 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 730 // so set the th->th.th_stats field to it. 731 th->th.th_stats = __kmp_stats_thread_ptr; 732 } 733 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 734 735 #endif // KMP_STATS_ENABLED 736 737 if (KMP_UBER_GTID(gtid)) { 738 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 739 th->th.th_info.ds.ds_thread = pthread_self(); 740 __kmp_set_stack_info(gtid, th); 741 __kmp_check_stack_overlap(th); 742 return; 743 } 744 745 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 746 747 KMP_MB(); /* Flush all pending memory write invalidates. */ 748 749 #ifdef KMP_THREAD_ATTR 750 status = pthread_attr_init(&thread_attr); 751 if (status != 0) { 752 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 753 } 754 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 755 if (status != 0) { 756 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 757 } 758 759 /* Set stack size for this thread now. 760 The multiple of 2 is there because on some machines, requesting an unusual 761 stacksize causes the thread to have an offset before the dummy alloca() 762 takes place to create the offset. Since we want the user to have a 763 sufficient stacksize AND support a stack offset, we alloca() twice the 764 offset so that the upcoming alloca() does not eliminate any premade offset, 765 and also gives the user the stack space they requested for all threads */ 766 stack_size += gtid * __kmp_stkoffset * 2; 767 768 #if defined(__ANDROID__) && __ANDROID_API__ < 19 769 // Round the stack size to a multiple of the page size. Older versions of 770 // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL 771 // if the stack size was not a multiple of the page size. 772 stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 773 #endif 774 775 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 776 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 777 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 778 779 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 780 status = pthread_attr_setstacksize(&thread_attr, stack_size); 781 #ifdef KMP_BACKUP_STKSIZE 782 if (status != 0) { 783 if (!__kmp_env_stksize) { 784 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 785 __kmp_stksize = KMP_BACKUP_STKSIZE; 786 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 787 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 788 "bytes\n", 789 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 790 status = pthread_attr_setstacksize(&thread_attr, stack_size); 791 } 792 } 793 #endif /* KMP_BACKUP_STKSIZE */ 794 if (status != 0) { 795 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 796 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 797 } 798 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 799 800 #endif /* KMP_THREAD_ATTR */ 801 802 status = 803 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 804 if (status != 0 || !handle) { // ??? Why do we check handle?? 805 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 806 if (status == EINVAL) { 807 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 808 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 809 } 810 if (status == ENOMEM) { 811 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 812 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 813 } 814 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 815 if (status == EAGAIN) { 816 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 817 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 818 } 819 KMP_SYSFAIL("pthread_create", status); 820 } 821 822 th->th.th_info.ds.ds_thread = handle; 823 824 #ifdef KMP_THREAD_ATTR 825 status = pthread_attr_destroy(&thread_attr); 826 if (status) { 827 kmp_msg_t err_code = KMP_ERR(status); 828 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 829 __kmp_msg_null); 830 if (__kmp_generate_warnings == kmp_warnings_off) { 831 __kmp_str_free(&err_code.str); 832 } 833 } 834 #endif /* KMP_THREAD_ATTR */ 835 836 KMP_MB(); /* Flush all pending memory write invalidates. */ 837 838 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 839 840 } // __kmp_create_worker 841 842 #if KMP_USE_MONITOR 843 void __kmp_create_monitor(kmp_info_t *th) { 844 pthread_t handle; 845 pthread_attr_t thread_attr; 846 size_t size; 847 int status; 848 int auto_adj_size = FALSE; 849 850 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 851 // We don't need monitor thread in case of MAX_BLOCKTIME 852 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 853 "MAX blocktime\n")); 854 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 855 th->th.th_info.ds.ds_gtid = 0; 856 return; 857 } 858 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 859 860 KMP_MB(); /* Flush all pending memory write invalidates. */ 861 862 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 863 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 864 #if KMP_REAL_TIME_FIX 865 TCW_4(__kmp_global.g.g_time.dt.t_value, 866 -1); // Will use it for synchronization a bit later. 867 #else 868 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 869 #endif // KMP_REAL_TIME_FIX 870 871 #ifdef KMP_THREAD_ATTR 872 if (__kmp_monitor_stksize == 0) { 873 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 874 auto_adj_size = TRUE; 875 } 876 status = pthread_attr_init(&thread_attr); 877 if (status != 0) { 878 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 879 } 880 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 881 if (status != 0) { 882 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 883 } 884 885 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 886 status = pthread_attr_getstacksize(&thread_attr, &size); 887 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 888 #else 889 size = __kmp_sys_min_stksize; 890 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 891 #endif /* KMP_THREAD_ATTR */ 892 893 if (__kmp_monitor_stksize == 0) { 894 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 895 } 896 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 897 __kmp_monitor_stksize = __kmp_sys_min_stksize; 898 } 899 900 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 901 "requested stacksize = %lu bytes\n", 902 size, __kmp_monitor_stksize)); 903 904 retry: 905 906 /* Set stack size for this thread now. */ 907 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 908 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 909 __kmp_monitor_stksize)); 910 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 911 if (status != 0) { 912 if (auto_adj_size) { 913 __kmp_monitor_stksize *= 2; 914 goto retry; 915 } 916 kmp_msg_t err_code = KMP_ERR(status); 917 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 918 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 919 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 920 if (__kmp_generate_warnings == kmp_warnings_off) { 921 __kmp_str_free(&err_code.str); 922 } 923 } 924 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 925 926 status = 927 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 928 929 if (status != 0) { 930 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 931 if (status == EINVAL) { 932 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 933 __kmp_monitor_stksize *= 2; 934 goto retry; 935 } 936 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 937 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 938 __kmp_msg_null); 939 } 940 if (status == ENOMEM) { 941 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 942 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 943 __kmp_msg_null); 944 } 945 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 946 if (status == EAGAIN) { 947 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 948 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 949 } 950 KMP_SYSFAIL("pthread_create", status); 951 } 952 953 th->th.th_info.ds.ds_thread = handle; 954 955 #if KMP_REAL_TIME_FIX 956 // Wait for the monitor thread is really started and set its *priority*. 957 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 958 sizeof(__kmp_global.g.g_time.dt.t_value)); 959 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 960 &__kmp_neq_4, NULL); 961 #endif // KMP_REAL_TIME_FIX 962 963 #ifdef KMP_THREAD_ATTR 964 status = pthread_attr_destroy(&thread_attr); 965 if (status != 0) { 966 kmp_msg_t err_code = KMP_ERR(status); 967 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 968 __kmp_msg_null); 969 if (__kmp_generate_warnings == kmp_warnings_off) { 970 __kmp_str_free(&err_code.str); 971 } 972 } 973 #endif 974 975 KMP_MB(); /* Flush all pending memory write invalidates. */ 976 977 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 978 th->th.th_info.ds.ds_thread)); 979 980 } // __kmp_create_monitor 981 #endif // KMP_USE_MONITOR 982 983 void __kmp_exit_thread(int exit_status) { 984 pthread_exit((void *)(intptr_t)exit_status); 985 } // __kmp_exit_thread 986 987 #if KMP_USE_MONITOR 988 void __kmp_resume_monitor(); 989 990 void __kmp_reap_monitor(kmp_info_t *th) { 991 int status; 992 void *exit_val; 993 994 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 995 " %#.8lx\n", 996 th->th.th_info.ds.ds_thread)); 997 998 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 999 // If both tid and gtid are 0, it means the monitor did not ever start. 1000 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1001 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1002 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1003 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1004 return; 1005 } 1006 1007 KMP_MB(); /* Flush all pending memory write invalidates. */ 1008 1009 /* First, check to see whether the monitor thread exists to wake it up. This 1010 is to avoid performance problem when the monitor sleeps during 1011 blocktime-size interval */ 1012 1013 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1014 if (status != ESRCH) { 1015 __kmp_resume_monitor(); // Wake up the monitor thread 1016 } 1017 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1018 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1019 if (exit_val != th) { 1020 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1021 } 1022 1023 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1024 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1025 1026 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1027 " %#.8lx\n", 1028 th->th.th_info.ds.ds_thread)); 1029 1030 KMP_MB(); /* Flush all pending memory write invalidates. */ 1031 } 1032 #endif // KMP_USE_MONITOR 1033 1034 void __kmp_reap_worker(kmp_info_t *th) { 1035 int status; 1036 void *exit_val; 1037 1038 KMP_MB(); /* Flush all pending memory write invalidates. */ 1039 1040 KA_TRACE( 1041 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1042 1043 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1044 #ifdef KMP_DEBUG 1045 /* Don't expose these to the user until we understand when they trigger */ 1046 if (status != 0) { 1047 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1048 } 1049 if (exit_val != th) { 1050 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1051 "exit_val = %p\n", 1052 th->th.th_info.ds.ds_gtid, exit_val)); 1053 } 1054 #endif /* KMP_DEBUG */ 1055 1056 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1057 th->th.th_info.ds.ds_gtid)); 1058 1059 KMP_MB(); /* Flush all pending memory write invalidates. */ 1060 } 1061 1062 #if KMP_HANDLE_SIGNALS 1063 1064 static void __kmp_null_handler(int signo) { 1065 // Do nothing, for doing SIG_IGN-type actions. 1066 } // __kmp_null_handler 1067 1068 static void __kmp_team_handler(int signo) { 1069 if (__kmp_global.g.g_abort == 0) { 1070 /* Stage 1 signal handler, let's shut down all of the threads */ 1071 #ifdef KMP_DEBUG 1072 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1073 #endif 1074 switch (signo) { 1075 case SIGHUP: 1076 case SIGINT: 1077 case SIGQUIT: 1078 case SIGILL: 1079 case SIGABRT: 1080 case SIGFPE: 1081 case SIGBUS: 1082 case SIGSEGV: 1083 #ifdef SIGSYS 1084 case SIGSYS: 1085 #endif 1086 case SIGTERM: 1087 if (__kmp_debug_buf) { 1088 __kmp_dump_debug_buffer(); 1089 } 1090 __kmp_unregister_library(); // cleanup shared memory 1091 KMP_MB(); // Flush all pending memory write invalidates. 1092 TCW_4(__kmp_global.g.g_abort, signo); 1093 KMP_MB(); // Flush all pending memory write invalidates. 1094 TCW_4(__kmp_global.g.g_done, TRUE); 1095 KMP_MB(); // Flush all pending memory write invalidates. 1096 break; 1097 default: 1098 #ifdef KMP_DEBUG 1099 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1100 #endif 1101 break; 1102 } 1103 } 1104 } // __kmp_team_handler 1105 1106 static void __kmp_sigaction(int signum, const struct sigaction *act, 1107 struct sigaction *oldact) { 1108 int rc = sigaction(signum, act, oldact); 1109 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1110 } 1111 1112 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1113 int parallel_init) { 1114 KMP_MB(); // Flush all pending memory write invalidates. 1115 KB_TRACE(60, 1116 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1117 if (parallel_init) { 1118 struct sigaction new_action; 1119 struct sigaction old_action; 1120 new_action.sa_handler = handler_func; 1121 new_action.sa_flags = 0; 1122 sigfillset(&new_action.sa_mask); 1123 __kmp_sigaction(sig, &new_action, &old_action); 1124 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1125 sigaddset(&__kmp_sigset, sig); 1126 } else { 1127 // Restore/keep user's handler if one previously installed. 1128 __kmp_sigaction(sig, &old_action, NULL); 1129 } 1130 } else { 1131 // Save initial/system signal handlers to see if user handlers installed. 1132 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1133 } 1134 KMP_MB(); // Flush all pending memory write invalidates. 1135 } // __kmp_install_one_handler 1136 1137 static void __kmp_remove_one_handler(int sig) { 1138 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1139 if (sigismember(&__kmp_sigset, sig)) { 1140 struct sigaction old; 1141 KMP_MB(); // Flush all pending memory write invalidates. 1142 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1143 if ((old.sa_handler != __kmp_team_handler) && 1144 (old.sa_handler != __kmp_null_handler)) { 1145 // Restore the users signal handler. 1146 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1147 "restoring: sig=%d\n", 1148 sig)); 1149 __kmp_sigaction(sig, &old, NULL); 1150 } 1151 sigdelset(&__kmp_sigset, sig); 1152 KMP_MB(); // Flush all pending memory write invalidates. 1153 } 1154 } // __kmp_remove_one_handler 1155 1156 void __kmp_install_signals(int parallel_init) { 1157 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1158 if (__kmp_handle_signals || !parallel_init) { 1159 // If ! parallel_init, we do not install handlers, just save original 1160 // handlers. Let us do it even __handle_signals is 0. 1161 sigemptyset(&__kmp_sigset); 1162 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1163 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1164 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1165 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1166 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1167 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1168 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1169 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1170 #ifdef SIGSYS 1171 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1172 #endif // SIGSYS 1173 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1174 #ifdef SIGPIPE 1175 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1176 #endif // SIGPIPE 1177 } 1178 } // __kmp_install_signals 1179 1180 void __kmp_remove_signals(void) { 1181 int sig; 1182 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1183 for (sig = 1; sig < NSIG; ++sig) { 1184 __kmp_remove_one_handler(sig); 1185 } 1186 } // __kmp_remove_signals 1187 1188 #endif // KMP_HANDLE_SIGNALS 1189 1190 void __kmp_enable(int new_state) { 1191 #ifdef KMP_CANCEL_THREADS 1192 int status, old_state; 1193 status = pthread_setcancelstate(new_state, &old_state); 1194 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1195 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1196 #endif 1197 } 1198 1199 void __kmp_disable(int *old_state) { 1200 #ifdef KMP_CANCEL_THREADS 1201 int status; 1202 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1203 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1204 #endif 1205 } 1206 1207 static void __kmp_atfork_prepare(void) { 1208 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1209 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1210 } 1211 1212 static void __kmp_atfork_parent(void) { 1213 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1214 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1215 } 1216 1217 /* Reset the library so execution in the child starts "all over again" with 1218 clean data structures in initial states. Don't worry about freeing memory 1219 allocated by parent, just abandon it to be safe. */ 1220 static void __kmp_atfork_child(void) { 1221 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1222 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1223 /* TODO make sure this is done right for nested/sibling */ 1224 // ATT: Memory leaks are here? TODO: Check it and fix. 1225 /* KMP_ASSERT( 0 ); */ 1226 1227 ++__kmp_fork_count; 1228 1229 #if KMP_AFFINITY_SUPPORTED 1230 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1231 // reset the affinity in the child to the initial thread 1232 // affinity in the parent 1233 kmp_set_thread_affinity_mask_initial(); 1234 #endif 1235 // Set default not to bind threads tightly in the child (we’re expecting 1236 // over-subscription after the fork and this can improve things for 1237 // scripting languages that use OpenMP inside process-parallel code). 1238 __kmp_affinity_type = affinity_none; 1239 if (__kmp_nested_proc_bind.bind_types != NULL) { 1240 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1241 } 1242 __kmp_affinity_masks = NULL; 1243 __kmp_affinity_num_masks = 0; 1244 #endif // KMP_AFFINITY_SUPPORTED 1245 1246 #if KMP_USE_MONITOR 1247 __kmp_init_monitor = 0; 1248 #endif 1249 __kmp_init_parallel = FALSE; 1250 __kmp_init_middle = FALSE; 1251 __kmp_init_serial = FALSE; 1252 TCW_4(__kmp_init_gtid, FALSE); 1253 __kmp_init_common = FALSE; 1254 1255 TCW_4(__kmp_init_user_locks, FALSE); 1256 #if !KMP_USE_DYNAMIC_LOCK 1257 __kmp_user_lock_table.used = 1; 1258 __kmp_user_lock_table.allocated = 0; 1259 __kmp_user_lock_table.table = NULL; 1260 __kmp_lock_blocks = NULL; 1261 #endif 1262 1263 __kmp_all_nth = 0; 1264 TCW_4(__kmp_nth, 0); 1265 1266 __kmp_thread_pool = NULL; 1267 __kmp_thread_pool_insert_pt = NULL; 1268 __kmp_team_pool = NULL; 1269 1270 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1271 here so threadprivate doesn't use stale data */ 1272 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1273 __kmp_threadpriv_cache_list)); 1274 1275 while (__kmp_threadpriv_cache_list != NULL) { 1276 1277 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1278 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1279 &(*__kmp_threadpriv_cache_list->addr))); 1280 1281 *__kmp_threadpriv_cache_list->addr = NULL; 1282 } 1283 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1284 } 1285 1286 __kmp_init_runtime = FALSE; 1287 1288 /* reset statically initialized locks */ 1289 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1290 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1291 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1292 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1293 1294 #if USE_ITT_BUILD 1295 __kmp_itt_reset(); // reset ITT's global state 1296 #endif /* USE_ITT_BUILD */ 1297 1298 __kmp_serial_initialize(); 1299 1300 /* This is necessary to make sure no stale data is left around */ 1301 /* AC: customers complain that we use unsafe routines in the atfork 1302 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1303 in dynamic_link when check the presence of shared tbbmalloc library. 1304 Suggestion is to make the library initialization lazier, similar 1305 to what done for __kmpc_begin(). */ 1306 // TODO: synchronize all static initializations with regular library 1307 // startup; look at kmp_global.cpp and etc. 1308 //__kmp_internal_begin (); 1309 } 1310 1311 void __kmp_register_atfork(void) { 1312 if (__kmp_need_register_atfork) { 1313 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1314 __kmp_atfork_child); 1315 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1316 __kmp_need_register_atfork = FALSE; 1317 } 1318 } 1319 1320 void __kmp_suspend_initialize(void) { 1321 int status; 1322 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1323 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1324 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1325 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1326 } 1327 1328 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1329 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1330 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1331 int new_value = __kmp_fork_count + 1; 1332 // Return if already initialized 1333 if (old_value == new_value) 1334 return; 1335 // Wait, then return if being initialized 1336 if (old_value == -1 || !__kmp_atomic_compare_store( 1337 &th->th.th_suspend_init_count, old_value, -1)) { 1338 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1339 KMP_CPU_PAUSE(); 1340 } 1341 } else { 1342 // Claim to be the initializer and do initializations 1343 int status; 1344 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1345 &__kmp_suspend_cond_attr); 1346 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1347 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1348 &__kmp_suspend_mutex_attr); 1349 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1350 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1351 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1352 } 1353 } 1354 1355 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1356 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1357 /* this means we have initialize the suspension pthread objects for this 1358 thread in this instance of the process */ 1359 int status; 1360 1361 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1362 if (status != 0 && status != EBUSY) { 1363 KMP_SYSFAIL("pthread_cond_destroy", status); 1364 } 1365 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1366 if (status != 0 && status != EBUSY) { 1367 KMP_SYSFAIL("pthread_mutex_destroy", status); 1368 } 1369 --th->th.th_suspend_init_count; 1370 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1371 __kmp_fork_count); 1372 } 1373 } 1374 1375 // return true if lock obtained, false otherwise 1376 int __kmp_try_suspend_mx(kmp_info_t *th) { 1377 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1378 } 1379 1380 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1381 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1382 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1383 } 1384 1385 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1386 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1387 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1388 } 1389 1390 /* This routine puts the calling thread to sleep after setting the 1391 sleep bit for the indicated flag variable to true. */ 1392 template <class C> 1393 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1394 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1395 kmp_info_t *th = __kmp_threads[th_gtid]; 1396 int status; 1397 typename C::flag_t old_spin; 1398 1399 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1400 flag->get())); 1401 1402 __kmp_suspend_initialize_thread(th); 1403 1404 __kmp_lock_suspend_mx(th); 1405 1406 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1407 th_gtid, flag->get())); 1408 1409 /* TODO: shouldn't this use release semantics to ensure that 1410 __kmp_suspend_initialize_thread gets called first? */ 1411 old_spin = flag->set_sleeping(); 1412 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1413 __kmp_pause_status != kmp_soft_paused) { 1414 flag->unset_sleeping(); 1415 __kmp_unlock_suspend_mx(th); 1416 return; 1417 } 1418 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1419 " was %x\n", 1420 th_gtid, flag->get(), flag->load(), old_spin)); 1421 1422 if (flag->done_check_val(old_spin)) { 1423 old_spin = flag->unset_sleeping(); 1424 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1425 "for spin(%p)\n", 1426 th_gtid, flag->get())); 1427 } else { 1428 /* Encapsulate in a loop as the documentation states that this may 1429 "with low probability" return when the condition variable has 1430 not been signaled or broadcast */ 1431 int deactivated = FALSE; 1432 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1433 1434 while (flag->is_sleeping()) { 1435 #ifdef DEBUG_SUSPEND 1436 char buffer[128]; 1437 __kmp_suspend_count++; 1438 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1439 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1440 buffer); 1441 #endif 1442 // Mark the thread as no longer active (only in the first iteration of the 1443 // loop). 1444 if (!deactivated) { 1445 th->th.th_active = FALSE; 1446 if (th->th.th_active_in_pool) { 1447 th->th.th_active_in_pool = FALSE; 1448 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1449 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1450 } 1451 deactivated = TRUE; 1452 } 1453 1454 #if USE_SUSPEND_TIMEOUT 1455 struct timespec now; 1456 struct timeval tval; 1457 int msecs; 1458 1459 status = gettimeofday(&tval, NULL); 1460 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1461 TIMEVAL_TO_TIMESPEC(&tval, &now); 1462 1463 msecs = (4 * __kmp_dflt_blocktime) + 200; 1464 now.tv_sec += msecs / 1000; 1465 now.tv_nsec += (msecs % 1000) * 1000; 1466 1467 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1468 "pthread_cond_timedwait\n", 1469 th_gtid)); 1470 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1471 &th->th.th_suspend_mx.m_mutex, &now); 1472 #else 1473 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1474 " pthread_cond_wait\n", 1475 th_gtid)); 1476 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1477 &th->th.th_suspend_mx.m_mutex); 1478 #endif // USE_SUSPEND_TIMEOUT 1479 1480 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1481 KMP_SYSFAIL("pthread_cond_wait", status); 1482 } 1483 #ifdef KMP_DEBUG 1484 if (status == ETIMEDOUT) { 1485 if (flag->is_sleeping()) { 1486 KF_TRACE(100, 1487 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1488 } else { 1489 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1490 "not set!\n", 1491 th_gtid)); 1492 } 1493 } else if (flag->is_sleeping()) { 1494 KF_TRACE(100, 1495 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1496 } 1497 #endif 1498 } // while 1499 1500 // Mark the thread as active again (if it was previous marked as inactive) 1501 if (deactivated) { 1502 th->th.th_active = TRUE; 1503 if (TCR_4(th->th.th_in_pool)) { 1504 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1505 th->th.th_active_in_pool = TRUE; 1506 } 1507 } 1508 } 1509 #ifdef DEBUG_SUSPEND 1510 { 1511 char buffer[128]; 1512 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1513 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1514 buffer); 1515 } 1516 #endif 1517 1518 __kmp_unlock_suspend_mx(th); 1519 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1520 } 1521 1522 template <bool C, bool S> 1523 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 1524 __kmp_suspend_template(th_gtid, flag); 1525 } 1526 template <bool C, bool S> 1527 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 1528 __kmp_suspend_template(th_gtid, flag); 1529 } 1530 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1531 __kmp_suspend_template(th_gtid, flag); 1532 } 1533 1534 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 1535 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 1536 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 1537 1538 /* This routine signals the thread specified by target_gtid to wake up 1539 after setting the sleep bit indicated by the flag argument to FALSE. 1540 The target thread must already have called __kmp_suspend_template() */ 1541 template <class C> 1542 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1543 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1544 kmp_info_t *th = __kmp_threads[target_gtid]; 1545 int status; 1546 1547 #ifdef KMP_DEBUG 1548 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1549 #endif 1550 1551 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1552 gtid, target_gtid)); 1553 KMP_DEBUG_ASSERT(gtid != target_gtid); 1554 1555 __kmp_suspend_initialize_thread(th); 1556 1557 __kmp_lock_suspend_mx(th); 1558 1559 if (!flag) { // coming from __kmp_null_resume_wrapper 1560 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1561 } 1562 1563 // First, check if the flag is null or its type has changed. If so, someone 1564 // else woke it up. 1565 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1566 // simply shows what flag was cast to 1567 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1568 "awake: flag(%p)\n", 1569 gtid, target_gtid, NULL)); 1570 __kmp_unlock_suspend_mx(th); 1571 return; 1572 } else { // if multiple threads are sleeping, flag should be internally 1573 // referring to a specific thread here 1574 typename C::flag_t old_spin = flag->unset_sleeping(); 1575 if (!flag->is_sleeping_val(old_spin)) { 1576 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1577 "awake: flag(%p): " 1578 "%u => %u\n", 1579 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1580 __kmp_unlock_suspend_mx(th); 1581 return; 1582 } 1583 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1584 "sleep bit for flag's loc(%p): " 1585 "%u => %u\n", 1586 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1587 } 1588 TCW_PTR(th->th.th_sleep_loc, NULL); 1589 1590 #ifdef DEBUG_SUSPEND 1591 { 1592 char buffer[128]; 1593 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1594 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1595 target_gtid, buffer); 1596 } 1597 #endif 1598 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1599 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1600 __kmp_unlock_suspend_mx(th); 1601 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1602 " for T#%d\n", 1603 gtid, target_gtid)); 1604 } 1605 1606 template <bool C, bool S> 1607 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 1608 __kmp_resume_template(target_gtid, flag); 1609 } 1610 template <bool C, bool S> 1611 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 1612 __kmp_resume_template(target_gtid, flag); 1613 } 1614 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1615 __kmp_resume_template(target_gtid, flag); 1616 } 1617 1618 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 1619 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 1620 1621 #if KMP_USE_MONITOR 1622 void __kmp_resume_monitor() { 1623 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1624 int status; 1625 #ifdef KMP_DEBUG 1626 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1627 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1628 KMP_GTID_MONITOR)); 1629 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1630 #endif 1631 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1632 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1633 #ifdef DEBUG_SUSPEND 1634 { 1635 char buffer[128]; 1636 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1637 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1638 KMP_GTID_MONITOR, buffer); 1639 } 1640 #endif 1641 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1642 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1643 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1644 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1645 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1646 " for T#%d\n", 1647 gtid, KMP_GTID_MONITOR)); 1648 } 1649 #endif // KMP_USE_MONITOR 1650 1651 void __kmp_yield() { sched_yield(); } 1652 1653 void __kmp_gtid_set_specific(int gtid) { 1654 if (__kmp_init_gtid) { 1655 int status; 1656 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1657 (void *)(intptr_t)(gtid + 1)); 1658 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1659 } else { 1660 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1661 } 1662 } 1663 1664 int __kmp_gtid_get_specific() { 1665 int gtid; 1666 if (!__kmp_init_gtid) { 1667 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1668 "KMP_GTID_SHUTDOWN\n")); 1669 return KMP_GTID_SHUTDOWN; 1670 } 1671 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1672 if (gtid == 0) { 1673 gtid = KMP_GTID_DNE; 1674 } else { 1675 gtid--; 1676 } 1677 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1678 __kmp_gtid_threadprivate_key, gtid)); 1679 return gtid; 1680 } 1681 1682 double __kmp_read_cpu_time(void) { 1683 /*clock_t t;*/ 1684 struct tms buffer; 1685 1686 /*t =*/times(&buffer); 1687 1688 return (double)(buffer.tms_utime + buffer.tms_cutime) / 1689 (double)CLOCKS_PER_SEC; 1690 } 1691 1692 int __kmp_read_system_info(struct kmp_sys_info *info) { 1693 int status; 1694 struct rusage r_usage; 1695 1696 memset(info, 0, sizeof(*info)); 1697 1698 status = getrusage(RUSAGE_SELF, &r_usage); 1699 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1700 1701 // The maximum resident set size utilized (in kilobytes) 1702 info->maxrss = r_usage.ru_maxrss; 1703 // The number of page faults serviced without any I/O 1704 info->minflt = r_usage.ru_minflt; 1705 // The number of page faults serviced that required I/O 1706 info->majflt = r_usage.ru_majflt; 1707 // The number of times a process was "swapped" out of memory 1708 info->nswap = r_usage.ru_nswap; 1709 // The number of times the file system had to perform input 1710 info->inblock = r_usage.ru_inblock; 1711 // The number of times the file system had to perform output 1712 info->oublock = r_usage.ru_oublock; 1713 // The number of times a context switch was voluntarily 1714 info->nvcsw = r_usage.ru_nvcsw; 1715 // The number of times a context switch was forced 1716 info->nivcsw = r_usage.ru_nivcsw; 1717 1718 return (status != 0); 1719 } 1720 1721 void __kmp_read_system_time(double *delta) { 1722 double t_ns; 1723 struct timeval tval; 1724 struct timespec stop; 1725 int status; 1726 1727 status = gettimeofday(&tval, NULL); 1728 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1729 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1730 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start)); 1731 *delta = (t_ns * 1e-9); 1732 } 1733 1734 void __kmp_clear_system_time(void) { 1735 struct timeval tval; 1736 int status; 1737 status = gettimeofday(&tval, NULL); 1738 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1739 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1740 } 1741 1742 static int __kmp_get_xproc(void) { 1743 1744 int r = 0; 1745 1746 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 1747 KMP_OS_OPENBSD || KMP_OS_HURD 1748 1749 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r)); 1750 1751 #elif KMP_OS_DARWIN 1752 1753 // Bug C77011 High "OpenMP Threads and number of active cores". 1754 1755 // Find the number of available CPUs. 1756 kern_return_t rc; 1757 host_basic_info_data_t info; 1758 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1759 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1760 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1761 // Cannot use KA_TRACE() here because this code works before trace support 1762 // is initialized. 1763 r = info.avail_cpus; 1764 } else { 1765 KMP_WARNING(CantGetNumAvailCPU); 1766 KMP_INFORM(AssumedNumCPU); 1767 } 1768 1769 #else 1770 1771 #error "Unknown or unsupported OS." 1772 1773 #endif 1774 1775 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1776 1777 } // __kmp_get_xproc 1778 1779 int __kmp_read_from_file(char const *path, char const *format, ...) { 1780 int result; 1781 va_list args; 1782 1783 va_start(args, format); 1784 FILE *f = fopen(path, "rb"); 1785 if (f == NULL) 1786 return 0; 1787 result = vfscanf(f, format, args); 1788 fclose(f); 1789 1790 return result; 1791 } 1792 1793 void __kmp_runtime_initialize(void) { 1794 int status; 1795 pthread_mutexattr_t mutex_attr; 1796 pthread_condattr_t cond_attr; 1797 1798 if (__kmp_init_runtime) { 1799 return; 1800 } 1801 1802 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1803 if (!__kmp_cpuinfo.initialized) { 1804 __kmp_query_cpuid(&__kmp_cpuinfo); 1805 } 1806 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1807 1808 __kmp_xproc = __kmp_get_xproc(); 1809 1810 #if !KMP_32_BIT_ARCH 1811 struct rlimit rlim; 1812 // read stack size of calling thread, save it as default for worker threads; 1813 // this should be done before reading environment variables 1814 status = getrlimit(RLIMIT_STACK, &rlim); 1815 if (status == 0) { // success? 1816 __kmp_stksize = rlim.rlim_cur; 1817 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1818 } 1819 #endif /* KMP_32_BIT_ARCH */ 1820 1821 if (sysconf(_SC_THREADS)) { 1822 1823 /* Query the maximum number of threads */ 1824 __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth)); 1825 if (__kmp_sys_max_nth == -1) { 1826 /* Unlimited threads for NPTL */ 1827 __kmp_sys_max_nth = INT_MAX; 1828 } else if (__kmp_sys_max_nth <= 1) { 1829 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1830 __kmp_sys_max_nth = KMP_MAX_NTH; 1831 } 1832 1833 /* Query the minimum stack size */ 1834 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1835 if (__kmp_sys_min_stksize <= 1) { 1836 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1837 } 1838 } 1839 1840 /* Set up minimum number of threads to switch to TLS gtid */ 1841 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1842 1843 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1844 __kmp_internal_end_dest); 1845 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1846 status = pthread_mutexattr_init(&mutex_attr); 1847 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1848 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1849 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1850 status = pthread_mutexattr_destroy(&mutex_attr); 1851 KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status); 1852 status = pthread_condattr_init(&cond_attr); 1853 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1854 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1855 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1856 status = pthread_condattr_destroy(&cond_attr); 1857 KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status); 1858 #if USE_ITT_BUILD 1859 __kmp_itt_initialize(); 1860 #endif /* USE_ITT_BUILD */ 1861 1862 __kmp_init_runtime = TRUE; 1863 } 1864 1865 void __kmp_runtime_destroy(void) { 1866 int status; 1867 1868 if (!__kmp_init_runtime) { 1869 return; // Nothing to do. 1870 } 1871 1872 #if USE_ITT_BUILD 1873 __kmp_itt_destroy(); 1874 #endif /* USE_ITT_BUILD */ 1875 1876 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1877 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1878 1879 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1880 if (status != 0 && status != EBUSY) { 1881 KMP_SYSFAIL("pthread_mutex_destroy", status); 1882 } 1883 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1884 if (status != 0 && status != EBUSY) { 1885 KMP_SYSFAIL("pthread_cond_destroy", status); 1886 } 1887 #if KMP_AFFINITY_SUPPORTED 1888 __kmp_affinity_uninitialize(); 1889 #endif 1890 1891 __kmp_init_runtime = FALSE; 1892 } 1893 1894 /* Put the thread to sleep for a time period */ 1895 /* NOTE: not currently used anywhere */ 1896 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1897 1898 /* Calculate the elapsed wall clock time for the user */ 1899 void __kmp_elapsed(double *t) { 1900 int status; 1901 #ifdef FIX_SGI_CLOCK 1902 struct timespec ts; 1903 1904 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1905 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1906 *t = 1907 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1908 #else 1909 struct timeval tv; 1910 1911 status = gettimeofday(&tv, NULL); 1912 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1913 *t = 1914 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1915 #endif 1916 } 1917 1918 /* Calculate the elapsed wall clock tick for the user */ 1919 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1920 1921 /* Return the current time stamp in nsec */ 1922 kmp_uint64 __kmp_now_nsec() { 1923 struct timeval t; 1924 gettimeofday(&t, NULL); 1925 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 1926 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 1927 return nsec; 1928 } 1929 1930 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1931 /* Measure clock ticks per millisecond */ 1932 void __kmp_initialize_system_tick() { 1933 kmp_uint64 now, nsec2, diff; 1934 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1935 kmp_uint64 nsec = __kmp_now_nsec(); 1936 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1937 while ((now = __kmp_hardware_timestamp()) < goal) 1938 ; 1939 nsec2 = __kmp_now_nsec(); 1940 diff = nsec2 - nsec; 1941 if (diff > 0) { 1942 kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff); 1943 if (tpms > 0) 1944 __kmp_ticks_per_msec = tpms; 1945 } 1946 } 1947 #endif 1948 1949 /* Determine whether the given address is mapped into the current address 1950 space. */ 1951 1952 int __kmp_is_address_mapped(void *addr) { 1953 1954 int found = 0; 1955 int rc; 1956 1957 #if KMP_OS_LINUX || KMP_OS_HURD 1958 1959 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the 1960 address ranges mapped into the address space. */ 1961 1962 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 1963 FILE *file = NULL; 1964 1965 file = fopen(name, "r"); 1966 KMP_ASSERT(file != NULL); 1967 1968 for (;;) { 1969 1970 void *beginning = NULL; 1971 void *ending = NULL; 1972 char perms[5]; 1973 1974 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 1975 if (rc == EOF) { 1976 break; 1977 } 1978 KMP_ASSERT(rc == 3 && 1979 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 1980 1981 // Ending address is not included in the region, but beginning is. 1982 if ((addr >= beginning) && (addr < ending)) { 1983 perms[2] = 0; // 3th and 4th character does not matter. 1984 if (strcmp(perms, "rw") == 0) { 1985 // Memory we are looking for should be readable and writable. 1986 found = 1; 1987 } 1988 break; 1989 } 1990 } 1991 1992 // Free resources. 1993 fclose(file); 1994 KMP_INTERNAL_FREE(name); 1995 #elif KMP_OS_FREEBSD 1996 char *buf; 1997 size_t lstsz; 1998 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 1999 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2000 if (rc < 0) 2001 return 0; 2002 // We pass from number of vm entry's semantic 2003 // to size of whole entry map list. 2004 lstsz = lstsz * 4 / 3; 2005 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2006 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2007 if (rc < 0) { 2008 kmpc_free(buf); 2009 return 0; 2010 } 2011 2012 char *lw = buf; 2013 char *up = buf + lstsz; 2014 2015 while (lw < up) { 2016 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2017 size_t cursz = cur->kve_structsize; 2018 if (cursz == 0) 2019 break; 2020 void *start = reinterpret_cast<void *>(cur->kve_start); 2021 void *end = reinterpret_cast<void *>(cur->kve_end); 2022 // Readable/Writable addresses within current map entry 2023 if ((addr >= start) && (addr < end)) { 2024 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2025 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2026 found = 1; 2027 break; 2028 } 2029 } 2030 lw += cursz; 2031 } 2032 kmpc_free(buf); 2033 2034 #elif KMP_OS_DARWIN 2035 2036 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2037 using vm interface. */ 2038 2039 int buffer; 2040 vm_size_t count; 2041 rc = vm_read_overwrite( 2042 mach_task_self(), // Task to read memory of. 2043 (vm_address_t)(addr), // Address to read from. 2044 1, // Number of bytes to be read. 2045 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2046 &count // Address of var to save number of read bytes in. 2047 ); 2048 if (rc == 0) { 2049 // Memory successfully read. 2050 found = 1; 2051 } 2052 2053 #elif KMP_OS_NETBSD 2054 2055 int mib[5]; 2056 mib[0] = CTL_VM; 2057 mib[1] = VM_PROC; 2058 mib[2] = VM_PROC_MAP; 2059 mib[3] = getpid(); 2060 mib[4] = sizeof(struct kinfo_vmentry); 2061 2062 size_t size; 2063 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2064 KMP_ASSERT(!rc); 2065 KMP_ASSERT(size); 2066 2067 size = size * 4 / 3; 2068 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2069 KMP_ASSERT(kiv); 2070 2071 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2072 KMP_ASSERT(!rc); 2073 KMP_ASSERT(size); 2074 2075 for (size_t i = 0; i < size; i++) { 2076 if (kiv[i].kve_start >= (uint64_t)addr && 2077 kiv[i].kve_end <= (uint64_t)addr) { 2078 found = 1; 2079 break; 2080 } 2081 } 2082 KMP_INTERNAL_FREE(kiv); 2083 #elif KMP_OS_OPENBSD 2084 2085 int mib[3]; 2086 mib[0] = CTL_KERN; 2087 mib[1] = KERN_PROC_VMMAP; 2088 mib[2] = getpid(); 2089 2090 size_t size; 2091 uint64_t end; 2092 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2093 KMP_ASSERT(!rc); 2094 KMP_ASSERT(size); 2095 end = size; 2096 2097 struct kinfo_vmentry kiv = {.kve_start = 0}; 2098 2099 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2100 KMP_ASSERT(size); 2101 if (kiv.kve_end == end) 2102 break; 2103 2104 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2105 found = 1; 2106 break; 2107 } 2108 kiv.kve_start += 1; 2109 } 2110 #elif KMP_OS_DRAGONFLY 2111 2112 // FIXME(DragonFly): Implement this 2113 found = 1; 2114 2115 #else 2116 2117 #error "Unknown or unsupported OS" 2118 2119 #endif 2120 2121 return found; 2122 2123 } // __kmp_is_address_mapped 2124 2125 #ifdef USE_LOAD_BALANCE 2126 2127 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2128 2129 // The function returns the rounded value of the system load average 2130 // during given time interval which depends on the value of 2131 // __kmp_load_balance_interval variable (default is 60 sec, other values 2132 // may be 300 sec or 900 sec). 2133 // It returns -1 in case of error. 2134 int __kmp_get_load_balance(int max) { 2135 double averages[3]; 2136 int ret_avg = 0; 2137 2138 int res = getloadavg(averages, 3); 2139 2140 // Check __kmp_load_balance_interval to determine which of averages to use. 2141 // getloadavg() may return the number of samples less than requested that is 2142 // less than 3. 2143 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2144 ret_avg = (int)averages[0]; // 1 min 2145 } else if ((__kmp_load_balance_interval >= 180 && 2146 __kmp_load_balance_interval < 600) && 2147 (res >= 2)) { 2148 ret_avg = (int)averages[1]; // 5 min 2149 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2150 ret_avg = (int)averages[2]; // 15 min 2151 } else { // Error occurred 2152 return -1; 2153 } 2154 2155 return ret_avg; 2156 } 2157 2158 #else // Linux* OS 2159 2160 // The function returns number of running (not sleeping) threads, or -1 in case 2161 // of error. Error could be reported if Linux* OS kernel too old (without 2162 // "/proc" support). Counting running threads stops if max running threads 2163 // encountered. 2164 int __kmp_get_load_balance(int max) { 2165 static int permanent_error = 0; 2166 static int glb_running_threads = 0; // Saved count of the running threads for 2167 // the thread balance algorithm 2168 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2169 2170 int running_threads = 0; // Number of running threads in the system. 2171 2172 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2173 struct dirent *proc_entry = NULL; 2174 2175 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2176 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2177 struct dirent *task_entry = NULL; 2178 int task_path_fixed_len; 2179 2180 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2181 int stat_file = -1; 2182 int stat_path_fixed_len; 2183 2184 int total_processes = 0; // Total number of processes in system. 2185 int total_threads = 0; // Total number of threads in system. 2186 2187 double call_time = 0.0; 2188 2189 __kmp_str_buf_init(&task_path); 2190 __kmp_str_buf_init(&stat_path); 2191 2192 __kmp_elapsed(&call_time); 2193 2194 if (glb_call_time && 2195 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2196 running_threads = glb_running_threads; 2197 goto finish; 2198 } 2199 2200 glb_call_time = call_time; 2201 2202 // Do not spend time on scanning "/proc/" if we have a permanent error. 2203 if (permanent_error) { 2204 running_threads = -1; 2205 goto finish; 2206 } 2207 2208 if (max <= 0) { 2209 max = INT_MAX; 2210 } 2211 2212 // Open "/proc/" directory. 2213 proc_dir = opendir("/proc"); 2214 if (proc_dir == NULL) { 2215 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2216 // error now and in subsequent calls. 2217 running_threads = -1; 2218 permanent_error = 1; 2219 goto finish; 2220 } 2221 2222 // Initialize fixed part of task_path. This part will not change. 2223 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2224 task_path_fixed_len = task_path.used; // Remember number of used characters. 2225 2226 proc_entry = readdir(proc_dir); 2227 while (proc_entry != NULL) { 2228 // Proc entry is a directory and name starts with a digit. Assume it is a 2229 // process' directory. 2230 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2231 2232 ++total_processes; 2233 // Make sure init process is the very first in "/proc", so we can replace 2234 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2235 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2236 // true (where "=>" is implication). Since C++ does not have => operator, 2237 // let us replace it with its equivalent: a => b == ! a || b. 2238 KMP_DEBUG_ASSERT(total_processes != 1 || 2239 strcmp(proc_entry->d_name, "1") == 0); 2240 2241 // Construct task_path. 2242 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2243 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2244 KMP_STRLEN(proc_entry->d_name)); 2245 __kmp_str_buf_cat(&task_path, "/task", 5); 2246 2247 task_dir = opendir(task_path.str); 2248 if (task_dir == NULL) { 2249 // Process can finish between reading "/proc/" directory entry and 2250 // opening process' "task/" directory. So, in general case we should not 2251 // complain, but have to skip this process and read the next one. But on 2252 // systems with no "task/" support we will spend lot of time to scan 2253 // "/proc/" tree again and again without any benefit. "init" process 2254 // (its pid is 1) should exist always, so, if we cannot open 2255 // "/proc/1/task/" directory, it means "task/" is not supported by 2256 // kernel. Report an error now and in the future. 2257 if (strcmp(proc_entry->d_name, "1") == 0) { 2258 running_threads = -1; 2259 permanent_error = 1; 2260 goto finish; 2261 } 2262 } else { 2263 // Construct fixed part of stat file path. 2264 __kmp_str_buf_clear(&stat_path); 2265 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2266 __kmp_str_buf_cat(&stat_path, "/", 1); 2267 stat_path_fixed_len = stat_path.used; 2268 2269 task_entry = readdir(task_dir); 2270 while (task_entry != NULL) { 2271 // It is a directory and name starts with a digit. 2272 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2273 ++total_threads; 2274 2275 // Construct complete stat file path. Easiest way would be: 2276 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2277 // task_entry->d_name ); 2278 // but seriae of __kmp_str_buf_cat works a bit faster. 2279 stat_path.used = 2280 stat_path_fixed_len; // Reset stat path to its fixed part. 2281 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2282 KMP_STRLEN(task_entry->d_name)); 2283 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2284 2285 // Note: Low-level API (open/read/close) is used. High-level API 2286 // (fopen/fclose) works ~ 30 % slower. 2287 stat_file = open(stat_path.str, O_RDONLY); 2288 if (stat_file == -1) { 2289 // We cannot report an error because task (thread) can terminate 2290 // just before reading this file. 2291 } else { 2292 /* Content of "stat" file looks like: 2293 24285 (program) S ... 2294 2295 It is a single line (if program name does not include funny 2296 symbols). First number is a thread id, then name of executable 2297 file name in paretheses, then state of the thread. We need just 2298 thread state. 2299 2300 Good news: Length of program name is 15 characters max. Longer 2301 names are truncated. 2302 2303 Thus, we need rather short buffer: 15 chars for program name + 2304 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2305 2306 Bad news: Program name may contain special symbols like space, 2307 closing parenthesis, or even new line. This makes parsing 2308 "stat" file not 100 % reliable. In case of fanny program names 2309 parsing may fail (report incorrect thread state). 2310 2311 Parsing "status" file looks more promissing (due to different 2312 file structure and escaping special symbols) but reading and 2313 parsing of "status" file works slower. 2314 -- ln 2315 */ 2316 char buffer[65]; 2317 ssize_t len; 2318 len = read(stat_file, buffer, sizeof(buffer) - 1); 2319 if (len >= 0) { 2320 buffer[len] = 0; 2321 // Using scanf: 2322 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2323 // looks very nice, but searching for a closing parenthesis 2324 // works a bit faster. 2325 char *close_parent = strstr(buffer, ") "); 2326 if (close_parent != NULL) { 2327 char state = *(close_parent + 2); 2328 if (state == 'R') { 2329 ++running_threads; 2330 if (running_threads >= max) { 2331 goto finish; 2332 } 2333 } 2334 } 2335 } 2336 close(stat_file); 2337 stat_file = -1; 2338 } 2339 } 2340 task_entry = readdir(task_dir); 2341 } 2342 closedir(task_dir); 2343 task_dir = NULL; 2344 } 2345 } 2346 proc_entry = readdir(proc_dir); 2347 } 2348 2349 // There _might_ be a timing hole where the thread executing this 2350 // code get skipped in the load balance, and running_threads is 0. 2351 // Assert in the debug builds only!!! 2352 KMP_DEBUG_ASSERT(running_threads > 0); 2353 if (running_threads <= 0) { 2354 running_threads = 1; 2355 } 2356 2357 finish: // Clean up and exit. 2358 if (proc_dir != NULL) { 2359 closedir(proc_dir); 2360 } 2361 __kmp_str_buf_free(&task_path); 2362 if (task_dir != NULL) { 2363 closedir(task_dir); 2364 } 2365 __kmp_str_buf_free(&stat_path); 2366 if (stat_file != -1) { 2367 close(stat_file); 2368 } 2369 2370 glb_running_threads = running_threads; 2371 2372 return running_threads; 2373 2374 } // __kmp_get_load_balance 2375 2376 #endif // KMP_OS_DARWIN 2377 2378 #endif // USE_LOAD_BALANCE 2379 2380 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2381 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2382 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64) 2383 2384 // we really only need the case with 1 argument, because CLANG always build 2385 // a struct of pointers to shared variables referenced in the outlined function 2386 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2387 void *p_argv[] 2388 #if OMPT_SUPPORT 2389 , 2390 void **exit_frame_ptr 2391 #endif 2392 ) { 2393 #if OMPT_SUPPORT 2394 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2395 #endif 2396 2397 switch (argc) { 2398 default: 2399 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2400 fflush(stderr); 2401 exit(-1); 2402 case 0: 2403 (*pkfn)(>id, &tid); 2404 break; 2405 case 1: 2406 (*pkfn)(>id, &tid, p_argv[0]); 2407 break; 2408 case 2: 2409 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2410 break; 2411 case 3: 2412 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2413 break; 2414 case 4: 2415 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2416 break; 2417 case 5: 2418 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2419 break; 2420 case 6: 2421 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2422 p_argv[5]); 2423 break; 2424 case 7: 2425 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2426 p_argv[5], p_argv[6]); 2427 break; 2428 case 8: 2429 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2430 p_argv[5], p_argv[6], p_argv[7]); 2431 break; 2432 case 9: 2433 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2434 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2435 break; 2436 case 10: 2437 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2438 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2439 break; 2440 case 11: 2441 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2442 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2443 break; 2444 case 12: 2445 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2446 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2447 p_argv[11]); 2448 break; 2449 case 13: 2450 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2451 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2452 p_argv[11], p_argv[12]); 2453 break; 2454 case 14: 2455 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2456 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2457 p_argv[11], p_argv[12], p_argv[13]); 2458 break; 2459 case 15: 2460 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2461 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2462 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2463 break; 2464 } 2465 2466 return 1; 2467 } 2468 2469 #endif 2470 2471 // Functions for hidden helper task 2472 namespace { 2473 // Condition variable for initializing hidden helper team 2474 pthread_cond_t hidden_helper_threads_initz_cond_var; 2475 pthread_mutex_t hidden_helper_threads_initz_lock; 2476 volatile int hidden_helper_initz_signaled = FALSE; 2477 2478 // Condition variable for deinitializing hidden helper team 2479 pthread_cond_t hidden_helper_threads_deinitz_cond_var; 2480 pthread_mutex_t hidden_helper_threads_deinitz_lock; 2481 volatile int hidden_helper_deinitz_signaled = FALSE; 2482 2483 // Condition variable for the wrapper function of main thread 2484 pthread_cond_t hidden_helper_main_thread_cond_var; 2485 pthread_mutex_t hidden_helper_main_thread_lock; 2486 volatile int hidden_helper_main_thread_signaled = FALSE; 2487 2488 // Semaphore for worker threads. We don't use condition variable here in case 2489 // that when multiple signals are sent at the same time, only one thread might 2490 // be waken. 2491 sem_t hidden_helper_task_sem; 2492 } // namespace 2493 2494 void __kmp_hidden_helper_worker_thread_wait() { 2495 int status = sem_wait(&hidden_helper_task_sem); 2496 KMP_CHECK_SYSFAIL("sem_wait", status); 2497 } 2498 2499 void __kmp_do_initialize_hidden_helper_threads() { 2500 // Initialize condition variable 2501 int status = 2502 pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr); 2503 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2504 2505 status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr); 2506 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2507 2508 status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr); 2509 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2510 2511 status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr); 2512 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2513 2514 status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr); 2515 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2516 2517 status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr); 2518 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2519 2520 // Initialize the semaphore 2521 status = sem_init(&hidden_helper_task_sem, 0, 0); 2522 KMP_CHECK_SYSFAIL("sem_init", status); 2523 2524 // Create a new thread to finish initialization 2525 pthread_t handle; 2526 status = pthread_create( 2527 &handle, nullptr, 2528 [](void *) -> void * { 2529 __kmp_hidden_helper_threads_initz_routine(); 2530 return nullptr; 2531 }, 2532 nullptr); 2533 KMP_CHECK_SYSFAIL("pthread_create", status); 2534 } 2535 2536 void __kmp_hidden_helper_threads_initz_wait() { 2537 // Initial thread waits here for the completion of the initialization. The 2538 // condition variable will be notified by main thread of hidden helper teams. 2539 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2540 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2541 2542 if (!TCR_4(hidden_helper_initz_signaled)) { 2543 status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var, 2544 &hidden_helper_threads_initz_lock); 2545 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2546 } 2547 2548 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2549 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2550 } 2551 2552 void __kmp_hidden_helper_initz_release() { 2553 // After all initialization, reset __kmp_init_hidden_helper_threads to false. 2554 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2555 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2556 2557 status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var); 2558 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2559 2560 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE); 2561 2562 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2563 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2564 } 2565 2566 void __kmp_hidden_helper_main_thread_wait() { 2567 // The main thread of hidden helper team will be blocked here. The 2568 // condition variable can only be signal in the destructor of RTL. 2569 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2570 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2571 2572 if (!TCR_4(hidden_helper_main_thread_signaled)) { 2573 status = pthread_cond_wait(&hidden_helper_main_thread_cond_var, 2574 &hidden_helper_main_thread_lock); 2575 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2576 } 2577 2578 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2579 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2580 } 2581 2582 void __kmp_hidden_helper_main_thread_release() { 2583 // The initial thread of OpenMP RTL should call this function to wake up the 2584 // main thread of hidden helper team. 2585 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2586 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2587 2588 status = pthread_cond_signal(&hidden_helper_main_thread_cond_var); 2589 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 2590 2591 // The hidden helper team is done here 2592 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE); 2593 2594 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2595 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2596 } 2597 2598 void __kmp_hidden_helper_worker_thread_signal() { 2599 int status = sem_post(&hidden_helper_task_sem); 2600 KMP_CHECK_SYSFAIL("sem_post", status); 2601 } 2602 2603 void __kmp_hidden_helper_threads_deinitz_wait() { 2604 // Initial thread waits here for the completion of the deinitialization. The 2605 // condition variable will be notified by main thread of hidden helper teams. 2606 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2607 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2608 2609 if (!TCR_4(hidden_helper_deinitz_signaled)) { 2610 status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var, 2611 &hidden_helper_threads_deinitz_lock); 2612 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2613 } 2614 2615 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2616 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2617 } 2618 2619 void __kmp_hidden_helper_threads_deinitz_release() { 2620 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2621 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2622 2623 status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var); 2624 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2625 2626 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE); 2627 2628 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2629 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2630 } 2631 2632 // end of file // 2633