1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 6 //===----------------------------------------------------------------------===// 7 // 8 // The LLVM Compiler Infrastructure 9 // 10 // This file is dual licensed under the MIT and the University of Illinois Open 11 // Source Licenses. See LICENSE.txt for details. 12 // 13 //===----------------------------------------------------------------------===// 14 15 16 #include "kmp.h" 17 #include "kmp_wrapper_getpid.h" 18 #include "kmp_itt.h" 19 #include "kmp_str.h" 20 #include "kmp_i18n.h" 21 #include "kmp_lock.h" 22 #include "kmp_io.h" 23 #include "kmp_stats.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_affinity.h" 26 27 #if !KMP_OS_FREEBSD && !KMP_OS_NETBSD 28 # include <alloca.h> 29 #endif 30 #include <unistd.h> 31 #include <math.h> // HUGE_VAL. 32 #include <sys/time.h> 33 #include <sys/times.h> 34 #include <sys/resource.h> 35 #include <sys/syscall.h> 36 37 #if KMP_OS_LINUX && !KMP_OS_CNK 38 # include <sys/sysinfo.h> 39 # if KMP_USE_FUTEX 40 // We should really include <futex.h>, but that causes compatibility problems on different 41 // Linux* OS distributions that either require that you include (or break when you try to include) 42 // <pci/types.h>. 43 // Since all we need is the two macros below (which are part of the kernel ABI, so can't change) 44 // we just define the constants here and don't include <futex.h> 45 # ifndef FUTEX_WAIT 46 # define FUTEX_WAIT 0 47 # endif 48 # ifndef FUTEX_WAKE 49 # define FUTEX_WAKE 1 50 # endif 51 # endif 52 #elif KMP_OS_DARWIN 53 # include <sys/sysctl.h> 54 # include <mach/mach.h> 55 #elif KMP_OS_FREEBSD 56 # include <pthread_np.h> 57 #endif 58 59 #include <dirent.h> 60 #include <ctype.h> 61 #include <fcntl.h> 62 63 #include "tsan_annotations.h" 64 65 /* ------------------------------------------------------------------------ */ 66 /* ------------------------------------------------------------------------ */ 67 68 struct kmp_sys_timer { 69 struct timespec start; 70 }; 71 72 // Convert timespec to nanoseconds. 73 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec) 74 75 static struct kmp_sys_timer __kmp_sys_timer_data; 76 77 #if KMP_HANDLE_SIGNALS 78 typedef void (* sig_func_t )( int ); 79 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[ NSIG ]; 80 static sigset_t __kmp_sigset; 81 #endif 82 83 static int __kmp_init_runtime = FALSE; 84 85 static int __kmp_fork_count = 0; 86 87 static pthread_condattr_t __kmp_suspend_cond_attr; 88 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 89 90 static kmp_cond_align_t __kmp_wait_cv; 91 static kmp_mutex_align_t __kmp_wait_mx; 92 93 kmp_uint64 __kmp_ticks_per_msec = 1000000; 94 95 /* ------------------------------------------------------------------------ */ 96 /* ------------------------------------------------------------------------ */ 97 98 #ifdef DEBUG_SUSPEND 99 static void 100 __kmp_print_cond( char *buffer, kmp_cond_align_t *cond ) 101 { 102 KMP_SNPRINTF( buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 103 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 104 cond->c_cond.__c_waiting ); 105 } 106 #endif 107 108 /* ------------------------------------------------------------------------ */ 109 /* ------------------------------------------------------------------------ */ 110 111 #if ( KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED) 112 113 /* 114 * Affinity support 115 */ 116 117 void 118 __kmp_affinity_bind_thread( int which ) 119 { 120 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 121 "Illegal set affinity operation when not capable"); 122 123 kmp_affin_mask_t *mask; 124 KMP_CPU_ALLOC_ON_STACK(mask); 125 KMP_CPU_ZERO(mask); 126 KMP_CPU_SET(which, mask); 127 __kmp_set_system_affinity(mask, TRUE); 128 KMP_CPU_FREE_FROM_STACK(mask); 129 } 130 131 /* 132 * Determine if we can access affinity functionality on this version of 133 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 134 * __kmp_affin_mask_size to the appropriate value (0 means not capable). 135 */ 136 void 137 __kmp_affinity_determine_capable(const char *env_var) 138 { 139 // 140 // Check and see if the OS supports thread affinity. 141 // 142 143 # define KMP_CPU_SET_SIZE_LIMIT (1024*1024) 144 145 int gCode; 146 int sCode; 147 unsigned char *buf; 148 buf = ( unsigned char * ) KMP_INTERNAL_MALLOC( KMP_CPU_SET_SIZE_LIMIT ); 149 150 // If Linux* OS: 151 // If the syscall fails or returns a suggestion for the size, 152 // then we don't have to search for an appropriate size. 153 gCode = syscall( __NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf ); 154 KA_TRACE(30, ( "__kmp_affinity_determine_capable: " 155 "initial getaffinity call returned %d errno = %d\n", 156 gCode, errno)); 157 158 //if ((gCode < 0) && (errno == ENOSYS)) 159 if (gCode < 0) { 160 // 161 // System call not supported 162 // 163 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 164 && (__kmp_affinity_type != affinity_none) 165 && (__kmp_affinity_type != affinity_default) 166 && (__kmp_affinity_type != affinity_disabled))) { 167 int error = errno; 168 kmp_msg_t err_code = KMP_ERR( error ); 169 __kmp_msg( 170 kmp_ms_warning, 171 KMP_MSG( GetAffSysCallNotSupported, env_var ), 172 err_code, 173 __kmp_msg_null 174 ); 175 if (__kmp_generate_warnings == kmp_warnings_off) { 176 __kmp_str_free(&err_code.str); 177 } 178 } 179 KMP_AFFINITY_DISABLE(); 180 KMP_INTERNAL_FREE(buf); 181 return; 182 } 183 if (gCode > 0) { // Linux* OS only 184 // The optimal situation: the OS returns the size of the buffer 185 // it expects. 186 // 187 // A verification of correct behavior is that Isetaffinity on a NULL 188 // buffer with the same size fails with errno set to EFAULT. 189 sCode = syscall( __NR_sched_setaffinity, 0, gCode, NULL ); 190 KA_TRACE(30, ( "__kmp_affinity_determine_capable: " 191 "setaffinity for mask size %d returned %d errno = %d\n", 192 gCode, sCode, errno)); 193 if (sCode < 0) { 194 if (errno == ENOSYS) { 195 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 196 && (__kmp_affinity_type != affinity_none) 197 && (__kmp_affinity_type != affinity_default) 198 && (__kmp_affinity_type != affinity_disabled))) { 199 int error = errno; 200 kmp_msg_t err_code = KMP_ERR( error ); 201 __kmp_msg( 202 kmp_ms_warning, 203 KMP_MSG( SetAffSysCallNotSupported, env_var ), 204 err_code, 205 __kmp_msg_null 206 ); 207 if (__kmp_generate_warnings == kmp_warnings_off) { 208 __kmp_str_free(&err_code.str); 209 } 210 } 211 KMP_AFFINITY_DISABLE(); 212 KMP_INTERNAL_FREE(buf); 213 } 214 if (errno == EFAULT) { 215 KMP_AFFINITY_ENABLE(gCode); 216 KA_TRACE(10, ( "__kmp_affinity_determine_capable: " 217 "affinity supported (mask size %d)\n", 218 (int)__kmp_affin_mask_size)); 219 KMP_INTERNAL_FREE(buf); 220 return; 221 } 222 } 223 } 224 225 // 226 // Call the getaffinity system call repeatedly with increasing set sizes 227 // until we succeed, or reach an upper bound on the search. 228 // 229 KA_TRACE(30, ( "__kmp_affinity_determine_capable: " 230 "searching for proper set size\n")); 231 int size; 232 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 233 gCode = syscall( __NR_sched_getaffinity, 0, size, buf ); 234 KA_TRACE(30, ( "__kmp_affinity_determine_capable: " 235 "getaffinity for mask size %d returned %d errno = %d\n", size, 236 gCode, errno)); 237 238 if (gCode < 0) { 239 if ( errno == ENOSYS ) 240 { 241 // 242 // We shouldn't get here 243 // 244 KA_TRACE(30, ( "__kmp_affinity_determine_capable: " 245 "inconsistent OS call behavior: errno == ENOSYS for mask size %d\n", 246 size)); 247 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 248 && (__kmp_affinity_type != affinity_none) 249 && (__kmp_affinity_type != affinity_default) 250 && (__kmp_affinity_type != affinity_disabled))) { 251 int error = errno; 252 kmp_msg_t err_code = KMP_ERR( error ); 253 __kmp_msg( 254 kmp_ms_warning, 255 KMP_MSG( GetAffSysCallNotSupported, env_var ), 256 err_code, 257 __kmp_msg_null 258 ); 259 if (__kmp_generate_warnings == kmp_warnings_off) { 260 __kmp_str_free(&err_code.str); 261 } 262 } 263 KMP_AFFINITY_DISABLE(); 264 KMP_INTERNAL_FREE(buf); 265 return; 266 } 267 continue; 268 } 269 270 sCode = syscall( __NR_sched_setaffinity, 0, gCode, NULL ); 271 KA_TRACE(30, ( "__kmp_affinity_determine_capable: " 272 "setaffinity for mask size %d returned %d errno = %d\n", 273 gCode, sCode, errno)); 274 if (sCode < 0) { 275 if (errno == ENOSYS) { // Linux* OS only 276 // 277 // We shouldn't get here 278 // 279 KA_TRACE(30, ( "__kmp_affinity_determine_capable: " 280 "inconsistent OS call behavior: errno == ENOSYS for mask size %d\n", 281 size)); 282 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 283 && (__kmp_affinity_type != affinity_none) 284 && (__kmp_affinity_type != affinity_default) 285 && (__kmp_affinity_type != affinity_disabled))) { 286 int error = errno; 287 kmp_msg_t err_code = KMP_ERR( error ); 288 __kmp_msg( 289 kmp_ms_warning, 290 KMP_MSG( SetAffSysCallNotSupported, env_var ), 291 err_code, 292 __kmp_msg_null 293 ); 294 if (__kmp_generate_warnings == kmp_warnings_off) { 295 __kmp_str_free(&err_code.str); 296 } 297 } 298 KMP_AFFINITY_DISABLE(); 299 KMP_INTERNAL_FREE(buf); 300 return; 301 } 302 if (errno == EFAULT) { 303 KMP_AFFINITY_ENABLE(gCode); 304 KA_TRACE(10, ( "__kmp_affinity_determine_capable: " 305 "affinity supported (mask size %d)\n", 306 (int)__kmp_affin_mask_size)); 307 KMP_INTERNAL_FREE(buf); 308 return; 309 } 310 } 311 } 312 //int error = errno; // save uncaught error code 313 KMP_INTERNAL_FREE(buf); 314 // errno = error; // restore uncaught error code, will be printed at the next KMP_WARNING below 315 316 // 317 // Affinity is not supported 318 // 319 KMP_AFFINITY_DISABLE(); 320 KA_TRACE(10, ( "__kmp_affinity_determine_capable: " 321 "cannot determine mask size - affinity not supported\n")); 322 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 323 && (__kmp_affinity_type != affinity_none) 324 && (__kmp_affinity_type != affinity_default) 325 && (__kmp_affinity_type != affinity_disabled))) { 326 KMP_WARNING( AffCantGetMaskSize, env_var ); 327 } 328 } 329 330 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 331 332 /* ------------------------------------------------------------------------ */ 333 /* ------------------------------------------------------------------------ */ 334 335 #if KMP_USE_FUTEX 336 337 int 338 __kmp_futex_determine_capable() 339 { 340 int loc = 0; 341 int rc = syscall( __NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0 ); 342 int retval = ( rc == 0 ) || ( errno != ENOSYS ); 343 344 KA_TRACE(10, ( "__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, 345 errno ) ); 346 KA_TRACE(10, ( "__kmp_futex_determine_capable: futex syscall%s supported\n", 347 retval ? "" : " not" ) ); 348 349 return retval; 350 } 351 352 #endif // KMP_USE_FUTEX 353 354 /* ------------------------------------------------------------------------ */ 355 /* ------------------------------------------------------------------------ */ 356 357 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) 358 /* 359 * Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 360 * use compare_and_store for these routines 361 */ 362 363 kmp_int8 364 __kmp_test_then_or8( volatile kmp_int8 *p, kmp_int8 d ) 365 { 366 kmp_int8 old_value, new_value; 367 368 old_value = TCR_1( *p ); 369 new_value = old_value | d; 370 371 while ( ! KMP_COMPARE_AND_STORE_REL8 ( p, old_value, new_value ) ) 372 { 373 KMP_CPU_PAUSE(); 374 old_value = TCR_1( *p ); 375 new_value = old_value | d; 376 } 377 return old_value; 378 } 379 380 kmp_int8 381 __kmp_test_then_and8( volatile kmp_int8 *p, kmp_int8 d ) 382 { 383 kmp_int8 old_value, new_value; 384 385 old_value = TCR_1( *p ); 386 new_value = old_value & d; 387 388 while ( ! KMP_COMPARE_AND_STORE_REL8 ( p, old_value, new_value ) ) 389 { 390 KMP_CPU_PAUSE(); 391 old_value = TCR_1( *p ); 392 new_value = old_value & d; 393 } 394 return old_value; 395 } 396 397 kmp_int32 398 __kmp_test_then_or32( volatile kmp_int32 *p, kmp_int32 d ) 399 { 400 kmp_int32 old_value, new_value; 401 402 old_value = TCR_4( *p ); 403 new_value = old_value | d; 404 405 while ( ! KMP_COMPARE_AND_STORE_REL32 ( p, old_value, new_value ) ) 406 { 407 KMP_CPU_PAUSE(); 408 old_value = TCR_4( *p ); 409 new_value = old_value | d; 410 } 411 return old_value; 412 } 413 414 kmp_int32 415 __kmp_test_then_and32( volatile kmp_int32 *p, kmp_int32 d ) 416 { 417 kmp_int32 old_value, new_value; 418 419 old_value = TCR_4( *p ); 420 new_value = old_value & d; 421 422 while ( ! KMP_COMPARE_AND_STORE_REL32 ( p, old_value, new_value ) ) 423 { 424 KMP_CPU_PAUSE(); 425 old_value = TCR_4( *p ); 426 new_value = old_value & d; 427 } 428 return old_value; 429 } 430 431 # if KMP_ARCH_X86 432 kmp_int8 433 __kmp_test_then_add8( volatile kmp_int8 *p, kmp_int8 d ) 434 { 435 kmp_int8 old_value, new_value; 436 437 old_value = TCR_1( *p ); 438 new_value = old_value + d; 439 440 while ( ! KMP_COMPARE_AND_STORE_REL8 ( p, old_value, new_value ) ) 441 { 442 KMP_CPU_PAUSE(); 443 old_value = TCR_1( *p ); 444 new_value = old_value + d; 445 } 446 return old_value; 447 } 448 449 kmp_int64 450 __kmp_test_then_add64( volatile kmp_int64 *p, kmp_int64 d ) 451 { 452 kmp_int64 old_value, new_value; 453 454 old_value = TCR_8( *p ); 455 new_value = old_value + d; 456 457 while ( ! KMP_COMPARE_AND_STORE_REL64 ( p, old_value, new_value ) ) 458 { 459 KMP_CPU_PAUSE(); 460 old_value = TCR_8( *p ); 461 new_value = old_value + d; 462 } 463 return old_value; 464 } 465 # endif /* KMP_ARCH_X86 */ 466 467 kmp_int64 468 __kmp_test_then_or64( volatile kmp_int64 *p, kmp_int64 d ) 469 { 470 kmp_int64 old_value, new_value; 471 472 old_value = TCR_8( *p ); 473 new_value = old_value | d; 474 while ( ! KMP_COMPARE_AND_STORE_REL64 ( p, old_value, new_value ) ) 475 { 476 KMP_CPU_PAUSE(); 477 old_value = TCR_8( *p ); 478 new_value = old_value | d; 479 } 480 return old_value; 481 } 482 483 kmp_int64 484 __kmp_test_then_and64( volatile kmp_int64 *p, kmp_int64 d ) 485 { 486 kmp_int64 old_value, new_value; 487 488 old_value = TCR_8( *p ); 489 new_value = old_value & d; 490 while ( ! KMP_COMPARE_AND_STORE_REL64 ( p, old_value, new_value ) ) 491 { 492 KMP_CPU_PAUSE(); 493 old_value = TCR_8( *p ); 494 new_value = old_value & d; 495 } 496 return old_value; 497 } 498 499 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 500 501 void 502 __kmp_terminate_thread( int gtid ) 503 { 504 int status; 505 kmp_info_t *th = __kmp_threads[ gtid ]; 506 507 if ( !th ) return; 508 509 #ifdef KMP_CANCEL_THREADS 510 KA_TRACE( 10, ("__kmp_terminate_thread: kill (%d)\n", gtid ) ); 511 status = pthread_cancel( th->th.th_info.ds.ds_thread ); 512 if ( status != 0 && status != ESRCH ) { 513 __kmp_msg( 514 kmp_ms_fatal, 515 KMP_MSG( CantTerminateWorkerThread ), 516 KMP_ERR( status ), 517 __kmp_msg_null 518 ); 519 }; // if 520 #endif 521 __kmp_yield( TRUE ); 522 } // 523 524 /* ------------------------------------------------------------------------ */ 525 /* ------------------------------------------------------------------------ */ 526 527 /* ------------------------------------------------------------------------ */ 528 /* ------------------------------------------------------------------------ */ 529 530 /* 531 * Set thread stack info according to values returned by 532 * pthread_getattr_np(). 533 * If values are unreasonable, assume call failed and use 534 * incremental stack refinement method instead. 535 * Returns TRUE if the stack parameters could be determined exactly, 536 * FALSE if incremental refinement is necessary. 537 */ 538 static kmp_int32 539 __kmp_set_stack_info( int gtid, kmp_info_t *th ) 540 { 541 int stack_data; 542 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 543 /* Linux* OS only -- no pthread_getattr_np support on OS X* */ 544 pthread_attr_t attr; 545 int status; 546 size_t size = 0; 547 void * addr = 0; 548 549 /* Always do incremental stack refinement for ubermaster threads since the initial 550 thread stack range can be reduced by sibling thread creation so pthread_attr_getstack 551 may cause thread gtid aliasing */ 552 if ( ! KMP_UBER_GTID(gtid) ) { 553 554 /* Fetch the real thread attributes */ 555 status = pthread_attr_init( &attr ); 556 KMP_CHECK_SYSFAIL( "pthread_attr_init", status ); 557 #if KMP_OS_FREEBSD || KMP_OS_NETBSD 558 status = pthread_attr_get_np( pthread_self(), &attr ); 559 KMP_CHECK_SYSFAIL( "pthread_attr_get_np", status ); 560 #else 561 status = pthread_getattr_np( pthread_self(), &attr ); 562 KMP_CHECK_SYSFAIL( "pthread_getattr_np", status ); 563 #endif 564 status = pthread_attr_getstack( &attr, &addr, &size ); 565 KMP_CHECK_SYSFAIL( "pthread_attr_getstack", status ); 566 KA_TRACE( 60, ( "__kmp_set_stack_info: T#%d pthread_attr_getstack returned size: %lu, " 567 "low addr: %p\n", 568 gtid, size, addr )); 569 570 status = pthread_attr_destroy( &attr ); 571 KMP_CHECK_SYSFAIL( "pthread_attr_destroy", status ); 572 } 573 574 if ( size != 0 && addr != 0 ) { /* was stack parameter determination successful? */ 575 /* Store the correct base and size */ 576 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 577 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 578 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 579 return TRUE; 580 } 581 #endif /* KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD */ 582 /* Use incremental refinement starting from initial conservative estimate */ 583 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 584 TCW_PTR(th -> th.th_info.ds.ds_stackbase, &stack_data); 585 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 586 return FALSE; 587 } 588 589 static void* 590 __kmp_launch_worker( void *thr ) 591 { 592 int status, old_type, old_state; 593 #ifdef KMP_BLOCK_SIGNALS 594 sigset_t new_set, old_set; 595 #endif /* KMP_BLOCK_SIGNALS */ 596 void *exit_val; 597 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 598 void * volatile padding = 0; 599 #endif 600 int gtid; 601 602 gtid = ((kmp_info_t*)thr) -> th.th_info.ds.ds_gtid; 603 __kmp_gtid_set_specific( gtid ); 604 #ifdef KMP_TDATA_GTID 605 __kmp_gtid = gtid; 606 #endif 607 #if KMP_STATS_ENABLED 608 // set __thread local index to point to thread-specific stats 609 __kmp_stats_thread_ptr = ((kmp_info_t*)thr)->th.th_stats; 610 KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life); 611 KMP_SET_THREAD_STATE(IDLE); 612 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 613 #endif 614 615 #if USE_ITT_BUILD 616 __kmp_itt_thread_name( gtid ); 617 #endif /* USE_ITT_BUILD */ 618 619 #if KMP_AFFINITY_SUPPORTED 620 __kmp_affinity_set_init_mask( gtid, FALSE ); 621 #endif 622 623 #ifdef KMP_CANCEL_THREADS 624 status = pthread_setcanceltype( PTHREAD_CANCEL_ASYNCHRONOUS, & old_type ); 625 KMP_CHECK_SYSFAIL( "pthread_setcanceltype", status ); 626 /* josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? */ 627 status = pthread_setcancelstate( PTHREAD_CANCEL_ENABLE, & old_state ); 628 KMP_CHECK_SYSFAIL( "pthread_setcancelstate", status ); 629 #endif 630 631 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 632 // 633 // Set the FP control regs to be a copy of 634 // the parallel initialization thread's. 635 // 636 __kmp_clear_x87_fpu_status_word(); 637 __kmp_load_x87_fpu_control_word( &__kmp_init_x87_fpu_control_word ); 638 __kmp_load_mxcsr( &__kmp_init_mxcsr ); 639 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 640 641 #ifdef KMP_BLOCK_SIGNALS 642 status = sigfillset( & new_set ); 643 KMP_CHECK_SYSFAIL_ERRNO( "sigfillset", status ); 644 status = pthread_sigmask( SIG_BLOCK, & new_set, & old_set ); 645 KMP_CHECK_SYSFAIL( "pthread_sigmask", status ); 646 #endif /* KMP_BLOCK_SIGNALS */ 647 648 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 649 if ( __kmp_stkoffset > 0 && gtid > 0 ) { 650 padding = KMP_ALLOCA( gtid * __kmp_stkoffset ); 651 } 652 #endif 653 654 KMP_MB(); 655 __kmp_set_stack_info( gtid, (kmp_info_t*)thr ); 656 657 __kmp_check_stack_overlap( (kmp_info_t*)thr ); 658 659 exit_val = __kmp_launch_thread( (kmp_info_t *) thr ); 660 661 #ifdef KMP_BLOCK_SIGNALS 662 status = pthread_sigmask( SIG_SETMASK, & old_set, NULL ); 663 KMP_CHECK_SYSFAIL( "pthread_sigmask", status ); 664 #endif /* KMP_BLOCK_SIGNALS */ 665 666 return exit_val; 667 } 668 669 #if KMP_USE_MONITOR 670 /* The monitor thread controls all of the threads in the complex */ 671 672 static void* 673 __kmp_launch_monitor( void *thr ) 674 { 675 int status, old_type, old_state; 676 #ifdef KMP_BLOCK_SIGNALS 677 sigset_t new_set; 678 #endif /* KMP_BLOCK_SIGNALS */ 679 struct timespec interval; 680 int yield_count; 681 int yield_cycles = 0; 682 683 KMP_MB(); /* Flush all pending memory write invalidates. */ 684 685 KA_TRACE( 10, ("__kmp_launch_monitor: #1 launched\n" ) ); 686 687 /* register us as the monitor thread */ 688 __kmp_gtid_set_specific( KMP_GTID_MONITOR ); 689 #ifdef KMP_TDATA_GTID 690 __kmp_gtid = KMP_GTID_MONITOR; 691 #endif 692 693 KMP_MB(); 694 695 #if USE_ITT_BUILD 696 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore monitor thread. 697 #endif /* USE_ITT_BUILD */ 698 699 __kmp_set_stack_info( ((kmp_info_t*)thr)->th.th_info.ds.ds_gtid, (kmp_info_t*)thr ); 700 701 __kmp_check_stack_overlap( (kmp_info_t*)thr ); 702 703 #ifdef KMP_CANCEL_THREADS 704 status = pthread_setcanceltype( PTHREAD_CANCEL_ASYNCHRONOUS, & old_type ); 705 KMP_CHECK_SYSFAIL( "pthread_setcanceltype", status ); 706 /* josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? */ 707 status = pthread_setcancelstate( PTHREAD_CANCEL_ENABLE, & old_state ); 708 KMP_CHECK_SYSFAIL( "pthread_setcancelstate", status ); 709 #endif 710 711 #if KMP_REAL_TIME_FIX 712 // This is a potential fix which allows application with real-time scheduling policy work. 713 // However, decision about the fix is not made yet, so it is disabled by default. 714 { // Are program started with real-time scheduling policy? 715 int sched = sched_getscheduler( 0 ); 716 if ( sched == SCHED_FIFO || sched == SCHED_RR ) { 717 // Yes, we are a part of real-time application. Try to increase the priority of the 718 // monitor. 719 struct sched_param param; 720 int max_priority = sched_get_priority_max( sched ); 721 int rc; 722 KMP_WARNING( RealTimeSchedNotSupported ); 723 sched_getparam( 0, & param ); 724 if ( param.sched_priority < max_priority ) { 725 param.sched_priority += 1; 726 rc = sched_setscheduler( 0, sched, & param ); 727 if ( rc != 0 ) { 728 int error = errno; 729 kmp_msg_t err_code = KMP_ERR( error ); 730 __kmp_msg( 731 kmp_ms_warning, 732 KMP_MSG( CantChangeMonitorPriority ), 733 err_code, 734 KMP_MSG( MonitorWillStarve ), 735 __kmp_msg_null 736 ); 737 if (__kmp_generate_warnings == kmp_warnings_off) { 738 __kmp_str_free(&err_code.str); 739 } 740 }; // if 741 } else { 742 // We cannot abort here, because number of CPUs may be enough for all the threads, 743 // including the monitor thread, so application could potentially work... 744 __kmp_msg( 745 kmp_ms_warning, 746 KMP_MSG( RunningAtMaxPriority ), 747 KMP_MSG( MonitorWillStarve ), 748 KMP_HNT( RunningAtMaxPriority ), 749 __kmp_msg_null 750 ); 751 }; // if 752 }; // if 753 TCW_4( __kmp_global.g.g_time.dt.t_value, 0 ); // AC: free thread that waits for monitor started 754 } 755 #endif // KMP_REAL_TIME_FIX 756 757 KMP_MB(); /* Flush all pending memory write invalidates. */ 758 759 if ( __kmp_monitor_wakeups == 1 ) { 760 interval.tv_sec = 1; 761 interval.tv_nsec = 0; 762 } else { 763 interval.tv_sec = 0; 764 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 765 } 766 767 KA_TRACE( 10, ("__kmp_launch_monitor: #2 monitor\n" ) ); 768 769 if (__kmp_yield_cycle) { 770 __kmp_yielding_on = 0; /* Start out with yielding shut off */ 771 yield_count = __kmp_yield_off_count; 772 } else { 773 __kmp_yielding_on = 1; /* Yielding is on permanently */ 774 } 775 776 while( ! TCR_4( __kmp_global.g.g_done ) ) { 777 struct timespec now; 778 struct timeval tval; 779 780 /* This thread monitors the state of the system */ 781 782 KA_TRACE( 15, ( "__kmp_launch_monitor: update\n" ) ); 783 784 status = gettimeofday( &tval, NULL ); 785 KMP_CHECK_SYSFAIL_ERRNO( "gettimeofday", status ); 786 TIMEVAL_TO_TIMESPEC( &tval, &now ); 787 788 now.tv_sec += interval.tv_sec; 789 now.tv_nsec += interval.tv_nsec; 790 791 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 792 now.tv_sec += 1; 793 now.tv_nsec -= KMP_NSEC_PER_SEC; 794 } 795 796 status = pthread_mutex_lock( & __kmp_wait_mx.m_mutex ); 797 KMP_CHECK_SYSFAIL( "pthread_mutex_lock", status ); 798 // AC: the monitor should not fall asleep if g_done has been set 799 if ( !TCR_4(__kmp_global.g.g_done) ) { // check once more under mutex 800 status = pthread_cond_timedwait( &__kmp_wait_cv.c_cond, &__kmp_wait_mx.m_mutex, &now ); 801 if ( status != 0 ) { 802 if ( status != ETIMEDOUT && status != EINTR ) { 803 KMP_SYSFAIL( "pthread_cond_timedwait", status ); 804 }; 805 }; 806 }; 807 status = pthread_mutex_unlock( & __kmp_wait_mx.m_mutex ); 808 KMP_CHECK_SYSFAIL( "pthread_mutex_unlock", status ); 809 810 if (__kmp_yield_cycle) { 811 yield_cycles++; 812 if ( (yield_cycles % yield_count) == 0 ) { 813 if (__kmp_yielding_on) { 814 __kmp_yielding_on = 0; /* Turn it off now */ 815 yield_count = __kmp_yield_off_count; 816 } else { 817 __kmp_yielding_on = 1; /* Turn it on now */ 818 yield_count = __kmp_yield_on_count; 819 } 820 yield_cycles = 0; 821 } 822 } else { 823 __kmp_yielding_on = 1; 824 } 825 826 TCW_4( __kmp_global.g.g_time.dt.t_value, 827 TCR_4( __kmp_global.g.g_time.dt.t_value ) + 1 ); 828 829 KMP_MB(); /* Flush all pending memory write invalidates. */ 830 } 831 832 KA_TRACE( 10, ("__kmp_launch_monitor: #3 cleanup\n" ) ); 833 834 #ifdef KMP_BLOCK_SIGNALS 835 status = sigfillset( & new_set ); 836 KMP_CHECK_SYSFAIL_ERRNO( "sigfillset", status ); 837 status = pthread_sigmask( SIG_UNBLOCK, & new_set, NULL ); 838 KMP_CHECK_SYSFAIL( "pthread_sigmask", status ); 839 #endif /* KMP_BLOCK_SIGNALS */ 840 841 KA_TRACE( 10, ("__kmp_launch_monitor: #4 finished\n" ) ); 842 843 if( __kmp_global.g.g_abort != 0 ) { 844 /* now we need to terminate the worker threads */ 845 /* the value of t_abort is the signal we caught */ 846 847 int gtid; 848 849 KA_TRACE( 10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", __kmp_global.g.g_abort ) ); 850 851 /* terminate the OpenMP worker threads */ 852 /* TODO this is not valid for sibling threads!! 853 * the uber master might not be 0 anymore.. */ 854 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 855 __kmp_terminate_thread( gtid ); 856 857 __kmp_cleanup(); 858 859 KA_TRACE( 10, ("__kmp_launch_monitor: #6 raise sig=%d\n", __kmp_global.g.g_abort ) ); 860 861 if (__kmp_global.g.g_abort > 0) 862 raise( __kmp_global.g.g_abort ); 863 864 } 865 866 KA_TRACE( 10, ("__kmp_launch_monitor: #7 exit\n" ) ); 867 868 return thr; 869 } 870 #endif // KMP_USE_MONITOR 871 872 void 873 __kmp_create_worker( int gtid, kmp_info_t *th, size_t stack_size ) 874 { 875 pthread_t handle; 876 pthread_attr_t thread_attr; 877 int status; 878 879 880 th->th.th_info.ds.ds_gtid = gtid; 881 882 #if KMP_STATS_ENABLED 883 // sets up worker thread stats 884 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 885 886 // th->th.th_stats is used to transfer thread specific stats-pointer to __kmp_launch_worker 887 // So when thread is created (goes into __kmp_launch_worker) it will 888 // set it's __thread local pointer to th->th.th_stats 889 if(!KMP_UBER_GTID(gtid)) { 890 th->th.th_stats = __kmp_stats_list->push_back(gtid); 891 } else { 892 // For root threads, the __kmp_stats_thread_ptr is set in __kmp_register_root(), so 893 // set the th->th.th_stats field to it. 894 th->th.th_stats = __kmp_stats_thread_ptr; 895 } 896 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 897 898 #endif // KMP_STATS_ENABLED 899 900 if ( KMP_UBER_GTID(gtid) ) { 901 KA_TRACE( 10, ("__kmp_create_worker: uber thread (%d)\n", gtid ) ); 902 th -> th.th_info.ds.ds_thread = pthread_self(); 903 __kmp_set_stack_info( gtid, th ); 904 __kmp_check_stack_overlap( th ); 905 return; 906 }; // if 907 908 KA_TRACE( 10, ("__kmp_create_worker: try to create thread (%d)\n", gtid ) ); 909 910 KMP_MB(); /* Flush all pending memory write invalidates. */ 911 912 #ifdef KMP_THREAD_ATTR 913 status = pthread_attr_init( &thread_attr ); 914 if ( status != 0 ) { 915 __kmp_msg(kmp_ms_fatal, KMP_MSG( CantInitThreadAttrs ), KMP_ERR( status ), __kmp_msg_null); 916 }; // if 917 status = pthread_attr_setdetachstate( & thread_attr, PTHREAD_CREATE_JOINABLE ); 918 if ( status != 0 ) { 919 __kmp_msg(kmp_ms_fatal, KMP_MSG( CantSetWorkerState ), KMP_ERR( status ), __kmp_msg_null); 920 }; // if 921 922 /* Set stack size for this thread now. 923 * The multiple of 2 is there because on some machines, requesting an unusual stacksize 924 * causes the thread to have an offset before the dummy alloca() takes place to create the 925 * offset. Since we want the user to have a sufficient stacksize AND support a stack offset, we 926 * alloca() twice the offset so that the upcoming alloca() does not eliminate any premade 927 * offset, and also gives the user the stack space they requested for all threads */ 928 stack_size += gtid * __kmp_stkoffset * 2; 929 930 KA_TRACE( 10, ( "__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 931 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 932 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size ) ); 933 934 # ifdef _POSIX_THREAD_ATTR_STACKSIZE 935 status = pthread_attr_setstacksize( & thread_attr, stack_size ); 936 # ifdef KMP_BACKUP_STKSIZE 937 if ( status != 0 ) { 938 if ( ! __kmp_env_stksize ) { 939 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 940 __kmp_stksize = KMP_BACKUP_STKSIZE; 941 KA_TRACE( 10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 942 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 943 "bytes\n", 944 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size ) 945 ); 946 status = pthread_attr_setstacksize( &thread_attr, stack_size ); 947 }; // if 948 }; // if 949 # endif /* KMP_BACKUP_STKSIZE */ 950 if ( status != 0 ) { 951 __kmp_msg(kmp_ms_fatal, KMP_MSG( CantSetWorkerStackSize, stack_size ), KMP_ERR( status ), 952 KMP_HNT( ChangeWorkerStackSize ), __kmp_msg_null); 953 }; // if 954 # endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 955 956 #endif /* KMP_THREAD_ATTR */ 957 958 status = pthread_create( & handle, & thread_attr, __kmp_launch_worker, (void *) th ); 959 if ( status != 0 || ! handle ) { // ??? Why do we check handle?? 960 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 961 if ( status == EINVAL ) { 962 __kmp_msg(kmp_ms_fatal, KMP_MSG( CantSetWorkerStackSize, stack_size ), KMP_ERR( status ), 963 KMP_HNT( IncreaseWorkerStackSize ), __kmp_msg_null); 964 }; 965 if ( status == ENOMEM ) { 966 __kmp_msg(kmp_ms_fatal, KMP_MSG( CantSetWorkerStackSize, stack_size ), KMP_ERR( status ), 967 KMP_HNT( DecreaseWorkerStackSize ), __kmp_msg_null); 968 }; 969 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 970 if ( status == EAGAIN ) { 971 __kmp_msg(kmp_ms_fatal, KMP_MSG( NoResourcesForWorkerThread ), KMP_ERR( status ), 972 KMP_HNT( Decrease_NUM_THREADS ), __kmp_msg_null); 973 }; // if 974 KMP_SYSFAIL( "pthread_create", status ); 975 }; // if 976 977 th->th.th_info.ds.ds_thread = handle; 978 979 #ifdef KMP_THREAD_ATTR 980 status = pthread_attr_destroy( & thread_attr ); 981 if ( status ) { 982 kmp_msg_t err_code = KMP_ERR( status ); 983 __kmp_msg(kmp_ms_warning, KMP_MSG( CantDestroyThreadAttrs ), err_code, __kmp_msg_null); 984 if (__kmp_generate_warnings == kmp_warnings_off) { 985 __kmp_str_free(&err_code.str); 986 } 987 }; // if 988 #endif /* KMP_THREAD_ATTR */ 989 990 KMP_MB(); /* Flush all pending memory write invalidates. */ 991 992 KA_TRACE( 10, ("__kmp_create_worker: done creating thread (%d)\n", gtid ) ); 993 994 } // __kmp_create_worker 995 996 997 #if KMP_USE_MONITOR 998 void 999 __kmp_create_monitor( kmp_info_t *th ) 1000 { 1001 pthread_t handle; 1002 pthread_attr_t thread_attr; 1003 size_t size; 1004 int status; 1005 int auto_adj_size = FALSE; 1006 1007 if( __kmp_dflt_blocktime == KMP_MAX_BLOCKTIME ) { 1008 // We don't need monitor thread in case of MAX_BLOCKTIME 1009 KA_TRACE( 10, ("__kmp_create_monitor: skipping monitor thread because of MAX blocktime\n" ) ); 1010 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 1011 th->th.th_info.ds.ds_gtid = 0; 1012 return; 1013 } 1014 KA_TRACE( 10, ("__kmp_create_monitor: try to create monitor\n" ) ); 1015 1016 KMP_MB(); /* Flush all pending memory write invalidates. */ 1017 1018 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 1019 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 1020 #if KMP_REAL_TIME_FIX 1021 TCW_4( __kmp_global.g.g_time.dt.t_value, -1 ); // Will use it for synchronization a bit later. 1022 #else 1023 TCW_4( __kmp_global.g.g_time.dt.t_value, 0 ); 1024 #endif // KMP_REAL_TIME_FIX 1025 1026 #ifdef KMP_THREAD_ATTR 1027 if ( __kmp_monitor_stksize == 0 ) { 1028 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 1029 auto_adj_size = TRUE; 1030 } 1031 status = pthread_attr_init( &thread_attr ); 1032 if ( status != 0 ) { 1033 __kmp_msg( 1034 kmp_ms_fatal, 1035 KMP_MSG( CantInitThreadAttrs ), 1036 KMP_ERR( status ), 1037 __kmp_msg_null 1038 ); 1039 }; // if 1040 status = pthread_attr_setdetachstate( & thread_attr, PTHREAD_CREATE_JOINABLE ); 1041 if ( status != 0 ) { 1042 __kmp_msg( 1043 kmp_ms_fatal, 1044 KMP_MSG( CantSetMonitorState ), 1045 KMP_ERR( status ), 1046 __kmp_msg_null 1047 ); 1048 }; // if 1049 1050 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 1051 status = pthread_attr_getstacksize( & thread_attr, & size ); 1052 KMP_CHECK_SYSFAIL( "pthread_attr_getstacksize", status ); 1053 #else 1054 size = __kmp_sys_min_stksize; 1055 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1056 #endif /* KMP_THREAD_ATTR */ 1057 1058 if ( __kmp_monitor_stksize == 0 ) { 1059 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 1060 } 1061 if ( __kmp_monitor_stksize < __kmp_sys_min_stksize ) { 1062 __kmp_monitor_stksize = __kmp_sys_min_stksize; 1063 } 1064 1065 KA_TRACE( 10, ( "__kmp_create_monitor: default stacksize = %lu bytes," 1066 "requested stacksize = %lu bytes\n", 1067 size, __kmp_monitor_stksize ) ); 1068 1069 retry: 1070 1071 /* Set stack size for this thread now. */ 1072 1073 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 1074 KA_TRACE( 10, ( "__kmp_create_monitor: setting stacksize = %lu bytes,", 1075 __kmp_monitor_stksize ) ); 1076 status = pthread_attr_setstacksize( & thread_attr, __kmp_monitor_stksize ); 1077 if ( status != 0 ) { 1078 if ( auto_adj_size ) { 1079 __kmp_monitor_stksize *= 2; 1080 goto retry; 1081 } 1082 kmp_msg_t err_code = KMP_ERR( status ); 1083 __kmp_msg( 1084 kmp_ms_warning, // should this be fatal? BB 1085 KMP_MSG( CantSetMonitorStackSize, (long int) __kmp_monitor_stksize ), 1086 err_code, 1087 KMP_HNT( ChangeMonitorStackSize ), 1088 __kmp_msg_null 1089 ); 1090 if (__kmp_generate_warnings == kmp_warnings_off) { 1091 __kmp_str_free(&err_code.str); 1092 } 1093 }; // if 1094 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1095 1096 status = pthread_create( &handle, & thread_attr, __kmp_launch_monitor, (void *) th ); 1097 1098 if ( status != 0 ) { 1099 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 1100 if ( status == EINVAL ) { 1101 if ( auto_adj_size && ( __kmp_monitor_stksize < (size_t)0x40000000 ) ) { 1102 __kmp_monitor_stksize *= 2; 1103 goto retry; 1104 } 1105 __kmp_msg( 1106 kmp_ms_fatal, 1107 KMP_MSG( CantSetMonitorStackSize, __kmp_monitor_stksize ), 1108 KMP_ERR( status ), 1109 KMP_HNT( IncreaseMonitorStackSize ), 1110 __kmp_msg_null 1111 ); 1112 }; // if 1113 if ( status == ENOMEM ) { 1114 __kmp_msg( 1115 kmp_ms_fatal, 1116 KMP_MSG( CantSetMonitorStackSize, __kmp_monitor_stksize ), 1117 KMP_ERR( status ), 1118 KMP_HNT( DecreaseMonitorStackSize ), 1119 __kmp_msg_null 1120 ); 1121 }; // if 1122 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1123 if ( status == EAGAIN ) { 1124 __kmp_msg( 1125 kmp_ms_fatal, 1126 KMP_MSG( NoResourcesForMonitorThread ), 1127 KMP_ERR( status ), 1128 KMP_HNT( DecreaseNumberOfThreadsInUse ), 1129 __kmp_msg_null 1130 ); 1131 }; // if 1132 KMP_SYSFAIL( "pthread_create", status ); 1133 }; // if 1134 1135 th->th.th_info.ds.ds_thread = handle; 1136 1137 #if KMP_REAL_TIME_FIX 1138 // Wait for the monitor thread is really started and set its *priority*. 1139 KMP_DEBUG_ASSERT( sizeof( kmp_uint32 ) == sizeof( __kmp_global.g.g_time.dt.t_value ) ); 1140 __kmp_wait_yield_4( 1141 (kmp_uint32 volatile *) & __kmp_global.g.g_time.dt.t_value, -1, & __kmp_neq_4, NULL 1142 ); 1143 #endif // KMP_REAL_TIME_FIX 1144 1145 #ifdef KMP_THREAD_ATTR 1146 status = pthread_attr_destroy( & thread_attr ); 1147 if ( status != 0 ) { 1148 kmp_msg_t err_code = KMP_ERR( status ); 1149 __kmp_msg( 1150 kmp_ms_warning, 1151 KMP_MSG( CantDestroyThreadAttrs ), 1152 err_code, 1153 __kmp_msg_null 1154 ); 1155 if (__kmp_generate_warnings == kmp_warnings_off) { 1156 __kmp_str_free(&err_code.str); 1157 } 1158 }; // if 1159 #endif 1160 1161 KMP_MB(); /* Flush all pending memory write invalidates. */ 1162 1163 KA_TRACE( 10, ( "__kmp_create_monitor: monitor created %#.8lx\n", th->th.th_info.ds.ds_thread ) ); 1164 1165 } // __kmp_create_monitor 1166 #endif // KMP_USE_MONITOR 1167 1168 void 1169 __kmp_exit_thread( 1170 int exit_status 1171 ) { 1172 pthread_exit( (void *)(intptr_t) exit_status ); 1173 } // __kmp_exit_thread 1174 1175 #if KMP_USE_MONITOR 1176 void __kmp_resume_monitor(); 1177 1178 void 1179 __kmp_reap_monitor( kmp_info_t *th ) 1180 { 1181 int status; 1182 void *exit_val; 1183 1184 KA_TRACE( 10, ("__kmp_reap_monitor: try to reap monitor thread with handle %#.8lx\n", 1185 th->th.th_info.ds.ds_thread ) ); 1186 1187 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1188 // If both tid and gtid are 0, it means the monitor did not ever start. 1189 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1190 KMP_DEBUG_ASSERT( th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid ); 1191 if ( th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR ) { 1192 KA_TRACE( 10, ("__kmp_reap_monitor: monitor did not start, returning\n") ); 1193 return; 1194 }; // if 1195 1196 KMP_MB(); /* Flush all pending memory write invalidates. */ 1197 1198 1199 /* First, check to see whether the monitor thread exists to wake it up. This is 1200 to avoid performance problem when the monitor sleeps during blocktime-size 1201 interval */ 1202 1203 status = pthread_kill( th->th.th_info.ds.ds_thread, 0 ); 1204 if (status != ESRCH) { 1205 __kmp_resume_monitor(); // Wake up the monitor thread 1206 } 1207 KA_TRACE( 10, ("__kmp_reap_monitor: try to join with monitor\n") ); 1208 status = pthread_join( th->th.th_info.ds.ds_thread, & exit_val); 1209 if (exit_val != th) { 1210 __kmp_msg( 1211 kmp_ms_fatal, 1212 KMP_MSG( ReapMonitorError ), 1213 KMP_ERR( status ), 1214 __kmp_msg_null 1215 ); 1216 } 1217 1218 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1219 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1220 1221 KA_TRACE( 10, ("__kmp_reap_monitor: done reaping monitor thread with handle %#.8lx\n", 1222 th->th.th_info.ds.ds_thread ) ); 1223 1224 KMP_MB(); /* Flush all pending memory write invalidates. */ 1225 1226 } 1227 #endif // KMP_USE_MONITOR 1228 1229 void 1230 __kmp_reap_worker( kmp_info_t *th ) 1231 { 1232 int status; 1233 void *exit_val; 1234 1235 KMP_MB(); /* Flush all pending memory write invalidates. */ 1236 1237 KA_TRACE( 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid ) ); 1238 1239 status = pthread_join( th->th.th_info.ds.ds_thread, & exit_val); 1240 #ifdef KMP_DEBUG 1241 /* Don't expose these to the user until we understand when they trigger */ 1242 if ( status != 0 ) { 1243 __kmp_msg(kmp_ms_fatal, KMP_MSG( ReapWorkerError ), KMP_ERR( status ), __kmp_msg_null); 1244 } 1245 if ( exit_val != th ) { 1246 KA_TRACE( 10, ( "__kmp_reap_worker: worker T#%d did not reap properly, exit_val = %p\n", 1247 th->th.th_info.ds.ds_gtid, exit_val ) ); 1248 } 1249 #endif /* KMP_DEBUG */ 1250 1251 KA_TRACE( 10, ("__kmp_reap_worker: done reaping T#%d\n", th->th.th_info.ds.ds_gtid ) ); 1252 1253 KMP_MB(); /* Flush all pending memory write invalidates. */ 1254 } 1255 1256 1257 /* ------------------------------------------------------------------------ */ 1258 /* ------------------------------------------------------------------------ */ 1259 1260 #if KMP_HANDLE_SIGNALS 1261 1262 1263 static void 1264 __kmp_null_handler( int signo ) 1265 { 1266 // Do nothing, for doing SIG_IGN-type actions. 1267 } // __kmp_null_handler 1268 1269 1270 static void 1271 __kmp_team_handler( int signo ) 1272 { 1273 if ( __kmp_global.g.g_abort == 0 ) { 1274 /* Stage 1 signal handler, let's shut down all of the threads */ 1275 #ifdef KMP_DEBUG 1276 __kmp_debug_printf( "__kmp_team_handler: caught signal = %d\n", signo ); 1277 #endif 1278 switch ( signo ) { 1279 case SIGHUP : 1280 case SIGINT : 1281 case SIGQUIT : 1282 case SIGILL : 1283 case SIGABRT : 1284 case SIGFPE : 1285 case SIGBUS : 1286 case SIGSEGV : 1287 #ifdef SIGSYS 1288 case SIGSYS : 1289 #endif 1290 case SIGTERM : 1291 if ( __kmp_debug_buf ) { 1292 __kmp_dump_debug_buffer( ); 1293 }; // if 1294 KMP_MB(); // Flush all pending memory write invalidates. 1295 TCW_4( __kmp_global.g.g_abort, signo ); 1296 KMP_MB(); // Flush all pending memory write invalidates. 1297 TCW_4( __kmp_global.g.g_done, TRUE ); 1298 KMP_MB(); // Flush all pending memory write invalidates. 1299 break; 1300 default: 1301 #ifdef KMP_DEBUG 1302 __kmp_debug_printf( "__kmp_team_handler: unknown signal type" ); 1303 #endif 1304 break; 1305 }; // switch 1306 }; // if 1307 } // __kmp_team_handler 1308 1309 1310 static 1311 void __kmp_sigaction( int signum, const struct sigaction * act, struct sigaction * oldact ) { 1312 int rc = sigaction( signum, act, oldact ); 1313 KMP_CHECK_SYSFAIL_ERRNO( "sigaction", rc ); 1314 } 1315 1316 1317 static void 1318 __kmp_install_one_handler( int sig, sig_func_t handler_func, int parallel_init ) 1319 { 1320 KMP_MB(); // Flush all pending memory write invalidates. 1321 KB_TRACE( 60, ( "__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init ) ); 1322 if ( parallel_init ) { 1323 struct sigaction new_action; 1324 struct sigaction old_action; 1325 new_action.sa_handler = handler_func; 1326 new_action.sa_flags = 0; 1327 sigfillset( & new_action.sa_mask ); 1328 __kmp_sigaction( sig, & new_action, & old_action ); 1329 if ( old_action.sa_handler == __kmp_sighldrs[ sig ].sa_handler ) { 1330 sigaddset( & __kmp_sigset, sig ); 1331 } else { 1332 // Restore/keep user's handler if one previously installed. 1333 __kmp_sigaction( sig, & old_action, NULL ); 1334 }; // if 1335 } else { 1336 // Save initial/system signal handlers to see if user handlers installed. 1337 __kmp_sigaction( sig, NULL, & __kmp_sighldrs[ sig ] ); 1338 }; // if 1339 KMP_MB(); // Flush all pending memory write invalidates. 1340 } // __kmp_install_one_handler 1341 1342 1343 static void 1344 __kmp_remove_one_handler( int sig ) 1345 { 1346 KB_TRACE( 60, ( "__kmp_remove_one_handler( %d )\n", sig ) ); 1347 if ( sigismember( & __kmp_sigset, sig ) ) { 1348 struct sigaction old; 1349 KMP_MB(); // Flush all pending memory write invalidates. 1350 __kmp_sigaction( sig, & __kmp_sighldrs[ sig ], & old ); 1351 if ( ( old.sa_handler != __kmp_team_handler ) && ( old.sa_handler != __kmp_null_handler ) ) { 1352 // Restore the users signal handler. 1353 KB_TRACE( 10, ( "__kmp_remove_one_handler: oops, not our handler, restoring: sig=%d\n", sig ) ); 1354 __kmp_sigaction( sig, & old, NULL ); 1355 }; // if 1356 sigdelset( & __kmp_sigset, sig ); 1357 KMP_MB(); // Flush all pending memory write invalidates. 1358 }; // if 1359 } // __kmp_remove_one_handler 1360 1361 1362 void 1363 __kmp_install_signals( int parallel_init ) 1364 { 1365 KB_TRACE( 10, ( "__kmp_install_signals( %d )\n", parallel_init ) ); 1366 if ( __kmp_handle_signals || ! parallel_init ) { 1367 // If ! parallel_init, we do not install handlers, just save original handlers. 1368 // Let us do it even __handle_signals is 0. 1369 sigemptyset( & __kmp_sigset ); 1370 __kmp_install_one_handler( SIGHUP, __kmp_team_handler, parallel_init ); 1371 __kmp_install_one_handler( SIGINT, __kmp_team_handler, parallel_init ); 1372 __kmp_install_one_handler( SIGQUIT, __kmp_team_handler, parallel_init ); 1373 __kmp_install_one_handler( SIGILL, __kmp_team_handler, parallel_init ); 1374 __kmp_install_one_handler( SIGABRT, __kmp_team_handler, parallel_init ); 1375 __kmp_install_one_handler( SIGFPE, __kmp_team_handler, parallel_init ); 1376 __kmp_install_one_handler( SIGBUS, __kmp_team_handler, parallel_init ); 1377 __kmp_install_one_handler( SIGSEGV, __kmp_team_handler, parallel_init ); 1378 #ifdef SIGSYS 1379 __kmp_install_one_handler( SIGSYS, __kmp_team_handler, parallel_init ); 1380 #endif // SIGSYS 1381 __kmp_install_one_handler( SIGTERM, __kmp_team_handler, parallel_init ); 1382 #ifdef SIGPIPE 1383 __kmp_install_one_handler( SIGPIPE, __kmp_team_handler, parallel_init ); 1384 #endif // SIGPIPE 1385 }; // if 1386 } // __kmp_install_signals 1387 1388 1389 void 1390 __kmp_remove_signals( void ) 1391 { 1392 int sig; 1393 KB_TRACE( 10, ( "__kmp_remove_signals()\n" ) ); 1394 for ( sig = 1; sig < NSIG; ++ sig ) { 1395 __kmp_remove_one_handler( sig ); 1396 }; // for sig 1397 } // __kmp_remove_signals 1398 1399 1400 #endif // KMP_HANDLE_SIGNALS 1401 1402 /* ------------------------------------------------------------------------ */ 1403 /* ------------------------------------------------------------------------ */ 1404 1405 void 1406 __kmp_enable( int new_state ) 1407 { 1408 #ifdef KMP_CANCEL_THREADS 1409 int status, old_state; 1410 status = pthread_setcancelstate( new_state, & old_state ); 1411 KMP_CHECK_SYSFAIL( "pthread_setcancelstate", status ); 1412 KMP_DEBUG_ASSERT( old_state == PTHREAD_CANCEL_DISABLE ); 1413 #endif 1414 } 1415 1416 void 1417 __kmp_disable( int * old_state ) 1418 { 1419 #ifdef KMP_CANCEL_THREADS 1420 int status; 1421 status = pthread_setcancelstate( PTHREAD_CANCEL_DISABLE, old_state ); 1422 KMP_CHECK_SYSFAIL( "pthread_setcancelstate", status ); 1423 #endif 1424 } 1425 1426 /* ------------------------------------------------------------------------ */ 1427 /* ------------------------------------------------------------------------ */ 1428 1429 static void 1430 __kmp_atfork_prepare (void) 1431 { 1432 /* nothing to do */ 1433 } 1434 1435 static void 1436 __kmp_atfork_parent (void) 1437 { 1438 /* nothing to do */ 1439 } 1440 1441 /* 1442 Reset the library so execution in the child starts "all over again" with 1443 clean data structures in initial states. Don't worry about freeing memory 1444 allocated by parent, just abandon it to be safe. 1445 */ 1446 static void 1447 __kmp_atfork_child (void) 1448 { 1449 /* TODO make sure this is done right for nested/sibling */ 1450 // ATT: Memory leaks are here? TODO: Check it and fix. 1451 /* KMP_ASSERT( 0 ); */ 1452 1453 ++__kmp_fork_count; 1454 1455 __kmp_init_runtime = FALSE; 1456 #if KMP_USE_MONITOR 1457 __kmp_init_monitor = 0; 1458 #endif 1459 __kmp_init_parallel = FALSE; 1460 __kmp_init_middle = FALSE; 1461 __kmp_init_serial = FALSE; 1462 TCW_4(__kmp_init_gtid, FALSE); 1463 __kmp_init_common = FALSE; 1464 1465 TCW_4(__kmp_init_user_locks, FALSE); 1466 #if ! KMP_USE_DYNAMIC_LOCK 1467 __kmp_user_lock_table.used = 1; 1468 __kmp_user_lock_table.allocated = 0; 1469 __kmp_user_lock_table.table = NULL; 1470 __kmp_lock_blocks = NULL; 1471 #endif 1472 1473 __kmp_all_nth = 0; 1474 TCW_4(__kmp_nth, 0); 1475 1476 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate here 1477 so threadprivate doesn't use stale data */ 1478 KA_TRACE( 10, ( "__kmp_atfork_child: checking cache address list %p\n", 1479 __kmp_threadpriv_cache_list ) ); 1480 1481 while ( __kmp_threadpriv_cache_list != NULL ) { 1482 1483 if ( *__kmp_threadpriv_cache_list -> addr != NULL ) { 1484 KC_TRACE( 50, ( "__kmp_atfork_child: zeroing cache at address %p\n", 1485 &(*__kmp_threadpriv_cache_list -> addr) ) ); 1486 1487 *__kmp_threadpriv_cache_list -> addr = NULL; 1488 } 1489 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list -> next; 1490 } 1491 1492 __kmp_init_runtime = FALSE; 1493 1494 /* reset statically initialized locks */ 1495 __kmp_init_bootstrap_lock( &__kmp_initz_lock ); 1496 __kmp_init_bootstrap_lock( &__kmp_stdio_lock ); 1497 __kmp_init_bootstrap_lock( &__kmp_console_lock ); 1498 1499 /* This is necessary to make sure no stale data is left around */ 1500 /* AC: customers complain that we use unsafe routines in the atfork 1501 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1502 in dynamic_link when check the presence of shared tbbmalloc library. 1503 Suggestion is to make the library initialization lazier, similar 1504 to what done for __kmpc_begin(). */ 1505 // TODO: synchronize all static initializations with regular library 1506 // startup; look at kmp_global.cpp and etc. 1507 //__kmp_internal_begin (); 1508 1509 } 1510 1511 void 1512 __kmp_register_atfork(void) { 1513 if ( __kmp_need_register_atfork ) { 1514 int status = pthread_atfork( __kmp_atfork_prepare, __kmp_atfork_parent, __kmp_atfork_child ); 1515 KMP_CHECK_SYSFAIL( "pthread_atfork", status ); 1516 __kmp_need_register_atfork = FALSE; 1517 } 1518 } 1519 1520 void 1521 __kmp_suspend_initialize( void ) 1522 { 1523 int status; 1524 status = pthread_mutexattr_init( &__kmp_suspend_mutex_attr ); 1525 KMP_CHECK_SYSFAIL( "pthread_mutexattr_init", status ); 1526 status = pthread_condattr_init( &__kmp_suspend_cond_attr ); 1527 KMP_CHECK_SYSFAIL( "pthread_condattr_init", status ); 1528 } 1529 1530 static void 1531 __kmp_suspend_initialize_thread( kmp_info_t *th ) 1532 { 1533 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1534 if ( th->th.th_suspend_init_count <= __kmp_fork_count ) { 1535 /* this means we haven't initialized the suspension pthread objects for this thread 1536 in this instance of the process */ 1537 int status; 1538 status = pthread_cond_init( &th->th.th_suspend_cv.c_cond, &__kmp_suspend_cond_attr ); 1539 KMP_CHECK_SYSFAIL( "pthread_cond_init", status ); 1540 status = pthread_mutex_init( &th->th.th_suspend_mx.m_mutex, & __kmp_suspend_mutex_attr ); 1541 KMP_CHECK_SYSFAIL( "pthread_mutex_init", status ); 1542 *(volatile int*)&th->th.th_suspend_init_count = __kmp_fork_count + 1; 1543 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1544 }; 1545 } 1546 1547 void 1548 __kmp_suspend_uninitialize_thread( kmp_info_t *th ) 1549 { 1550 if(th->th.th_suspend_init_count > __kmp_fork_count) { 1551 /* this means we have initialize the suspension pthread objects for this thread 1552 in this instance of the process */ 1553 int status; 1554 1555 status = pthread_cond_destroy( &th->th.th_suspend_cv.c_cond ); 1556 if ( status != 0 && status != EBUSY ) { 1557 KMP_SYSFAIL( "pthread_cond_destroy", status ); 1558 }; 1559 status = pthread_mutex_destroy( &th->th.th_suspend_mx.m_mutex ); 1560 if ( status != 0 && status != EBUSY ) { 1561 KMP_SYSFAIL( "pthread_mutex_destroy", status ); 1562 }; 1563 --th->th.th_suspend_init_count; 1564 KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count); 1565 } 1566 } 1567 1568 /* This routine puts the calling thread to sleep after setting the 1569 * sleep bit for the indicated flag variable to true. 1570 */ 1571 template <class C> 1572 static inline void __kmp_suspend_template( int th_gtid, C *flag ) 1573 { 1574 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1575 kmp_info_t *th = __kmp_threads[th_gtid]; 1576 int status; 1577 typename C::flag_t old_spin; 1578 1579 KF_TRACE( 30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, flag->get() ) ); 1580 1581 __kmp_suspend_initialize_thread( th ); 1582 1583 status = pthread_mutex_lock( &th->th.th_suspend_mx.m_mutex ); 1584 KMP_CHECK_SYSFAIL( "pthread_mutex_lock", status ); 1585 1586 KF_TRACE( 10, ( "__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1587 th_gtid, flag->get() ) ); 1588 1589 /* TODO: shouldn't this use release semantics to ensure that __kmp_suspend_initialize_thread 1590 gets called first? 1591 */ 1592 old_spin = flag->set_sleeping(); 1593 1594 KF_TRACE( 5, ( "__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x, was %x\n", 1595 th_gtid, flag->get(), *(flag->get()), old_spin ) ); 1596 1597 if ( flag->done_check_val(old_spin) ) { 1598 old_spin = flag->unset_sleeping(); 1599 KF_TRACE( 5, ( "__kmp_suspend_template: T#%d false alarm, reset sleep bit for spin(%p)\n", 1600 th_gtid, flag->get()) ); 1601 } else { 1602 /* Encapsulate in a loop as the documentation states that this may 1603 * "with low probability" return when the condition variable has 1604 * not been signaled or broadcast 1605 */ 1606 int deactivated = FALSE; 1607 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1608 while ( flag->is_sleeping() ) { 1609 #ifdef DEBUG_SUSPEND 1610 char buffer[128]; 1611 __kmp_suspend_count++; 1612 __kmp_print_cond( buffer, &th->th.th_suspend_cv ); 1613 __kmp_printf( "__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, buffer ); 1614 #endif 1615 // Mark the thread as no longer active (only in the first iteration of the loop). 1616 if ( ! deactivated ) { 1617 th->th.th_active = FALSE; 1618 if ( th->th.th_active_in_pool ) { 1619 th->th.th_active_in_pool = FALSE; 1620 KMP_TEST_THEN_DEC32( 1621 (kmp_int32 *) &__kmp_thread_pool_active_nth ); 1622 KMP_DEBUG_ASSERT( TCR_4(__kmp_thread_pool_active_nth) >= 0 ); 1623 } 1624 deactivated = TRUE; 1625 } 1626 1627 #if USE_SUSPEND_TIMEOUT 1628 struct timespec now; 1629 struct timeval tval; 1630 int msecs; 1631 1632 status = gettimeofday( &tval, NULL ); 1633 KMP_CHECK_SYSFAIL_ERRNO( "gettimeofday", status ); 1634 TIMEVAL_TO_TIMESPEC( &tval, &now ); 1635 1636 msecs = (4*__kmp_dflt_blocktime) + 200; 1637 now.tv_sec += msecs / 1000; 1638 now.tv_nsec += (msecs % 1000)*1000; 1639 1640 KF_TRACE( 15, ( "__kmp_suspend_template: T#%d about to perform pthread_cond_timedwait\n", 1641 th_gtid ) ); 1642 status = pthread_cond_timedwait( &th->th.th_suspend_cv.c_cond, &th->th.th_suspend_mx.m_mutex, & now ); 1643 #else 1644 KF_TRACE( 15, ( "__kmp_suspend_template: T#%d about to perform pthread_cond_wait\n", 1645 th_gtid ) ); 1646 status = pthread_cond_wait( &th->th.th_suspend_cv.c_cond, &th->th.th_suspend_mx.m_mutex ); 1647 #endif 1648 1649 if ( (status != 0) && (status != EINTR) && (status != ETIMEDOUT) ) { 1650 KMP_SYSFAIL( "pthread_cond_wait", status ); 1651 } 1652 #ifdef KMP_DEBUG 1653 if (status == ETIMEDOUT) { 1654 if ( flag->is_sleeping() ) { 1655 KF_TRACE( 100, ( "__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid ) ); 1656 } else { 1657 KF_TRACE( 2, ( "__kmp_suspend_template: T#%d timeout wakeup, sleep bit not set!\n", 1658 th_gtid ) ); 1659 } 1660 } else if ( flag->is_sleeping() ) { 1661 KF_TRACE( 100, ( "__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid ) ); 1662 } 1663 #endif 1664 } // while 1665 1666 // Mark the thread as active again (if it was previous marked as inactive) 1667 if ( deactivated ) { 1668 th->th.th_active = TRUE; 1669 if ( TCR_4(th->th.th_in_pool) ) { 1670 KMP_TEST_THEN_INC32( (kmp_int32 *) &__kmp_thread_pool_active_nth ); 1671 th->th.th_active_in_pool = TRUE; 1672 } 1673 } 1674 } 1675 1676 #ifdef DEBUG_SUSPEND 1677 { 1678 char buffer[128]; 1679 __kmp_print_cond( buffer, &th->th.th_suspend_cv); 1680 __kmp_printf( "__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, buffer ); 1681 } 1682 #endif 1683 1684 status = pthread_mutex_unlock( &th->th.th_suspend_mx.m_mutex ); 1685 KMP_CHECK_SYSFAIL( "pthread_mutex_unlock", status ); 1686 1687 KF_TRACE( 30, ("__kmp_suspend_template: T#%d exit\n", th_gtid ) ); 1688 } 1689 1690 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 1691 __kmp_suspend_template(th_gtid, flag); 1692 } 1693 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 1694 __kmp_suspend_template(th_gtid, flag); 1695 } 1696 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1697 __kmp_suspend_template(th_gtid, flag); 1698 } 1699 1700 1701 /* This routine signals the thread specified by target_gtid to wake up 1702 * after setting the sleep bit indicated by the flag argument to FALSE. 1703 * The target thread must already have called __kmp_suspend_template() 1704 */ 1705 template <class C> 1706 static inline void __kmp_resume_template( int target_gtid, C *flag ) 1707 { 1708 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1709 kmp_info_t *th = __kmp_threads[target_gtid]; 1710 int status; 1711 1712 #ifdef KMP_DEBUG 1713 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1714 #endif 1715 1716 KF_TRACE( 30, ( "__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", gtid, target_gtid ) ); 1717 KMP_DEBUG_ASSERT( gtid != target_gtid ); 1718 1719 __kmp_suspend_initialize_thread( th ); 1720 1721 status = pthread_mutex_lock( &th->th.th_suspend_mx.m_mutex ); 1722 KMP_CHECK_SYSFAIL( "pthread_mutex_lock", status ); 1723 1724 if (!flag) { // coming from __kmp_null_resume_wrapper 1725 flag = (C *)th->th.th_sleep_loc; 1726 } 1727 1728 // First, check if the flag is null or its type has changed. If so, someone else woke it up. 1729 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type simply shows what flag was cast to 1730 KF_TRACE( 5, ( "__kmp_resume_template: T#%d exiting, thread T#%d already awake: flag(%p)\n", 1731 gtid, target_gtid, NULL ) ); 1732 status = pthread_mutex_unlock( &th->th.th_suspend_mx.m_mutex ); 1733 KMP_CHECK_SYSFAIL( "pthread_mutex_unlock", status ); 1734 return; 1735 } 1736 else { // if multiple threads are sleeping, flag should be internally referring to a specific thread here 1737 typename C::flag_t old_spin = flag->unset_sleeping(); 1738 if ( ! flag->is_sleeping_val(old_spin) ) { 1739 KF_TRACE( 5, ( "__kmp_resume_template: T#%d exiting, thread T#%d already awake: flag(%p): " 1740 "%u => %u\n", 1741 gtid, target_gtid, flag->get(), old_spin, *flag->get() ) ); 1742 status = pthread_mutex_unlock( &th->th.th_suspend_mx.m_mutex ); 1743 KMP_CHECK_SYSFAIL( "pthread_mutex_unlock", status ); 1744 return; 1745 } 1746 KF_TRACE( 5, ( "__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep bit for flag's loc(%p): " 1747 "%u => %u\n", 1748 gtid, target_gtid, flag->get(), old_spin, *flag->get() ) ); 1749 } 1750 TCW_PTR(th->th.th_sleep_loc, NULL); 1751 1752 1753 #ifdef DEBUG_SUSPEND 1754 { 1755 char buffer[128]; 1756 __kmp_print_cond( buffer, &th->th.th_suspend_cv ); 1757 __kmp_printf( "__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, target_gtid, buffer ); 1758 } 1759 #endif 1760 1761 status = pthread_cond_signal( &th->th.th_suspend_cv.c_cond ); 1762 KMP_CHECK_SYSFAIL( "pthread_cond_signal", status ); 1763 status = pthread_mutex_unlock( &th->th.th_suspend_mx.m_mutex ); 1764 KMP_CHECK_SYSFAIL( "pthread_mutex_unlock", status ); 1765 KF_TRACE( 30, ( "__kmp_resume_template: T#%d exiting after signaling wake up for T#%d\n", 1766 gtid, target_gtid ) ); 1767 } 1768 1769 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 1770 __kmp_resume_template(target_gtid, flag); 1771 } 1772 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 1773 __kmp_resume_template(target_gtid, flag); 1774 } 1775 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1776 __kmp_resume_template(target_gtid, flag); 1777 } 1778 1779 #if KMP_USE_MONITOR 1780 void 1781 __kmp_resume_monitor() 1782 { 1783 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1784 int status; 1785 #ifdef KMP_DEBUG 1786 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1787 KF_TRACE( 30, ( "__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", 1788 gtid, KMP_GTID_MONITOR ) ); 1789 KMP_DEBUG_ASSERT( gtid != KMP_GTID_MONITOR ); 1790 #endif 1791 status = pthread_mutex_lock( &__kmp_wait_mx.m_mutex ); 1792 KMP_CHECK_SYSFAIL( "pthread_mutex_lock", status ); 1793 #ifdef DEBUG_SUSPEND 1794 { 1795 char buffer[128]; 1796 __kmp_print_cond( buffer, &__kmp_wait_cv.c_cond ); 1797 __kmp_printf( "__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, KMP_GTID_MONITOR, buffer ); 1798 } 1799 #endif 1800 status = pthread_cond_signal( &__kmp_wait_cv.c_cond ); 1801 KMP_CHECK_SYSFAIL( "pthread_cond_signal", status ); 1802 status = pthread_mutex_unlock( &__kmp_wait_mx.m_mutex ); 1803 KMP_CHECK_SYSFAIL( "pthread_mutex_unlock", status ); 1804 KF_TRACE( 30, ( "__kmp_resume_monitor: T#%d exiting after signaling wake up for T#%d\n", 1805 gtid, KMP_GTID_MONITOR ) ); 1806 } 1807 #endif // KMP_USE_MONITOR 1808 1809 /* ------------------------------------------------------------------------ */ 1810 /* ------------------------------------------------------------------------ */ 1811 1812 void 1813 __kmp_yield( int cond ) 1814 { 1815 if (!cond) 1816 return; 1817 #if KMP_USE_MONITOR 1818 if (!__kmp_yielding_on) 1819 return; 1820 #else 1821 if (__kmp_yield_cycle && !KMP_YIELD_NOW()) 1822 return; 1823 #endif 1824 sched_yield(); 1825 } 1826 1827 /* ------------------------------------------------------------------------ */ 1828 /* ------------------------------------------------------------------------ */ 1829 1830 void 1831 __kmp_gtid_set_specific( int gtid ) 1832 { 1833 if( __kmp_init_gtid ) { 1834 int status; 1835 status = pthread_setspecific( __kmp_gtid_threadprivate_key, (void*)(intptr_t)(gtid+1) ); 1836 KMP_CHECK_SYSFAIL( "pthread_setspecific", status ); 1837 } else { 1838 KA_TRACE( 50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n" ) ); 1839 } 1840 } 1841 1842 int 1843 __kmp_gtid_get_specific() 1844 { 1845 int gtid; 1846 if ( !__kmp_init_gtid ) { 1847 KA_TRACE( 50, ("__kmp_gtid_get_specific: runtime shutdown, returning KMP_GTID_SHUTDOWN\n" ) ); 1848 return KMP_GTID_SHUTDOWN; 1849 } 1850 gtid = (int)(size_t)pthread_getspecific( __kmp_gtid_threadprivate_key ); 1851 if ( gtid == 0 ) { 1852 gtid = KMP_GTID_DNE; 1853 } 1854 else { 1855 gtid--; 1856 } 1857 KA_TRACE( 50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1858 __kmp_gtid_threadprivate_key, gtid )); 1859 return gtid; 1860 } 1861 1862 /* ------------------------------------------------------------------------ */ 1863 /* ------------------------------------------------------------------------ */ 1864 1865 double 1866 __kmp_read_cpu_time( void ) 1867 { 1868 /*clock_t t;*/ 1869 struct tms buffer; 1870 1871 /*t =*/ times( & buffer ); 1872 1873 return (buffer.tms_utime + buffer.tms_cutime) / (double) CLOCKS_PER_SEC; 1874 } 1875 1876 int 1877 __kmp_read_system_info( struct kmp_sys_info *info ) 1878 { 1879 int status; 1880 struct rusage r_usage; 1881 1882 memset( info, 0, sizeof( *info ) ); 1883 1884 status = getrusage( RUSAGE_SELF, &r_usage); 1885 KMP_CHECK_SYSFAIL_ERRNO( "getrusage", status ); 1886 1887 info->maxrss = r_usage.ru_maxrss; /* the maximum resident set size utilized (in kilobytes) */ 1888 info->minflt = r_usage.ru_minflt; /* the number of page faults serviced without any I/O */ 1889 info->majflt = r_usage.ru_majflt; /* the number of page faults serviced that required I/O */ 1890 info->nswap = r_usage.ru_nswap; /* the number of times a process was "swapped" out of memory */ 1891 info->inblock = r_usage.ru_inblock; /* the number of times the file system had to perform input */ 1892 info->oublock = r_usage.ru_oublock; /* the number of times the file system had to perform output */ 1893 info->nvcsw = r_usage.ru_nvcsw; /* the number of times a context switch was voluntarily */ 1894 info->nivcsw = r_usage.ru_nivcsw; /* the number of times a context switch was forced */ 1895 1896 return (status != 0); 1897 } 1898 1899 /* ------------------------------------------------------------------------ */ 1900 /* ------------------------------------------------------------------------ */ 1901 1902 void 1903 __kmp_read_system_time( double *delta ) 1904 { 1905 double t_ns; 1906 struct timeval tval; 1907 struct timespec stop; 1908 int status; 1909 1910 status = gettimeofday( &tval, NULL ); 1911 KMP_CHECK_SYSFAIL_ERRNO( "gettimeofday", status ); 1912 TIMEVAL_TO_TIMESPEC( &tval, &stop ); 1913 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start); 1914 *delta = (t_ns * 1e-9); 1915 } 1916 1917 void 1918 __kmp_clear_system_time( void ) 1919 { 1920 struct timeval tval; 1921 int status; 1922 status = gettimeofday( &tval, NULL ); 1923 KMP_CHECK_SYSFAIL_ERRNO( "gettimeofday", status ); 1924 TIMEVAL_TO_TIMESPEC( &tval, &__kmp_sys_timer_data.start ); 1925 } 1926 1927 /* ------------------------------------------------------------------------ */ 1928 /* ------------------------------------------------------------------------ */ 1929 1930 #ifdef BUILD_TV 1931 1932 void 1933 __kmp_tv_threadprivate_store( kmp_info_t *th, void *global_addr, void *thread_addr ) 1934 { 1935 struct tv_data *p; 1936 1937 p = (struct tv_data *) __kmp_allocate( sizeof( *p ) ); 1938 1939 p->u.tp.global_addr = global_addr; 1940 p->u.tp.thread_addr = thread_addr; 1941 1942 p->type = (void *) 1; 1943 1944 p->next = th->th.th_local.tv_data; 1945 th->th.th_local.tv_data = p; 1946 1947 if ( p->next == 0 ) { 1948 int rc = pthread_setspecific( __kmp_tv_key, p ); 1949 KMP_CHECK_SYSFAIL( "pthread_setspecific", rc ); 1950 } 1951 } 1952 1953 #endif /* BUILD_TV */ 1954 1955 /* ------------------------------------------------------------------------ */ 1956 /* ------------------------------------------------------------------------ */ 1957 1958 static int 1959 __kmp_get_xproc( void ) { 1960 1961 int r = 0; 1962 1963 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 1964 1965 r = sysconf( _SC_NPROCESSORS_ONLN ); 1966 1967 #elif KMP_OS_DARWIN 1968 1969 // Bug C77011 High "OpenMP Threads and number of active cores". 1970 1971 // Find the number of available CPUs. 1972 kern_return_t rc; 1973 host_basic_info_data_t info; 1974 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1975 rc = host_info( mach_host_self(), HOST_BASIC_INFO, (host_info_t) & info, & num ); 1976 if ( rc == 0 && num == HOST_BASIC_INFO_COUNT ) { 1977 // Cannot use KA_TRACE() here because this code works before trace support is 1978 // initialized. 1979 r = info.avail_cpus; 1980 } else { 1981 KMP_WARNING( CantGetNumAvailCPU ); 1982 KMP_INFORM( AssumedNumCPU ); 1983 }; // if 1984 1985 #else 1986 1987 #error "Unknown or unsupported OS." 1988 1989 #endif 1990 1991 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1992 1993 } // __kmp_get_xproc 1994 1995 int 1996 __kmp_read_from_file( char const *path, char const *format, ... ) 1997 { 1998 int result; 1999 va_list args; 2000 2001 va_start(args, format); 2002 FILE *f = fopen(path, "rb"); 2003 if ( f == NULL ) 2004 return 0; 2005 result = vfscanf(f, format, args); 2006 fclose(f); 2007 2008 return result; 2009 } 2010 2011 void 2012 __kmp_runtime_initialize( void ) 2013 { 2014 int status; 2015 pthread_mutexattr_t mutex_attr; 2016 pthread_condattr_t cond_attr; 2017 2018 if ( __kmp_init_runtime ) { 2019 return; 2020 }; // if 2021 2022 #if ( KMP_ARCH_X86 || KMP_ARCH_X86_64 ) 2023 if ( ! __kmp_cpuinfo.initialized ) { 2024 __kmp_query_cpuid( &__kmp_cpuinfo ); 2025 }; // if 2026 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2027 2028 __kmp_xproc = __kmp_get_xproc(); 2029 2030 if ( sysconf( _SC_THREADS ) ) { 2031 2032 /* Query the maximum number of threads */ 2033 __kmp_sys_max_nth = sysconf( _SC_THREAD_THREADS_MAX ); 2034 if ( __kmp_sys_max_nth == -1 ) { 2035 /* Unlimited threads for NPTL */ 2036 __kmp_sys_max_nth = INT_MAX; 2037 } 2038 else if ( __kmp_sys_max_nth <= 1 ) { 2039 /* Can't tell, just use PTHREAD_THREADS_MAX */ 2040 __kmp_sys_max_nth = KMP_MAX_NTH; 2041 } 2042 2043 /* Query the minimum stack size */ 2044 __kmp_sys_min_stksize = sysconf( _SC_THREAD_STACK_MIN ); 2045 if ( __kmp_sys_min_stksize <= 1 ) { 2046 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 2047 } 2048 } 2049 2050 /* Set up minimum number of threads to switch to TLS gtid */ 2051 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 2052 2053 #ifdef BUILD_TV 2054 { 2055 int rc = pthread_key_create( & __kmp_tv_key, 0 ); 2056 KMP_CHECK_SYSFAIL( "pthread_key_create", rc ); 2057 } 2058 #endif 2059 2060 status = pthread_key_create( &__kmp_gtid_threadprivate_key, __kmp_internal_end_dest ); 2061 KMP_CHECK_SYSFAIL( "pthread_key_create", status ); 2062 status = pthread_mutexattr_init( & mutex_attr ); 2063 KMP_CHECK_SYSFAIL( "pthread_mutexattr_init", status ); 2064 status = pthread_mutex_init( & __kmp_wait_mx.m_mutex, & mutex_attr ); 2065 KMP_CHECK_SYSFAIL( "pthread_mutex_init", status ); 2066 status = pthread_condattr_init( & cond_attr ); 2067 KMP_CHECK_SYSFAIL( "pthread_condattr_init", status ); 2068 status = pthread_cond_init( & __kmp_wait_cv.c_cond, & cond_attr ); 2069 KMP_CHECK_SYSFAIL( "pthread_cond_init", status ); 2070 #if USE_ITT_BUILD 2071 __kmp_itt_initialize(); 2072 #endif /* USE_ITT_BUILD */ 2073 2074 __kmp_init_runtime = TRUE; 2075 } 2076 2077 void 2078 __kmp_runtime_destroy( void ) 2079 { 2080 int status; 2081 2082 if ( ! __kmp_init_runtime ) { 2083 return; // Nothing to do. 2084 }; 2085 2086 #if USE_ITT_BUILD 2087 __kmp_itt_destroy(); 2088 #endif /* USE_ITT_BUILD */ 2089 2090 status = pthread_key_delete( __kmp_gtid_threadprivate_key ); 2091 KMP_CHECK_SYSFAIL( "pthread_key_delete", status ); 2092 #ifdef BUILD_TV 2093 status = pthread_key_delete( __kmp_tv_key ); 2094 KMP_CHECK_SYSFAIL( "pthread_key_delete", status ); 2095 #endif 2096 2097 status = pthread_mutex_destroy( & __kmp_wait_mx.m_mutex ); 2098 if ( status != 0 && status != EBUSY ) { 2099 KMP_SYSFAIL( "pthread_mutex_destroy", status ); 2100 } 2101 status = pthread_cond_destroy( & __kmp_wait_cv.c_cond ); 2102 if ( status != 0 && status != EBUSY ) { 2103 KMP_SYSFAIL( "pthread_cond_destroy", status ); 2104 } 2105 #if KMP_AFFINITY_SUPPORTED 2106 __kmp_affinity_uninitialize(); 2107 #endif 2108 2109 __kmp_init_runtime = FALSE; 2110 } 2111 2112 2113 /* Put the thread to sleep for a time period */ 2114 /* NOTE: not currently used anywhere */ 2115 void 2116 __kmp_thread_sleep( int millis ) 2117 { 2118 sleep( ( millis + 500 ) / 1000 ); 2119 } 2120 2121 /* Calculate the elapsed wall clock time for the user */ 2122 void 2123 __kmp_elapsed( double *t ) 2124 { 2125 int status; 2126 # ifdef FIX_SGI_CLOCK 2127 struct timespec ts; 2128 2129 status = clock_gettime( CLOCK_PROCESS_CPUTIME_ID, &ts ); 2130 KMP_CHECK_SYSFAIL_ERRNO( "clock_gettime", status ); 2131 *t = (double) ts.tv_nsec * (1.0 / (double) KMP_NSEC_PER_SEC) + 2132 (double) ts.tv_sec; 2133 # else 2134 struct timeval tv; 2135 2136 status = gettimeofday( & tv, NULL ); 2137 KMP_CHECK_SYSFAIL_ERRNO( "gettimeofday", status ); 2138 *t = (double) tv.tv_usec * (1.0 / (double) KMP_USEC_PER_SEC) + 2139 (double) tv.tv_sec; 2140 # endif 2141 } 2142 2143 /* Calculate the elapsed wall clock tick for the user */ 2144 void 2145 __kmp_elapsed_tick( double *t ) 2146 { 2147 *t = 1 / (double) CLOCKS_PER_SEC; 2148 } 2149 2150 /* Return the current time stamp in nsec */ 2151 kmp_uint64 2152 __kmp_now_nsec() 2153 { 2154 struct timeval t; 2155 gettimeofday(&t, NULL); 2156 return KMP_NSEC_PER_SEC*t.tv_sec + 1000*t.tv_usec; 2157 } 2158 2159 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2160 /* Measure clock ticks per millisecond */ 2161 void 2162 __kmp_initialize_system_tick() 2163 { 2164 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 2165 kmp_uint64 nsec = __kmp_now_nsec(); 2166 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 2167 kmp_uint64 now; 2168 while ((now = __kmp_hardware_timestamp()) < goal); 2169 __kmp_ticks_per_msec = (kmp_uint64)(1e6 * (delay + (now - goal)) / (__kmp_now_nsec() - nsec)); 2170 } 2171 #endif 2172 2173 /* 2174 Determine whether the given address is mapped into the current address space. 2175 */ 2176 2177 int 2178 __kmp_is_address_mapped( void * addr ) { 2179 2180 int found = 0; 2181 int rc; 2182 2183 #if KMP_OS_LINUX || KMP_OS_FREEBSD 2184 2185 /* 2186 On Linux* OS, read the /proc/<pid>/maps pseudo-file to get all the address ranges mapped 2187 into the address space. 2188 */ 2189 2190 char * name = __kmp_str_format( "/proc/%d/maps", getpid() ); 2191 FILE * file = NULL; 2192 2193 file = fopen( name, "r" ); 2194 KMP_ASSERT( file != NULL ); 2195 2196 for ( ; ; ) { 2197 2198 void * beginning = NULL; 2199 void * ending = NULL; 2200 char perms[ 5 ]; 2201 2202 rc = fscanf( file, "%p-%p %4s %*[^\n]\n", & beginning, & ending, perms ); 2203 if ( rc == EOF ) { 2204 break; 2205 }; // if 2206 KMP_ASSERT( rc == 3 && KMP_STRLEN( perms ) == 4 ); // Make sure all fields are read. 2207 2208 // Ending address is not included in the region, but beginning is. 2209 if ( ( addr >= beginning ) && ( addr < ending ) ) { 2210 perms[ 2 ] = 0; // 3th and 4th character does not matter. 2211 if ( strcmp( perms, "rw" ) == 0 ) { 2212 // Memory we are looking for should be readable and writable. 2213 found = 1; 2214 }; // if 2215 break; 2216 }; // if 2217 2218 }; // forever 2219 2220 // Free resources. 2221 fclose( file ); 2222 KMP_INTERNAL_FREE( name ); 2223 2224 #elif KMP_OS_DARWIN 2225 2226 /* 2227 On OS X*, /proc pseudo filesystem is not available. Try to read memory using vm 2228 interface. 2229 */ 2230 2231 int buffer; 2232 vm_size_t count; 2233 rc = 2234 vm_read_overwrite( 2235 mach_task_self(), // Task to read memory of. 2236 (vm_address_t)( addr ), // Address to read from. 2237 1, // Number of bytes to be read. 2238 (vm_address_t)( & buffer ), // Address of buffer to save read bytes in. 2239 & count // Address of var to save number of read bytes in. 2240 ); 2241 if ( rc == 0 ) { 2242 // Memory successfully read. 2243 found = 1; 2244 }; // if 2245 2246 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD 2247 2248 // FIXME(FreeBSD, NetBSD): Implement this 2249 found = 1; 2250 2251 #else 2252 2253 #error "Unknown or unsupported OS" 2254 2255 #endif 2256 2257 return found; 2258 2259 } // __kmp_is_address_mapped 2260 2261 #ifdef USE_LOAD_BALANCE 2262 2263 2264 # if KMP_OS_DARWIN 2265 2266 // The function returns the rounded value of the system load average 2267 // during given time interval which depends on the value of 2268 // __kmp_load_balance_interval variable (default is 60 sec, other values 2269 // may be 300 sec or 900 sec). 2270 // It returns -1 in case of error. 2271 int 2272 __kmp_get_load_balance( int max ) 2273 { 2274 double averages[3]; 2275 int ret_avg = 0; 2276 2277 int res = getloadavg( averages, 3 ); 2278 2279 //Check __kmp_load_balance_interval to determine which of averages to use. 2280 // getloadavg() may return the number of samples less than requested that is 2281 // less than 3. 2282 if ( __kmp_load_balance_interval < 180 && ( res >= 1 ) ) { 2283 ret_avg = averages[0];// 1 min 2284 } else if ( ( __kmp_load_balance_interval >= 180 2285 && __kmp_load_balance_interval < 600 ) && ( res >= 2 ) ) { 2286 ret_avg = averages[1];// 5 min 2287 } else if ( ( __kmp_load_balance_interval >= 600 ) && ( res == 3 ) ) { 2288 ret_avg = averages[2];// 15 min 2289 } else {// Error occurred 2290 return -1; 2291 } 2292 2293 return ret_avg; 2294 } 2295 2296 # else // Linux* OS 2297 2298 // The fuction returns number of running (not sleeping) threads, or -1 in case of error. 2299 // Error could be reported if Linux* OS kernel too old (without "/proc" support). 2300 // Counting running threads stops if max running threads encountered. 2301 int 2302 __kmp_get_load_balance( int max ) 2303 { 2304 static int permanent_error = 0; 2305 2306 static int glb_running_threads = 0; /* Saved count of the running threads for the thread balance algortihm */ 2307 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2308 2309 int running_threads = 0; // Number of running threads in the system. 2310 2311 DIR * proc_dir = NULL; // Handle of "/proc/" directory. 2312 struct dirent * proc_entry = NULL; 2313 2314 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2315 DIR * task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2316 struct dirent * task_entry = NULL; 2317 int task_path_fixed_len; 2318 2319 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2320 int stat_file = -1; 2321 int stat_path_fixed_len; 2322 2323 int total_processes = 0; // Total number of processes in system. 2324 int total_threads = 0; // Total number of threads in system. 2325 2326 double call_time = 0.0; 2327 2328 __kmp_str_buf_init( & task_path ); 2329 __kmp_str_buf_init( & stat_path ); 2330 2331 __kmp_elapsed( & call_time ); 2332 2333 if ( glb_call_time && 2334 ( call_time - glb_call_time < __kmp_load_balance_interval ) ) { 2335 running_threads = glb_running_threads; 2336 goto finish; 2337 } 2338 2339 glb_call_time = call_time; 2340 2341 // Do not spend time on scanning "/proc/" if we have a permanent error. 2342 if ( permanent_error ) { 2343 running_threads = -1; 2344 goto finish; 2345 }; // if 2346 2347 if ( max <= 0 ) { 2348 max = INT_MAX; 2349 }; // if 2350 2351 // Open "/proc/" directory. 2352 proc_dir = opendir( "/proc" ); 2353 if ( proc_dir == NULL ) { 2354 // Cannot open "/prroc/". Probably the kernel does not support it. Return an error now and 2355 // in subsequent calls. 2356 running_threads = -1; 2357 permanent_error = 1; 2358 goto finish; 2359 }; // if 2360 2361 // Initialize fixed part of task_path. This part will not change. 2362 __kmp_str_buf_cat( & task_path, "/proc/", 6 ); 2363 task_path_fixed_len = task_path.used; // Remember number of used characters. 2364 2365 proc_entry = readdir( proc_dir ); 2366 while ( proc_entry != NULL ) { 2367 // Proc entry is a directory and name starts with a digit. Assume it is a process' 2368 // directory. 2369 if ( proc_entry->d_type == DT_DIR && isdigit( proc_entry->d_name[ 0 ] ) ) { 2370 2371 ++ total_processes; 2372 // Make sure init process is the very first in "/proc", so we can replace 2373 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 1. 2374 // We are going to check that total_processes == 1 => d_name == "1" is true (where 2375 // "=>" is implication). Since C++ does not have => operator, let us replace it with its 2376 // equivalent: a => b == ! a || b. 2377 KMP_DEBUG_ASSERT( total_processes != 1 || strcmp( proc_entry->d_name, "1" ) == 0 ); 2378 2379 // Construct task_path. 2380 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2381 __kmp_str_buf_cat( & task_path, proc_entry->d_name, KMP_STRLEN( proc_entry->d_name ) ); 2382 __kmp_str_buf_cat( & task_path, "/task", 5 ); 2383 2384 task_dir = opendir( task_path.str ); 2385 if ( task_dir == NULL ) { 2386 // Process can finish between reading "/proc/" directory entry and opening process' 2387 // "task/" directory. So, in general case we should not complain, but have to skip 2388 // this process and read the next one. 2389 // But on systems with no "task/" support we will spend lot of time to scan "/proc/" 2390 // tree again and again without any benefit. "init" process (its pid is 1) should 2391 // exist always, so, if we cannot open "/proc/1/task/" directory, it means "task/" 2392 // is not supported by kernel. Report an error now and in the future. 2393 if ( strcmp( proc_entry->d_name, "1" ) == 0 ) { 2394 running_threads = -1; 2395 permanent_error = 1; 2396 goto finish; 2397 }; // if 2398 } else { 2399 // Construct fixed part of stat file path. 2400 __kmp_str_buf_clear( & stat_path ); 2401 __kmp_str_buf_cat( & stat_path, task_path.str, task_path.used ); 2402 __kmp_str_buf_cat( & stat_path, "/", 1 ); 2403 stat_path_fixed_len = stat_path.used; 2404 2405 task_entry = readdir( task_dir ); 2406 while ( task_entry != NULL ) { 2407 // It is a directory and name starts with a digit. 2408 if ( proc_entry->d_type == DT_DIR && isdigit( task_entry->d_name[ 0 ] ) ) { 2409 2410 ++ total_threads; 2411 2412 // Consruct complete stat file path. Easiest way would be: 2413 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, task_entry->d_name ); 2414 // but seriae of __kmp_str_buf_cat works a bit faster. 2415 stat_path.used = stat_path_fixed_len; // Reset stat path to its fixed part. 2416 __kmp_str_buf_cat( & stat_path, task_entry->d_name, KMP_STRLEN( task_entry->d_name ) ); 2417 __kmp_str_buf_cat( & stat_path, "/stat", 5 ); 2418 2419 // Note: Low-level API (open/read/close) is used. High-level API 2420 // (fopen/fclose) works ~ 30 % slower. 2421 stat_file = open( stat_path.str, O_RDONLY ); 2422 if ( stat_file == -1 ) { 2423 // We cannot report an error because task (thread) can terminate just 2424 // before reading this file. 2425 } else { 2426 /* 2427 Content of "stat" file looks like: 2428 2429 24285 (program) S ... 2430 2431 It is a single line (if program name does not include fanny 2432 symbols). First number is a thread id, then name of executable file 2433 name in paretheses, then state of the thread. We need just thread 2434 state. 2435 2436 Good news: Length of program name is 15 characters max. Longer 2437 names are truncated. 2438 2439 Thus, we need rather short buffer: 15 chars for program name + 2440 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2441 2442 Bad news: Program name may contain special symbols like space, 2443 closing parenthesis, or even new line. This makes parsing "stat" 2444 file not 100 % reliable. In case of fanny program names parsing 2445 may fail (report incorrect thread state). 2446 2447 Parsing "status" file looks more promissing (due to different 2448 file structure and escaping special symbols) but reading and 2449 parsing of "status" file works slower. 2450 2451 -- ln 2452 */ 2453 char buffer[ 65 ]; 2454 int len; 2455 len = read( stat_file, buffer, sizeof( buffer ) - 1 ); 2456 if ( len >= 0 ) { 2457 buffer[ len ] = 0; 2458 // Using scanf: 2459 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2460 // looks very nice, but searching for a closing parenthesis works a 2461 // bit faster. 2462 char * close_parent = strstr( buffer, ") " ); 2463 if ( close_parent != NULL ) { 2464 char state = * ( close_parent + 2 ); 2465 if ( state == 'R' ) { 2466 ++ running_threads; 2467 if ( running_threads >= max ) { 2468 goto finish; 2469 }; // if 2470 }; // if 2471 }; // if 2472 }; // if 2473 close( stat_file ); 2474 stat_file = -1; 2475 }; // if 2476 }; // if 2477 task_entry = readdir( task_dir ); 2478 }; // while 2479 closedir( task_dir ); 2480 task_dir = NULL; 2481 }; // if 2482 }; // if 2483 proc_entry = readdir( proc_dir ); 2484 }; // while 2485 2486 // 2487 // There _might_ be a timing hole where the thread executing this 2488 // code get skipped in the load balance, and running_threads is 0. 2489 // Assert in the debug builds only!!! 2490 // 2491 KMP_DEBUG_ASSERT( running_threads > 0 ); 2492 if ( running_threads <= 0 ) { 2493 running_threads = 1; 2494 } 2495 2496 finish: // Clean up and exit. 2497 if ( proc_dir != NULL ) { 2498 closedir( proc_dir ); 2499 }; // if 2500 __kmp_str_buf_free( & task_path ); 2501 if ( task_dir != NULL ) { 2502 closedir( task_dir ); 2503 }; // if 2504 __kmp_str_buf_free( & stat_path ); 2505 if ( stat_file != -1 ) { 2506 close( stat_file ); 2507 }; // if 2508 2509 glb_running_threads = running_threads; 2510 2511 return running_threads; 2512 2513 } // __kmp_get_load_balance 2514 2515 # endif // KMP_OS_DARWIN 2516 2517 #endif // USE_LOAD_BALANCE 2518 2519 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || (KMP_OS_LINUX && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64) 2520 2521 // we really only need the case with 1 argument, because CLANG always build 2522 // a struct of pointers to shared variables referenced in the outlined function 2523 int 2524 __kmp_invoke_microtask( microtask_t pkfn, 2525 int gtid, int tid, 2526 int argc, void *p_argv[] 2527 #if OMPT_SUPPORT 2528 , void **exit_frame_ptr 2529 #endif 2530 ) 2531 { 2532 #if OMPT_SUPPORT 2533 *exit_frame_ptr = __builtin_frame_address(0); 2534 #endif 2535 2536 switch (argc) { 2537 default: 2538 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2539 fflush(stderr); 2540 exit(-1); 2541 case 0: 2542 (*pkfn)(>id, &tid); 2543 break; 2544 case 1: 2545 (*pkfn)(>id, &tid, p_argv[0]); 2546 break; 2547 case 2: 2548 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2549 break; 2550 case 3: 2551 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2552 break; 2553 case 4: 2554 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2555 break; 2556 case 5: 2557 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2558 break; 2559 case 6: 2560 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2561 p_argv[5]); 2562 break; 2563 case 7: 2564 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2565 p_argv[5], p_argv[6]); 2566 break; 2567 case 8: 2568 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2569 p_argv[5], p_argv[6], p_argv[7]); 2570 break; 2571 case 9: 2572 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2573 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2574 break; 2575 case 10: 2576 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2577 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2578 break; 2579 case 11: 2580 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2581 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2582 break; 2583 case 12: 2584 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2585 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2586 p_argv[11]); 2587 break; 2588 case 13: 2589 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2590 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2591 p_argv[11], p_argv[12]); 2592 break; 2593 case 14: 2594 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2595 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2596 p_argv[11], p_argv[12], p_argv[13]); 2597 break; 2598 case 15: 2599 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2600 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2601 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2602 break; 2603 } 2604 2605 #if OMPT_SUPPORT 2606 *exit_frame_ptr = 0; 2607 #endif 2608 2609 return 1; 2610 } 2611 2612 #endif 2613 2614 // end of file // 2615 2616