1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #include <semaphore.h> 29 #include <sys/resource.h> 30 #include <sys/syscall.h> 31 #include <sys/time.h> 32 #include <sys/times.h> 33 #include <unistd.h> 34 35 #if KMP_OS_LINUX 36 #include <sys/sysinfo.h> 37 #if KMP_USE_FUTEX 38 // We should really include <futex.h>, but that causes compatibility problems on 39 // different Linux* OS distributions that either require that you include (or 40 // break when you try to include) <pci/types.h>. Since all we need is the two 41 // macros below (which are part of the kernel ABI, so can't change) we just 42 // define the constants here and don't include <futex.h> 43 #ifndef FUTEX_WAIT 44 #define FUTEX_WAIT 0 45 #endif 46 #ifndef FUTEX_WAKE 47 #define FUTEX_WAKE 1 48 #endif 49 #endif 50 #elif KMP_OS_DARWIN 51 #include <mach/mach.h> 52 #include <sys/sysctl.h> 53 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 54 #include <sys/types.h> 55 #include <sys/sysctl.h> 56 #include <sys/user.h> 57 #include <pthread_np.h> 58 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 59 #include <sys/types.h> 60 #include <sys/sysctl.h> 61 #endif 62 63 #include <ctype.h> 64 #include <dirent.h> 65 #include <fcntl.h> 66 67 #include "tsan_annotations.h" 68 69 struct kmp_sys_timer { 70 struct timespec start; 71 }; 72 73 // Convert timespec to nanoseconds. 74 #define TS2NS(timespec) \ 75 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec) 76 77 static struct kmp_sys_timer __kmp_sys_timer_data; 78 79 #if KMP_HANDLE_SIGNALS 80 typedef void (*sig_func_t)(int); 81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 82 static sigset_t __kmp_sigset; 83 #endif 84 85 static int __kmp_init_runtime = FALSE; 86 87 static int __kmp_fork_count = 0; 88 89 static pthread_condattr_t __kmp_suspend_cond_attr; 90 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 91 92 static kmp_cond_align_t __kmp_wait_cv; 93 static kmp_mutex_align_t __kmp_wait_mx; 94 95 kmp_uint64 __kmp_ticks_per_msec = 1000000; 96 97 #ifdef DEBUG_SUSPEND 98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 99 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 100 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 101 cond->c_cond.__c_waiting); 102 } 103 #endif 104 105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 106 107 /* Affinity support */ 108 109 void __kmp_affinity_bind_thread(int which) { 110 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 111 "Illegal set affinity operation when not capable"); 112 113 kmp_affin_mask_t *mask; 114 KMP_CPU_ALLOC_ON_STACK(mask); 115 KMP_CPU_ZERO(mask); 116 KMP_CPU_SET(which, mask); 117 __kmp_set_system_affinity(mask, TRUE); 118 KMP_CPU_FREE_FROM_STACK(mask); 119 } 120 121 /* Determine if we can access affinity functionality on this version of 122 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 123 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 124 void __kmp_affinity_determine_capable(const char *env_var) { 125 // Check and see if the OS supports thread affinity. 126 127 #if KMP_OS_LINUX 128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 129 #elif KMP_OS_FREEBSD 130 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 131 #endif 132 133 #if KMP_OS_LINUX 134 // If Linux* OS: 135 // If the syscall fails or returns a suggestion for the size, 136 // then we don't have to search for an appropriate size. 137 long gCode; 138 long sCode; 139 unsigned char *buf; 140 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 141 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 142 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 143 "initial getaffinity call returned %ld errno = %d\n", 144 gCode, errno)); 145 146 // if ((gCode < 0) && (errno == ENOSYS)) 147 if (gCode < 0) { 148 // System call not supported 149 if (__kmp_affinity_verbose || 150 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 151 (__kmp_affinity_type != affinity_default) && 152 (__kmp_affinity_type != affinity_disabled))) { 153 int error = errno; 154 kmp_msg_t err_code = KMP_ERR(error); 155 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 156 err_code, __kmp_msg_null); 157 if (__kmp_generate_warnings == kmp_warnings_off) { 158 __kmp_str_free(&err_code.str); 159 } 160 } 161 KMP_AFFINITY_DISABLE(); 162 KMP_INTERNAL_FREE(buf); 163 return; 164 } 165 if (gCode > 0) { // Linux* OS only 166 // The optimal situation: the OS returns the size of the buffer it expects. 167 // 168 // A verification of correct behavior is that setaffinity on a NULL 169 // buffer with the same size fails with errno set to EFAULT. 170 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 171 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 172 "setaffinity for mask size %ld returned %ld errno = %d\n", 173 gCode, sCode, errno)); 174 if (sCode < 0) { 175 if (errno == ENOSYS) { 176 if (__kmp_affinity_verbose || 177 (__kmp_affinity_warnings && 178 (__kmp_affinity_type != affinity_none) && 179 (__kmp_affinity_type != affinity_default) && 180 (__kmp_affinity_type != affinity_disabled))) { 181 int error = errno; 182 kmp_msg_t err_code = KMP_ERR(error); 183 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 184 err_code, __kmp_msg_null); 185 if (__kmp_generate_warnings == kmp_warnings_off) { 186 __kmp_str_free(&err_code.str); 187 } 188 } 189 KMP_AFFINITY_DISABLE(); 190 KMP_INTERNAL_FREE(buf); 191 } 192 if (errno == EFAULT) { 193 KMP_AFFINITY_ENABLE(gCode); 194 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 195 "affinity supported (mask size %d)\n", 196 (int)__kmp_affin_mask_size)); 197 KMP_INTERNAL_FREE(buf); 198 return; 199 } 200 } 201 } 202 203 // Call the getaffinity system call repeatedly with increasing set sizes 204 // until we succeed, or reach an upper bound on the search. 205 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 206 "searching for proper set size\n")); 207 int size; 208 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 209 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 210 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 211 "getaffinity for mask size %ld returned %ld errno = %d\n", 212 size, gCode, errno)); 213 214 if (gCode < 0) { 215 if (errno == ENOSYS) { 216 // We shouldn't get here 217 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 218 "inconsistent OS call behavior: errno == ENOSYS for mask " 219 "size %d\n", 220 size)); 221 if (__kmp_affinity_verbose || 222 (__kmp_affinity_warnings && 223 (__kmp_affinity_type != affinity_none) && 224 (__kmp_affinity_type != affinity_default) && 225 (__kmp_affinity_type != affinity_disabled))) { 226 int error = errno; 227 kmp_msg_t err_code = KMP_ERR(error); 228 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 229 err_code, __kmp_msg_null); 230 if (__kmp_generate_warnings == kmp_warnings_off) { 231 __kmp_str_free(&err_code.str); 232 } 233 } 234 KMP_AFFINITY_DISABLE(); 235 KMP_INTERNAL_FREE(buf); 236 return; 237 } 238 continue; 239 } 240 241 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 242 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 243 "setaffinity for mask size %ld returned %ld errno = %d\n", 244 gCode, sCode, errno)); 245 if (sCode < 0) { 246 if (errno == ENOSYS) { // Linux* OS only 247 // We shouldn't get here 248 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 249 "inconsistent OS call behavior: errno == ENOSYS for mask " 250 "size %d\n", 251 size)); 252 if (__kmp_affinity_verbose || 253 (__kmp_affinity_warnings && 254 (__kmp_affinity_type != affinity_none) && 255 (__kmp_affinity_type != affinity_default) && 256 (__kmp_affinity_type != affinity_disabled))) { 257 int error = errno; 258 kmp_msg_t err_code = KMP_ERR(error); 259 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 260 err_code, __kmp_msg_null); 261 if (__kmp_generate_warnings == kmp_warnings_off) { 262 __kmp_str_free(&err_code.str); 263 } 264 } 265 KMP_AFFINITY_DISABLE(); 266 KMP_INTERNAL_FREE(buf); 267 return; 268 } 269 if (errno == EFAULT) { 270 KMP_AFFINITY_ENABLE(gCode); 271 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 272 "affinity supported (mask size %d)\n", 273 (int)__kmp_affin_mask_size)); 274 KMP_INTERNAL_FREE(buf); 275 return; 276 } 277 } 278 } 279 #elif KMP_OS_FREEBSD 280 long gCode; 281 unsigned char *buf; 282 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 283 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, 284 reinterpret_cast<cpuset_t *>(buf)); 285 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 286 "initial getaffinity call returned %d errno = %d\n", 287 gCode, errno)); 288 if (gCode == 0) { 289 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 290 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 291 "affinity supported (mask size %d)\n", 292 (int)__kmp_affin_mask_size)); 293 KMP_INTERNAL_FREE(buf); 294 return; 295 } 296 #endif 297 // save uncaught error code 298 // int error = errno; 299 KMP_INTERNAL_FREE(buf); 300 // restore uncaught error code, will be printed at the next KMP_WARNING below 301 // errno = error; 302 303 // Affinity is not supported 304 KMP_AFFINITY_DISABLE(); 305 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 306 "cannot determine mask size - affinity not supported\n")); 307 if (__kmp_affinity_verbose || 308 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 309 (__kmp_affinity_type != affinity_default) && 310 (__kmp_affinity_type != affinity_disabled))) { 311 KMP_WARNING(AffCantGetMaskSize, env_var); 312 } 313 } 314 315 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 316 317 #if KMP_USE_FUTEX 318 319 int __kmp_futex_determine_capable() { 320 int loc = 0; 321 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 322 int retval = (rc == 0) || (errno != ENOSYS); 323 324 KA_TRACE(10, 325 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 326 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 327 retval ? "" : " not")); 328 329 return retval; 330 } 331 332 #endif // KMP_USE_FUTEX 333 334 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 335 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 336 use compare_and_store for these routines */ 337 338 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 339 kmp_int8 old_value, new_value; 340 341 old_value = TCR_1(*p); 342 new_value = old_value | d; 343 344 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 345 KMP_CPU_PAUSE(); 346 old_value = TCR_1(*p); 347 new_value = old_value | d; 348 } 349 return old_value; 350 } 351 352 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 353 kmp_int8 old_value, new_value; 354 355 old_value = TCR_1(*p); 356 new_value = old_value & d; 357 358 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 359 KMP_CPU_PAUSE(); 360 old_value = TCR_1(*p); 361 new_value = old_value & d; 362 } 363 return old_value; 364 } 365 366 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 367 kmp_uint32 old_value, new_value; 368 369 old_value = TCR_4(*p); 370 new_value = old_value | d; 371 372 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 373 KMP_CPU_PAUSE(); 374 old_value = TCR_4(*p); 375 new_value = old_value | d; 376 } 377 return old_value; 378 } 379 380 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 381 kmp_uint32 old_value, new_value; 382 383 old_value = TCR_4(*p); 384 new_value = old_value & d; 385 386 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 387 KMP_CPU_PAUSE(); 388 old_value = TCR_4(*p); 389 new_value = old_value & d; 390 } 391 return old_value; 392 } 393 394 #if KMP_ARCH_X86 395 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 396 kmp_int8 old_value, new_value; 397 398 old_value = TCR_1(*p); 399 new_value = old_value + d; 400 401 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 402 KMP_CPU_PAUSE(); 403 old_value = TCR_1(*p); 404 new_value = old_value + d; 405 } 406 return old_value; 407 } 408 409 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 410 kmp_int64 old_value, new_value; 411 412 old_value = TCR_8(*p); 413 new_value = old_value + d; 414 415 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 416 KMP_CPU_PAUSE(); 417 old_value = TCR_8(*p); 418 new_value = old_value + d; 419 } 420 return old_value; 421 } 422 #endif /* KMP_ARCH_X86 */ 423 424 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 425 kmp_uint64 old_value, new_value; 426 427 old_value = TCR_8(*p); 428 new_value = old_value | d; 429 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 430 KMP_CPU_PAUSE(); 431 old_value = TCR_8(*p); 432 new_value = old_value | d; 433 } 434 return old_value; 435 } 436 437 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 438 kmp_uint64 old_value, new_value; 439 440 old_value = TCR_8(*p); 441 new_value = old_value & d; 442 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 443 KMP_CPU_PAUSE(); 444 old_value = TCR_8(*p); 445 new_value = old_value & d; 446 } 447 return old_value; 448 } 449 450 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 451 452 void __kmp_terminate_thread(int gtid) { 453 int status; 454 kmp_info_t *th = __kmp_threads[gtid]; 455 456 if (!th) 457 return; 458 459 #ifdef KMP_CANCEL_THREADS 460 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 461 status = pthread_cancel(th->th.th_info.ds.ds_thread); 462 if (status != 0 && status != ESRCH) { 463 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 464 __kmp_msg_null); 465 } 466 #endif 467 KMP_YIELD(TRUE); 468 } // 469 470 /* Set thread stack info according to values returned by pthread_getattr_np(). 471 If values are unreasonable, assume call failed and use incremental stack 472 refinement method instead. Returns TRUE if the stack parameters could be 473 determined exactly, FALSE if incremental refinement is necessary. */ 474 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 475 int stack_data; 476 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 477 KMP_OS_HURD 478 pthread_attr_t attr; 479 int status; 480 size_t size = 0; 481 void *addr = 0; 482 483 /* Always do incremental stack refinement for ubermaster threads since the 484 initial thread stack range can be reduced by sibling thread creation so 485 pthread_attr_getstack may cause thread gtid aliasing */ 486 if (!KMP_UBER_GTID(gtid)) { 487 488 /* Fetch the real thread attributes */ 489 status = pthread_attr_init(&attr); 490 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 491 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 492 status = pthread_attr_get_np(pthread_self(), &attr); 493 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 494 #else 495 status = pthread_getattr_np(pthread_self(), &attr); 496 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 497 #endif 498 status = pthread_attr_getstack(&attr, &addr, &size); 499 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 500 KA_TRACE(60, 501 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 502 " %lu, low addr: %p\n", 503 gtid, size, addr)); 504 status = pthread_attr_destroy(&attr); 505 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 506 } 507 508 if (size != 0 && addr != 0) { // was stack parameter determination successful? 509 /* Store the correct base and size */ 510 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 511 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 512 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 513 return TRUE; 514 } 515 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \ 516 || KMP_OS_HURD */ 517 /* Use incremental refinement starting from initial conservative estimate */ 518 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 519 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 520 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 521 return FALSE; 522 } 523 524 static void *__kmp_launch_worker(void *thr) { 525 int status, old_type, old_state; 526 #ifdef KMP_BLOCK_SIGNALS 527 sigset_t new_set, old_set; 528 #endif /* KMP_BLOCK_SIGNALS */ 529 void *exit_val; 530 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 531 KMP_OS_OPENBSD || KMP_OS_HURD 532 void *volatile padding = 0; 533 #endif 534 int gtid; 535 536 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 537 __kmp_gtid_set_specific(gtid); 538 #ifdef KMP_TDATA_GTID 539 __kmp_gtid = gtid; 540 #endif 541 #if KMP_STATS_ENABLED 542 // set thread local index to point to thread-specific stats 543 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 544 __kmp_stats_thread_ptr->startLife(); 545 KMP_SET_THREAD_STATE(IDLE); 546 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 547 #endif 548 549 #if USE_ITT_BUILD 550 __kmp_itt_thread_name(gtid); 551 #endif /* USE_ITT_BUILD */ 552 553 #if KMP_AFFINITY_SUPPORTED 554 __kmp_affinity_set_init_mask(gtid, FALSE); 555 #endif 556 557 #ifdef KMP_CANCEL_THREADS 558 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 559 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 560 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 561 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 562 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 563 #endif 564 565 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 566 // Set FP control regs to be a copy of the parallel initialization thread's. 567 __kmp_clear_x87_fpu_status_word(); 568 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 569 __kmp_load_mxcsr(&__kmp_init_mxcsr); 570 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 571 572 #ifdef KMP_BLOCK_SIGNALS 573 status = sigfillset(&new_set); 574 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 575 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 576 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 577 #endif /* KMP_BLOCK_SIGNALS */ 578 579 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 580 KMP_OS_OPENBSD 581 if (__kmp_stkoffset > 0 && gtid > 0) { 582 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 583 } 584 #endif 585 586 KMP_MB(); 587 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 588 589 __kmp_check_stack_overlap((kmp_info_t *)thr); 590 591 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 592 593 #ifdef KMP_BLOCK_SIGNALS 594 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 595 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 596 #endif /* KMP_BLOCK_SIGNALS */ 597 598 return exit_val; 599 } 600 601 #if KMP_USE_MONITOR 602 /* The monitor thread controls all of the threads in the complex */ 603 604 static void *__kmp_launch_monitor(void *thr) { 605 int status, old_type, old_state; 606 #ifdef KMP_BLOCK_SIGNALS 607 sigset_t new_set; 608 #endif /* KMP_BLOCK_SIGNALS */ 609 struct timespec interval; 610 611 KMP_MB(); /* Flush all pending memory write invalidates. */ 612 613 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 614 615 /* register us as the monitor thread */ 616 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 617 #ifdef KMP_TDATA_GTID 618 __kmp_gtid = KMP_GTID_MONITOR; 619 #endif 620 621 KMP_MB(); 622 623 #if USE_ITT_BUILD 624 // Instruct Intel(R) Threading Tools to ignore monitor thread. 625 __kmp_itt_thread_ignore(); 626 #endif /* USE_ITT_BUILD */ 627 628 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 629 (kmp_info_t *)thr); 630 631 __kmp_check_stack_overlap((kmp_info_t *)thr); 632 633 #ifdef KMP_CANCEL_THREADS 634 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 635 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 636 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 637 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 638 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 639 #endif 640 641 #if KMP_REAL_TIME_FIX 642 // This is a potential fix which allows application with real-time scheduling 643 // policy work. However, decision about the fix is not made yet, so it is 644 // disabled by default. 645 { // Are program started with real-time scheduling policy? 646 int sched = sched_getscheduler(0); 647 if (sched == SCHED_FIFO || sched == SCHED_RR) { 648 // Yes, we are a part of real-time application. Try to increase the 649 // priority of the monitor. 650 struct sched_param param; 651 int max_priority = sched_get_priority_max(sched); 652 int rc; 653 KMP_WARNING(RealTimeSchedNotSupported); 654 sched_getparam(0, ¶m); 655 if (param.sched_priority < max_priority) { 656 param.sched_priority += 1; 657 rc = sched_setscheduler(0, sched, ¶m); 658 if (rc != 0) { 659 int error = errno; 660 kmp_msg_t err_code = KMP_ERR(error); 661 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 662 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 663 if (__kmp_generate_warnings == kmp_warnings_off) { 664 __kmp_str_free(&err_code.str); 665 } 666 } 667 } else { 668 // We cannot abort here, because number of CPUs may be enough for all 669 // the threads, including the monitor thread, so application could 670 // potentially work... 671 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 672 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 673 __kmp_msg_null); 674 } 675 } 676 // AC: free thread that waits for monitor started 677 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 678 } 679 #endif // KMP_REAL_TIME_FIX 680 681 KMP_MB(); /* Flush all pending memory write invalidates. */ 682 683 if (__kmp_monitor_wakeups == 1) { 684 interval.tv_sec = 1; 685 interval.tv_nsec = 0; 686 } else { 687 interval.tv_sec = 0; 688 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 689 } 690 691 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 692 693 while (!TCR_4(__kmp_global.g.g_done)) { 694 struct timespec now; 695 struct timeval tval; 696 697 /* This thread monitors the state of the system */ 698 699 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 700 701 status = gettimeofday(&tval, NULL); 702 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 703 TIMEVAL_TO_TIMESPEC(&tval, &now); 704 705 now.tv_sec += interval.tv_sec; 706 now.tv_nsec += interval.tv_nsec; 707 708 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 709 now.tv_sec += 1; 710 now.tv_nsec -= KMP_NSEC_PER_SEC; 711 } 712 713 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 714 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 715 // AC: the monitor should not fall asleep if g_done has been set 716 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 717 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 718 &__kmp_wait_mx.m_mutex, &now); 719 if (status != 0) { 720 if (status != ETIMEDOUT && status != EINTR) { 721 KMP_SYSFAIL("pthread_cond_timedwait", status); 722 } 723 } 724 } 725 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 726 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 727 728 TCW_4(__kmp_global.g.g_time.dt.t_value, 729 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 730 731 KMP_MB(); /* Flush all pending memory write invalidates. */ 732 } 733 734 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 735 736 #ifdef KMP_BLOCK_SIGNALS 737 status = sigfillset(&new_set); 738 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 739 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 740 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 741 #endif /* KMP_BLOCK_SIGNALS */ 742 743 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 744 745 if (__kmp_global.g.g_abort != 0) { 746 /* now we need to terminate the worker threads */ 747 /* the value of t_abort is the signal we caught */ 748 749 int gtid; 750 751 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 752 __kmp_global.g.g_abort)); 753 754 /* terminate the OpenMP worker threads */ 755 /* TODO this is not valid for sibling threads!! 756 * the uber master might not be 0 anymore.. */ 757 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 758 __kmp_terminate_thread(gtid); 759 760 __kmp_cleanup(); 761 762 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 763 __kmp_global.g.g_abort)); 764 765 if (__kmp_global.g.g_abort > 0) 766 raise(__kmp_global.g.g_abort); 767 } 768 769 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 770 771 return thr; 772 } 773 #endif // KMP_USE_MONITOR 774 775 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 776 pthread_t handle; 777 pthread_attr_t thread_attr; 778 int status; 779 780 th->th.th_info.ds.ds_gtid = gtid; 781 782 #if KMP_STATS_ENABLED 783 // sets up worker thread stats 784 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 785 786 // th->th.th_stats is used to transfer thread-specific stats-pointer to 787 // __kmp_launch_worker. So when thread is created (goes into 788 // __kmp_launch_worker) it will set its thread local pointer to 789 // th->th.th_stats 790 if (!KMP_UBER_GTID(gtid)) { 791 th->th.th_stats = __kmp_stats_list->push_back(gtid); 792 } else { 793 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 794 // so set the th->th.th_stats field to it. 795 th->th.th_stats = __kmp_stats_thread_ptr; 796 } 797 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 798 799 #endif // KMP_STATS_ENABLED 800 801 if (KMP_UBER_GTID(gtid)) { 802 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 803 th->th.th_info.ds.ds_thread = pthread_self(); 804 __kmp_set_stack_info(gtid, th); 805 __kmp_check_stack_overlap(th); 806 return; 807 } 808 809 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 810 811 KMP_MB(); /* Flush all pending memory write invalidates. */ 812 813 #ifdef KMP_THREAD_ATTR 814 status = pthread_attr_init(&thread_attr); 815 if (status != 0) { 816 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 817 } 818 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 819 if (status != 0) { 820 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 821 } 822 823 /* Set stack size for this thread now. 824 The multiple of 2 is there because on some machines, requesting an unusual 825 stacksize causes the thread to have an offset before the dummy alloca() 826 takes place to create the offset. Since we want the user to have a 827 sufficient stacksize AND support a stack offset, we alloca() twice the 828 offset so that the upcoming alloca() does not eliminate any premade offset, 829 and also gives the user the stack space they requested for all threads */ 830 stack_size += gtid * __kmp_stkoffset * 2; 831 832 #if defined(__ANDROID__) && __ANDROID_API__ < 19 833 // Round the stack size to a multiple of the page size. Older versions of 834 // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL 835 // if the stack size was not a multiple of the page size. 836 stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 837 #endif 838 839 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 840 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 841 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 842 843 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 844 status = pthread_attr_setstacksize(&thread_attr, stack_size); 845 #ifdef KMP_BACKUP_STKSIZE 846 if (status != 0) { 847 if (!__kmp_env_stksize) { 848 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 849 __kmp_stksize = KMP_BACKUP_STKSIZE; 850 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 851 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 852 "bytes\n", 853 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 854 status = pthread_attr_setstacksize(&thread_attr, stack_size); 855 } 856 } 857 #endif /* KMP_BACKUP_STKSIZE */ 858 if (status != 0) { 859 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 860 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 861 } 862 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 863 864 #endif /* KMP_THREAD_ATTR */ 865 866 status = 867 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 868 if (status != 0 || !handle) { // ??? Why do we check handle?? 869 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 870 if (status == EINVAL) { 871 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 872 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 873 } 874 if (status == ENOMEM) { 875 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 876 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 877 } 878 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 879 if (status == EAGAIN) { 880 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 881 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 882 } 883 KMP_SYSFAIL("pthread_create", status); 884 } 885 886 th->th.th_info.ds.ds_thread = handle; 887 888 #ifdef KMP_THREAD_ATTR 889 status = pthread_attr_destroy(&thread_attr); 890 if (status) { 891 kmp_msg_t err_code = KMP_ERR(status); 892 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 893 __kmp_msg_null); 894 if (__kmp_generate_warnings == kmp_warnings_off) { 895 __kmp_str_free(&err_code.str); 896 } 897 } 898 #endif /* KMP_THREAD_ATTR */ 899 900 KMP_MB(); /* Flush all pending memory write invalidates. */ 901 902 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 903 904 } // __kmp_create_worker 905 906 #if KMP_USE_MONITOR 907 void __kmp_create_monitor(kmp_info_t *th) { 908 pthread_t handle; 909 pthread_attr_t thread_attr; 910 size_t size; 911 int status; 912 int auto_adj_size = FALSE; 913 914 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 915 // We don't need monitor thread in case of MAX_BLOCKTIME 916 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 917 "MAX blocktime\n")); 918 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 919 th->th.th_info.ds.ds_gtid = 0; 920 return; 921 } 922 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 923 924 KMP_MB(); /* Flush all pending memory write invalidates. */ 925 926 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 927 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 928 #if KMP_REAL_TIME_FIX 929 TCW_4(__kmp_global.g.g_time.dt.t_value, 930 -1); // Will use it for synchronization a bit later. 931 #else 932 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 933 #endif // KMP_REAL_TIME_FIX 934 935 #ifdef KMP_THREAD_ATTR 936 if (__kmp_monitor_stksize == 0) { 937 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 938 auto_adj_size = TRUE; 939 } 940 status = pthread_attr_init(&thread_attr); 941 if (status != 0) { 942 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 943 } 944 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 945 if (status != 0) { 946 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 947 } 948 949 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 950 status = pthread_attr_getstacksize(&thread_attr, &size); 951 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 952 #else 953 size = __kmp_sys_min_stksize; 954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 955 #endif /* KMP_THREAD_ATTR */ 956 957 if (__kmp_monitor_stksize == 0) { 958 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 959 } 960 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 961 __kmp_monitor_stksize = __kmp_sys_min_stksize; 962 } 963 964 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 965 "requested stacksize = %lu bytes\n", 966 size, __kmp_monitor_stksize)); 967 968 retry: 969 970 /* Set stack size for this thread now. */ 971 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 972 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 973 __kmp_monitor_stksize)); 974 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 975 if (status != 0) { 976 if (auto_adj_size) { 977 __kmp_monitor_stksize *= 2; 978 goto retry; 979 } 980 kmp_msg_t err_code = KMP_ERR(status); 981 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 982 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 983 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 984 if (__kmp_generate_warnings == kmp_warnings_off) { 985 __kmp_str_free(&err_code.str); 986 } 987 } 988 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 989 990 status = 991 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 992 993 if (status != 0) { 994 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 995 if (status == EINVAL) { 996 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 997 __kmp_monitor_stksize *= 2; 998 goto retry; 999 } 1000 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1001 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 1002 __kmp_msg_null); 1003 } 1004 if (status == ENOMEM) { 1005 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1006 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 1007 __kmp_msg_null); 1008 } 1009 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1010 if (status == EAGAIN) { 1011 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 1012 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 1013 } 1014 KMP_SYSFAIL("pthread_create", status); 1015 } 1016 1017 th->th.th_info.ds.ds_thread = handle; 1018 1019 #if KMP_REAL_TIME_FIX 1020 // Wait for the monitor thread is really started and set its *priority*. 1021 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 1022 sizeof(__kmp_global.g.g_time.dt.t_value)); 1023 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 1024 &__kmp_neq_4, NULL); 1025 #endif // KMP_REAL_TIME_FIX 1026 1027 #ifdef KMP_THREAD_ATTR 1028 status = pthread_attr_destroy(&thread_attr); 1029 if (status != 0) { 1030 kmp_msg_t err_code = KMP_ERR(status); 1031 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 1032 __kmp_msg_null); 1033 if (__kmp_generate_warnings == kmp_warnings_off) { 1034 __kmp_str_free(&err_code.str); 1035 } 1036 } 1037 #endif 1038 1039 KMP_MB(); /* Flush all pending memory write invalidates. */ 1040 1041 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1042 th->th.th_info.ds.ds_thread)); 1043 1044 } // __kmp_create_monitor 1045 #endif // KMP_USE_MONITOR 1046 1047 void __kmp_exit_thread(int exit_status) { 1048 pthread_exit((void *)(intptr_t)exit_status); 1049 } // __kmp_exit_thread 1050 1051 #if KMP_USE_MONITOR 1052 void __kmp_resume_monitor(); 1053 1054 void __kmp_reap_monitor(kmp_info_t *th) { 1055 int status; 1056 void *exit_val; 1057 1058 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1059 " %#.8lx\n", 1060 th->th.th_info.ds.ds_thread)); 1061 1062 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1063 // If both tid and gtid are 0, it means the monitor did not ever start. 1064 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1065 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1066 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1067 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1068 return; 1069 } 1070 1071 KMP_MB(); /* Flush all pending memory write invalidates. */ 1072 1073 /* First, check to see whether the monitor thread exists to wake it up. This 1074 is to avoid performance problem when the monitor sleeps during 1075 blocktime-size interval */ 1076 1077 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1078 if (status != ESRCH) { 1079 __kmp_resume_monitor(); // Wake up the monitor thread 1080 } 1081 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1082 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1083 if (exit_val != th) { 1084 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1085 } 1086 1087 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1088 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1089 1090 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1091 " %#.8lx\n", 1092 th->th.th_info.ds.ds_thread)); 1093 1094 KMP_MB(); /* Flush all pending memory write invalidates. */ 1095 } 1096 #endif // KMP_USE_MONITOR 1097 1098 void __kmp_reap_worker(kmp_info_t *th) { 1099 int status; 1100 void *exit_val; 1101 1102 KMP_MB(); /* Flush all pending memory write invalidates. */ 1103 1104 KA_TRACE( 1105 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1106 1107 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1108 #ifdef KMP_DEBUG 1109 /* Don't expose these to the user until we understand when they trigger */ 1110 if (status != 0) { 1111 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1112 } 1113 if (exit_val != th) { 1114 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1115 "exit_val = %p\n", 1116 th->th.th_info.ds.ds_gtid, exit_val)); 1117 } 1118 #endif /* KMP_DEBUG */ 1119 1120 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1121 th->th.th_info.ds.ds_gtid)); 1122 1123 KMP_MB(); /* Flush all pending memory write invalidates. */ 1124 } 1125 1126 #if KMP_HANDLE_SIGNALS 1127 1128 static void __kmp_null_handler(int signo) { 1129 // Do nothing, for doing SIG_IGN-type actions. 1130 } // __kmp_null_handler 1131 1132 static void __kmp_team_handler(int signo) { 1133 if (__kmp_global.g.g_abort == 0) { 1134 /* Stage 1 signal handler, let's shut down all of the threads */ 1135 #ifdef KMP_DEBUG 1136 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1137 #endif 1138 switch (signo) { 1139 case SIGHUP: 1140 case SIGINT: 1141 case SIGQUIT: 1142 case SIGILL: 1143 case SIGABRT: 1144 case SIGFPE: 1145 case SIGBUS: 1146 case SIGSEGV: 1147 #ifdef SIGSYS 1148 case SIGSYS: 1149 #endif 1150 case SIGTERM: 1151 if (__kmp_debug_buf) { 1152 __kmp_dump_debug_buffer(); 1153 } 1154 __kmp_unregister_library(); // cleanup shared memory 1155 KMP_MB(); // Flush all pending memory write invalidates. 1156 TCW_4(__kmp_global.g.g_abort, signo); 1157 KMP_MB(); // Flush all pending memory write invalidates. 1158 TCW_4(__kmp_global.g.g_done, TRUE); 1159 KMP_MB(); // Flush all pending memory write invalidates. 1160 break; 1161 default: 1162 #ifdef KMP_DEBUG 1163 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1164 #endif 1165 break; 1166 } 1167 } 1168 } // __kmp_team_handler 1169 1170 static void __kmp_sigaction(int signum, const struct sigaction *act, 1171 struct sigaction *oldact) { 1172 int rc = sigaction(signum, act, oldact); 1173 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1174 } 1175 1176 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1177 int parallel_init) { 1178 KMP_MB(); // Flush all pending memory write invalidates. 1179 KB_TRACE(60, 1180 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1181 if (parallel_init) { 1182 struct sigaction new_action; 1183 struct sigaction old_action; 1184 new_action.sa_handler = handler_func; 1185 new_action.sa_flags = 0; 1186 sigfillset(&new_action.sa_mask); 1187 __kmp_sigaction(sig, &new_action, &old_action); 1188 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1189 sigaddset(&__kmp_sigset, sig); 1190 } else { 1191 // Restore/keep user's handler if one previously installed. 1192 __kmp_sigaction(sig, &old_action, NULL); 1193 } 1194 } else { 1195 // Save initial/system signal handlers to see if user handlers installed. 1196 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1197 } 1198 KMP_MB(); // Flush all pending memory write invalidates. 1199 } // __kmp_install_one_handler 1200 1201 static void __kmp_remove_one_handler(int sig) { 1202 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1203 if (sigismember(&__kmp_sigset, sig)) { 1204 struct sigaction old; 1205 KMP_MB(); // Flush all pending memory write invalidates. 1206 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1207 if ((old.sa_handler != __kmp_team_handler) && 1208 (old.sa_handler != __kmp_null_handler)) { 1209 // Restore the users signal handler. 1210 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1211 "restoring: sig=%d\n", 1212 sig)); 1213 __kmp_sigaction(sig, &old, NULL); 1214 } 1215 sigdelset(&__kmp_sigset, sig); 1216 KMP_MB(); // Flush all pending memory write invalidates. 1217 } 1218 } // __kmp_remove_one_handler 1219 1220 void __kmp_install_signals(int parallel_init) { 1221 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1222 if (__kmp_handle_signals || !parallel_init) { 1223 // If ! parallel_init, we do not install handlers, just save original 1224 // handlers. Let us do it even __handle_signals is 0. 1225 sigemptyset(&__kmp_sigset); 1226 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1227 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1228 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1229 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1230 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1231 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1232 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1233 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1234 #ifdef SIGSYS 1235 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1236 #endif // SIGSYS 1237 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1238 #ifdef SIGPIPE 1239 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1240 #endif // SIGPIPE 1241 } 1242 } // __kmp_install_signals 1243 1244 void __kmp_remove_signals(void) { 1245 int sig; 1246 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1247 for (sig = 1; sig < NSIG; ++sig) { 1248 __kmp_remove_one_handler(sig); 1249 } 1250 } // __kmp_remove_signals 1251 1252 #endif // KMP_HANDLE_SIGNALS 1253 1254 void __kmp_enable(int new_state) { 1255 #ifdef KMP_CANCEL_THREADS 1256 int status, old_state; 1257 status = pthread_setcancelstate(new_state, &old_state); 1258 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1259 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1260 #endif 1261 } 1262 1263 void __kmp_disable(int *old_state) { 1264 #ifdef KMP_CANCEL_THREADS 1265 int status; 1266 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1267 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1268 #endif 1269 } 1270 1271 static void __kmp_atfork_prepare(void) { 1272 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1273 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1274 } 1275 1276 static void __kmp_atfork_parent(void) { 1277 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1278 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1279 } 1280 1281 /* Reset the library so execution in the child starts "all over again" with 1282 clean data structures in initial states. Don't worry about freeing memory 1283 allocated by parent, just abandon it to be safe. */ 1284 static void __kmp_atfork_child(void) { 1285 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1286 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1287 /* TODO make sure this is done right for nested/sibling */ 1288 // ATT: Memory leaks are here? TODO: Check it and fix. 1289 /* KMP_ASSERT( 0 ); */ 1290 1291 ++__kmp_fork_count; 1292 1293 #if KMP_AFFINITY_SUPPORTED 1294 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1295 // reset the affinity in the child to the initial thread 1296 // affinity in the parent 1297 kmp_set_thread_affinity_mask_initial(); 1298 #endif 1299 // Set default not to bind threads tightly in the child (we’re expecting 1300 // over-subscription after the fork and this can improve things for 1301 // scripting languages that use OpenMP inside process-parallel code). 1302 __kmp_affinity_type = affinity_none; 1303 if (__kmp_nested_proc_bind.bind_types != NULL) { 1304 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1305 } 1306 #endif // KMP_AFFINITY_SUPPORTED 1307 1308 #if KMP_USE_MONITOR 1309 __kmp_init_monitor = 0; 1310 #endif 1311 __kmp_init_parallel = FALSE; 1312 __kmp_init_middle = FALSE; 1313 __kmp_init_serial = FALSE; 1314 TCW_4(__kmp_init_gtid, FALSE); 1315 __kmp_init_common = FALSE; 1316 1317 TCW_4(__kmp_init_user_locks, FALSE); 1318 #if !KMP_USE_DYNAMIC_LOCK 1319 __kmp_user_lock_table.used = 1; 1320 __kmp_user_lock_table.allocated = 0; 1321 __kmp_user_lock_table.table = NULL; 1322 __kmp_lock_blocks = NULL; 1323 #endif 1324 1325 __kmp_all_nth = 0; 1326 TCW_4(__kmp_nth, 0); 1327 1328 __kmp_thread_pool = NULL; 1329 __kmp_thread_pool_insert_pt = NULL; 1330 __kmp_team_pool = NULL; 1331 1332 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1333 here so threadprivate doesn't use stale data */ 1334 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1335 __kmp_threadpriv_cache_list)); 1336 1337 while (__kmp_threadpriv_cache_list != NULL) { 1338 1339 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1340 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1341 &(*__kmp_threadpriv_cache_list->addr))); 1342 1343 *__kmp_threadpriv_cache_list->addr = NULL; 1344 } 1345 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1346 } 1347 1348 __kmp_init_runtime = FALSE; 1349 1350 /* reset statically initialized locks */ 1351 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1352 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1353 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1354 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1355 1356 #if USE_ITT_BUILD 1357 __kmp_itt_reset(); // reset ITT's global state 1358 #endif /* USE_ITT_BUILD */ 1359 1360 __kmp_serial_initialize(); 1361 1362 /* This is necessary to make sure no stale data is left around */ 1363 /* AC: customers complain that we use unsafe routines in the atfork 1364 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1365 in dynamic_link when check the presence of shared tbbmalloc library. 1366 Suggestion is to make the library initialization lazier, similar 1367 to what done for __kmpc_begin(). */ 1368 // TODO: synchronize all static initializations with regular library 1369 // startup; look at kmp_global.cpp and etc. 1370 //__kmp_internal_begin (); 1371 } 1372 1373 void __kmp_register_atfork(void) { 1374 if (__kmp_need_register_atfork) { 1375 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1376 __kmp_atfork_child); 1377 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1378 __kmp_need_register_atfork = FALSE; 1379 } 1380 } 1381 1382 void __kmp_suspend_initialize(void) { 1383 int status; 1384 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1385 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1386 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1387 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1388 } 1389 1390 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1391 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1392 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1393 int new_value = __kmp_fork_count + 1; 1394 // Return if already initialized 1395 if (old_value == new_value) 1396 return; 1397 // Wait, then return if being initialized 1398 if (old_value == -1 || !__kmp_atomic_compare_store( 1399 &th->th.th_suspend_init_count, old_value, -1)) { 1400 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1401 KMP_CPU_PAUSE(); 1402 } 1403 } else { 1404 // Claim to be the initializer and do initializations 1405 int status; 1406 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1407 &__kmp_suspend_cond_attr); 1408 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1409 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1410 &__kmp_suspend_mutex_attr); 1411 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1412 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1413 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1414 } 1415 } 1416 1417 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1418 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1419 /* this means we have initialize the suspension pthread objects for this 1420 thread in this instance of the process */ 1421 int status; 1422 1423 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1424 if (status != 0 && status != EBUSY) { 1425 KMP_SYSFAIL("pthread_cond_destroy", status); 1426 } 1427 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1428 if (status != 0 && status != EBUSY) { 1429 KMP_SYSFAIL("pthread_mutex_destroy", status); 1430 } 1431 --th->th.th_suspend_init_count; 1432 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1433 __kmp_fork_count); 1434 } 1435 } 1436 1437 // return true if lock obtained, false otherwise 1438 int __kmp_try_suspend_mx(kmp_info_t *th) { 1439 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1440 } 1441 1442 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1443 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1444 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1445 } 1446 1447 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1448 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1449 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1450 } 1451 1452 /* This routine puts the calling thread to sleep after setting the 1453 sleep bit for the indicated flag variable to true. */ 1454 template <class C> 1455 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1456 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1457 kmp_info_t *th = __kmp_threads[th_gtid]; 1458 int status; 1459 typename C::flag_t old_spin; 1460 1461 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1462 flag->get())); 1463 1464 __kmp_suspend_initialize_thread(th); 1465 1466 __kmp_lock_suspend_mx(th); 1467 1468 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1469 th_gtid, flag->get())); 1470 1471 /* TODO: shouldn't this use release semantics to ensure that 1472 __kmp_suspend_initialize_thread gets called first? */ 1473 old_spin = flag->set_sleeping(); 1474 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1475 __kmp_pause_status != kmp_soft_paused) { 1476 flag->unset_sleeping(); 1477 __kmp_unlock_suspend_mx(th); 1478 return; 1479 } 1480 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1481 " was %x\n", 1482 th_gtid, flag->get(), flag->load(), old_spin)); 1483 1484 if (flag->done_check_val(old_spin)) { 1485 old_spin = flag->unset_sleeping(); 1486 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1487 "for spin(%p)\n", 1488 th_gtid, flag->get())); 1489 } else { 1490 /* Encapsulate in a loop as the documentation states that this may 1491 "with low probability" return when the condition variable has 1492 not been signaled or broadcast */ 1493 int deactivated = FALSE; 1494 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1495 1496 while (flag->is_sleeping()) { 1497 #ifdef DEBUG_SUSPEND 1498 char buffer[128]; 1499 __kmp_suspend_count++; 1500 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1501 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1502 buffer); 1503 #endif 1504 // Mark the thread as no longer active (only in the first iteration of the 1505 // loop). 1506 if (!deactivated) { 1507 th->th.th_active = FALSE; 1508 if (th->th.th_active_in_pool) { 1509 th->th.th_active_in_pool = FALSE; 1510 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1511 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1512 } 1513 deactivated = TRUE; 1514 } 1515 1516 #if USE_SUSPEND_TIMEOUT 1517 struct timespec now; 1518 struct timeval tval; 1519 int msecs; 1520 1521 status = gettimeofday(&tval, NULL); 1522 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1523 TIMEVAL_TO_TIMESPEC(&tval, &now); 1524 1525 msecs = (4 * __kmp_dflt_blocktime) + 200; 1526 now.tv_sec += msecs / 1000; 1527 now.tv_nsec += (msecs % 1000) * 1000; 1528 1529 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1530 "pthread_cond_timedwait\n", 1531 th_gtid)); 1532 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1533 &th->th.th_suspend_mx.m_mutex, &now); 1534 #else 1535 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1536 " pthread_cond_wait\n", 1537 th_gtid)); 1538 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1539 &th->th.th_suspend_mx.m_mutex); 1540 #endif // USE_SUSPEND_TIMEOUT 1541 1542 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1543 KMP_SYSFAIL("pthread_cond_wait", status); 1544 } 1545 #ifdef KMP_DEBUG 1546 if (status == ETIMEDOUT) { 1547 if (flag->is_sleeping()) { 1548 KF_TRACE(100, 1549 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1550 } else { 1551 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1552 "not set!\n", 1553 th_gtid)); 1554 } 1555 } else if (flag->is_sleeping()) { 1556 KF_TRACE(100, 1557 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1558 } 1559 #endif 1560 } // while 1561 1562 // Mark the thread as active again (if it was previous marked as inactive) 1563 if (deactivated) { 1564 th->th.th_active = TRUE; 1565 if (TCR_4(th->th.th_in_pool)) { 1566 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1567 th->th.th_active_in_pool = TRUE; 1568 } 1569 } 1570 } 1571 #ifdef DEBUG_SUSPEND 1572 { 1573 char buffer[128]; 1574 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1575 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1576 buffer); 1577 } 1578 #endif 1579 1580 __kmp_unlock_suspend_mx(th); 1581 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1582 } 1583 1584 template <bool C, bool S> 1585 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 1586 __kmp_suspend_template(th_gtid, flag); 1587 } 1588 template <bool C, bool S> 1589 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 1590 __kmp_suspend_template(th_gtid, flag); 1591 } 1592 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1593 __kmp_suspend_template(th_gtid, flag); 1594 } 1595 1596 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 1597 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 1598 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 1599 1600 /* This routine signals the thread specified by target_gtid to wake up 1601 after setting the sleep bit indicated by the flag argument to FALSE. 1602 The target thread must already have called __kmp_suspend_template() */ 1603 template <class C> 1604 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1605 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1606 kmp_info_t *th = __kmp_threads[target_gtid]; 1607 int status; 1608 1609 #ifdef KMP_DEBUG 1610 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1611 #endif 1612 1613 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1614 gtid, target_gtid)); 1615 KMP_DEBUG_ASSERT(gtid != target_gtid); 1616 1617 __kmp_suspend_initialize_thread(th); 1618 1619 __kmp_lock_suspend_mx(th); 1620 1621 if (!flag) { // coming from __kmp_null_resume_wrapper 1622 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1623 } 1624 1625 // First, check if the flag is null or its type has changed. If so, someone 1626 // else woke it up. 1627 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1628 // simply shows what flag was cast to 1629 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1630 "awake: flag(%p)\n", 1631 gtid, target_gtid, NULL)); 1632 __kmp_unlock_suspend_mx(th); 1633 return; 1634 } else { // if multiple threads are sleeping, flag should be internally 1635 // referring to a specific thread here 1636 typename C::flag_t old_spin = flag->unset_sleeping(); 1637 if (!flag->is_sleeping_val(old_spin)) { 1638 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1639 "awake: flag(%p): " 1640 "%u => %u\n", 1641 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1642 __kmp_unlock_suspend_mx(th); 1643 return; 1644 } 1645 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1646 "sleep bit for flag's loc(%p): " 1647 "%u => %u\n", 1648 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1649 } 1650 TCW_PTR(th->th.th_sleep_loc, NULL); 1651 1652 #ifdef DEBUG_SUSPEND 1653 { 1654 char buffer[128]; 1655 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1656 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1657 target_gtid, buffer); 1658 } 1659 #endif 1660 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1661 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1662 __kmp_unlock_suspend_mx(th); 1663 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1664 " for T#%d\n", 1665 gtid, target_gtid)); 1666 } 1667 1668 template <bool C, bool S> 1669 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 1670 __kmp_resume_template(target_gtid, flag); 1671 } 1672 template <bool C, bool S> 1673 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 1674 __kmp_resume_template(target_gtid, flag); 1675 } 1676 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1677 __kmp_resume_template(target_gtid, flag); 1678 } 1679 1680 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 1681 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 1682 1683 #if KMP_USE_MONITOR 1684 void __kmp_resume_monitor() { 1685 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1686 int status; 1687 #ifdef KMP_DEBUG 1688 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1689 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1690 KMP_GTID_MONITOR)); 1691 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1692 #endif 1693 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1694 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1695 #ifdef DEBUG_SUSPEND 1696 { 1697 char buffer[128]; 1698 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1699 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1700 KMP_GTID_MONITOR, buffer); 1701 } 1702 #endif 1703 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1704 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1705 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1706 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1707 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1708 " for T#%d\n", 1709 gtid, KMP_GTID_MONITOR)); 1710 } 1711 #endif // KMP_USE_MONITOR 1712 1713 void __kmp_yield() { sched_yield(); } 1714 1715 void __kmp_gtid_set_specific(int gtid) { 1716 if (__kmp_init_gtid) { 1717 int status; 1718 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1719 (void *)(intptr_t)(gtid + 1)); 1720 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1721 } else { 1722 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1723 } 1724 } 1725 1726 int __kmp_gtid_get_specific() { 1727 int gtid; 1728 if (!__kmp_init_gtid) { 1729 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1730 "KMP_GTID_SHUTDOWN\n")); 1731 return KMP_GTID_SHUTDOWN; 1732 } 1733 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1734 if (gtid == 0) { 1735 gtid = KMP_GTID_DNE; 1736 } else { 1737 gtid--; 1738 } 1739 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1740 __kmp_gtid_threadprivate_key, gtid)); 1741 return gtid; 1742 } 1743 1744 double __kmp_read_cpu_time(void) { 1745 /*clock_t t;*/ 1746 struct tms buffer; 1747 1748 /*t =*/times(&buffer); 1749 1750 return (double)(buffer.tms_utime + buffer.tms_cutime) / 1751 (double)CLOCKS_PER_SEC; 1752 } 1753 1754 int __kmp_read_system_info(struct kmp_sys_info *info) { 1755 int status; 1756 struct rusage r_usage; 1757 1758 memset(info, 0, sizeof(*info)); 1759 1760 status = getrusage(RUSAGE_SELF, &r_usage); 1761 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1762 1763 // The maximum resident set size utilized (in kilobytes) 1764 info->maxrss = r_usage.ru_maxrss; 1765 // The number of page faults serviced without any I/O 1766 info->minflt = r_usage.ru_minflt; 1767 // The number of page faults serviced that required I/O 1768 info->majflt = r_usage.ru_majflt; 1769 // The number of times a process was "swapped" out of memory 1770 info->nswap = r_usage.ru_nswap; 1771 // The number of times the file system had to perform input 1772 info->inblock = r_usage.ru_inblock; 1773 // The number of times the file system had to perform output 1774 info->oublock = r_usage.ru_oublock; 1775 // The number of times a context switch was voluntarily 1776 info->nvcsw = r_usage.ru_nvcsw; 1777 // The number of times a context switch was forced 1778 info->nivcsw = r_usage.ru_nivcsw; 1779 1780 return (status != 0); 1781 } 1782 1783 void __kmp_read_system_time(double *delta) { 1784 double t_ns; 1785 struct timeval tval; 1786 struct timespec stop; 1787 int status; 1788 1789 status = gettimeofday(&tval, NULL); 1790 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1791 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1792 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start)); 1793 *delta = (t_ns * 1e-9); 1794 } 1795 1796 void __kmp_clear_system_time(void) { 1797 struct timeval tval; 1798 int status; 1799 status = gettimeofday(&tval, NULL); 1800 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1801 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1802 } 1803 1804 static int __kmp_get_xproc(void) { 1805 1806 int r = 0; 1807 1808 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 1809 KMP_OS_OPENBSD || KMP_OS_HURD 1810 1811 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r)); 1812 1813 #elif KMP_OS_DARWIN 1814 1815 // Bug C77011 High "OpenMP Threads and number of active cores". 1816 1817 // Find the number of available CPUs. 1818 kern_return_t rc; 1819 host_basic_info_data_t info; 1820 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1821 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1822 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1823 // Cannot use KA_TRACE() here because this code works before trace support 1824 // is initialized. 1825 r = info.avail_cpus; 1826 } else { 1827 KMP_WARNING(CantGetNumAvailCPU); 1828 KMP_INFORM(AssumedNumCPU); 1829 } 1830 1831 #else 1832 1833 #error "Unknown or unsupported OS." 1834 1835 #endif 1836 1837 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1838 1839 } // __kmp_get_xproc 1840 1841 int __kmp_read_from_file(char const *path, char const *format, ...) { 1842 int result; 1843 va_list args; 1844 1845 va_start(args, format); 1846 FILE *f = fopen(path, "rb"); 1847 if (f == NULL) 1848 return 0; 1849 result = vfscanf(f, format, args); 1850 fclose(f); 1851 1852 return result; 1853 } 1854 1855 void __kmp_runtime_initialize(void) { 1856 int status; 1857 pthread_mutexattr_t mutex_attr; 1858 pthread_condattr_t cond_attr; 1859 1860 if (__kmp_init_runtime) { 1861 return; 1862 } 1863 1864 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1865 if (!__kmp_cpuinfo.initialized) { 1866 __kmp_query_cpuid(&__kmp_cpuinfo); 1867 } 1868 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1869 1870 __kmp_xproc = __kmp_get_xproc(); 1871 1872 #if !KMP_32_BIT_ARCH 1873 struct rlimit rlim; 1874 // read stack size of calling thread, save it as default for worker threads; 1875 // this should be done before reading environment variables 1876 status = getrlimit(RLIMIT_STACK, &rlim); 1877 if (status == 0) { // success? 1878 __kmp_stksize = rlim.rlim_cur; 1879 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1880 } 1881 #endif /* KMP_32_BIT_ARCH */ 1882 1883 if (sysconf(_SC_THREADS)) { 1884 1885 /* Query the maximum number of threads */ 1886 __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth)); 1887 if (__kmp_sys_max_nth == -1) { 1888 /* Unlimited threads for NPTL */ 1889 __kmp_sys_max_nth = INT_MAX; 1890 } else if (__kmp_sys_max_nth <= 1) { 1891 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1892 __kmp_sys_max_nth = KMP_MAX_NTH; 1893 } 1894 1895 /* Query the minimum stack size */ 1896 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1897 if (__kmp_sys_min_stksize <= 1) { 1898 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1899 } 1900 } 1901 1902 /* Set up minimum number of threads to switch to TLS gtid */ 1903 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1904 1905 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1906 __kmp_internal_end_dest); 1907 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1908 status = pthread_mutexattr_init(&mutex_attr); 1909 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1910 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1911 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1912 status = pthread_condattr_init(&cond_attr); 1913 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1914 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1915 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1916 #if USE_ITT_BUILD 1917 __kmp_itt_initialize(); 1918 #endif /* USE_ITT_BUILD */ 1919 1920 __kmp_init_runtime = TRUE; 1921 } 1922 1923 void __kmp_runtime_destroy(void) { 1924 int status; 1925 1926 if (!__kmp_init_runtime) { 1927 return; // Nothing to do. 1928 } 1929 1930 #if USE_ITT_BUILD 1931 __kmp_itt_destroy(); 1932 #endif /* USE_ITT_BUILD */ 1933 1934 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1935 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1936 1937 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1938 if (status != 0 && status != EBUSY) { 1939 KMP_SYSFAIL("pthread_mutex_destroy", status); 1940 } 1941 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1942 if (status != 0 && status != EBUSY) { 1943 KMP_SYSFAIL("pthread_cond_destroy", status); 1944 } 1945 #if KMP_AFFINITY_SUPPORTED 1946 __kmp_affinity_uninitialize(); 1947 #endif 1948 1949 __kmp_init_runtime = FALSE; 1950 } 1951 1952 /* Put the thread to sleep for a time period */ 1953 /* NOTE: not currently used anywhere */ 1954 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1955 1956 /* Calculate the elapsed wall clock time for the user */ 1957 void __kmp_elapsed(double *t) { 1958 int status; 1959 #ifdef FIX_SGI_CLOCK 1960 struct timespec ts; 1961 1962 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1963 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1964 *t = 1965 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1966 #else 1967 struct timeval tv; 1968 1969 status = gettimeofday(&tv, NULL); 1970 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1971 *t = 1972 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1973 #endif 1974 } 1975 1976 /* Calculate the elapsed wall clock tick for the user */ 1977 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1978 1979 /* Return the current time stamp in nsec */ 1980 kmp_uint64 __kmp_now_nsec() { 1981 struct timeval t; 1982 gettimeofday(&t, NULL); 1983 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 1984 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 1985 return nsec; 1986 } 1987 1988 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1989 /* Measure clock ticks per millisecond */ 1990 void __kmp_initialize_system_tick() { 1991 kmp_uint64 now, nsec2, diff; 1992 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1993 kmp_uint64 nsec = __kmp_now_nsec(); 1994 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1995 while ((now = __kmp_hardware_timestamp()) < goal) 1996 ; 1997 nsec2 = __kmp_now_nsec(); 1998 diff = nsec2 - nsec; 1999 if (diff > 0) { 2000 kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff); 2001 if (tpms > 0) 2002 __kmp_ticks_per_msec = tpms; 2003 } 2004 } 2005 #endif 2006 2007 /* Determine whether the given address is mapped into the current address 2008 space. */ 2009 2010 int __kmp_is_address_mapped(void *addr) { 2011 2012 int found = 0; 2013 int rc; 2014 2015 #if KMP_OS_LINUX || KMP_OS_HURD 2016 2017 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the 2018 address ranges mapped into the address space. */ 2019 2020 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 2021 FILE *file = NULL; 2022 2023 file = fopen(name, "r"); 2024 KMP_ASSERT(file != NULL); 2025 2026 for (;;) { 2027 2028 void *beginning = NULL; 2029 void *ending = NULL; 2030 char perms[5]; 2031 2032 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2033 if (rc == EOF) { 2034 break; 2035 } 2036 KMP_ASSERT(rc == 3 && 2037 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2038 2039 // Ending address is not included in the region, but beginning is. 2040 if ((addr >= beginning) && (addr < ending)) { 2041 perms[2] = 0; // 3th and 4th character does not matter. 2042 if (strcmp(perms, "rw") == 0) { 2043 // Memory we are looking for should be readable and writable. 2044 found = 1; 2045 } 2046 break; 2047 } 2048 } 2049 2050 // Free resources. 2051 fclose(file); 2052 KMP_INTERNAL_FREE(name); 2053 #elif KMP_OS_FREEBSD 2054 char *buf; 2055 size_t lstsz; 2056 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 2057 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2058 if (rc < 0) 2059 return 0; 2060 // We pass from number of vm entry's semantic 2061 // to size of whole entry map list. 2062 lstsz = lstsz * 4 / 3; 2063 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2064 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2065 if (rc < 0) { 2066 kmpc_free(buf); 2067 return 0; 2068 } 2069 2070 char *lw = buf; 2071 char *up = buf + lstsz; 2072 2073 while (lw < up) { 2074 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2075 size_t cursz = cur->kve_structsize; 2076 if (cursz == 0) 2077 break; 2078 void *start = reinterpret_cast<void *>(cur->kve_start); 2079 void *end = reinterpret_cast<void *>(cur->kve_end); 2080 // Readable/Writable addresses within current map entry 2081 if ((addr >= start) && (addr < end)) { 2082 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2083 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2084 found = 1; 2085 break; 2086 } 2087 } 2088 lw += cursz; 2089 } 2090 kmpc_free(buf); 2091 2092 #elif KMP_OS_DARWIN 2093 2094 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2095 using vm interface. */ 2096 2097 int buffer; 2098 vm_size_t count; 2099 rc = vm_read_overwrite( 2100 mach_task_self(), // Task to read memory of. 2101 (vm_address_t)(addr), // Address to read from. 2102 1, // Number of bytes to be read. 2103 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2104 &count // Address of var to save number of read bytes in. 2105 ); 2106 if (rc == 0) { 2107 // Memory successfully read. 2108 found = 1; 2109 } 2110 2111 #elif KMP_OS_NETBSD 2112 2113 int mib[5]; 2114 mib[0] = CTL_VM; 2115 mib[1] = VM_PROC; 2116 mib[2] = VM_PROC_MAP; 2117 mib[3] = getpid(); 2118 mib[4] = sizeof(struct kinfo_vmentry); 2119 2120 size_t size; 2121 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2122 KMP_ASSERT(!rc); 2123 KMP_ASSERT(size); 2124 2125 size = size * 4 / 3; 2126 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2127 KMP_ASSERT(kiv); 2128 2129 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2130 KMP_ASSERT(!rc); 2131 KMP_ASSERT(size); 2132 2133 for (size_t i = 0; i < size; i++) { 2134 if (kiv[i].kve_start >= (uint64_t)addr && 2135 kiv[i].kve_end <= (uint64_t)addr) { 2136 found = 1; 2137 break; 2138 } 2139 } 2140 KMP_INTERNAL_FREE(kiv); 2141 #elif KMP_OS_OPENBSD 2142 2143 int mib[3]; 2144 mib[0] = CTL_KERN; 2145 mib[1] = KERN_PROC_VMMAP; 2146 mib[2] = getpid(); 2147 2148 size_t size; 2149 uint64_t end; 2150 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2151 KMP_ASSERT(!rc); 2152 KMP_ASSERT(size); 2153 end = size; 2154 2155 struct kinfo_vmentry kiv = {.kve_start = 0}; 2156 2157 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2158 KMP_ASSERT(size); 2159 if (kiv.kve_end == end) 2160 break; 2161 2162 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2163 found = 1; 2164 break; 2165 } 2166 kiv.kve_start += 1; 2167 } 2168 #elif KMP_OS_DRAGONFLY 2169 2170 // FIXME(DragonFly): Implement this 2171 found = 1; 2172 2173 #else 2174 2175 #error "Unknown or unsupported OS" 2176 2177 #endif 2178 2179 return found; 2180 2181 } // __kmp_is_address_mapped 2182 2183 #ifdef USE_LOAD_BALANCE 2184 2185 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2186 2187 // The function returns the rounded value of the system load average 2188 // during given time interval which depends on the value of 2189 // __kmp_load_balance_interval variable (default is 60 sec, other values 2190 // may be 300 sec or 900 sec). 2191 // It returns -1 in case of error. 2192 int __kmp_get_load_balance(int max) { 2193 double averages[3]; 2194 int ret_avg = 0; 2195 2196 int res = getloadavg(averages, 3); 2197 2198 // Check __kmp_load_balance_interval to determine which of averages to use. 2199 // getloadavg() may return the number of samples less than requested that is 2200 // less than 3. 2201 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2202 ret_avg = (int)averages[0]; // 1 min 2203 } else if ((__kmp_load_balance_interval >= 180 && 2204 __kmp_load_balance_interval < 600) && 2205 (res >= 2)) { 2206 ret_avg = (int)averages[1]; // 5 min 2207 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2208 ret_avg = (int)averages[2]; // 15 min 2209 } else { // Error occurred 2210 return -1; 2211 } 2212 2213 return ret_avg; 2214 } 2215 2216 #else // Linux* OS 2217 2218 // The function returns number of running (not sleeping) threads, or -1 in case 2219 // of error. Error could be reported if Linux* OS kernel too old (without 2220 // "/proc" support). Counting running threads stops if max running threads 2221 // encountered. 2222 int __kmp_get_load_balance(int max) { 2223 static int permanent_error = 0; 2224 static int glb_running_threads = 0; // Saved count of the running threads for 2225 // the thread balance algorithm 2226 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2227 2228 int running_threads = 0; // Number of running threads in the system. 2229 2230 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2231 struct dirent *proc_entry = NULL; 2232 2233 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2234 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2235 struct dirent *task_entry = NULL; 2236 int task_path_fixed_len; 2237 2238 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2239 int stat_file = -1; 2240 int stat_path_fixed_len; 2241 2242 int total_processes = 0; // Total number of processes in system. 2243 int total_threads = 0; // Total number of threads in system. 2244 2245 double call_time = 0.0; 2246 2247 __kmp_str_buf_init(&task_path); 2248 __kmp_str_buf_init(&stat_path); 2249 2250 __kmp_elapsed(&call_time); 2251 2252 if (glb_call_time && 2253 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2254 running_threads = glb_running_threads; 2255 goto finish; 2256 } 2257 2258 glb_call_time = call_time; 2259 2260 // Do not spend time on scanning "/proc/" if we have a permanent error. 2261 if (permanent_error) { 2262 running_threads = -1; 2263 goto finish; 2264 } 2265 2266 if (max <= 0) { 2267 max = INT_MAX; 2268 } 2269 2270 // Open "/proc/" directory. 2271 proc_dir = opendir("/proc"); 2272 if (proc_dir == NULL) { 2273 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2274 // error now and in subsequent calls. 2275 running_threads = -1; 2276 permanent_error = 1; 2277 goto finish; 2278 } 2279 2280 // Initialize fixed part of task_path. This part will not change. 2281 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2282 task_path_fixed_len = task_path.used; // Remember number of used characters. 2283 2284 proc_entry = readdir(proc_dir); 2285 while (proc_entry != NULL) { 2286 // Proc entry is a directory and name starts with a digit. Assume it is a 2287 // process' directory. 2288 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2289 2290 ++total_processes; 2291 // Make sure init process is the very first in "/proc", so we can replace 2292 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2293 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2294 // true (where "=>" is implication). Since C++ does not have => operator, 2295 // let us replace it with its equivalent: a => b == ! a || b. 2296 KMP_DEBUG_ASSERT(total_processes != 1 || 2297 strcmp(proc_entry->d_name, "1") == 0); 2298 2299 // Construct task_path. 2300 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2301 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2302 KMP_STRLEN(proc_entry->d_name)); 2303 __kmp_str_buf_cat(&task_path, "/task", 5); 2304 2305 task_dir = opendir(task_path.str); 2306 if (task_dir == NULL) { 2307 // Process can finish between reading "/proc/" directory entry and 2308 // opening process' "task/" directory. So, in general case we should not 2309 // complain, but have to skip this process and read the next one. But on 2310 // systems with no "task/" support we will spend lot of time to scan 2311 // "/proc/" tree again and again without any benefit. "init" process 2312 // (its pid is 1) should exist always, so, if we cannot open 2313 // "/proc/1/task/" directory, it means "task/" is not supported by 2314 // kernel. Report an error now and in the future. 2315 if (strcmp(proc_entry->d_name, "1") == 0) { 2316 running_threads = -1; 2317 permanent_error = 1; 2318 goto finish; 2319 } 2320 } else { 2321 // Construct fixed part of stat file path. 2322 __kmp_str_buf_clear(&stat_path); 2323 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2324 __kmp_str_buf_cat(&stat_path, "/", 1); 2325 stat_path_fixed_len = stat_path.used; 2326 2327 task_entry = readdir(task_dir); 2328 while (task_entry != NULL) { 2329 // It is a directory and name starts with a digit. 2330 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2331 ++total_threads; 2332 2333 // Construct complete stat file path. Easiest way would be: 2334 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2335 // task_entry->d_name ); 2336 // but seriae of __kmp_str_buf_cat works a bit faster. 2337 stat_path.used = 2338 stat_path_fixed_len; // Reset stat path to its fixed part. 2339 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2340 KMP_STRLEN(task_entry->d_name)); 2341 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2342 2343 // Note: Low-level API (open/read/close) is used. High-level API 2344 // (fopen/fclose) works ~ 30 % slower. 2345 stat_file = open(stat_path.str, O_RDONLY); 2346 if (stat_file == -1) { 2347 // We cannot report an error because task (thread) can terminate 2348 // just before reading this file. 2349 } else { 2350 /* Content of "stat" file looks like: 2351 24285 (program) S ... 2352 2353 It is a single line (if program name does not include funny 2354 symbols). First number is a thread id, then name of executable 2355 file name in paretheses, then state of the thread. We need just 2356 thread state. 2357 2358 Good news: Length of program name is 15 characters max. Longer 2359 names are truncated. 2360 2361 Thus, we need rather short buffer: 15 chars for program name + 2362 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2363 2364 Bad news: Program name may contain special symbols like space, 2365 closing parenthesis, or even new line. This makes parsing 2366 "stat" file not 100 % reliable. In case of fanny program names 2367 parsing may fail (report incorrect thread state). 2368 2369 Parsing "status" file looks more promissing (due to different 2370 file structure and escaping special symbols) but reading and 2371 parsing of "status" file works slower. 2372 -- ln 2373 */ 2374 char buffer[65]; 2375 ssize_t len; 2376 len = read(stat_file, buffer, sizeof(buffer) - 1); 2377 if (len >= 0) { 2378 buffer[len] = 0; 2379 // Using scanf: 2380 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2381 // looks very nice, but searching for a closing parenthesis 2382 // works a bit faster. 2383 char *close_parent = strstr(buffer, ") "); 2384 if (close_parent != NULL) { 2385 char state = *(close_parent + 2); 2386 if (state == 'R') { 2387 ++running_threads; 2388 if (running_threads >= max) { 2389 goto finish; 2390 } 2391 } 2392 } 2393 } 2394 close(stat_file); 2395 stat_file = -1; 2396 } 2397 } 2398 task_entry = readdir(task_dir); 2399 } 2400 closedir(task_dir); 2401 task_dir = NULL; 2402 } 2403 } 2404 proc_entry = readdir(proc_dir); 2405 } 2406 2407 // There _might_ be a timing hole where the thread executing this 2408 // code get skipped in the load balance, and running_threads is 0. 2409 // Assert in the debug builds only!!! 2410 KMP_DEBUG_ASSERT(running_threads > 0); 2411 if (running_threads <= 0) { 2412 running_threads = 1; 2413 } 2414 2415 finish: // Clean up and exit. 2416 if (proc_dir != NULL) { 2417 closedir(proc_dir); 2418 } 2419 __kmp_str_buf_free(&task_path); 2420 if (task_dir != NULL) { 2421 closedir(task_dir); 2422 } 2423 __kmp_str_buf_free(&stat_path); 2424 if (stat_file != -1) { 2425 close(stat_file); 2426 } 2427 2428 glb_running_threads = running_threads; 2429 2430 return running_threads; 2431 2432 } // __kmp_get_load_balance 2433 2434 #endif // KMP_OS_DARWIN 2435 2436 #endif // USE_LOAD_BALANCE 2437 2438 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2439 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2440 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64) 2441 2442 // we really only need the case with 1 argument, because CLANG always build 2443 // a struct of pointers to shared variables referenced in the outlined function 2444 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2445 void *p_argv[] 2446 #if OMPT_SUPPORT 2447 , 2448 void **exit_frame_ptr 2449 #endif 2450 ) { 2451 #if OMPT_SUPPORT 2452 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2453 #endif 2454 2455 switch (argc) { 2456 default: 2457 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2458 fflush(stderr); 2459 exit(-1); 2460 case 0: 2461 (*pkfn)(>id, &tid); 2462 break; 2463 case 1: 2464 (*pkfn)(>id, &tid, p_argv[0]); 2465 break; 2466 case 2: 2467 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2468 break; 2469 case 3: 2470 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2471 break; 2472 case 4: 2473 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2474 break; 2475 case 5: 2476 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2477 break; 2478 case 6: 2479 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2480 p_argv[5]); 2481 break; 2482 case 7: 2483 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2484 p_argv[5], p_argv[6]); 2485 break; 2486 case 8: 2487 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2488 p_argv[5], p_argv[6], p_argv[7]); 2489 break; 2490 case 9: 2491 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2492 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2493 break; 2494 case 10: 2495 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2496 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2497 break; 2498 case 11: 2499 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2500 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2501 break; 2502 case 12: 2503 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2504 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2505 p_argv[11]); 2506 break; 2507 case 13: 2508 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2509 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2510 p_argv[11], p_argv[12]); 2511 break; 2512 case 14: 2513 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2514 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2515 p_argv[11], p_argv[12], p_argv[13]); 2516 break; 2517 case 15: 2518 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2519 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2520 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2521 break; 2522 } 2523 2524 return 1; 2525 } 2526 2527 #endif 2528 2529 // Functions for hidden helper task 2530 namespace { 2531 // Condition variable for initializing hidden helper team 2532 pthread_cond_t hidden_helper_threads_initz_cond_var; 2533 pthread_mutex_t hidden_helper_threads_initz_lock; 2534 volatile int hidden_helper_initz_signaled = FALSE; 2535 2536 // Condition variable for deinitializing hidden helper team 2537 pthread_cond_t hidden_helper_threads_deinitz_cond_var; 2538 pthread_mutex_t hidden_helper_threads_deinitz_lock; 2539 volatile int hidden_helper_deinitz_signaled = FALSE; 2540 2541 // Condition variable for the wrapper function of main thread 2542 pthread_cond_t hidden_helper_main_thread_cond_var; 2543 pthread_mutex_t hidden_helper_main_thread_lock; 2544 volatile int hidden_helper_main_thread_signaled = FALSE; 2545 2546 // Semaphore for worker threads. We don't use condition variable here in case 2547 // that when multiple signals are sent at the same time, only one thread might 2548 // be waken. 2549 sem_t hidden_helper_task_sem; 2550 } // namespace 2551 2552 void __kmp_hidden_helper_worker_thread_wait() { 2553 int status = sem_wait(&hidden_helper_task_sem); 2554 KMP_CHECK_SYSFAIL("sem_wait", status); 2555 } 2556 2557 void __kmp_do_initialize_hidden_helper_threads() { 2558 // Initialize condition variable 2559 int status = 2560 pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr); 2561 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2562 2563 status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr); 2564 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2565 2566 status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr); 2567 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2568 2569 status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr); 2570 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2571 2572 status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr); 2573 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2574 2575 status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr); 2576 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2577 2578 // Initialize the semaphore 2579 status = sem_init(&hidden_helper_task_sem, 0, 0); 2580 KMP_CHECK_SYSFAIL("sem_init", status); 2581 2582 // Create a new thread to finish initialization 2583 pthread_t handle; 2584 status = pthread_create( 2585 &handle, nullptr, 2586 [](void *) -> void * { 2587 __kmp_hidden_helper_threads_initz_routine(); 2588 return nullptr; 2589 }, 2590 nullptr); 2591 KMP_CHECK_SYSFAIL("pthread_create", status); 2592 } 2593 2594 void __kmp_hidden_helper_threads_initz_wait() { 2595 // Initial thread waits here for the completion of the initialization. The 2596 // condition variable will be notified by main thread of hidden helper teams. 2597 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2598 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2599 2600 if (!TCR_4(hidden_helper_initz_signaled)) { 2601 status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var, 2602 &hidden_helper_threads_initz_lock); 2603 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2604 } 2605 2606 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2607 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2608 } 2609 2610 void __kmp_hidden_helper_initz_release() { 2611 // After all initialization, reset __kmp_init_hidden_helper_threads to false. 2612 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2613 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2614 2615 status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var); 2616 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2617 2618 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE); 2619 2620 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2621 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2622 } 2623 2624 void __kmp_hidden_helper_main_thread_wait() { 2625 // The main thread of hidden helper team will be blocked here. The 2626 // condition variable can only be signal in the destructor of RTL. 2627 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2628 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2629 2630 if (!TCR_4(hidden_helper_main_thread_signaled)) { 2631 status = pthread_cond_wait(&hidden_helper_main_thread_cond_var, 2632 &hidden_helper_main_thread_lock); 2633 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2634 } 2635 2636 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2637 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2638 } 2639 2640 void __kmp_hidden_helper_main_thread_release() { 2641 // The initial thread of OpenMP RTL should call this function to wake up the 2642 // main thread of hidden helper team. 2643 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2644 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2645 2646 status = pthread_cond_signal(&hidden_helper_main_thread_cond_var); 2647 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 2648 2649 // The hidden helper team is done here 2650 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE); 2651 2652 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2653 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2654 } 2655 2656 void __kmp_hidden_helper_worker_thread_signal() { 2657 int status = sem_post(&hidden_helper_task_sem); 2658 KMP_CHECK_SYSFAIL("sem_post", status); 2659 } 2660 2661 void __kmp_hidden_helper_threads_deinitz_wait() { 2662 // Initial thread waits here for the completion of the deinitialization. The 2663 // condition variable will be notified by main thread of hidden helper teams. 2664 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2665 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2666 2667 if (!TCR_4(hidden_helper_deinitz_signaled)) { 2668 status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var, 2669 &hidden_helper_threads_deinitz_lock); 2670 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2671 } 2672 2673 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2674 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2675 } 2676 2677 void __kmp_hidden_helper_threads_deinitz_release() { 2678 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2679 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2680 2681 status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var); 2682 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2683 2684 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE); 2685 2686 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2687 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2688 } 2689 2690 // end of file // 2691