1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #include <semaphore.h>
29 #include <sys/resource.h>
30 #include <sys/syscall.h>
31 #include <sys/time.h>
32 #include <sys/times.h>
33 #include <unistd.h>
34 
35 #if KMP_OS_LINUX
36 #include <sys/sysinfo.h>
37 #if KMP_USE_FUTEX
38 // We should really include <futex.h>, but that causes compatibility problems on
39 // different Linux* OS distributions that either require that you include (or
40 // break when you try to include) <pci/types.h>. Since all we need is the two
41 // macros below (which are part of the kernel ABI, so can't change) we just
42 // define the constants here and don't include <futex.h>
43 #ifndef FUTEX_WAIT
44 #define FUTEX_WAIT 0
45 #endif
46 #ifndef FUTEX_WAKE
47 #define FUTEX_WAKE 1
48 #endif
49 #endif
50 #elif KMP_OS_DARWIN
51 #include <mach/mach.h>
52 #include <sys/sysctl.h>
53 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
54 #include <sys/types.h>
55 #include <sys/sysctl.h>
56 #include <sys/user.h>
57 #include <pthread_np.h>
58 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
59 #include <sys/types.h>
60 #include <sys/sysctl.h>
61 #endif
62 
63 #include <ctype.h>
64 #include <dirent.h>
65 #include <fcntl.h>
66 
67 #include "tsan_annotations.h"
68 
69 struct kmp_sys_timer {
70   struct timespec start;
71 };
72 
73 // Convert timespec to nanoseconds.
74 #define TS2NS(timespec)                                                        \
75   (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
76 
77 static struct kmp_sys_timer __kmp_sys_timer_data;
78 
79 #if KMP_HANDLE_SIGNALS
80 typedef void (*sig_func_t)(int);
81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
82 static sigset_t __kmp_sigset;
83 #endif
84 
85 static int __kmp_init_runtime = FALSE;
86 
87 static int __kmp_fork_count = 0;
88 
89 static pthread_condattr_t __kmp_suspend_cond_attr;
90 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
91 
92 static kmp_cond_align_t __kmp_wait_cv;
93 static kmp_mutex_align_t __kmp_wait_mx;
94 
95 kmp_uint64 __kmp_ticks_per_msec = 1000000;
96 
97 #ifdef DEBUG_SUSPEND
98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
99   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
100                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
101                cond->c_cond.__c_waiting);
102 }
103 #endif
104 
105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
106 
107 /* Affinity support */
108 
109 void __kmp_affinity_bind_thread(int which) {
110   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
111               "Illegal set affinity operation when not capable");
112 
113   kmp_affin_mask_t *mask;
114   KMP_CPU_ALLOC_ON_STACK(mask);
115   KMP_CPU_ZERO(mask);
116   KMP_CPU_SET(which, mask);
117   __kmp_set_system_affinity(mask, TRUE);
118   KMP_CPU_FREE_FROM_STACK(mask);
119 }
120 
121 /* Determine if we can access affinity functionality on this version of
122  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
123  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
124 void __kmp_affinity_determine_capable(const char *env_var) {
125   // Check and see if the OS supports thread affinity.
126 
127 #if KMP_OS_LINUX
128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
129 #elif KMP_OS_FREEBSD
130 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
131 #endif
132 
133 #if KMP_OS_LINUX
134   // If Linux* OS:
135   // If the syscall fails or returns a suggestion for the size,
136   // then we don't have to search for an appropriate size.
137   long gCode;
138   long sCode;
139   unsigned char *buf;
140   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
141   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
142   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
143                 "initial getaffinity call returned %ld errno = %d\n",
144                 gCode, errno));
145 
146   // if ((gCode < 0) && (errno == ENOSYS))
147   if (gCode < 0) {
148     // System call not supported
149     if (__kmp_affinity_verbose ||
150         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
151          (__kmp_affinity_type != affinity_default) &&
152          (__kmp_affinity_type != affinity_disabled))) {
153       int error = errno;
154       kmp_msg_t err_code = KMP_ERR(error);
155       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
156                 err_code, __kmp_msg_null);
157       if (__kmp_generate_warnings == kmp_warnings_off) {
158         __kmp_str_free(&err_code.str);
159       }
160     }
161     KMP_AFFINITY_DISABLE();
162     KMP_INTERNAL_FREE(buf);
163     return;
164   }
165   if (gCode > 0) { // Linux* OS only
166     // The optimal situation: the OS returns the size of the buffer it expects.
167     //
168     // A verification of correct behavior is that setaffinity on a NULL
169     // buffer with the same size fails with errno set to EFAULT.
170     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
171     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
172                   "setaffinity for mask size %ld returned %ld errno = %d\n",
173                   gCode, sCode, errno));
174     if (sCode < 0) {
175       if (errno == ENOSYS) {
176         if (__kmp_affinity_verbose ||
177             (__kmp_affinity_warnings &&
178              (__kmp_affinity_type != affinity_none) &&
179              (__kmp_affinity_type != affinity_default) &&
180              (__kmp_affinity_type != affinity_disabled))) {
181           int error = errno;
182           kmp_msg_t err_code = KMP_ERR(error);
183           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
184                     err_code, __kmp_msg_null);
185           if (__kmp_generate_warnings == kmp_warnings_off) {
186             __kmp_str_free(&err_code.str);
187           }
188         }
189         KMP_AFFINITY_DISABLE();
190         KMP_INTERNAL_FREE(buf);
191       }
192       if (errno == EFAULT) {
193         KMP_AFFINITY_ENABLE(gCode);
194         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
195                       "affinity supported (mask size %d)\n",
196                       (int)__kmp_affin_mask_size));
197         KMP_INTERNAL_FREE(buf);
198         return;
199       }
200     }
201   }
202 
203   // Call the getaffinity system call repeatedly with increasing set sizes
204   // until we succeed, or reach an upper bound on the search.
205   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
206                 "searching for proper set size\n"));
207   int size;
208   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
209     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
210     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
211                   "getaffinity for mask size %ld returned %ld errno = %d\n",
212                   size, gCode, errno));
213 
214     if (gCode < 0) {
215       if (errno == ENOSYS) {
216         // We shouldn't get here
217         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
218                       "inconsistent OS call behavior: errno == ENOSYS for mask "
219                       "size %d\n",
220                       size));
221         if (__kmp_affinity_verbose ||
222             (__kmp_affinity_warnings &&
223              (__kmp_affinity_type != affinity_none) &&
224              (__kmp_affinity_type != affinity_default) &&
225              (__kmp_affinity_type != affinity_disabled))) {
226           int error = errno;
227           kmp_msg_t err_code = KMP_ERR(error);
228           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
229                     err_code, __kmp_msg_null);
230           if (__kmp_generate_warnings == kmp_warnings_off) {
231             __kmp_str_free(&err_code.str);
232           }
233         }
234         KMP_AFFINITY_DISABLE();
235         KMP_INTERNAL_FREE(buf);
236         return;
237       }
238       continue;
239     }
240 
241     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
242     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
243                   "setaffinity for mask size %ld returned %ld errno = %d\n",
244                   gCode, sCode, errno));
245     if (sCode < 0) {
246       if (errno == ENOSYS) { // Linux* OS only
247         // We shouldn't get here
248         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
249                       "inconsistent OS call behavior: errno == ENOSYS for mask "
250                       "size %d\n",
251                       size));
252         if (__kmp_affinity_verbose ||
253             (__kmp_affinity_warnings &&
254              (__kmp_affinity_type != affinity_none) &&
255              (__kmp_affinity_type != affinity_default) &&
256              (__kmp_affinity_type != affinity_disabled))) {
257           int error = errno;
258           kmp_msg_t err_code = KMP_ERR(error);
259           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
260                     err_code, __kmp_msg_null);
261           if (__kmp_generate_warnings == kmp_warnings_off) {
262             __kmp_str_free(&err_code.str);
263           }
264         }
265         KMP_AFFINITY_DISABLE();
266         KMP_INTERNAL_FREE(buf);
267         return;
268       }
269       if (errno == EFAULT) {
270         KMP_AFFINITY_ENABLE(gCode);
271         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
272                       "affinity supported (mask size %d)\n",
273                       (int)__kmp_affin_mask_size));
274         KMP_INTERNAL_FREE(buf);
275         return;
276       }
277     }
278   }
279 #elif KMP_OS_FREEBSD
280   long gCode;
281   unsigned char *buf;
282   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
283   gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
284                                  reinterpret_cast<cpuset_t *>(buf));
285   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
286                 "initial getaffinity call returned %d errno = %d\n",
287                 gCode, errno));
288   if (gCode == 0) {
289     KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
290     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
291                   "affinity supported (mask size %d)\n",
292                   (int)__kmp_affin_mask_size));
293     KMP_INTERNAL_FREE(buf);
294     return;
295   }
296 #endif
297   // save uncaught error code
298   // int error = errno;
299   KMP_INTERNAL_FREE(buf);
300   // restore uncaught error code, will be printed at the next KMP_WARNING below
301   // errno = error;
302 
303   // Affinity is not supported
304   KMP_AFFINITY_DISABLE();
305   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
306                 "cannot determine mask size - affinity not supported\n"));
307   if (__kmp_affinity_verbose ||
308       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
309        (__kmp_affinity_type != affinity_default) &&
310        (__kmp_affinity_type != affinity_disabled))) {
311     KMP_WARNING(AffCantGetMaskSize, env_var);
312   }
313 }
314 
315 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
316 
317 #if KMP_USE_FUTEX
318 
319 int __kmp_futex_determine_capable() {
320   int loc = 0;
321   long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
322   int retval = (rc == 0) || (errno != ENOSYS);
323 
324   KA_TRACE(10,
325            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
326   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
327                 retval ? "" : " not"));
328 
329   return retval;
330 }
331 
332 #endif // KMP_USE_FUTEX
333 
334 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
335 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
336    use compare_and_store for these routines */
337 
338 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
339   kmp_int8 old_value, new_value;
340 
341   old_value = TCR_1(*p);
342   new_value = old_value | d;
343 
344   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
345     KMP_CPU_PAUSE();
346     old_value = TCR_1(*p);
347     new_value = old_value | d;
348   }
349   return old_value;
350 }
351 
352 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
353   kmp_int8 old_value, new_value;
354 
355   old_value = TCR_1(*p);
356   new_value = old_value & d;
357 
358   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
359     KMP_CPU_PAUSE();
360     old_value = TCR_1(*p);
361     new_value = old_value & d;
362   }
363   return old_value;
364 }
365 
366 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
367   kmp_uint32 old_value, new_value;
368 
369   old_value = TCR_4(*p);
370   new_value = old_value | d;
371 
372   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
373     KMP_CPU_PAUSE();
374     old_value = TCR_4(*p);
375     new_value = old_value | d;
376   }
377   return old_value;
378 }
379 
380 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
381   kmp_uint32 old_value, new_value;
382 
383   old_value = TCR_4(*p);
384   new_value = old_value & d;
385 
386   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
387     KMP_CPU_PAUSE();
388     old_value = TCR_4(*p);
389     new_value = old_value & d;
390   }
391   return old_value;
392 }
393 
394 #if KMP_ARCH_X86
395 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
396   kmp_int8 old_value, new_value;
397 
398   old_value = TCR_1(*p);
399   new_value = old_value + d;
400 
401   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
402     KMP_CPU_PAUSE();
403     old_value = TCR_1(*p);
404     new_value = old_value + d;
405   }
406   return old_value;
407 }
408 
409 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
410   kmp_int64 old_value, new_value;
411 
412   old_value = TCR_8(*p);
413   new_value = old_value + d;
414 
415   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416     KMP_CPU_PAUSE();
417     old_value = TCR_8(*p);
418     new_value = old_value + d;
419   }
420   return old_value;
421 }
422 #endif /* KMP_ARCH_X86 */
423 
424 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
425   kmp_uint64 old_value, new_value;
426 
427   old_value = TCR_8(*p);
428   new_value = old_value | d;
429   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
430     KMP_CPU_PAUSE();
431     old_value = TCR_8(*p);
432     new_value = old_value | d;
433   }
434   return old_value;
435 }
436 
437 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
438   kmp_uint64 old_value, new_value;
439 
440   old_value = TCR_8(*p);
441   new_value = old_value & d;
442   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
443     KMP_CPU_PAUSE();
444     old_value = TCR_8(*p);
445     new_value = old_value & d;
446   }
447   return old_value;
448 }
449 
450 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
451 
452 void __kmp_terminate_thread(int gtid) {
453   int status;
454   kmp_info_t *th = __kmp_threads[gtid];
455 
456   if (!th)
457     return;
458 
459 #ifdef KMP_CANCEL_THREADS
460   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
461   status = pthread_cancel(th->th.th_info.ds.ds_thread);
462   if (status != 0 && status != ESRCH) {
463     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
464                 __kmp_msg_null);
465   }
466 #endif
467   KMP_YIELD(TRUE);
468 } //
469 
470 /* Set thread stack info according to values returned by pthread_getattr_np().
471    If values are unreasonable, assume call failed and use incremental stack
472    refinement method instead. Returns TRUE if the stack parameters could be
473    determined exactly, FALSE if incremental refinement is necessary. */
474 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
475   int stack_data;
476 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
477     KMP_OS_HURD
478   pthread_attr_t attr;
479   int status;
480   size_t size = 0;
481   void *addr = 0;
482 
483   /* Always do incremental stack refinement for ubermaster threads since the
484      initial thread stack range can be reduced by sibling thread creation so
485      pthread_attr_getstack may cause thread gtid aliasing */
486   if (!KMP_UBER_GTID(gtid)) {
487 
488     /* Fetch the real thread attributes */
489     status = pthread_attr_init(&attr);
490     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
491 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
492     status = pthread_attr_get_np(pthread_self(), &attr);
493     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
494 #else
495     status = pthread_getattr_np(pthread_self(), &attr);
496     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
497 #endif
498     status = pthread_attr_getstack(&attr, &addr, &size);
499     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
500     KA_TRACE(60,
501              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
502               " %lu, low addr: %p\n",
503               gtid, size, addr));
504     status = pthread_attr_destroy(&attr);
505     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
506   }
507 
508   if (size != 0 && addr != 0) { // was stack parameter determination successful?
509     /* Store the correct base and size */
510     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
511     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
512     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
513     return TRUE;
514   }
515 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD  \
516           || KMP_OS_HURD */
517   /* Use incremental refinement starting from initial conservative estimate */
518   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
519   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
520   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
521   return FALSE;
522 }
523 
524 static void *__kmp_launch_worker(void *thr) {
525   int status, old_type, old_state;
526 #ifdef KMP_BLOCK_SIGNALS
527   sigset_t new_set, old_set;
528 #endif /* KMP_BLOCK_SIGNALS */
529   void *exit_val;
530 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
531     KMP_OS_OPENBSD || KMP_OS_HURD
532   void *volatile padding = 0;
533 #endif
534   int gtid;
535 
536   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
537   __kmp_gtid_set_specific(gtid);
538 #ifdef KMP_TDATA_GTID
539   __kmp_gtid = gtid;
540 #endif
541 #if KMP_STATS_ENABLED
542   // set thread local index to point to thread-specific stats
543   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
544   __kmp_stats_thread_ptr->startLife();
545   KMP_SET_THREAD_STATE(IDLE);
546   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
547 #endif
548 
549 #if USE_ITT_BUILD
550   __kmp_itt_thread_name(gtid);
551 #endif /* USE_ITT_BUILD */
552 
553 #if KMP_AFFINITY_SUPPORTED
554   __kmp_affinity_set_init_mask(gtid, FALSE);
555 #endif
556 
557 #ifdef KMP_CANCEL_THREADS
558   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
559   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
560   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
561   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
562   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
563 #endif
564 
565 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
566   // Set FP control regs to be a copy of the parallel initialization thread's.
567   __kmp_clear_x87_fpu_status_word();
568   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
569   __kmp_load_mxcsr(&__kmp_init_mxcsr);
570 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
571 
572 #ifdef KMP_BLOCK_SIGNALS
573   status = sigfillset(&new_set);
574   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
575   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
576   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
577 #endif /* KMP_BLOCK_SIGNALS */
578 
579 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
580     KMP_OS_OPENBSD
581   if (__kmp_stkoffset > 0 && gtid > 0) {
582     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
583   }
584 #endif
585 
586   KMP_MB();
587   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
588 
589   __kmp_check_stack_overlap((kmp_info_t *)thr);
590 
591   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
592 
593 #ifdef KMP_BLOCK_SIGNALS
594   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
595   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
596 #endif /* KMP_BLOCK_SIGNALS */
597 
598   return exit_val;
599 }
600 
601 #if KMP_USE_MONITOR
602 /* The monitor thread controls all of the threads in the complex */
603 
604 static void *__kmp_launch_monitor(void *thr) {
605   int status, old_type, old_state;
606 #ifdef KMP_BLOCK_SIGNALS
607   sigset_t new_set;
608 #endif /* KMP_BLOCK_SIGNALS */
609   struct timespec interval;
610 
611   KMP_MB(); /* Flush all pending memory write invalidates.  */
612 
613   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
614 
615   /* register us as the monitor thread */
616   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
617 #ifdef KMP_TDATA_GTID
618   __kmp_gtid = KMP_GTID_MONITOR;
619 #endif
620 
621   KMP_MB();
622 
623 #if USE_ITT_BUILD
624   // Instruct Intel(R) Threading Tools to ignore monitor thread.
625   __kmp_itt_thread_ignore();
626 #endif /* USE_ITT_BUILD */
627 
628   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
629                        (kmp_info_t *)thr);
630 
631   __kmp_check_stack_overlap((kmp_info_t *)thr);
632 
633 #ifdef KMP_CANCEL_THREADS
634   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
635   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
636   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
637   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
638   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
639 #endif
640 
641 #if KMP_REAL_TIME_FIX
642   // This is a potential fix which allows application with real-time scheduling
643   // policy work. However, decision about the fix is not made yet, so it is
644   // disabled by default.
645   { // Are program started with real-time scheduling policy?
646     int sched = sched_getscheduler(0);
647     if (sched == SCHED_FIFO || sched == SCHED_RR) {
648       // Yes, we are a part of real-time application. Try to increase the
649       // priority of the monitor.
650       struct sched_param param;
651       int max_priority = sched_get_priority_max(sched);
652       int rc;
653       KMP_WARNING(RealTimeSchedNotSupported);
654       sched_getparam(0, &param);
655       if (param.sched_priority < max_priority) {
656         param.sched_priority += 1;
657         rc = sched_setscheduler(0, sched, &param);
658         if (rc != 0) {
659           int error = errno;
660           kmp_msg_t err_code = KMP_ERR(error);
661           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
662                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
663           if (__kmp_generate_warnings == kmp_warnings_off) {
664             __kmp_str_free(&err_code.str);
665           }
666         }
667       } else {
668         // We cannot abort here, because number of CPUs may be enough for all
669         // the threads, including the monitor thread, so application could
670         // potentially work...
671         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
672                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
673                   __kmp_msg_null);
674       }
675     }
676     // AC: free thread that waits for monitor started
677     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
678   }
679 #endif // KMP_REAL_TIME_FIX
680 
681   KMP_MB(); /* Flush all pending memory write invalidates.  */
682 
683   if (__kmp_monitor_wakeups == 1) {
684     interval.tv_sec = 1;
685     interval.tv_nsec = 0;
686   } else {
687     interval.tv_sec = 0;
688     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
689   }
690 
691   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
692 
693   while (!TCR_4(__kmp_global.g.g_done)) {
694     struct timespec now;
695     struct timeval tval;
696 
697     /*  This thread monitors the state of the system */
698 
699     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
700 
701     status = gettimeofday(&tval, NULL);
702     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
703     TIMEVAL_TO_TIMESPEC(&tval, &now);
704 
705     now.tv_sec += interval.tv_sec;
706     now.tv_nsec += interval.tv_nsec;
707 
708     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
709       now.tv_sec += 1;
710       now.tv_nsec -= KMP_NSEC_PER_SEC;
711     }
712 
713     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
714     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
715     // AC: the monitor should not fall asleep if g_done has been set
716     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
717       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
718                                       &__kmp_wait_mx.m_mutex, &now);
719       if (status != 0) {
720         if (status != ETIMEDOUT && status != EINTR) {
721           KMP_SYSFAIL("pthread_cond_timedwait", status);
722         }
723       }
724     }
725     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
726     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
727 
728     TCW_4(__kmp_global.g.g_time.dt.t_value,
729           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
730 
731     KMP_MB(); /* Flush all pending memory write invalidates.  */
732   }
733 
734   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
735 
736 #ifdef KMP_BLOCK_SIGNALS
737   status = sigfillset(&new_set);
738   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
739   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
740   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
741 #endif /* KMP_BLOCK_SIGNALS */
742 
743   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
744 
745   if (__kmp_global.g.g_abort != 0) {
746     /* now we need to terminate the worker threads  */
747     /* the value of t_abort is the signal we caught */
748 
749     int gtid;
750 
751     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
752                   __kmp_global.g.g_abort));
753 
754     /* terminate the OpenMP worker threads */
755     /* TODO this is not valid for sibling threads!!
756      * the uber master might not be 0 anymore.. */
757     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
758       __kmp_terminate_thread(gtid);
759 
760     __kmp_cleanup();
761 
762     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
763                   __kmp_global.g.g_abort));
764 
765     if (__kmp_global.g.g_abort > 0)
766       raise(__kmp_global.g.g_abort);
767   }
768 
769   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
770 
771   return thr;
772 }
773 #endif // KMP_USE_MONITOR
774 
775 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
776   pthread_t handle;
777   pthread_attr_t thread_attr;
778   int status;
779 
780   th->th.th_info.ds.ds_gtid = gtid;
781 
782 #if KMP_STATS_ENABLED
783   // sets up worker thread stats
784   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
785 
786   // th->th.th_stats is used to transfer thread-specific stats-pointer to
787   // __kmp_launch_worker. So when thread is created (goes into
788   // __kmp_launch_worker) it will set its thread local pointer to
789   // th->th.th_stats
790   if (!KMP_UBER_GTID(gtid)) {
791     th->th.th_stats = __kmp_stats_list->push_back(gtid);
792   } else {
793     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
794     // so set the th->th.th_stats field to it.
795     th->th.th_stats = __kmp_stats_thread_ptr;
796   }
797   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
798 
799 #endif // KMP_STATS_ENABLED
800 
801   if (KMP_UBER_GTID(gtid)) {
802     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
803     th->th.th_info.ds.ds_thread = pthread_self();
804     __kmp_set_stack_info(gtid, th);
805     __kmp_check_stack_overlap(th);
806     return;
807   }
808 
809   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
810 
811   KMP_MB(); /* Flush all pending memory write invalidates.  */
812 
813 #ifdef KMP_THREAD_ATTR
814   status = pthread_attr_init(&thread_attr);
815   if (status != 0) {
816     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
817   }
818   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
819   if (status != 0) {
820     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
821   }
822 
823   /* Set stack size for this thread now.
824      The multiple of 2 is there because on some machines, requesting an unusual
825      stacksize causes the thread to have an offset before the dummy alloca()
826      takes place to create the offset.  Since we want the user to have a
827      sufficient stacksize AND support a stack offset, we alloca() twice the
828      offset so that the upcoming alloca() does not eliminate any premade offset,
829      and also gives the user the stack space they requested for all threads */
830   stack_size += gtid * __kmp_stkoffset * 2;
831 
832 #if defined(__ANDROID__) && __ANDROID_API__ < 19
833   // Round the stack size to a multiple of the page size. Older versions of
834   // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
835   // if the stack size was not a multiple of the page size.
836   stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
837 #endif
838 
839   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
840                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
841                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
842 
843 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
844   status = pthread_attr_setstacksize(&thread_attr, stack_size);
845 #ifdef KMP_BACKUP_STKSIZE
846   if (status != 0) {
847     if (!__kmp_env_stksize) {
848       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
849       __kmp_stksize = KMP_BACKUP_STKSIZE;
850       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
851                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
852                     "bytes\n",
853                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
854       status = pthread_attr_setstacksize(&thread_attr, stack_size);
855     }
856   }
857 #endif /* KMP_BACKUP_STKSIZE */
858   if (status != 0) {
859     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
860                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
861   }
862 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
863 
864 #endif /* KMP_THREAD_ATTR */
865 
866   status =
867       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
868   if (status != 0 || !handle) { // ??? Why do we check handle??
869 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
870     if (status == EINVAL) {
871       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
872                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
873     }
874     if (status == ENOMEM) {
875       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
876                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
877     }
878 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
879     if (status == EAGAIN) {
880       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
881                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
882     }
883     KMP_SYSFAIL("pthread_create", status);
884   }
885 
886   th->th.th_info.ds.ds_thread = handle;
887 
888 #ifdef KMP_THREAD_ATTR
889   status = pthread_attr_destroy(&thread_attr);
890   if (status) {
891     kmp_msg_t err_code = KMP_ERR(status);
892     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
893               __kmp_msg_null);
894     if (__kmp_generate_warnings == kmp_warnings_off) {
895       __kmp_str_free(&err_code.str);
896     }
897   }
898 #endif /* KMP_THREAD_ATTR */
899 
900   KMP_MB(); /* Flush all pending memory write invalidates.  */
901 
902   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
903 
904 } // __kmp_create_worker
905 
906 #if KMP_USE_MONITOR
907 void __kmp_create_monitor(kmp_info_t *th) {
908   pthread_t handle;
909   pthread_attr_t thread_attr;
910   size_t size;
911   int status;
912   int auto_adj_size = FALSE;
913 
914   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
915     // We don't need monitor thread in case of MAX_BLOCKTIME
916     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
917                   "MAX blocktime\n"));
918     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
919     th->th.th_info.ds.ds_gtid = 0;
920     return;
921   }
922   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
923 
924   KMP_MB(); /* Flush all pending memory write invalidates.  */
925 
926   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
927   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
928 #if KMP_REAL_TIME_FIX
929   TCW_4(__kmp_global.g.g_time.dt.t_value,
930         -1); // Will use it for synchronization a bit later.
931 #else
932   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
933 #endif // KMP_REAL_TIME_FIX
934 
935 #ifdef KMP_THREAD_ATTR
936   if (__kmp_monitor_stksize == 0) {
937     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
938     auto_adj_size = TRUE;
939   }
940   status = pthread_attr_init(&thread_attr);
941   if (status != 0) {
942     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
943   }
944   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
945   if (status != 0) {
946     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
947   }
948 
949 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
950   status = pthread_attr_getstacksize(&thread_attr, &size);
951   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
952 #else
953   size = __kmp_sys_min_stksize;
954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
955 #endif /* KMP_THREAD_ATTR */
956 
957   if (__kmp_monitor_stksize == 0) {
958     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
959   }
960   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
961     __kmp_monitor_stksize = __kmp_sys_min_stksize;
962   }
963 
964   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
965                 "requested stacksize = %lu bytes\n",
966                 size, __kmp_monitor_stksize));
967 
968 retry:
969 
970 /* Set stack size for this thread now. */
971 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
972   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
973                 __kmp_monitor_stksize));
974   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
975   if (status != 0) {
976     if (auto_adj_size) {
977       __kmp_monitor_stksize *= 2;
978       goto retry;
979     }
980     kmp_msg_t err_code = KMP_ERR(status);
981     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
982               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
983               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
984     if (__kmp_generate_warnings == kmp_warnings_off) {
985       __kmp_str_free(&err_code.str);
986     }
987   }
988 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
989 
990   status =
991       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
992 
993   if (status != 0) {
994 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
995     if (status == EINVAL) {
996       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
997         __kmp_monitor_stksize *= 2;
998         goto retry;
999       }
1000       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1001                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
1002                   __kmp_msg_null);
1003     }
1004     if (status == ENOMEM) {
1005       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1006                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
1007                   __kmp_msg_null);
1008     }
1009 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1010     if (status == EAGAIN) {
1011       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
1012                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
1013     }
1014     KMP_SYSFAIL("pthread_create", status);
1015   }
1016 
1017   th->th.th_info.ds.ds_thread = handle;
1018 
1019 #if KMP_REAL_TIME_FIX
1020   // Wait for the monitor thread is really started and set its *priority*.
1021   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1022                    sizeof(__kmp_global.g.g_time.dt.t_value));
1023   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
1024                &__kmp_neq_4, NULL);
1025 #endif // KMP_REAL_TIME_FIX
1026 
1027 #ifdef KMP_THREAD_ATTR
1028   status = pthread_attr_destroy(&thread_attr);
1029   if (status != 0) {
1030     kmp_msg_t err_code = KMP_ERR(status);
1031     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1032               __kmp_msg_null);
1033     if (__kmp_generate_warnings == kmp_warnings_off) {
1034       __kmp_str_free(&err_code.str);
1035     }
1036   }
1037 #endif
1038 
1039   KMP_MB(); /* Flush all pending memory write invalidates.  */
1040 
1041   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1042                 th->th.th_info.ds.ds_thread));
1043 
1044 } // __kmp_create_monitor
1045 #endif // KMP_USE_MONITOR
1046 
1047 void __kmp_exit_thread(int exit_status) {
1048   pthread_exit((void *)(intptr_t)exit_status);
1049 } // __kmp_exit_thread
1050 
1051 #if KMP_USE_MONITOR
1052 void __kmp_resume_monitor();
1053 
1054 void __kmp_reap_monitor(kmp_info_t *th) {
1055   int status;
1056   void *exit_val;
1057 
1058   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1059                 " %#.8lx\n",
1060                 th->th.th_info.ds.ds_thread));
1061 
1062   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1063   // If both tid and gtid are 0, it means the monitor did not ever start.
1064   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1065   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1066   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1067     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1068     return;
1069   }
1070 
1071   KMP_MB(); /* Flush all pending memory write invalidates.  */
1072 
1073   /* First, check to see whether the monitor thread exists to wake it up. This
1074      is to avoid performance problem when the monitor sleeps during
1075      blocktime-size interval */
1076 
1077   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1078   if (status != ESRCH) {
1079     __kmp_resume_monitor(); // Wake up the monitor thread
1080   }
1081   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1082   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1083   if (exit_val != th) {
1084     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1085   }
1086 
1087   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1088   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1089 
1090   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1091                 " %#.8lx\n",
1092                 th->th.th_info.ds.ds_thread));
1093 
1094   KMP_MB(); /* Flush all pending memory write invalidates.  */
1095 }
1096 #endif // KMP_USE_MONITOR
1097 
1098 void __kmp_reap_worker(kmp_info_t *th) {
1099   int status;
1100   void *exit_val;
1101 
1102   KMP_MB(); /* Flush all pending memory write invalidates.  */
1103 
1104   KA_TRACE(
1105       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1106 
1107   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1108 #ifdef KMP_DEBUG
1109   /* Don't expose these to the user until we understand when they trigger */
1110   if (status != 0) {
1111     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1112   }
1113   if (exit_val != th) {
1114     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1115                   "exit_val = %p\n",
1116                   th->th.th_info.ds.ds_gtid, exit_val));
1117   }
1118 #endif /* KMP_DEBUG */
1119 
1120   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1121                 th->th.th_info.ds.ds_gtid));
1122 
1123   KMP_MB(); /* Flush all pending memory write invalidates.  */
1124 }
1125 
1126 #if KMP_HANDLE_SIGNALS
1127 
1128 static void __kmp_null_handler(int signo) {
1129   //  Do nothing, for doing SIG_IGN-type actions.
1130 } // __kmp_null_handler
1131 
1132 static void __kmp_team_handler(int signo) {
1133   if (__kmp_global.g.g_abort == 0) {
1134 /* Stage 1 signal handler, let's shut down all of the threads */
1135 #ifdef KMP_DEBUG
1136     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1137 #endif
1138     switch (signo) {
1139     case SIGHUP:
1140     case SIGINT:
1141     case SIGQUIT:
1142     case SIGILL:
1143     case SIGABRT:
1144     case SIGFPE:
1145     case SIGBUS:
1146     case SIGSEGV:
1147 #ifdef SIGSYS
1148     case SIGSYS:
1149 #endif
1150     case SIGTERM:
1151       if (__kmp_debug_buf) {
1152         __kmp_dump_debug_buffer();
1153       }
1154       __kmp_unregister_library(); // cleanup shared memory
1155       KMP_MB(); // Flush all pending memory write invalidates.
1156       TCW_4(__kmp_global.g.g_abort, signo);
1157       KMP_MB(); // Flush all pending memory write invalidates.
1158       TCW_4(__kmp_global.g.g_done, TRUE);
1159       KMP_MB(); // Flush all pending memory write invalidates.
1160       break;
1161     default:
1162 #ifdef KMP_DEBUG
1163       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1164 #endif
1165       break;
1166     }
1167   }
1168 } // __kmp_team_handler
1169 
1170 static void __kmp_sigaction(int signum, const struct sigaction *act,
1171                             struct sigaction *oldact) {
1172   int rc = sigaction(signum, act, oldact);
1173   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1174 }
1175 
1176 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1177                                       int parallel_init) {
1178   KMP_MB(); // Flush all pending memory write invalidates.
1179   KB_TRACE(60,
1180            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1181   if (parallel_init) {
1182     struct sigaction new_action;
1183     struct sigaction old_action;
1184     new_action.sa_handler = handler_func;
1185     new_action.sa_flags = 0;
1186     sigfillset(&new_action.sa_mask);
1187     __kmp_sigaction(sig, &new_action, &old_action);
1188     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1189       sigaddset(&__kmp_sigset, sig);
1190     } else {
1191       // Restore/keep user's handler if one previously installed.
1192       __kmp_sigaction(sig, &old_action, NULL);
1193     }
1194   } else {
1195     // Save initial/system signal handlers to see if user handlers installed.
1196     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1197   }
1198   KMP_MB(); // Flush all pending memory write invalidates.
1199 } // __kmp_install_one_handler
1200 
1201 static void __kmp_remove_one_handler(int sig) {
1202   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1203   if (sigismember(&__kmp_sigset, sig)) {
1204     struct sigaction old;
1205     KMP_MB(); // Flush all pending memory write invalidates.
1206     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1207     if ((old.sa_handler != __kmp_team_handler) &&
1208         (old.sa_handler != __kmp_null_handler)) {
1209       // Restore the users signal handler.
1210       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1211                     "restoring: sig=%d\n",
1212                     sig));
1213       __kmp_sigaction(sig, &old, NULL);
1214     }
1215     sigdelset(&__kmp_sigset, sig);
1216     KMP_MB(); // Flush all pending memory write invalidates.
1217   }
1218 } // __kmp_remove_one_handler
1219 
1220 void __kmp_install_signals(int parallel_init) {
1221   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1222   if (__kmp_handle_signals || !parallel_init) {
1223     // If ! parallel_init, we do not install handlers, just save original
1224     // handlers. Let us do it even __handle_signals is 0.
1225     sigemptyset(&__kmp_sigset);
1226     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1227     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1228     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1229     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1230     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1231     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1232     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1233     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1234 #ifdef SIGSYS
1235     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1236 #endif // SIGSYS
1237     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1238 #ifdef SIGPIPE
1239     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1240 #endif // SIGPIPE
1241   }
1242 } // __kmp_install_signals
1243 
1244 void __kmp_remove_signals(void) {
1245   int sig;
1246   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1247   for (sig = 1; sig < NSIG; ++sig) {
1248     __kmp_remove_one_handler(sig);
1249   }
1250 } // __kmp_remove_signals
1251 
1252 #endif // KMP_HANDLE_SIGNALS
1253 
1254 void __kmp_enable(int new_state) {
1255 #ifdef KMP_CANCEL_THREADS
1256   int status, old_state;
1257   status = pthread_setcancelstate(new_state, &old_state);
1258   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1259   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1260 #endif
1261 }
1262 
1263 void __kmp_disable(int *old_state) {
1264 #ifdef KMP_CANCEL_THREADS
1265   int status;
1266   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1267   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1268 #endif
1269 }
1270 
1271 static void __kmp_atfork_prepare(void) {
1272   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1273   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1274 }
1275 
1276 static void __kmp_atfork_parent(void) {
1277   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1278   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1279 }
1280 
1281 /* Reset the library so execution in the child starts "all over again" with
1282    clean data structures in initial states.  Don't worry about freeing memory
1283    allocated by parent, just abandon it to be safe. */
1284 static void __kmp_atfork_child(void) {
1285   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1286   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1287   /* TODO make sure this is done right for nested/sibling */
1288   // ATT:  Memory leaks are here? TODO: Check it and fix.
1289   /* KMP_ASSERT( 0 ); */
1290 
1291   ++__kmp_fork_count;
1292 
1293 #if KMP_AFFINITY_SUPPORTED
1294 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1295   // reset the affinity in the child to the initial thread
1296   // affinity in the parent
1297   kmp_set_thread_affinity_mask_initial();
1298 #endif
1299   // Set default not to bind threads tightly in the child (we’re expecting
1300   // over-subscription after the fork and this can improve things for
1301   // scripting languages that use OpenMP inside process-parallel code).
1302   __kmp_affinity_type = affinity_none;
1303   if (__kmp_nested_proc_bind.bind_types != NULL) {
1304     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1305   }
1306 #endif // KMP_AFFINITY_SUPPORTED
1307 
1308 #if KMP_USE_MONITOR
1309   __kmp_init_monitor = 0;
1310 #endif
1311   __kmp_init_parallel = FALSE;
1312   __kmp_init_middle = FALSE;
1313   __kmp_init_serial = FALSE;
1314   TCW_4(__kmp_init_gtid, FALSE);
1315   __kmp_init_common = FALSE;
1316 
1317   TCW_4(__kmp_init_user_locks, FALSE);
1318 #if !KMP_USE_DYNAMIC_LOCK
1319   __kmp_user_lock_table.used = 1;
1320   __kmp_user_lock_table.allocated = 0;
1321   __kmp_user_lock_table.table = NULL;
1322   __kmp_lock_blocks = NULL;
1323 #endif
1324 
1325   __kmp_all_nth = 0;
1326   TCW_4(__kmp_nth, 0);
1327 
1328   __kmp_thread_pool = NULL;
1329   __kmp_thread_pool_insert_pt = NULL;
1330   __kmp_team_pool = NULL;
1331 
1332   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1333      here so threadprivate doesn't use stale data */
1334   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1335                 __kmp_threadpriv_cache_list));
1336 
1337   while (__kmp_threadpriv_cache_list != NULL) {
1338 
1339     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1340       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1341                     &(*__kmp_threadpriv_cache_list->addr)));
1342 
1343       *__kmp_threadpriv_cache_list->addr = NULL;
1344     }
1345     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1346   }
1347 
1348   __kmp_init_runtime = FALSE;
1349 
1350   /* reset statically initialized locks */
1351   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1352   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1353   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1354   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1355 
1356 #if USE_ITT_BUILD
1357   __kmp_itt_reset(); // reset ITT's global state
1358 #endif /* USE_ITT_BUILD */
1359 
1360   __kmp_serial_initialize();
1361 
1362   /* This is necessary to make sure no stale data is left around */
1363   /* AC: customers complain that we use unsafe routines in the atfork
1364      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1365      in dynamic_link when check the presence of shared tbbmalloc library.
1366      Suggestion is to make the library initialization lazier, similar
1367      to what done for __kmpc_begin(). */
1368   // TODO: synchronize all static initializations with regular library
1369   //       startup; look at kmp_global.cpp and etc.
1370   //__kmp_internal_begin ();
1371 }
1372 
1373 void __kmp_register_atfork(void) {
1374   if (__kmp_need_register_atfork) {
1375     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1376                                 __kmp_atfork_child);
1377     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1378     __kmp_need_register_atfork = FALSE;
1379   }
1380 }
1381 
1382 void __kmp_suspend_initialize(void) {
1383   int status;
1384   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1385   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1386   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1387   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1388 }
1389 
1390 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1391   ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1392   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1393   int new_value = __kmp_fork_count + 1;
1394   // Return if already initialized
1395   if (old_value == new_value)
1396     return;
1397   // Wait, then return if being initialized
1398   if (old_value == -1 || !__kmp_atomic_compare_store(
1399                              &th->th.th_suspend_init_count, old_value, -1)) {
1400     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1401       KMP_CPU_PAUSE();
1402     }
1403   } else {
1404     // Claim to be the initializer and do initializations
1405     int status;
1406     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1407                                &__kmp_suspend_cond_attr);
1408     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1409     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1410                                 &__kmp_suspend_mutex_attr);
1411     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1412     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1413     ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1414   }
1415 }
1416 
1417 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1418   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1419     /* this means we have initialize the suspension pthread objects for this
1420        thread in this instance of the process */
1421     int status;
1422 
1423     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1424     if (status != 0 && status != EBUSY) {
1425       KMP_SYSFAIL("pthread_cond_destroy", status);
1426     }
1427     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1428     if (status != 0 && status != EBUSY) {
1429       KMP_SYSFAIL("pthread_mutex_destroy", status);
1430     }
1431     --th->th.th_suspend_init_count;
1432     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1433                      __kmp_fork_count);
1434   }
1435 }
1436 
1437 // return true if lock obtained, false otherwise
1438 int __kmp_try_suspend_mx(kmp_info_t *th) {
1439   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1440 }
1441 
1442 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1443   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1444   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1445 }
1446 
1447 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1448   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1449   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1450 }
1451 
1452 /* This routine puts the calling thread to sleep after setting the
1453    sleep bit for the indicated flag variable to true. */
1454 template <class C>
1455 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1456   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1457   kmp_info_t *th = __kmp_threads[th_gtid];
1458   int status;
1459   typename C::flag_t old_spin;
1460 
1461   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1462                 flag->get()));
1463 
1464   __kmp_suspend_initialize_thread(th);
1465 
1466   __kmp_lock_suspend_mx(th);
1467 
1468   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1469                 th_gtid, flag->get()));
1470 
1471   /* TODO: shouldn't this use release semantics to ensure that
1472      __kmp_suspend_initialize_thread gets called first? */
1473   old_spin = flag->set_sleeping();
1474   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1475       __kmp_pause_status != kmp_soft_paused) {
1476     flag->unset_sleeping();
1477     __kmp_unlock_suspend_mx(th);
1478     return;
1479   }
1480   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1481                " was %x\n",
1482                th_gtid, flag->get(), flag->load(), old_spin));
1483 
1484   if (flag->done_check_val(old_spin)) {
1485     old_spin = flag->unset_sleeping();
1486     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1487                  "for spin(%p)\n",
1488                  th_gtid, flag->get()));
1489   } else {
1490     /* Encapsulate in a loop as the documentation states that this may
1491        "with low probability" return when the condition variable has
1492        not been signaled or broadcast */
1493     int deactivated = FALSE;
1494     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1495 
1496     while (flag->is_sleeping()) {
1497 #ifdef DEBUG_SUSPEND
1498       char buffer[128];
1499       __kmp_suspend_count++;
1500       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1501       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1502                    buffer);
1503 #endif
1504       // Mark the thread as no longer active (only in the first iteration of the
1505       // loop).
1506       if (!deactivated) {
1507         th->th.th_active = FALSE;
1508         if (th->th.th_active_in_pool) {
1509           th->th.th_active_in_pool = FALSE;
1510           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1511           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1512         }
1513         deactivated = TRUE;
1514       }
1515 
1516 #if USE_SUSPEND_TIMEOUT
1517       struct timespec now;
1518       struct timeval tval;
1519       int msecs;
1520 
1521       status = gettimeofday(&tval, NULL);
1522       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1523       TIMEVAL_TO_TIMESPEC(&tval, &now);
1524 
1525       msecs = (4 * __kmp_dflt_blocktime) + 200;
1526       now.tv_sec += msecs / 1000;
1527       now.tv_nsec += (msecs % 1000) * 1000;
1528 
1529       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1530                     "pthread_cond_timedwait\n",
1531                     th_gtid));
1532       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1533                                       &th->th.th_suspend_mx.m_mutex, &now);
1534 #else
1535       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1536                     " pthread_cond_wait\n",
1537                     th_gtid));
1538       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1539                                  &th->th.th_suspend_mx.m_mutex);
1540 #endif // USE_SUSPEND_TIMEOUT
1541 
1542       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1543         KMP_SYSFAIL("pthread_cond_wait", status);
1544       }
1545 #ifdef KMP_DEBUG
1546       if (status == ETIMEDOUT) {
1547         if (flag->is_sleeping()) {
1548           KF_TRACE(100,
1549                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1550         } else {
1551           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1552                        "not set!\n",
1553                        th_gtid));
1554         }
1555       } else if (flag->is_sleeping()) {
1556         KF_TRACE(100,
1557                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1558       }
1559 #endif
1560     } // while
1561 
1562     // Mark the thread as active again (if it was previous marked as inactive)
1563     if (deactivated) {
1564       th->th.th_active = TRUE;
1565       if (TCR_4(th->th.th_in_pool)) {
1566         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1567         th->th.th_active_in_pool = TRUE;
1568       }
1569     }
1570   }
1571 #ifdef DEBUG_SUSPEND
1572   {
1573     char buffer[128];
1574     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1575     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1576                  buffer);
1577   }
1578 #endif
1579 
1580   __kmp_unlock_suspend_mx(th);
1581   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1582 }
1583 
1584 template <bool C, bool S>
1585 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1586   __kmp_suspend_template(th_gtid, flag);
1587 }
1588 template <bool C, bool S>
1589 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1590   __kmp_suspend_template(th_gtid, flag);
1591 }
1592 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1593   __kmp_suspend_template(th_gtid, flag);
1594 }
1595 
1596 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1597 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1598 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1599 
1600 /* This routine signals the thread specified by target_gtid to wake up
1601    after setting the sleep bit indicated by the flag argument to FALSE.
1602    The target thread must already have called __kmp_suspend_template() */
1603 template <class C>
1604 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1605   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1606   kmp_info_t *th = __kmp_threads[target_gtid];
1607   int status;
1608 
1609 #ifdef KMP_DEBUG
1610   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1611 #endif
1612 
1613   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1614                 gtid, target_gtid));
1615   KMP_DEBUG_ASSERT(gtid != target_gtid);
1616 
1617   __kmp_suspend_initialize_thread(th);
1618 
1619   __kmp_lock_suspend_mx(th);
1620 
1621   if (!flag) { // coming from __kmp_null_resume_wrapper
1622     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1623   }
1624 
1625   // First, check if the flag is null or its type has changed. If so, someone
1626   // else woke it up.
1627   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1628     // simply shows what flag was cast to
1629     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1630                  "awake: flag(%p)\n",
1631                  gtid, target_gtid, NULL));
1632     __kmp_unlock_suspend_mx(th);
1633     return;
1634   } else { // if multiple threads are sleeping, flag should be internally
1635     // referring to a specific thread here
1636     typename C::flag_t old_spin = flag->unset_sleeping();
1637     if (!flag->is_sleeping_val(old_spin)) {
1638       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1639                    "awake: flag(%p): "
1640                    "%u => %u\n",
1641                    gtid, target_gtid, flag->get(), old_spin, flag->load()));
1642       __kmp_unlock_suspend_mx(th);
1643       return;
1644     }
1645     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1646                  "sleep bit for flag's loc(%p): "
1647                  "%u => %u\n",
1648                  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1649   }
1650   TCW_PTR(th->th.th_sleep_loc, NULL);
1651 
1652 #ifdef DEBUG_SUSPEND
1653   {
1654     char buffer[128];
1655     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1656     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1657                  target_gtid, buffer);
1658   }
1659 #endif
1660   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1661   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1662   __kmp_unlock_suspend_mx(th);
1663   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1664                 " for T#%d\n",
1665                 gtid, target_gtid));
1666 }
1667 
1668 template <bool C, bool S>
1669 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1670   __kmp_resume_template(target_gtid, flag);
1671 }
1672 template <bool C, bool S>
1673 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1674   __kmp_resume_template(target_gtid, flag);
1675 }
1676 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1677   __kmp_resume_template(target_gtid, flag);
1678 }
1679 
1680 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1681 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1682 
1683 #if KMP_USE_MONITOR
1684 void __kmp_resume_monitor() {
1685   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1686   int status;
1687 #ifdef KMP_DEBUG
1688   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1689   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1690                 KMP_GTID_MONITOR));
1691   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1692 #endif
1693   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1694   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1695 #ifdef DEBUG_SUSPEND
1696   {
1697     char buffer[128];
1698     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1699     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1700                  KMP_GTID_MONITOR, buffer);
1701   }
1702 #endif
1703   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1704   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1705   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1706   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1707   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1708                 " for T#%d\n",
1709                 gtid, KMP_GTID_MONITOR));
1710 }
1711 #endif // KMP_USE_MONITOR
1712 
1713 void __kmp_yield() { sched_yield(); }
1714 
1715 void __kmp_gtid_set_specific(int gtid) {
1716   if (__kmp_init_gtid) {
1717     int status;
1718     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1719                                  (void *)(intptr_t)(gtid + 1));
1720     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1721   } else {
1722     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1723   }
1724 }
1725 
1726 int __kmp_gtid_get_specific() {
1727   int gtid;
1728   if (!__kmp_init_gtid) {
1729     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1730                   "KMP_GTID_SHUTDOWN\n"));
1731     return KMP_GTID_SHUTDOWN;
1732   }
1733   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1734   if (gtid == 0) {
1735     gtid = KMP_GTID_DNE;
1736   } else {
1737     gtid--;
1738   }
1739   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1740                 __kmp_gtid_threadprivate_key, gtid));
1741   return gtid;
1742 }
1743 
1744 double __kmp_read_cpu_time(void) {
1745   /*clock_t   t;*/
1746   struct tms buffer;
1747 
1748   /*t =*/times(&buffer);
1749 
1750   return (double)(buffer.tms_utime + buffer.tms_cutime) /
1751          (double)CLOCKS_PER_SEC;
1752 }
1753 
1754 int __kmp_read_system_info(struct kmp_sys_info *info) {
1755   int status;
1756   struct rusage r_usage;
1757 
1758   memset(info, 0, sizeof(*info));
1759 
1760   status = getrusage(RUSAGE_SELF, &r_usage);
1761   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1762 
1763   // The maximum resident set size utilized (in kilobytes)
1764   info->maxrss = r_usage.ru_maxrss;
1765   // The number of page faults serviced without any I/O
1766   info->minflt = r_usage.ru_minflt;
1767   // The number of page faults serviced that required I/O
1768   info->majflt = r_usage.ru_majflt;
1769   // The number of times a process was "swapped" out of memory
1770   info->nswap = r_usage.ru_nswap;
1771   // The number of times the file system had to perform input
1772   info->inblock = r_usage.ru_inblock;
1773   // The number of times the file system had to perform output
1774   info->oublock = r_usage.ru_oublock;
1775   // The number of times a context switch was voluntarily
1776   info->nvcsw = r_usage.ru_nvcsw;
1777   // The number of times a context switch was forced
1778   info->nivcsw = r_usage.ru_nivcsw;
1779 
1780   return (status != 0);
1781 }
1782 
1783 void __kmp_read_system_time(double *delta) {
1784   double t_ns;
1785   struct timeval tval;
1786   struct timespec stop;
1787   int status;
1788 
1789   status = gettimeofday(&tval, NULL);
1790   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1791   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1792   t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1793   *delta = (t_ns * 1e-9);
1794 }
1795 
1796 void __kmp_clear_system_time(void) {
1797   struct timeval tval;
1798   int status;
1799   status = gettimeofday(&tval, NULL);
1800   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1801   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1802 }
1803 
1804 static int __kmp_get_xproc(void) {
1805 
1806   int r = 0;
1807 
1808 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
1809     KMP_OS_OPENBSD || KMP_OS_HURD
1810 
1811   __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1812 
1813 #elif KMP_OS_DARWIN
1814 
1815   // Bug C77011 High "OpenMP Threads and number of active cores".
1816 
1817   // Find the number of available CPUs.
1818   kern_return_t rc;
1819   host_basic_info_data_t info;
1820   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1821   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1822   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1823     // Cannot use KA_TRACE() here because this code works before trace support
1824     // is initialized.
1825     r = info.avail_cpus;
1826   } else {
1827     KMP_WARNING(CantGetNumAvailCPU);
1828     KMP_INFORM(AssumedNumCPU);
1829   }
1830 
1831 #else
1832 
1833 #error "Unknown or unsupported OS."
1834 
1835 #endif
1836 
1837   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1838 
1839 } // __kmp_get_xproc
1840 
1841 int __kmp_read_from_file(char const *path, char const *format, ...) {
1842   int result;
1843   va_list args;
1844 
1845   va_start(args, format);
1846   FILE *f = fopen(path, "rb");
1847   if (f == NULL)
1848     return 0;
1849   result = vfscanf(f, format, args);
1850   fclose(f);
1851 
1852   return result;
1853 }
1854 
1855 void __kmp_runtime_initialize(void) {
1856   int status;
1857   pthread_mutexattr_t mutex_attr;
1858   pthread_condattr_t cond_attr;
1859 
1860   if (__kmp_init_runtime) {
1861     return;
1862   }
1863 
1864 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1865   if (!__kmp_cpuinfo.initialized) {
1866     __kmp_query_cpuid(&__kmp_cpuinfo);
1867   }
1868 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1869 
1870   __kmp_xproc = __kmp_get_xproc();
1871 
1872 #if !KMP_32_BIT_ARCH
1873   struct rlimit rlim;
1874   // read stack size of calling thread, save it as default for worker threads;
1875   // this should be done before reading environment variables
1876   status = getrlimit(RLIMIT_STACK, &rlim);
1877   if (status == 0) { // success?
1878     __kmp_stksize = rlim.rlim_cur;
1879     __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1880   }
1881 #endif /* KMP_32_BIT_ARCH */
1882 
1883   if (sysconf(_SC_THREADS)) {
1884 
1885     /* Query the maximum number of threads */
1886     __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1887     if (__kmp_sys_max_nth == -1) {
1888       /* Unlimited threads for NPTL */
1889       __kmp_sys_max_nth = INT_MAX;
1890     } else if (__kmp_sys_max_nth <= 1) {
1891       /* Can't tell, just use PTHREAD_THREADS_MAX */
1892       __kmp_sys_max_nth = KMP_MAX_NTH;
1893     }
1894 
1895     /* Query the minimum stack size */
1896     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1897     if (__kmp_sys_min_stksize <= 1) {
1898       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1899     }
1900   }
1901 
1902   /* Set up minimum number of threads to switch to TLS gtid */
1903   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1904 
1905   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1906                               __kmp_internal_end_dest);
1907   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1908   status = pthread_mutexattr_init(&mutex_attr);
1909   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1910   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1911   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1912   status = pthread_condattr_init(&cond_attr);
1913   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1914   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1915   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1916 #if USE_ITT_BUILD
1917   __kmp_itt_initialize();
1918 #endif /* USE_ITT_BUILD */
1919 
1920   __kmp_init_runtime = TRUE;
1921 }
1922 
1923 void __kmp_runtime_destroy(void) {
1924   int status;
1925 
1926   if (!__kmp_init_runtime) {
1927     return; // Nothing to do.
1928   }
1929 
1930 #if USE_ITT_BUILD
1931   __kmp_itt_destroy();
1932 #endif /* USE_ITT_BUILD */
1933 
1934   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1935   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1936 
1937   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1938   if (status != 0 && status != EBUSY) {
1939     KMP_SYSFAIL("pthread_mutex_destroy", status);
1940   }
1941   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1942   if (status != 0 && status != EBUSY) {
1943     KMP_SYSFAIL("pthread_cond_destroy", status);
1944   }
1945 #if KMP_AFFINITY_SUPPORTED
1946   __kmp_affinity_uninitialize();
1947 #endif
1948 
1949   __kmp_init_runtime = FALSE;
1950 }
1951 
1952 /* Put the thread to sleep for a time period */
1953 /* NOTE: not currently used anywhere */
1954 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1955 
1956 /* Calculate the elapsed wall clock time for the user */
1957 void __kmp_elapsed(double *t) {
1958   int status;
1959 #ifdef FIX_SGI_CLOCK
1960   struct timespec ts;
1961 
1962   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1963   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1964   *t =
1965       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1966 #else
1967   struct timeval tv;
1968 
1969   status = gettimeofday(&tv, NULL);
1970   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1971   *t =
1972       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1973 #endif
1974 }
1975 
1976 /* Calculate the elapsed wall clock tick for the user */
1977 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1978 
1979 /* Return the current time stamp in nsec */
1980 kmp_uint64 __kmp_now_nsec() {
1981   struct timeval t;
1982   gettimeofday(&t, NULL);
1983   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1984                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1985   return nsec;
1986 }
1987 
1988 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1989 /* Measure clock ticks per millisecond */
1990 void __kmp_initialize_system_tick() {
1991   kmp_uint64 now, nsec2, diff;
1992   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1993   kmp_uint64 nsec = __kmp_now_nsec();
1994   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1995   while ((now = __kmp_hardware_timestamp()) < goal)
1996     ;
1997   nsec2 = __kmp_now_nsec();
1998   diff = nsec2 - nsec;
1999   if (diff > 0) {
2000     kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff);
2001     if (tpms > 0)
2002       __kmp_ticks_per_msec = tpms;
2003   }
2004 }
2005 #endif
2006 
2007 /* Determine whether the given address is mapped into the current address
2008    space. */
2009 
2010 int __kmp_is_address_mapped(void *addr) {
2011 
2012   int found = 0;
2013   int rc;
2014 
2015 #if KMP_OS_LINUX || KMP_OS_HURD
2016 
2017   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
2018      address ranges mapped into the address space. */
2019 
2020   char *name = __kmp_str_format("/proc/%d/maps", getpid());
2021   FILE *file = NULL;
2022 
2023   file = fopen(name, "r");
2024   KMP_ASSERT(file != NULL);
2025 
2026   for (;;) {
2027 
2028     void *beginning = NULL;
2029     void *ending = NULL;
2030     char perms[5];
2031 
2032     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2033     if (rc == EOF) {
2034       break;
2035     }
2036     KMP_ASSERT(rc == 3 &&
2037                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2038 
2039     // Ending address is not included in the region, but beginning is.
2040     if ((addr >= beginning) && (addr < ending)) {
2041       perms[2] = 0; // 3th and 4th character does not matter.
2042       if (strcmp(perms, "rw") == 0) {
2043         // Memory we are looking for should be readable and writable.
2044         found = 1;
2045       }
2046       break;
2047     }
2048   }
2049 
2050   // Free resources.
2051   fclose(file);
2052   KMP_INTERNAL_FREE(name);
2053 #elif KMP_OS_FREEBSD
2054   char *buf;
2055   size_t lstsz;
2056   int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2057   rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2058   if (rc < 0)
2059     return 0;
2060   // We pass from number of vm entry's semantic
2061   // to size of whole entry map list.
2062   lstsz = lstsz * 4 / 3;
2063   buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2064   rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2065   if (rc < 0) {
2066     kmpc_free(buf);
2067     return 0;
2068   }
2069 
2070   char *lw = buf;
2071   char *up = buf + lstsz;
2072 
2073   while (lw < up) {
2074     struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2075     size_t cursz = cur->kve_structsize;
2076     if (cursz == 0)
2077       break;
2078     void *start = reinterpret_cast<void *>(cur->kve_start);
2079     void *end = reinterpret_cast<void *>(cur->kve_end);
2080     // Readable/Writable addresses within current map entry
2081     if ((addr >= start) && (addr < end)) {
2082       if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2083           (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2084         found = 1;
2085         break;
2086       }
2087     }
2088     lw += cursz;
2089   }
2090   kmpc_free(buf);
2091 
2092 #elif KMP_OS_DARWIN
2093 
2094   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2095      using vm interface. */
2096 
2097   int buffer;
2098   vm_size_t count;
2099   rc = vm_read_overwrite(
2100       mach_task_self(), // Task to read memory of.
2101       (vm_address_t)(addr), // Address to read from.
2102       1, // Number of bytes to be read.
2103       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2104       &count // Address of var to save number of read bytes in.
2105   );
2106   if (rc == 0) {
2107     // Memory successfully read.
2108     found = 1;
2109   }
2110 
2111 #elif KMP_OS_NETBSD
2112 
2113   int mib[5];
2114   mib[0] = CTL_VM;
2115   mib[1] = VM_PROC;
2116   mib[2] = VM_PROC_MAP;
2117   mib[3] = getpid();
2118   mib[4] = sizeof(struct kinfo_vmentry);
2119 
2120   size_t size;
2121   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2122   KMP_ASSERT(!rc);
2123   KMP_ASSERT(size);
2124 
2125   size = size * 4 / 3;
2126   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2127   KMP_ASSERT(kiv);
2128 
2129   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2130   KMP_ASSERT(!rc);
2131   KMP_ASSERT(size);
2132 
2133   for (size_t i = 0; i < size; i++) {
2134     if (kiv[i].kve_start >= (uint64_t)addr &&
2135         kiv[i].kve_end <= (uint64_t)addr) {
2136       found = 1;
2137       break;
2138     }
2139   }
2140   KMP_INTERNAL_FREE(kiv);
2141 #elif KMP_OS_OPENBSD
2142 
2143   int mib[3];
2144   mib[0] = CTL_KERN;
2145   mib[1] = KERN_PROC_VMMAP;
2146   mib[2] = getpid();
2147 
2148   size_t size;
2149   uint64_t end;
2150   rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2151   KMP_ASSERT(!rc);
2152   KMP_ASSERT(size);
2153   end = size;
2154 
2155   struct kinfo_vmentry kiv = {.kve_start = 0};
2156 
2157   while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2158     KMP_ASSERT(size);
2159     if (kiv.kve_end == end)
2160       break;
2161 
2162     if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2163       found = 1;
2164       break;
2165     }
2166     kiv.kve_start += 1;
2167   }
2168 #elif KMP_OS_DRAGONFLY
2169 
2170   // FIXME(DragonFly): Implement this
2171   found = 1;
2172 
2173 #else
2174 
2175 #error "Unknown or unsupported OS"
2176 
2177 #endif
2178 
2179   return found;
2180 
2181 } // __kmp_is_address_mapped
2182 
2183 #ifdef USE_LOAD_BALANCE
2184 
2185 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2186 
2187 // The function returns the rounded value of the system load average
2188 // during given time interval which depends on the value of
2189 // __kmp_load_balance_interval variable (default is 60 sec, other values
2190 // may be 300 sec or 900 sec).
2191 // It returns -1 in case of error.
2192 int __kmp_get_load_balance(int max) {
2193   double averages[3];
2194   int ret_avg = 0;
2195 
2196   int res = getloadavg(averages, 3);
2197 
2198   // Check __kmp_load_balance_interval to determine which of averages to use.
2199   // getloadavg() may return the number of samples less than requested that is
2200   // less than 3.
2201   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2202     ret_avg = (int)averages[0]; // 1 min
2203   } else if ((__kmp_load_balance_interval >= 180 &&
2204               __kmp_load_balance_interval < 600) &&
2205              (res >= 2)) {
2206     ret_avg = (int)averages[1]; // 5 min
2207   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2208     ret_avg = (int)averages[2]; // 15 min
2209   } else { // Error occurred
2210     return -1;
2211   }
2212 
2213   return ret_avg;
2214 }
2215 
2216 #else // Linux* OS
2217 
2218 // The function returns number of running (not sleeping) threads, or -1 in case
2219 // of error. Error could be reported if Linux* OS kernel too old (without
2220 // "/proc" support). Counting running threads stops if max running threads
2221 // encountered.
2222 int __kmp_get_load_balance(int max) {
2223   static int permanent_error = 0;
2224   static int glb_running_threads = 0; // Saved count of the running threads for
2225   // the thread balance algorithm
2226   static double glb_call_time = 0; /* Thread balance algorithm call time */
2227 
2228   int running_threads = 0; // Number of running threads in the system.
2229 
2230   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2231   struct dirent *proc_entry = NULL;
2232 
2233   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2234   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2235   struct dirent *task_entry = NULL;
2236   int task_path_fixed_len;
2237 
2238   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2239   int stat_file = -1;
2240   int stat_path_fixed_len;
2241 
2242   int total_processes = 0; // Total number of processes in system.
2243   int total_threads = 0; // Total number of threads in system.
2244 
2245   double call_time = 0.0;
2246 
2247   __kmp_str_buf_init(&task_path);
2248   __kmp_str_buf_init(&stat_path);
2249 
2250   __kmp_elapsed(&call_time);
2251 
2252   if (glb_call_time &&
2253       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2254     running_threads = glb_running_threads;
2255     goto finish;
2256   }
2257 
2258   glb_call_time = call_time;
2259 
2260   // Do not spend time on scanning "/proc/" if we have a permanent error.
2261   if (permanent_error) {
2262     running_threads = -1;
2263     goto finish;
2264   }
2265 
2266   if (max <= 0) {
2267     max = INT_MAX;
2268   }
2269 
2270   // Open "/proc/" directory.
2271   proc_dir = opendir("/proc");
2272   if (proc_dir == NULL) {
2273     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2274     // error now and in subsequent calls.
2275     running_threads = -1;
2276     permanent_error = 1;
2277     goto finish;
2278   }
2279 
2280   // Initialize fixed part of task_path. This part will not change.
2281   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2282   task_path_fixed_len = task_path.used; // Remember number of used characters.
2283 
2284   proc_entry = readdir(proc_dir);
2285   while (proc_entry != NULL) {
2286     // Proc entry is a directory and name starts with a digit. Assume it is a
2287     // process' directory.
2288     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2289 
2290       ++total_processes;
2291       // Make sure init process is the very first in "/proc", so we can replace
2292       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2293       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2294       // true (where "=>" is implication). Since C++ does not have => operator,
2295       // let us replace it with its equivalent: a => b == ! a || b.
2296       KMP_DEBUG_ASSERT(total_processes != 1 ||
2297                        strcmp(proc_entry->d_name, "1") == 0);
2298 
2299       // Construct task_path.
2300       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2301       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2302                         KMP_STRLEN(proc_entry->d_name));
2303       __kmp_str_buf_cat(&task_path, "/task", 5);
2304 
2305       task_dir = opendir(task_path.str);
2306       if (task_dir == NULL) {
2307         // Process can finish between reading "/proc/" directory entry and
2308         // opening process' "task/" directory. So, in general case we should not
2309         // complain, but have to skip this process and read the next one. But on
2310         // systems with no "task/" support we will spend lot of time to scan
2311         // "/proc/" tree again and again without any benefit. "init" process
2312         // (its pid is 1) should exist always, so, if we cannot open
2313         // "/proc/1/task/" directory, it means "task/" is not supported by
2314         // kernel. Report an error now and in the future.
2315         if (strcmp(proc_entry->d_name, "1") == 0) {
2316           running_threads = -1;
2317           permanent_error = 1;
2318           goto finish;
2319         }
2320       } else {
2321         // Construct fixed part of stat file path.
2322         __kmp_str_buf_clear(&stat_path);
2323         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2324         __kmp_str_buf_cat(&stat_path, "/", 1);
2325         stat_path_fixed_len = stat_path.used;
2326 
2327         task_entry = readdir(task_dir);
2328         while (task_entry != NULL) {
2329           // It is a directory and name starts with a digit.
2330           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2331             ++total_threads;
2332 
2333             // Construct complete stat file path. Easiest way would be:
2334             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2335             //  task_entry->d_name );
2336             // but seriae of __kmp_str_buf_cat works a bit faster.
2337             stat_path.used =
2338                 stat_path_fixed_len; // Reset stat path to its fixed part.
2339             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2340                               KMP_STRLEN(task_entry->d_name));
2341             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2342 
2343             // Note: Low-level API (open/read/close) is used. High-level API
2344             // (fopen/fclose)  works ~ 30 % slower.
2345             stat_file = open(stat_path.str, O_RDONLY);
2346             if (stat_file == -1) {
2347               // We cannot report an error because task (thread) can terminate
2348               // just before reading this file.
2349             } else {
2350               /* Content of "stat" file looks like:
2351                  24285 (program) S ...
2352 
2353                  It is a single line (if program name does not include funny
2354                  symbols). First number is a thread id, then name of executable
2355                  file name in paretheses, then state of the thread. We need just
2356                  thread state.
2357 
2358                  Good news: Length of program name is 15 characters max. Longer
2359                  names are truncated.
2360 
2361                  Thus, we need rather short buffer: 15 chars for program name +
2362                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2363 
2364                  Bad news: Program name may contain special symbols like space,
2365                  closing parenthesis, or even new line. This makes parsing
2366                  "stat" file not 100 % reliable. In case of fanny program names
2367                  parsing may fail (report incorrect thread state).
2368 
2369                  Parsing "status" file looks more promissing (due to different
2370                  file structure and escaping special symbols) but reading and
2371                  parsing of "status" file works slower.
2372                   -- ln
2373               */
2374               char buffer[65];
2375               ssize_t len;
2376               len = read(stat_file, buffer, sizeof(buffer) - 1);
2377               if (len >= 0) {
2378                 buffer[len] = 0;
2379                 // Using scanf:
2380                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2381                 // looks very nice, but searching for a closing parenthesis
2382                 // works a bit faster.
2383                 char *close_parent = strstr(buffer, ") ");
2384                 if (close_parent != NULL) {
2385                   char state = *(close_parent + 2);
2386                   if (state == 'R') {
2387                     ++running_threads;
2388                     if (running_threads >= max) {
2389                       goto finish;
2390                     }
2391                   }
2392                 }
2393               }
2394               close(stat_file);
2395               stat_file = -1;
2396             }
2397           }
2398           task_entry = readdir(task_dir);
2399         }
2400         closedir(task_dir);
2401         task_dir = NULL;
2402       }
2403     }
2404     proc_entry = readdir(proc_dir);
2405   }
2406 
2407   // There _might_ be a timing hole where the thread executing this
2408   // code get skipped in the load balance, and running_threads is 0.
2409   // Assert in the debug builds only!!!
2410   KMP_DEBUG_ASSERT(running_threads > 0);
2411   if (running_threads <= 0) {
2412     running_threads = 1;
2413   }
2414 
2415 finish: // Clean up and exit.
2416   if (proc_dir != NULL) {
2417     closedir(proc_dir);
2418   }
2419   __kmp_str_buf_free(&task_path);
2420   if (task_dir != NULL) {
2421     closedir(task_dir);
2422   }
2423   __kmp_str_buf_free(&stat_path);
2424   if (stat_file != -1) {
2425     close(stat_file);
2426   }
2427 
2428   glb_running_threads = running_threads;
2429 
2430   return running_threads;
2431 
2432 } // __kmp_get_load_balance
2433 
2434 #endif // KMP_OS_DARWIN
2435 
2436 #endif // USE_LOAD_BALANCE
2437 
2438 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2439       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) ||                 \
2440       KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2441 
2442 // we really only need the case with 1 argument, because CLANG always build
2443 // a struct of pointers to shared variables referenced in the outlined function
2444 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2445                            void *p_argv[]
2446 #if OMPT_SUPPORT
2447                            ,
2448                            void **exit_frame_ptr
2449 #endif
2450 ) {
2451 #if OMPT_SUPPORT
2452   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2453 #endif
2454 
2455   switch (argc) {
2456   default:
2457     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2458     fflush(stderr);
2459     exit(-1);
2460   case 0:
2461     (*pkfn)(&gtid, &tid);
2462     break;
2463   case 1:
2464     (*pkfn)(&gtid, &tid, p_argv[0]);
2465     break;
2466   case 2:
2467     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2468     break;
2469   case 3:
2470     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2471     break;
2472   case 4:
2473     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2474     break;
2475   case 5:
2476     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2477     break;
2478   case 6:
2479     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2480             p_argv[5]);
2481     break;
2482   case 7:
2483     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2484             p_argv[5], p_argv[6]);
2485     break;
2486   case 8:
2487     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2488             p_argv[5], p_argv[6], p_argv[7]);
2489     break;
2490   case 9:
2491     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2492             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2493     break;
2494   case 10:
2495     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2496             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2497     break;
2498   case 11:
2499     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2500             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2501     break;
2502   case 12:
2503     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2504             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2505             p_argv[11]);
2506     break;
2507   case 13:
2508     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2509             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2510             p_argv[11], p_argv[12]);
2511     break;
2512   case 14:
2513     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2514             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2515             p_argv[11], p_argv[12], p_argv[13]);
2516     break;
2517   case 15:
2518     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2519             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2520             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2521     break;
2522   }
2523 
2524   return 1;
2525 }
2526 
2527 #endif
2528 
2529 // Functions for hidden helper task
2530 namespace {
2531 // Condition variable for initializing hidden helper team
2532 pthread_cond_t hidden_helper_threads_initz_cond_var;
2533 pthread_mutex_t hidden_helper_threads_initz_lock;
2534 volatile int hidden_helper_initz_signaled = FALSE;
2535 
2536 // Condition variable for deinitializing hidden helper team
2537 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2538 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2539 volatile int hidden_helper_deinitz_signaled = FALSE;
2540 
2541 // Condition variable for the wrapper function of main thread
2542 pthread_cond_t hidden_helper_main_thread_cond_var;
2543 pthread_mutex_t hidden_helper_main_thread_lock;
2544 volatile int hidden_helper_main_thread_signaled = FALSE;
2545 
2546 // Semaphore for worker threads. We don't use condition variable here in case
2547 // that when multiple signals are sent at the same time, only one thread might
2548 // be waken.
2549 sem_t hidden_helper_task_sem;
2550 } // namespace
2551 
2552 void __kmp_hidden_helper_worker_thread_wait() {
2553   int status = sem_wait(&hidden_helper_task_sem);
2554   KMP_CHECK_SYSFAIL("sem_wait", status);
2555 }
2556 
2557 void __kmp_do_initialize_hidden_helper_threads() {
2558   // Initialize condition variable
2559   int status =
2560       pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2561   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2562 
2563   status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2564   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2565 
2566   status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2567   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2568 
2569   status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2570   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2571 
2572   status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2573   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2574 
2575   status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2576   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2577 
2578   // Initialize the semaphore
2579   status = sem_init(&hidden_helper_task_sem, 0, 0);
2580   KMP_CHECK_SYSFAIL("sem_init", status);
2581 
2582   // Create a new thread to finish initialization
2583   pthread_t handle;
2584   status = pthread_create(
2585       &handle, nullptr,
2586       [](void *) -> void * {
2587         __kmp_hidden_helper_threads_initz_routine();
2588         return nullptr;
2589       },
2590       nullptr);
2591   KMP_CHECK_SYSFAIL("pthread_create", status);
2592 }
2593 
2594 void __kmp_hidden_helper_threads_initz_wait() {
2595   // Initial thread waits here for the completion of the initialization. The
2596   // condition variable will be notified by main thread of hidden helper teams.
2597   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2598   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2599 
2600   if (!TCR_4(hidden_helper_initz_signaled)) {
2601     status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2602                                &hidden_helper_threads_initz_lock);
2603     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2604   }
2605 
2606   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2607   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2608 }
2609 
2610 void __kmp_hidden_helper_initz_release() {
2611   // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2612   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2613   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2614 
2615   status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2616   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2617 
2618   TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2619 
2620   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2621   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2622 }
2623 
2624 void __kmp_hidden_helper_main_thread_wait() {
2625   // The main thread of hidden helper team will be blocked here. The
2626   // condition variable can only be signal in the destructor of RTL.
2627   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2628   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2629 
2630   if (!TCR_4(hidden_helper_main_thread_signaled)) {
2631     status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2632                                &hidden_helper_main_thread_lock);
2633     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2634   }
2635 
2636   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2637   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2638 }
2639 
2640 void __kmp_hidden_helper_main_thread_release() {
2641   // The initial thread of OpenMP RTL should call this function to wake up the
2642   // main thread of hidden helper team.
2643   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2644   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2645 
2646   status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2647   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2648 
2649   // The hidden helper team is done here
2650   TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2651 
2652   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2653   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2654 }
2655 
2656 void __kmp_hidden_helper_worker_thread_signal() {
2657   int status = sem_post(&hidden_helper_task_sem);
2658   KMP_CHECK_SYSFAIL("sem_post", status);
2659 }
2660 
2661 void __kmp_hidden_helper_threads_deinitz_wait() {
2662   // Initial thread waits here for the completion of the deinitialization. The
2663   // condition variable will be notified by main thread of hidden helper teams.
2664   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2665   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2666 
2667   if (!TCR_4(hidden_helper_deinitz_signaled)) {
2668     status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2669                                &hidden_helper_threads_deinitz_lock);
2670     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2671   }
2672 
2673   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2674   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2675 }
2676 
2677 void __kmp_hidden_helper_threads_deinitz_release() {
2678   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2679   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2680 
2681   status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2682   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2683 
2684   TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2685 
2686   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2687   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2688 }
2689 
2690 // end of file //
2691