1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #if KMP_OS_LINUX
29 #include <semaphore.h>
30 #endif // KMP_OS_LINUX
31 #include <sys/resource.h>
32 #include <sys/syscall.h>
33 #include <sys/time.h>
34 #include <sys/times.h>
35 #include <unistd.h>
36 
37 #if KMP_OS_LINUX
38 #include <sys/sysinfo.h>
39 #if KMP_USE_FUTEX
40 // We should really include <futex.h>, but that causes compatibility problems on
41 // different Linux* OS distributions that either require that you include (or
42 // break when you try to include) <pci/types.h>. Since all we need is the two
43 // macros below (which are part of the kernel ABI, so can't change) we just
44 // define the constants here and don't include <futex.h>
45 #ifndef FUTEX_WAIT
46 #define FUTEX_WAIT 0
47 #endif
48 #ifndef FUTEX_WAKE
49 #define FUTEX_WAKE 1
50 #endif
51 #endif
52 #elif KMP_OS_DARWIN
53 #include <mach/mach.h>
54 #include <sys/sysctl.h>
55 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
56 #include <sys/types.h>
57 #include <sys/sysctl.h>
58 #include <sys/user.h>
59 #include <pthread_np.h>
60 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #endif
64 
65 #include <ctype.h>
66 #include <dirent.h>
67 #include <fcntl.h>
68 
69 #include "tsan_annotations.h"
70 
71 struct kmp_sys_timer {
72   struct timespec start;
73 };
74 
75 // Convert timespec to nanoseconds.
76 #define TS2NS(timespec)                                                        \
77   (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
78 
79 static struct kmp_sys_timer __kmp_sys_timer_data;
80 
81 #if KMP_HANDLE_SIGNALS
82 typedef void (*sig_func_t)(int);
83 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
84 static sigset_t __kmp_sigset;
85 #endif
86 
87 static int __kmp_init_runtime = FALSE;
88 
89 static int __kmp_fork_count = 0;
90 
91 static pthread_condattr_t __kmp_suspend_cond_attr;
92 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
93 
94 static kmp_cond_align_t __kmp_wait_cv;
95 static kmp_mutex_align_t __kmp_wait_mx;
96 
97 kmp_uint64 __kmp_ticks_per_msec = 1000000;
98 
99 #ifdef DEBUG_SUSPEND
100 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
101   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
102                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
103                cond->c_cond.__c_waiting);
104 }
105 #endif
106 
107 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
108 
109 /* Affinity support */
110 
111 void __kmp_affinity_bind_thread(int which) {
112   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
113               "Illegal set affinity operation when not capable");
114 
115   kmp_affin_mask_t *mask;
116   KMP_CPU_ALLOC_ON_STACK(mask);
117   KMP_CPU_ZERO(mask);
118   KMP_CPU_SET(which, mask);
119   __kmp_set_system_affinity(mask, TRUE);
120   KMP_CPU_FREE_FROM_STACK(mask);
121 }
122 
123 /* Determine if we can access affinity functionality on this version of
124  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
125  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
126 void __kmp_affinity_determine_capable(const char *env_var) {
127   // Check and see if the OS supports thread affinity.
128 
129 #if KMP_OS_LINUX
130 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
131 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE
132 #elif KMP_OS_FREEBSD
133 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
134 #endif
135 
136 #if KMP_OS_LINUX
137   long gCode;
138   unsigned char *buf;
139   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
140 
141   // If the syscall returns a suggestion for the size,
142   // then we don't have to search for an appropriate size.
143   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
144   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
145                 "initial getaffinity call returned %ld errno = %d\n",
146                 gCode, errno));
147 
148   if (gCode < 0 && errno != EINVAL) {
149     // System call not supported
150     if (__kmp_affinity_verbose ||
151         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
152          (__kmp_affinity_type != affinity_default) &&
153          (__kmp_affinity_type != affinity_disabled))) {
154       int error = errno;
155       kmp_msg_t err_code = KMP_ERR(error);
156       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
157                 err_code, __kmp_msg_null);
158       if (__kmp_generate_warnings == kmp_warnings_off) {
159         __kmp_str_free(&err_code.str);
160       }
161     }
162     KMP_AFFINITY_DISABLE();
163     KMP_INTERNAL_FREE(buf);
164     return;
165   } else if (gCode > 0) {
166     // The optimal situation: the OS returns the size of the buffer it expects.
167     KMP_AFFINITY_ENABLE(gCode);
168     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
169                   "affinity supported (mask size %d)\n",
170                   (int)__kmp_affin_mask_size));
171     KMP_INTERNAL_FREE(buf);
172     return;
173   }
174 
175   // Call the getaffinity system call repeatedly with increasing set sizes
176   // until we succeed, or reach an upper bound on the search.
177   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
178                 "searching for proper set size\n"));
179   int size;
180   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
181     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
182     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
183                   "getaffinity for mask size %ld returned %ld errno = %d\n",
184                   size, gCode, errno));
185 
186     if (gCode < 0) {
187       if (errno == ENOSYS) {
188         // We shouldn't get here
189         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
190                       "inconsistent OS call behavior: errno == ENOSYS for mask "
191                       "size %d\n",
192                       size));
193         if (__kmp_affinity_verbose ||
194             (__kmp_affinity_warnings &&
195              (__kmp_affinity_type != affinity_none) &&
196              (__kmp_affinity_type != affinity_default) &&
197              (__kmp_affinity_type != affinity_disabled))) {
198           int error = errno;
199           kmp_msg_t err_code = KMP_ERR(error);
200           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
201                     err_code, __kmp_msg_null);
202           if (__kmp_generate_warnings == kmp_warnings_off) {
203             __kmp_str_free(&err_code.str);
204           }
205         }
206         KMP_AFFINITY_DISABLE();
207         KMP_INTERNAL_FREE(buf);
208         return;
209       }
210       continue;
211     }
212 
213     KMP_AFFINITY_ENABLE(gCode);
214     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
215                   "affinity supported (mask size %d)\n",
216                   (int)__kmp_affin_mask_size));
217     KMP_INTERNAL_FREE(buf);
218     return;
219   }
220 #elif KMP_OS_FREEBSD
221   long gCode;
222   unsigned char *buf;
223   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
224   gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
225                                  reinterpret_cast<cpuset_t *>(buf));
226   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
227                 "initial getaffinity call returned %d errno = %d\n",
228                 gCode, errno));
229   if (gCode == 0) {
230     KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
231     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
232                   "affinity supported (mask size %d)\n",
233                   (int)__kmp_affin_mask_size));
234     KMP_INTERNAL_FREE(buf);
235     return;
236   }
237 #endif
238   KMP_INTERNAL_FREE(buf);
239 
240   // Affinity is not supported
241   KMP_AFFINITY_DISABLE();
242   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
243                 "cannot determine mask size - affinity not supported\n"));
244   if (__kmp_affinity_verbose ||
245       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
246        (__kmp_affinity_type != affinity_default) &&
247        (__kmp_affinity_type != affinity_disabled))) {
248     KMP_WARNING(AffCantGetMaskSize, env_var);
249   }
250 }
251 
252 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
253 
254 #if KMP_USE_FUTEX
255 
256 int __kmp_futex_determine_capable() {
257   int loc = 0;
258   long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
259   int retval = (rc == 0) || (errno != ENOSYS);
260 
261   KA_TRACE(10,
262            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
263   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
264                 retval ? "" : " not"));
265 
266   return retval;
267 }
268 
269 #endif // KMP_USE_FUTEX
270 
271 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
272 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
273    use compare_and_store for these routines */
274 
275 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
276   kmp_int8 old_value, new_value;
277 
278   old_value = TCR_1(*p);
279   new_value = old_value | d;
280 
281   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
282     KMP_CPU_PAUSE();
283     old_value = TCR_1(*p);
284     new_value = old_value | d;
285   }
286   return old_value;
287 }
288 
289 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
290   kmp_int8 old_value, new_value;
291 
292   old_value = TCR_1(*p);
293   new_value = old_value & d;
294 
295   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
296     KMP_CPU_PAUSE();
297     old_value = TCR_1(*p);
298     new_value = old_value & d;
299   }
300   return old_value;
301 }
302 
303 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
304   kmp_uint32 old_value, new_value;
305 
306   old_value = TCR_4(*p);
307   new_value = old_value | d;
308 
309   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
310     KMP_CPU_PAUSE();
311     old_value = TCR_4(*p);
312     new_value = old_value | d;
313   }
314   return old_value;
315 }
316 
317 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
318   kmp_uint32 old_value, new_value;
319 
320   old_value = TCR_4(*p);
321   new_value = old_value & d;
322 
323   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
324     KMP_CPU_PAUSE();
325     old_value = TCR_4(*p);
326     new_value = old_value & d;
327   }
328   return old_value;
329 }
330 
331 #if KMP_ARCH_X86
332 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
333   kmp_int8 old_value, new_value;
334 
335   old_value = TCR_1(*p);
336   new_value = old_value + d;
337 
338   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
339     KMP_CPU_PAUSE();
340     old_value = TCR_1(*p);
341     new_value = old_value + d;
342   }
343   return old_value;
344 }
345 
346 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
347   kmp_int64 old_value, new_value;
348 
349   old_value = TCR_8(*p);
350   new_value = old_value + d;
351 
352   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
353     KMP_CPU_PAUSE();
354     old_value = TCR_8(*p);
355     new_value = old_value + d;
356   }
357   return old_value;
358 }
359 #endif /* KMP_ARCH_X86 */
360 
361 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
362   kmp_uint64 old_value, new_value;
363 
364   old_value = TCR_8(*p);
365   new_value = old_value | d;
366   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
367     KMP_CPU_PAUSE();
368     old_value = TCR_8(*p);
369     new_value = old_value | d;
370   }
371   return old_value;
372 }
373 
374 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
375   kmp_uint64 old_value, new_value;
376 
377   old_value = TCR_8(*p);
378   new_value = old_value & d;
379   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
380     KMP_CPU_PAUSE();
381     old_value = TCR_8(*p);
382     new_value = old_value & d;
383   }
384   return old_value;
385 }
386 
387 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
388 
389 void __kmp_terminate_thread(int gtid) {
390   int status;
391   kmp_info_t *th = __kmp_threads[gtid];
392 
393   if (!th)
394     return;
395 
396 #ifdef KMP_CANCEL_THREADS
397   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
398   status = pthread_cancel(th->th.th_info.ds.ds_thread);
399   if (status != 0 && status != ESRCH) {
400     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
401                 __kmp_msg_null);
402   }
403 #endif
404   KMP_YIELD(TRUE);
405 } //
406 
407 /* Set thread stack info according to values returned by pthread_getattr_np().
408    If values are unreasonable, assume call failed and use incremental stack
409    refinement method instead. Returns TRUE if the stack parameters could be
410    determined exactly, FALSE if incremental refinement is necessary. */
411 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
412   int stack_data;
413 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
414     KMP_OS_HURD
415   pthread_attr_t attr;
416   int status;
417   size_t size = 0;
418   void *addr = 0;
419 
420   /* Always do incremental stack refinement for ubermaster threads since the
421      initial thread stack range can be reduced by sibling thread creation so
422      pthread_attr_getstack may cause thread gtid aliasing */
423   if (!KMP_UBER_GTID(gtid)) {
424 
425     /* Fetch the real thread attributes */
426     status = pthread_attr_init(&attr);
427     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
428 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
429     status = pthread_attr_get_np(pthread_self(), &attr);
430     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
431 #else
432     status = pthread_getattr_np(pthread_self(), &attr);
433     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
434 #endif
435     status = pthread_attr_getstack(&attr, &addr, &size);
436     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
437     KA_TRACE(60,
438              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
439               " %lu, low addr: %p\n",
440               gtid, size, addr));
441     status = pthread_attr_destroy(&attr);
442     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
443   }
444 
445   if (size != 0 && addr != 0) { // was stack parameter determination successful?
446     /* Store the correct base and size */
447     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
448     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
449     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
450     return TRUE;
451   }
452 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD  \
453           || KMP_OS_HURD */
454   /* Use incremental refinement starting from initial conservative estimate */
455   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
456   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
457   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
458   return FALSE;
459 }
460 
461 static void *__kmp_launch_worker(void *thr) {
462   int status, old_type, old_state;
463 #ifdef KMP_BLOCK_SIGNALS
464   sigset_t new_set, old_set;
465 #endif /* KMP_BLOCK_SIGNALS */
466   void *exit_val;
467 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
468     KMP_OS_OPENBSD || KMP_OS_HURD
469   void *volatile padding = 0;
470 #endif
471   int gtid;
472 
473   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
474   __kmp_gtid_set_specific(gtid);
475 #ifdef KMP_TDATA_GTID
476   __kmp_gtid = gtid;
477 #endif
478 #if KMP_STATS_ENABLED
479   // set thread local index to point to thread-specific stats
480   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
481   __kmp_stats_thread_ptr->startLife();
482   KMP_SET_THREAD_STATE(IDLE);
483   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
484 #endif
485 
486 #if USE_ITT_BUILD
487   __kmp_itt_thread_name(gtid);
488 #endif /* USE_ITT_BUILD */
489 
490 #if KMP_AFFINITY_SUPPORTED
491   __kmp_affinity_set_init_mask(gtid, FALSE);
492 #endif
493 
494 #ifdef KMP_CANCEL_THREADS
495   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
496   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
497   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
498   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
499   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
500 #endif
501 
502 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
503   // Set FP control regs to be a copy of the parallel initialization thread's.
504   __kmp_clear_x87_fpu_status_word();
505   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
506   __kmp_load_mxcsr(&__kmp_init_mxcsr);
507 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
508 
509 #ifdef KMP_BLOCK_SIGNALS
510   status = sigfillset(&new_set);
511   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
512   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
513   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
514 #endif /* KMP_BLOCK_SIGNALS */
515 
516 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
517     KMP_OS_OPENBSD
518   if (__kmp_stkoffset > 0 && gtid > 0) {
519     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
520     (void)padding;
521   }
522 #endif
523 
524   KMP_MB();
525   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
526 
527   __kmp_check_stack_overlap((kmp_info_t *)thr);
528 
529   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
530 
531 #ifdef KMP_BLOCK_SIGNALS
532   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
533   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
534 #endif /* KMP_BLOCK_SIGNALS */
535 
536   return exit_val;
537 }
538 
539 #if KMP_USE_MONITOR
540 /* The monitor thread controls all of the threads in the complex */
541 
542 static void *__kmp_launch_monitor(void *thr) {
543   int status, old_type, old_state;
544 #ifdef KMP_BLOCK_SIGNALS
545   sigset_t new_set;
546 #endif /* KMP_BLOCK_SIGNALS */
547   struct timespec interval;
548 
549   KMP_MB(); /* Flush all pending memory write invalidates.  */
550 
551   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
552 
553   /* register us as the monitor thread */
554   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
555 #ifdef KMP_TDATA_GTID
556   __kmp_gtid = KMP_GTID_MONITOR;
557 #endif
558 
559   KMP_MB();
560 
561 #if USE_ITT_BUILD
562   // Instruct Intel(R) Threading Tools to ignore monitor thread.
563   __kmp_itt_thread_ignore();
564 #endif /* USE_ITT_BUILD */
565 
566   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
567                        (kmp_info_t *)thr);
568 
569   __kmp_check_stack_overlap((kmp_info_t *)thr);
570 
571 #ifdef KMP_CANCEL_THREADS
572   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
573   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
574   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
575   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
576   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
577 #endif
578 
579 #if KMP_REAL_TIME_FIX
580   // This is a potential fix which allows application with real-time scheduling
581   // policy work. However, decision about the fix is not made yet, so it is
582   // disabled by default.
583   { // Are program started with real-time scheduling policy?
584     int sched = sched_getscheduler(0);
585     if (sched == SCHED_FIFO || sched == SCHED_RR) {
586       // Yes, we are a part of real-time application. Try to increase the
587       // priority of the monitor.
588       struct sched_param param;
589       int max_priority = sched_get_priority_max(sched);
590       int rc;
591       KMP_WARNING(RealTimeSchedNotSupported);
592       sched_getparam(0, &param);
593       if (param.sched_priority < max_priority) {
594         param.sched_priority += 1;
595         rc = sched_setscheduler(0, sched, &param);
596         if (rc != 0) {
597           int error = errno;
598           kmp_msg_t err_code = KMP_ERR(error);
599           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
600                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
601           if (__kmp_generate_warnings == kmp_warnings_off) {
602             __kmp_str_free(&err_code.str);
603           }
604         }
605       } else {
606         // We cannot abort here, because number of CPUs may be enough for all
607         // the threads, including the monitor thread, so application could
608         // potentially work...
609         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
610                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
611                   __kmp_msg_null);
612       }
613     }
614     // AC: free thread that waits for monitor started
615     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
616   }
617 #endif // KMP_REAL_TIME_FIX
618 
619   KMP_MB(); /* Flush all pending memory write invalidates.  */
620 
621   if (__kmp_monitor_wakeups == 1) {
622     interval.tv_sec = 1;
623     interval.tv_nsec = 0;
624   } else {
625     interval.tv_sec = 0;
626     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
627   }
628 
629   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
630 
631   while (!TCR_4(__kmp_global.g.g_done)) {
632     struct timespec now;
633     struct timeval tval;
634 
635     /*  This thread monitors the state of the system */
636 
637     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
638 
639     status = gettimeofday(&tval, NULL);
640     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
641     TIMEVAL_TO_TIMESPEC(&tval, &now);
642 
643     now.tv_sec += interval.tv_sec;
644     now.tv_nsec += interval.tv_nsec;
645 
646     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
647       now.tv_sec += 1;
648       now.tv_nsec -= KMP_NSEC_PER_SEC;
649     }
650 
651     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
652     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
653     // AC: the monitor should not fall asleep if g_done has been set
654     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
655       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
656                                       &__kmp_wait_mx.m_mutex, &now);
657       if (status != 0) {
658         if (status != ETIMEDOUT && status != EINTR) {
659           KMP_SYSFAIL("pthread_cond_timedwait", status);
660         }
661       }
662     }
663     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
664     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
665 
666     TCW_4(__kmp_global.g.g_time.dt.t_value,
667           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
668 
669     KMP_MB(); /* Flush all pending memory write invalidates.  */
670   }
671 
672   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
673 
674 #ifdef KMP_BLOCK_SIGNALS
675   status = sigfillset(&new_set);
676   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
677   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
678   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
679 #endif /* KMP_BLOCK_SIGNALS */
680 
681   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
682 
683   if (__kmp_global.g.g_abort != 0) {
684     /* now we need to terminate the worker threads  */
685     /* the value of t_abort is the signal we caught */
686 
687     int gtid;
688 
689     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
690                   __kmp_global.g.g_abort));
691 
692     /* terminate the OpenMP worker threads */
693     /* TODO this is not valid for sibling threads!!
694      * the uber master might not be 0 anymore.. */
695     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
696       __kmp_terminate_thread(gtid);
697 
698     __kmp_cleanup();
699 
700     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
701                   __kmp_global.g.g_abort));
702 
703     if (__kmp_global.g.g_abort > 0)
704       raise(__kmp_global.g.g_abort);
705   }
706 
707   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
708 
709   return thr;
710 }
711 #endif // KMP_USE_MONITOR
712 
713 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
714   pthread_t handle;
715   pthread_attr_t thread_attr;
716   int status;
717 
718   th->th.th_info.ds.ds_gtid = gtid;
719 
720 #if KMP_STATS_ENABLED
721   // sets up worker thread stats
722   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
723 
724   // th->th.th_stats is used to transfer thread-specific stats-pointer to
725   // __kmp_launch_worker. So when thread is created (goes into
726   // __kmp_launch_worker) it will set its thread local pointer to
727   // th->th.th_stats
728   if (!KMP_UBER_GTID(gtid)) {
729     th->th.th_stats = __kmp_stats_list->push_back(gtid);
730   } else {
731     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
732     // so set the th->th.th_stats field to it.
733     th->th.th_stats = __kmp_stats_thread_ptr;
734   }
735   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
736 
737 #endif // KMP_STATS_ENABLED
738 
739   if (KMP_UBER_GTID(gtid)) {
740     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
741     th->th.th_info.ds.ds_thread = pthread_self();
742     __kmp_set_stack_info(gtid, th);
743     __kmp_check_stack_overlap(th);
744     return;
745   }
746 
747   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
748 
749   KMP_MB(); /* Flush all pending memory write invalidates.  */
750 
751 #ifdef KMP_THREAD_ATTR
752   status = pthread_attr_init(&thread_attr);
753   if (status != 0) {
754     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
755   }
756   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
757   if (status != 0) {
758     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
759   }
760 
761   /* Set stack size for this thread now.
762      The multiple of 2 is there because on some machines, requesting an unusual
763      stacksize causes the thread to have an offset before the dummy alloca()
764      takes place to create the offset.  Since we want the user to have a
765      sufficient stacksize AND support a stack offset, we alloca() twice the
766      offset so that the upcoming alloca() does not eliminate any premade offset,
767      and also gives the user the stack space they requested for all threads */
768   stack_size += gtid * __kmp_stkoffset * 2;
769 
770 #if defined(__ANDROID__) && __ANDROID_API__ < 19
771   // Round the stack size to a multiple of the page size. Older versions of
772   // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
773   // if the stack size was not a multiple of the page size.
774   stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
775 #endif
776 
777   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
778                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
779                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
780 
781 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
782   status = pthread_attr_setstacksize(&thread_attr, stack_size);
783 #ifdef KMP_BACKUP_STKSIZE
784   if (status != 0) {
785     if (!__kmp_env_stksize) {
786       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
787       __kmp_stksize = KMP_BACKUP_STKSIZE;
788       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
789                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
790                     "bytes\n",
791                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
792       status = pthread_attr_setstacksize(&thread_attr, stack_size);
793     }
794   }
795 #endif /* KMP_BACKUP_STKSIZE */
796   if (status != 0) {
797     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
798                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
799   }
800 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
801 
802 #endif /* KMP_THREAD_ATTR */
803 
804   status =
805       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
806   if (status != 0 || !handle) { // ??? Why do we check handle??
807 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
808     if (status == EINVAL) {
809       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
810                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
811     }
812     if (status == ENOMEM) {
813       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
814                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
815     }
816 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
817     if (status == EAGAIN) {
818       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
819                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
820     }
821     KMP_SYSFAIL("pthread_create", status);
822   }
823 
824   th->th.th_info.ds.ds_thread = handle;
825 
826 #ifdef KMP_THREAD_ATTR
827   status = pthread_attr_destroy(&thread_attr);
828   if (status) {
829     kmp_msg_t err_code = KMP_ERR(status);
830     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
831               __kmp_msg_null);
832     if (__kmp_generate_warnings == kmp_warnings_off) {
833       __kmp_str_free(&err_code.str);
834     }
835   }
836 #endif /* KMP_THREAD_ATTR */
837 
838   KMP_MB(); /* Flush all pending memory write invalidates.  */
839 
840   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
841 
842 } // __kmp_create_worker
843 
844 #if KMP_USE_MONITOR
845 void __kmp_create_monitor(kmp_info_t *th) {
846   pthread_t handle;
847   pthread_attr_t thread_attr;
848   size_t size;
849   int status;
850   int auto_adj_size = FALSE;
851 
852   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
853     // We don't need monitor thread in case of MAX_BLOCKTIME
854     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
855                   "MAX blocktime\n"));
856     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
857     th->th.th_info.ds.ds_gtid = 0;
858     return;
859   }
860   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
861 
862   KMP_MB(); /* Flush all pending memory write invalidates.  */
863 
864   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
865   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
866 #if KMP_REAL_TIME_FIX
867   TCW_4(__kmp_global.g.g_time.dt.t_value,
868         -1); // Will use it for synchronization a bit later.
869 #else
870   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
871 #endif // KMP_REAL_TIME_FIX
872 
873 #ifdef KMP_THREAD_ATTR
874   if (__kmp_monitor_stksize == 0) {
875     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
876     auto_adj_size = TRUE;
877   }
878   status = pthread_attr_init(&thread_attr);
879   if (status != 0) {
880     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
881   }
882   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
883   if (status != 0) {
884     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
885   }
886 
887 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
888   status = pthread_attr_getstacksize(&thread_attr, &size);
889   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
890 #else
891   size = __kmp_sys_min_stksize;
892 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
893 #endif /* KMP_THREAD_ATTR */
894 
895   if (__kmp_monitor_stksize == 0) {
896     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
897   }
898   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
899     __kmp_monitor_stksize = __kmp_sys_min_stksize;
900   }
901 
902   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
903                 "requested stacksize = %lu bytes\n",
904                 size, __kmp_monitor_stksize));
905 
906 retry:
907 
908 /* Set stack size for this thread now. */
909 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
910   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
911                 __kmp_monitor_stksize));
912   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
913   if (status != 0) {
914     if (auto_adj_size) {
915       __kmp_monitor_stksize *= 2;
916       goto retry;
917     }
918     kmp_msg_t err_code = KMP_ERR(status);
919     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
920               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
921               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
922     if (__kmp_generate_warnings == kmp_warnings_off) {
923       __kmp_str_free(&err_code.str);
924     }
925   }
926 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
927 
928   status =
929       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
930 
931   if (status != 0) {
932 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
933     if (status == EINVAL) {
934       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
935         __kmp_monitor_stksize *= 2;
936         goto retry;
937       }
938       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
939                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
940                   __kmp_msg_null);
941     }
942     if (status == ENOMEM) {
943       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
944                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
945                   __kmp_msg_null);
946     }
947 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
948     if (status == EAGAIN) {
949       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
950                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
951     }
952     KMP_SYSFAIL("pthread_create", status);
953   }
954 
955   th->th.th_info.ds.ds_thread = handle;
956 
957 #if KMP_REAL_TIME_FIX
958   // Wait for the monitor thread is really started and set its *priority*.
959   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
960                    sizeof(__kmp_global.g.g_time.dt.t_value));
961   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
962                &__kmp_neq_4, NULL);
963 #endif // KMP_REAL_TIME_FIX
964 
965 #ifdef KMP_THREAD_ATTR
966   status = pthread_attr_destroy(&thread_attr);
967   if (status != 0) {
968     kmp_msg_t err_code = KMP_ERR(status);
969     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
970               __kmp_msg_null);
971     if (__kmp_generate_warnings == kmp_warnings_off) {
972       __kmp_str_free(&err_code.str);
973     }
974   }
975 #endif
976 
977   KMP_MB(); /* Flush all pending memory write invalidates.  */
978 
979   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
980                 th->th.th_info.ds.ds_thread));
981 
982 } // __kmp_create_monitor
983 #endif // KMP_USE_MONITOR
984 
985 void __kmp_exit_thread(int exit_status) {
986   pthread_exit((void *)(intptr_t)exit_status);
987 } // __kmp_exit_thread
988 
989 #if KMP_USE_MONITOR
990 void __kmp_resume_monitor();
991 
992 void __kmp_reap_monitor(kmp_info_t *th) {
993   int status;
994   void *exit_val;
995 
996   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
997                 " %#.8lx\n",
998                 th->th.th_info.ds.ds_thread));
999 
1000   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1001   // If both tid and gtid are 0, it means the monitor did not ever start.
1002   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1003   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1004   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1005     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1006     return;
1007   }
1008 
1009   KMP_MB(); /* Flush all pending memory write invalidates.  */
1010 
1011   /* First, check to see whether the monitor thread exists to wake it up. This
1012      is to avoid performance problem when the monitor sleeps during
1013      blocktime-size interval */
1014 
1015   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1016   if (status != ESRCH) {
1017     __kmp_resume_monitor(); // Wake up the monitor thread
1018   }
1019   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1020   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1021   if (exit_val != th) {
1022     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1023   }
1024 
1025   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1026   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1027 
1028   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1029                 " %#.8lx\n",
1030                 th->th.th_info.ds.ds_thread));
1031 
1032   KMP_MB(); /* Flush all pending memory write invalidates.  */
1033 }
1034 #endif // KMP_USE_MONITOR
1035 
1036 void __kmp_reap_worker(kmp_info_t *th) {
1037   int status;
1038   void *exit_val;
1039 
1040   KMP_MB(); /* Flush all pending memory write invalidates.  */
1041 
1042   KA_TRACE(
1043       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1044 
1045   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1046 #ifdef KMP_DEBUG
1047   /* Don't expose these to the user until we understand when they trigger */
1048   if (status != 0) {
1049     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1050   }
1051   if (exit_val != th) {
1052     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1053                   "exit_val = %p\n",
1054                   th->th.th_info.ds.ds_gtid, exit_val));
1055   }
1056 #endif /* KMP_DEBUG */
1057 
1058   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1059                 th->th.th_info.ds.ds_gtid));
1060 
1061   KMP_MB(); /* Flush all pending memory write invalidates.  */
1062 }
1063 
1064 #if KMP_HANDLE_SIGNALS
1065 
1066 static void __kmp_null_handler(int signo) {
1067   //  Do nothing, for doing SIG_IGN-type actions.
1068 } // __kmp_null_handler
1069 
1070 static void __kmp_team_handler(int signo) {
1071   if (__kmp_global.g.g_abort == 0) {
1072 /* Stage 1 signal handler, let's shut down all of the threads */
1073 #ifdef KMP_DEBUG
1074     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1075 #endif
1076     switch (signo) {
1077     case SIGHUP:
1078     case SIGINT:
1079     case SIGQUIT:
1080     case SIGILL:
1081     case SIGABRT:
1082     case SIGFPE:
1083     case SIGBUS:
1084     case SIGSEGV:
1085 #ifdef SIGSYS
1086     case SIGSYS:
1087 #endif
1088     case SIGTERM:
1089       if (__kmp_debug_buf) {
1090         __kmp_dump_debug_buffer();
1091       }
1092       __kmp_unregister_library(); // cleanup shared memory
1093       KMP_MB(); // Flush all pending memory write invalidates.
1094       TCW_4(__kmp_global.g.g_abort, signo);
1095       KMP_MB(); // Flush all pending memory write invalidates.
1096       TCW_4(__kmp_global.g.g_done, TRUE);
1097       KMP_MB(); // Flush all pending memory write invalidates.
1098       break;
1099     default:
1100 #ifdef KMP_DEBUG
1101       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1102 #endif
1103       break;
1104     }
1105   }
1106 } // __kmp_team_handler
1107 
1108 static void __kmp_sigaction(int signum, const struct sigaction *act,
1109                             struct sigaction *oldact) {
1110   int rc = sigaction(signum, act, oldact);
1111   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1112 }
1113 
1114 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1115                                       int parallel_init) {
1116   KMP_MB(); // Flush all pending memory write invalidates.
1117   KB_TRACE(60,
1118            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1119   if (parallel_init) {
1120     struct sigaction new_action;
1121     struct sigaction old_action;
1122     new_action.sa_handler = handler_func;
1123     new_action.sa_flags = 0;
1124     sigfillset(&new_action.sa_mask);
1125     __kmp_sigaction(sig, &new_action, &old_action);
1126     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1127       sigaddset(&__kmp_sigset, sig);
1128     } else {
1129       // Restore/keep user's handler if one previously installed.
1130       __kmp_sigaction(sig, &old_action, NULL);
1131     }
1132   } else {
1133     // Save initial/system signal handlers to see if user handlers installed.
1134     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1135   }
1136   KMP_MB(); // Flush all pending memory write invalidates.
1137 } // __kmp_install_one_handler
1138 
1139 static void __kmp_remove_one_handler(int sig) {
1140   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1141   if (sigismember(&__kmp_sigset, sig)) {
1142     struct sigaction old;
1143     KMP_MB(); // Flush all pending memory write invalidates.
1144     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1145     if ((old.sa_handler != __kmp_team_handler) &&
1146         (old.sa_handler != __kmp_null_handler)) {
1147       // Restore the users signal handler.
1148       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1149                     "restoring: sig=%d\n",
1150                     sig));
1151       __kmp_sigaction(sig, &old, NULL);
1152     }
1153     sigdelset(&__kmp_sigset, sig);
1154     KMP_MB(); // Flush all pending memory write invalidates.
1155   }
1156 } // __kmp_remove_one_handler
1157 
1158 void __kmp_install_signals(int parallel_init) {
1159   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1160   if (__kmp_handle_signals || !parallel_init) {
1161     // If ! parallel_init, we do not install handlers, just save original
1162     // handlers. Let us do it even __handle_signals is 0.
1163     sigemptyset(&__kmp_sigset);
1164     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1165     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1166     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1167     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1168     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1169     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1170     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1171     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1172 #ifdef SIGSYS
1173     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1174 #endif // SIGSYS
1175     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1176 #ifdef SIGPIPE
1177     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1178 #endif // SIGPIPE
1179   }
1180 } // __kmp_install_signals
1181 
1182 void __kmp_remove_signals(void) {
1183   int sig;
1184   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1185   for (sig = 1; sig < NSIG; ++sig) {
1186     __kmp_remove_one_handler(sig);
1187   }
1188 } // __kmp_remove_signals
1189 
1190 #endif // KMP_HANDLE_SIGNALS
1191 
1192 void __kmp_enable(int new_state) {
1193 #ifdef KMP_CANCEL_THREADS
1194   int status, old_state;
1195   status = pthread_setcancelstate(new_state, &old_state);
1196   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1197   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1198 #endif
1199 }
1200 
1201 void __kmp_disable(int *old_state) {
1202 #ifdef KMP_CANCEL_THREADS
1203   int status;
1204   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1205   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1206 #endif
1207 }
1208 
1209 static void __kmp_atfork_prepare(void) {
1210   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1211   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1212 }
1213 
1214 static void __kmp_atfork_parent(void) {
1215   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1216   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1217 }
1218 
1219 /* Reset the library so execution in the child starts "all over again" with
1220    clean data structures in initial states.  Don't worry about freeing memory
1221    allocated by parent, just abandon it to be safe. */
1222 static void __kmp_atfork_child(void) {
1223   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1224   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1225   /* TODO make sure this is done right for nested/sibling */
1226   // ATT:  Memory leaks are here? TODO: Check it and fix.
1227   /* KMP_ASSERT( 0 ); */
1228 
1229   ++__kmp_fork_count;
1230 
1231 #if KMP_AFFINITY_SUPPORTED
1232 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1233   // reset the affinity in the child to the initial thread
1234   // affinity in the parent
1235   kmp_set_thread_affinity_mask_initial();
1236 #endif
1237   // Set default not to bind threads tightly in the child (we’re expecting
1238   // over-subscription after the fork and this can improve things for
1239   // scripting languages that use OpenMP inside process-parallel code).
1240   __kmp_affinity_type = affinity_none;
1241   if (__kmp_nested_proc_bind.bind_types != NULL) {
1242     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1243   }
1244   __kmp_affinity_masks = NULL;
1245   __kmp_affinity_num_masks = 0;
1246 #endif // KMP_AFFINITY_SUPPORTED
1247 
1248 #if KMP_USE_MONITOR
1249   __kmp_init_monitor = 0;
1250 #endif
1251   __kmp_init_parallel = FALSE;
1252   __kmp_init_middle = FALSE;
1253   __kmp_init_serial = FALSE;
1254   TCW_4(__kmp_init_gtid, FALSE);
1255   __kmp_init_common = FALSE;
1256 
1257   TCW_4(__kmp_init_user_locks, FALSE);
1258 #if !KMP_USE_DYNAMIC_LOCK
1259   __kmp_user_lock_table.used = 1;
1260   __kmp_user_lock_table.allocated = 0;
1261   __kmp_user_lock_table.table = NULL;
1262   __kmp_lock_blocks = NULL;
1263 #endif
1264 
1265   __kmp_all_nth = 0;
1266   TCW_4(__kmp_nth, 0);
1267 
1268   __kmp_thread_pool = NULL;
1269   __kmp_thread_pool_insert_pt = NULL;
1270   __kmp_team_pool = NULL;
1271 
1272   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1273      here so threadprivate doesn't use stale data */
1274   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1275                 __kmp_threadpriv_cache_list));
1276 
1277   while (__kmp_threadpriv_cache_list != NULL) {
1278 
1279     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1280       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1281                     &(*__kmp_threadpriv_cache_list->addr)));
1282 
1283       *__kmp_threadpriv_cache_list->addr = NULL;
1284     }
1285     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1286   }
1287 
1288   __kmp_init_runtime = FALSE;
1289 
1290   /* reset statically initialized locks */
1291   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1292   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1293   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1294   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1295 
1296 #if USE_ITT_BUILD
1297   __kmp_itt_reset(); // reset ITT's global state
1298 #endif /* USE_ITT_BUILD */
1299 
1300   __kmp_serial_initialize();
1301 
1302   /* This is necessary to make sure no stale data is left around */
1303   /* AC: customers complain that we use unsafe routines in the atfork
1304      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1305      in dynamic_link when check the presence of shared tbbmalloc library.
1306      Suggestion is to make the library initialization lazier, similar
1307      to what done for __kmpc_begin(). */
1308   // TODO: synchronize all static initializations with regular library
1309   //       startup; look at kmp_global.cpp and etc.
1310   //__kmp_internal_begin ();
1311 }
1312 
1313 void __kmp_register_atfork(void) {
1314   if (__kmp_need_register_atfork) {
1315     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1316                                 __kmp_atfork_child);
1317     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1318     __kmp_need_register_atfork = FALSE;
1319   }
1320 }
1321 
1322 void __kmp_suspend_initialize(void) {
1323   int status;
1324   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1325   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1326   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1327   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1328 }
1329 
1330 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1331   ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1332   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1333   int new_value = __kmp_fork_count + 1;
1334   // Return if already initialized
1335   if (old_value == new_value)
1336     return;
1337   // Wait, then return if being initialized
1338   if (old_value == -1 || !__kmp_atomic_compare_store(
1339                              &th->th.th_suspend_init_count, old_value, -1)) {
1340     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1341       KMP_CPU_PAUSE();
1342     }
1343   } else {
1344     // Claim to be the initializer and do initializations
1345     int status;
1346     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1347                                &__kmp_suspend_cond_attr);
1348     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1349     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1350                                 &__kmp_suspend_mutex_attr);
1351     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1352     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1353     ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1354   }
1355 }
1356 
1357 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1358   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1359     /* this means we have initialize the suspension pthread objects for this
1360        thread in this instance of the process */
1361     int status;
1362 
1363     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1364     if (status != 0 && status != EBUSY) {
1365       KMP_SYSFAIL("pthread_cond_destroy", status);
1366     }
1367     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1368     if (status != 0 && status != EBUSY) {
1369       KMP_SYSFAIL("pthread_mutex_destroy", status);
1370     }
1371     --th->th.th_suspend_init_count;
1372     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1373                      __kmp_fork_count);
1374   }
1375 }
1376 
1377 // return true if lock obtained, false otherwise
1378 int __kmp_try_suspend_mx(kmp_info_t *th) {
1379   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1380 }
1381 
1382 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1383   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1384   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1385 }
1386 
1387 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1388   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1389   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1390 }
1391 
1392 /* This routine puts the calling thread to sleep after setting the
1393    sleep bit for the indicated flag variable to true. */
1394 template <class C>
1395 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1396   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1397   kmp_info_t *th = __kmp_threads[th_gtid];
1398   int status;
1399   typename C::flag_t old_spin;
1400 
1401   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1402                 flag->get()));
1403 
1404   __kmp_suspend_initialize_thread(th);
1405 
1406   __kmp_lock_suspend_mx(th);
1407 
1408   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1409                 th_gtid, flag->get()));
1410 
1411   /* TODO: shouldn't this use release semantics to ensure that
1412      __kmp_suspend_initialize_thread gets called first? */
1413   old_spin = flag->set_sleeping();
1414   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1415       __kmp_pause_status != kmp_soft_paused) {
1416     flag->unset_sleeping();
1417     __kmp_unlock_suspend_mx(th);
1418     return;
1419   }
1420   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1421                " was %x\n",
1422                th_gtid, flag->get(), flag->load(), old_spin));
1423 
1424   if (flag->done_check_val(old_spin)) {
1425     old_spin = flag->unset_sleeping();
1426     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1427                  "for spin(%p)\n",
1428                  th_gtid, flag->get()));
1429   } else {
1430     /* Encapsulate in a loop as the documentation states that this may
1431        "with low probability" return when the condition variable has
1432        not been signaled or broadcast */
1433     int deactivated = FALSE;
1434     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1435 
1436     while (flag->is_sleeping()) {
1437 #ifdef DEBUG_SUSPEND
1438       char buffer[128];
1439       __kmp_suspend_count++;
1440       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1441       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1442                    buffer);
1443 #endif
1444       // Mark the thread as no longer active (only in the first iteration of the
1445       // loop).
1446       if (!deactivated) {
1447         th->th.th_active = FALSE;
1448         if (th->th.th_active_in_pool) {
1449           th->th.th_active_in_pool = FALSE;
1450           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1451           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1452         }
1453         deactivated = TRUE;
1454       }
1455 
1456 #if USE_SUSPEND_TIMEOUT
1457       struct timespec now;
1458       struct timeval tval;
1459       int msecs;
1460 
1461       status = gettimeofday(&tval, NULL);
1462       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1463       TIMEVAL_TO_TIMESPEC(&tval, &now);
1464 
1465       msecs = (4 * __kmp_dflt_blocktime) + 200;
1466       now.tv_sec += msecs / 1000;
1467       now.tv_nsec += (msecs % 1000) * 1000;
1468 
1469       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1470                     "pthread_cond_timedwait\n",
1471                     th_gtid));
1472       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1473                                       &th->th.th_suspend_mx.m_mutex, &now);
1474 #else
1475       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1476                     " pthread_cond_wait\n",
1477                     th_gtid));
1478       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1479                                  &th->th.th_suspend_mx.m_mutex);
1480 #endif // USE_SUSPEND_TIMEOUT
1481 
1482       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1483         KMP_SYSFAIL("pthread_cond_wait", status);
1484       }
1485 #ifdef KMP_DEBUG
1486       if (status == ETIMEDOUT) {
1487         if (flag->is_sleeping()) {
1488           KF_TRACE(100,
1489                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1490         } else {
1491           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1492                        "not set!\n",
1493                        th_gtid));
1494         }
1495       } else if (flag->is_sleeping()) {
1496         KF_TRACE(100,
1497                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1498       }
1499 #endif
1500     } // while
1501 
1502     // Mark the thread as active again (if it was previous marked as inactive)
1503     if (deactivated) {
1504       th->th.th_active = TRUE;
1505       if (TCR_4(th->th.th_in_pool)) {
1506         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1507         th->th.th_active_in_pool = TRUE;
1508       }
1509     }
1510   }
1511 #ifdef DEBUG_SUSPEND
1512   {
1513     char buffer[128];
1514     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1515     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1516                  buffer);
1517   }
1518 #endif
1519 
1520   __kmp_unlock_suspend_mx(th);
1521   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1522 }
1523 
1524 template <bool C, bool S>
1525 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1526   __kmp_suspend_template(th_gtid, flag);
1527 }
1528 template <bool C, bool S>
1529 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1530   __kmp_suspend_template(th_gtid, flag);
1531 }
1532 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1533   __kmp_suspend_template(th_gtid, flag);
1534 }
1535 
1536 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1537 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1538 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1539 
1540 /* This routine signals the thread specified by target_gtid to wake up
1541    after setting the sleep bit indicated by the flag argument to FALSE.
1542    The target thread must already have called __kmp_suspend_template() */
1543 template <class C>
1544 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1545   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1546   kmp_info_t *th = __kmp_threads[target_gtid];
1547   int status;
1548 
1549 #ifdef KMP_DEBUG
1550   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1551 #endif
1552 
1553   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1554                 gtid, target_gtid));
1555   KMP_DEBUG_ASSERT(gtid != target_gtid);
1556 
1557   __kmp_suspend_initialize_thread(th);
1558 
1559   __kmp_lock_suspend_mx(th);
1560 
1561   if (!flag) { // coming from __kmp_null_resume_wrapper
1562     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1563   }
1564 
1565   // First, check if the flag is null or its type has changed. If so, someone
1566   // else woke it up.
1567   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1568     // simply shows what flag was cast to
1569     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1570                  "awake: flag(%p)\n",
1571                  gtid, target_gtid, NULL));
1572     __kmp_unlock_suspend_mx(th);
1573     return;
1574   } else { // if multiple threads are sleeping, flag should be internally
1575     // referring to a specific thread here
1576     typename C::flag_t old_spin = flag->unset_sleeping();
1577     if (!flag->is_sleeping_val(old_spin)) {
1578       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1579                    "awake: flag(%p): "
1580                    "%u => %u\n",
1581                    gtid, target_gtid, flag->get(), old_spin, flag->load()));
1582       __kmp_unlock_suspend_mx(th);
1583       return;
1584     }
1585     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1586                  "sleep bit for flag's loc(%p): "
1587                  "%u => %u\n",
1588                  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1589   }
1590   TCW_PTR(th->th.th_sleep_loc, NULL);
1591 
1592 #ifdef DEBUG_SUSPEND
1593   {
1594     char buffer[128];
1595     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1596     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1597                  target_gtid, buffer);
1598   }
1599 #endif
1600   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1601   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1602   __kmp_unlock_suspend_mx(th);
1603   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1604                 " for T#%d\n",
1605                 gtid, target_gtid));
1606 }
1607 
1608 template <bool C, bool S>
1609 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1610   __kmp_resume_template(target_gtid, flag);
1611 }
1612 template <bool C, bool S>
1613 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1614   __kmp_resume_template(target_gtid, flag);
1615 }
1616 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1617   __kmp_resume_template(target_gtid, flag);
1618 }
1619 
1620 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1621 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1622 
1623 #if KMP_USE_MONITOR
1624 void __kmp_resume_monitor() {
1625   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1626   int status;
1627 #ifdef KMP_DEBUG
1628   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1629   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1630                 KMP_GTID_MONITOR));
1631   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1632 #endif
1633   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1634   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1635 #ifdef DEBUG_SUSPEND
1636   {
1637     char buffer[128];
1638     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1639     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1640                  KMP_GTID_MONITOR, buffer);
1641   }
1642 #endif
1643   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1644   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1645   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1646   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1647   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1648                 " for T#%d\n",
1649                 gtid, KMP_GTID_MONITOR));
1650 }
1651 #endif // KMP_USE_MONITOR
1652 
1653 void __kmp_yield() { sched_yield(); }
1654 
1655 void __kmp_gtid_set_specific(int gtid) {
1656   if (__kmp_init_gtid) {
1657     int status;
1658     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1659                                  (void *)(intptr_t)(gtid + 1));
1660     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1661   } else {
1662     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1663   }
1664 }
1665 
1666 int __kmp_gtid_get_specific() {
1667   int gtid;
1668   if (!__kmp_init_gtid) {
1669     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1670                   "KMP_GTID_SHUTDOWN\n"));
1671     return KMP_GTID_SHUTDOWN;
1672   }
1673   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1674   if (gtid == 0) {
1675     gtid = KMP_GTID_DNE;
1676   } else {
1677     gtid--;
1678   }
1679   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1680                 __kmp_gtid_threadprivate_key, gtid));
1681   return gtid;
1682 }
1683 
1684 double __kmp_read_cpu_time(void) {
1685   /*clock_t   t;*/
1686   struct tms buffer;
1687 
1688   /*t =*/times(&buffer);
1689 
1690   return (double)(buffer.tms_utime + buffer.tms_cutime) /
1691          (double)CLOCKS_PER_SEC;
1692 }
1693 
1694 int __kmp_read_system_info(struct kmp_sys_info *info) {
1695   int status;
1696   struct rusage r_usage;
1697 
1698   memset(info, 0, sizeof(*info));
1699 
1700   status = getrusage(RUSAGE_SELF, &r_usage);
1701   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1702 
1703   // The maximum resident set size utilized (in kilobytes)
1704   info->maxrss = r_usage.ru_maxrss;
1705   // The number of page faults serviced without any I/O
1706   info->minflt = r_usage.ru_minflt;
1707   // The number of page faults serviced that required I/O
1708   info->majflt = r_usage.ru_majflt;
1709   // The number of times a process was "swapped" out of memory
1710   info->nswap = r_usage.ru_nswap;
1711   // The number of times the file system had to perform input
1712   info->inblock = r_usage.ru_inblock;
1713   // The number of times the file system had to perform output
1714   info->oublock = r_usage.ru_oublock;
1715   // The number of times a context switch was voluntarily
1716   info->nvcsw = r_usage.ru_nvcsw;
1717   // The number of times a context switch was forced
1718   info->nivcsw = r_usage.ru_nivcsw;
1719 
1720   return (status != 0);
1721 }
1722 
1723 void __kmp_read_system_time(double *delta) {
1724   double t_ns;
1725   struct timeval tval;
1726   struct timespec stop;
1727   int status;
1728 
1729   status = gettimeofday(&tval, NULL);
1730   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1731   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1732   t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1733   *delta = (t_ns * 1e-9);
1734 }
1735 
1736 void __kmp_clear_system_time(void) {
1737   struct timeval tval;
1738   int status;
1739   status = gettimeofday(&tval, NULL);
1740   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1741   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1742 }
1743 
1744 static int __kmp_get_xproc(void) {
1745 
1746   int r = 0;
1747 
1748 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
1749     KMP_OS_OPENBSD || KMP_OS_HURD
1750 
1751   __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1752 
1753 #elif KMP_OS_DARWIN
1754 
1755   // Bug C77011 High "OpenMP Threads and number of active cores".
1756 
1757   // Find the number of available CPUs.
1758   kern_return_t rc;
1759   host_basic_info_data_t info;
1760   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1761   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1762   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1763     // Cannot use KA_TRACE() here because this code works before trace support
1764     // is initialized.
1765     r = info.avail_cpus;
1766   } else {
1767     KMP_WARNING(CantGetNumAvailCPU);
1768     KMP_INFORM(AssumedNumCPU);
1769   }
1770 
1771 #else
1772 
1773 #error "Unknown or unsupported OS."
1774 
1775 #endif
1776 
1777   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1778 
1779 } // __kmp_get_xproc
1780 
1781 int __kmp_read_from_file(char const *path, char const *format, ...) {
1782   int result;
1783   va_list args;
1784 
1785   va_start(args, format);
1786   FILE *f = fopen(path, "rb");
1787   if (f == NULL)
1788     return 0;
1789   result = vfscanf(f, format, args);
1790   fclose(f);
1791 
1792   return result;
1793 }
1794 
1795 void __kmp_runtime_initialize(void) {
1796   int status;
1797   pthread_mutexattr_t mutex_attr;
1798   pthread_condattr_t cond_attr;
1799 
1800   if (__kmp_init_runtime) {
1801     return;
1802   }
1803 
1804 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1805   if (!__kmp_cpuinfo.initialized) {
1806     __kmp_query_cpuid(&__kmp_cpuinfo);
1807   }
1808 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1809 
1810   __kmp_xproc = __kmp_get_xproc();
1811 
1812 #if !KMP_32_BIT_ARCH
1813   struct rlimit rlim;
1814   // read stack size of calling thread, save it as default for worker threads;
1815   // this should be done before reading environment variables
1816   status = getrlimit(RLIMIT_STACK, &rlim);
1817   if (status == 0) { // success?
1818     __kmp_stksize = rlim.rlim_cur;
1819     __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1820   }
1821 #endif /* KMP_32_BIT_ARCH */
1822 
1823   if (sysconf(_SC_THREADS)) {
1824 
1825     /* Query the maximum number of threads */
1826     __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1827     if (__kmp_sys_max_nth == -1) {
1828       /* Unlimited threads for NPTL */
1829       __kmp_sys_max_nth = INT_MAX;
1830     } else if (__kmp_sys_max_nth <= 1) {
1831       /* Can't tell, just use PTHREAD_THREADS_MAX */
1832       __kmp_sys_max_nth = KMP_MAX_NTH;
1833     }
1834 
1835     /* Query the minimum stack size */
1836     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1837     if (__kmp_sys_min_stksize <= 1) {
1838       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1839     }
1840   }
1841 
1842   /* Set up minimum number of threads to switch to TLS gtid */
1843   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1844 
1845   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1846                               __kmp_internal_end_dest);
1847   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1848   status = pthread_mutexattr_init(&mutex_attr);
1849   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1850   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1851   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1852   status = pthread_mutexattr_destroy(&mutex_attr);
1853   KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1854   status = pthread_condattr_init(&cond_attr);
1855   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1856   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1857   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1858   status = pthread_condattr_destroy(&cond_attr);
1859   KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1860 #if USE_ITT_BUILD
1861   __kmp_itt_initialize();
1862 #endif /* USE_ITT_BUILD */
1863 
1864   __kmp_init_runtime = TRUE;
1865 }
1866 
1867 void __kmp_runtime_destroy(void) {
1868   int status;
1869 
1870   if (!__kmp_init_runtime) {
1871     return; // Nothing to do.
1872   }
1873 
1874 #if USE_ITT_BUILD
1875   __kmp_itt_destroy();
1876 #endif /* USE_ITT_BUILD */
1877 
1878   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1879   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1880 
1881   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1882   if (status != 0 && status != EBUSY) {
1883     KMP_SYSFAIL("pthread_mutex_destroy", status);
1884   }
1885   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1886   if (status != 0 && status != EBUSY) {
1887     KMP_SYSFAIL("pthread_cond_destroy", status);
1888   }
1889 #if KMP_AFFINITY_SUPPORTED
1890   __kmp_affinity_uninitialize();
1891 #endif
1892 
1893   __kmp_init_runtime = FALSE;
1894 }
1895 
1896 /* Put the thread to sleep for a time period */
1897 /* NOTE: not currently used anywhere */
1898 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1899 
1900 /* Calculate the elapsed wall clock time for the user */
1901 void __kmp_elapsed(double *t) {
1902   int status;
1903 #ifdef FIX_SGI_CLOCK
1904   struct timespec ts;
1905 
1906   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1907   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1908   *t =
1909       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1910 #else
1911   struct timeval tv;
1912 
1913   status = gettimeofday(&tv, NULL);
1914   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1915   *t =
1916       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1917 #endif
1918 }
1919 
1920 /* Calculate the elapsed wall clock tick for the user */
1921 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1922 
1923 /* Return the current time stamp in nsec */
1924 kmp_uint64 __kmp_now_nsec() {
1925   struct timeval t;
1926   gettimeofday(&t, NULL);
1927   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1928                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1929   return nsec;
1930 }
1931 
1932 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1933 /* Measure clock ticks per millisecond */
1934 void __kmp_initialize_system_tick() {
1935   kmp_uint64 now, nsec2, diff;
1936   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1937   kmp_uint64 nsec = __kmp_now_nsec();
1938   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1939   while ((now = __kmp_hardware_timestamp()) < goal)
1940     ;
1941   nsec2 = __kmp_now_nsec();
1942   diff = nsec2 - nsec;
1943   if (diff > 0) {
1944     kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff);
1945     if (tpms > 0)
1946       __kmp_ticks_per_msec = tpms;
1947   }
1948 }
1949 #endif
1950 
1951 /* Determine whether the given address is mapped into the current address
1952    space. */
1953 
1954 int __kmp_is_address_mapped(void *addr) {
1955 
1956   int found = 0;
1957   int rc;
1958 
1959 #if KMP_OS_LINUX || KMP_OS_HURD
1960 
1961   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
1962      address ranges mapped into the address space. */
1963 
1964   char *name = __kmp_str_format("/proc/%d/maps", getpid());
1965   FILE *file = NULL;
1966 
1967   file = fopen(name, "r");
1968   KMP_ASSERT(file != NULL);
1969 
1970   for (;;) {
1971 
1972     void *beginning = NULL;
1973     void *ending = NULL;
1974     char perms[5];
1975 
1976     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1977     if (rc == EOF) {
1978       break;
1979     }
1980     KMP_ASSERT(rc == 3 &&
1981                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1982 
1983     // Ending address is not included in the region, but beginning is.
1984     if ((addr >= beginning) && (addr < ending)) {
1985       perms[2] = 0; // 3th and 4th character does not matter.
1986       if (strcmp(perms, "rw") == 0) {
1987         // Memory we are looking for should be readable and writable.
1988         found = 1;
1989       }
1990       break;
1991     }
1992   }
1993 
1994   // Free resources.
1995   fclose(file);
1996   KMP_INTERNAL_FREE(name);
1997 #elif KMP_OS_FREEBSD
1998   char *buf;
1999   size_t lstsz;
2000   int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2001   rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2002   if (rc < 0)
2003     return 0;
2004   // We pass from number of vm entry's semantic
2005   // to size of whole entry map list.
2006   lstsz = lstsz * 4 / 3;
2007   buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2008   rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2009   if (rc < 0) {
2010     kmpc_free(buf);
2011     return 0;
2012   }
2013 
2014   char *lw = buf;
2015   char *up = buf + lstsz;
2016 
2017   while (lw < up) {
2018     struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2019     size_t cursz = cur->kve_structsize;
2020     if (cursz == 0)
2021       break;
2022     void *start = reinterpret_cast<void *>(cur->kve_start);
2023     void *end = reinterpret_cast<void *>(cur->kve_end);
2024     // Readable/Writable addresses within current map entry
2025     if ((addr >= start) && (addr < end)) {
2026       if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2027           (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2028         found = 1;
2029         break;
2030       }
2031     }
2032     lw += cursz;
2033   }
2034   kmpc_free(buf);
2035 
2036 #elif KMP_OS_DARWIN
2037 
2038   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2039      using vm interface. */
2040 
2041   int buffer;
2042   vm_size_t count;
2043   rc = vm_read_overwrite(
2044       mach_task_self(), // Task to read memory of.
2045       (vm_address_t)(addr), // Address to read from.
2046       1, // Number of bytes to be read.
2047       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2048       &count // Address of var to save number of read bytes in.
2049   );
2050   if (rc == 0) {
2051     // Memory successfully read.
2052     found = 1;
2053   }
2054 
2055 #elif KMP_OS_NETBSD
2056 
2057   int mib[5];
2058   mib[0] = CTL_VM;
2059   mib[1] = VM_PROC;
2060   mib[2] = VM_PROC_MAP;
2061   mib[3] = getpid();
2062   mib[4] = sizeof(struct kinfo_vmentry);
2063 
2064   size_t size;
2065   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2066   KMP_ASSERT(!rc);
2067   KMP_ASSERT(size);
2068 
2069   size = size * 4 / 3;
2070   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2071   KMP_ASSERT(kiv);
2072 
2073   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2074   KMP_ASSERT(!rc);
2075   KMP_ASSERT(size);
2076 
2077   for (size_t i = 0; i < size; i++) {
2078     if (kiv[i].kve_start >= (uint64_t)addr &&
2079         kiv[i].kve_end <= (uint64_t)addr) {
2080       found = 1;
2081       break;
2082     }
2083   }
2084   KMP_INTERNAL_FREE(kiv);
2085 #elif KMP_OS_OPENBSD
2086 
2087   int mib[3];
2088   mib[0] = CTL_KERN;
2089   mib[1] = KERN_PROC_VMMAP;
2090   mib[2] = getpid();
2091 
2092   size_t size;
2093   uint64_t end;
2094   rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2095   KMP_ASSERT(!rc);
2096   KMP_ASSERT(size);
2097   end = size;
2098 
2099   struct kinfo_vmentry kiv = {.kve_start = 0};
2100 
2101   while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2102     KMP_ASSERT(size);
2103     if (kiv.kve_end == end)
2104       break;
2105 
2106     if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2107       found = 1;
2108       break;
2109     }
2110     kiv.kve_start += 1;
2111   }
2112 #elif KMP_OS_DRAGONFLY
2113 
2114   // FIXME(DragonFly): Implement this
2115   found = 1;
2116 
2117 #else
2118 
2119 #error "Unknown or unsupported OS"
2120 
2121 #endif
2122 
2123   return found;
2124 
2125 } // __kmp_is_address_mapped
2126 
2127 #ifdef USE_LOAD_BALANCE
2128 
2129 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2130 
2131 // The function returns the rounded value of the system load average
2132 // during given time interval which depends on the value of
2133 // __kmp_load_balance_interval variable (default is 60 sec, other values
2134 // may be 300 sec or 900 sec).
2135 // It returns -1 in case of error.
2136 int __kmp_get_load_balance(int max) {
2137   double averages[3];
2138   int ret_avg = 0;
2139 
2140   int res = getloadavg(averages, 3);
2141 
2142   // Check __kmp_load_balance_interval to determine which of averages to use.
2143   // getloadavg() may return the number of samples less than requested that is
2144   // less than 3.
2145   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2146     ret_avg = (int)averages[0]; // 1 min
2147   } else if ((__kmp_load_balance_interval >= 180 &&
2148               __kmp_load_balance_interval < 600) &&
2149              (res >= 2)) {
2150     ret_avg = (int)averages[1]; // 5 min
2151   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2152     ret_avg = (int)averages[2]; // 15 min
2153   } else { // Error occurred
2154     return -1;
2155   }
2156 
2157   return ret_avg;
2158 }
2159 
2160 #else // Linux* OS
2161 
2162 // The function returns number of running (not sleeping) threads, or -1 in case
2163 // of error. Error could be reported if Linux* OS kernel too old (without
2164 // "/proc" support). Counting running threads stops if max running threads
2165 // encountered.
2166 int __kmp_get_load_balance(int max) {
2167   static int permanent_error = 0;
2168   static int glb_running_threads = 0; // Saved count of the running threads for
2169   // the thread balance algorithm
2170   static double glb_call_time = 0; /* Thread balance algorithm call time */
2171 
2172   int running_threads = 0; // Number of running threads in the system.
2173 
2174   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2175   struct dirent *proc_entry = NULL;
2176 
2177   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2178   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2179   struct dirent *task_entry = NULL;
2180   int task_path_fixed_len;
2181 
2182   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2183   int stat_file = -1;
2184   int stat_path_fixed_len;
2185 
2186   int total_processes = 0; // Total number of processes in system.
2187   int total_threads = 0; // Total number of threads in system.
2188 
2189   double call_time = 0.0;
2190 
2191   __kmp_str_buf_init(&task_path);
2192   __kmp_str_buf_init(&stat_path);
2193 
2194   __kmp_elapsed(&call_time);
2195 
2196   if (glb_call_time &&
2197       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2198     running_threads = glb_running_threads;
2199     goto finish;
2200   }
2201 
2202   glb_call_time = call_time;
2203 
2204   // Do not spend time on scanning "/proc/" if we have a permanent error.
2205   if (permanent_error) {
2206     running_threads = -1;
2207     goto finish;
2208   }
2209 
2210   if (max <= 0) {
2211     max = INT_MAX;
2212   }
2213 
2214   // Open "/proc/" directory.
2215   proc_dir = opendir("/proc");
2216   if (proc_dir == NULL) {
2217     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2218     // error now and in subsequent calls.
2219     running_threads = -1;
2220     permanent_error = 1;
2221     goto finish;
2222   }
2223 
2224   // Initialize fixed part of task_path. This part will not change.
2225   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2226   task_path_fixed_len = task_path.used; // Remember number of used characters.
2227 
2228   proc_entry = readdir(proc_dir);
2229   while (proc_entry != NULL) {
2230     // Proc entry is a directory and name starts with a digit. Assume it is a
2231     // process' directory.
2232     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2233 
2234       ++total_processes;
2235       // Make sure init process is the very first in "/proc", so we can replace
2236       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2237       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2238       // true (where "=>" is implication). Since C++ does not have => operator,
2239       // let us replace it with its equivalent: a => b == ! a || b.
2240       KMP_DEBUG_ASSERT(total_processes != 1 ||
2241                        strcmp(proc_entry->d_name, "1") == 0);
2242 
2243       // Construct task_path.
2244       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2245       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2246                         KMP_STRLEN(proc_entry->d_name));
2247       __kmp_str_buf_cat(&task_path, "/task", 5);
2248 
2249       task_dir = opendir(task_path.str);
2250       if (task_dir == NULL) {
2251         // Process can finish between reading "/proc/" directory entry and
2252         // opening process' "task/" directory. So, in general case we should not
2253         // complain, but have to skip this process and read the next one. But on
2254         // systems with no "task/" support we will spend lot of time to scan
2255         // "/proc/" tree again and again without any benefit. "init" process
2256         // (its pid is 1) should exist always, so, if we cannot open
2257         // "/proc/1/task/" directory, it means "task/" is not supported by
2258         // kernel. Report an error now and in the future.
2259         if (strcmp(proc_entry->d_name, "1") == 0) {
2260           running_threads = -1;
2261           permanent_error = 1;
2262           goto finish;
2263         }
2264       } else {
2265         // Construct fixed part of stat file path.
2266         __kmp_str_buf_clear(&stat_path);
2267         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2268         __kmp_str_buf_cat(&stat_path, "/", 1);
2269         stat_path_fixed_len = stat_path.used;
2270 
2271         task_entry = readdir(task_dir);
2272         while (task_entry != NULL) {
2273           // It is a directory and name starts with a digit.
2274           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2275             ++total_threads;
2276 
2277             // Construct complete stat file path. Easiest way would be:
2278             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2279             //  task_entry->d_name );
2280             // but seriae of __kmp_str_buf_cat works a bit faster.
2281             stat_path.used =
2282                 stat_path_fixed_len; // Reset stat path to its fixed part.
2283             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2284                               KMP_STRLEN(task_entry->d_name));
2285             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2286 
2287             // Note: Low-level API (open/read/close) is used. High-level API
2288             // (fopen/fclose)  works ~ 30 % slower.
2289             stat_file = open(stat_path.str, O_RDONLY);
2290             if (stat_file == -1) {
2291               // We cannot report an error because task (thread) can terminate
2292               // just before reading this file.
2293             } else {
2294               /* Content of "stat" file looks like:
2295                  24285 (program) S ...
2296 
2297                  It is a single line (if program name does not include funny
2298                  symbols). First number is a thread id, then name of executable
2299                  file name in paretheses, then state of the thread. We need just
2300                  thread state.
2301 
2302                  Good news: Length of program name is 15 characters max. Longer
2303                  names are truncated.
2304 
2305                  Thus, we need rather short buffer: 15 chars for program name +
2306                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2307 
2308                  Bad news: Program name may contain special symbols like space,
2309                  closing parenthesis, or even new line. This makes parsing
2310                  "stat" file not 100 % reliable. In case of fanny program names
2311                  parsing may fail (report incorrect thread state).
2312 
2313                  Parsing "status" file looks more promissing (due to different
2314                  file structure and escaping special symbols) but reading and
2315                  parsing of "status" file works slower.
2316                   -- ln
2317               */
2318               char buffer[65];
2319               ssize_t len;
2320               len = read(stat_file, buffer, sizeof(buffer) - 1);
2321               if (len >= 0) {
2322                 buffer[len] = 0;
2323                 // Using scanf:
2324                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2325                 // looks very nice, but searching for a closing parenthesis
2326                 // works a bit faster.
2327                 char *close_parent = strstr(buffer, ") ");
2328                 if (close_parent != NULL) {
2329                   char state = *(close_parent + 2);
2330                   if (state == 'R') {
2331                     ++running_threads;
2332                     if (running_threads >= max) {
2333                       goto finish;
2334                     }
2335                   }
2336                 }
2337               }
2338               close(stat_file);
2339               stat_file = -1;
2340             }
2341           }
2342           task_entry = readdir(task_dir);
2343         }
2344         closedir(task_dir);
2345         task_dir = NULL;
2346       }
2347     }
2348     proc_entry = readdir(proc_dir);
2349   }
2350 
2351   // There _might_ be a timing hole where the thread executing this
2352   // code get skipped in the load balance, and running_threads is 0.
2353   // Assert in the debug builds only!!!
2354   KMP_DEBUG_ASSERT(running_threads > 0);
2355   if (running_threads <= 0) {
2356     running_threads = 1;
2357   }
2358 
2359 finish: // Clean up and exit.
2360   if (proc_dir != NULL) {
2361     closedir(proc_dir);
2362   }
2363   __kmp_str_buf_free(&task_path);
2364   if (task_dir != NULL) {
2365     closedir(task_dir);
2366   }
2367   __kmp_str_buf_free(&stat_path);
2368   if (stat_file != -1) {
2369     close(stat_file);
2370   }
2371 
2372   glb_running_threads = running_threads;
2373 
2374   return running_threads;
2375 
2376 } // __kmp_get_load_balance
2377 
2378 #endif // KMP_OS_DARWIN
2379 
2380 #endif // USE_LOAD_BALANCE
2381 
2382 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2383       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) ||                 \
2384       KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2385 
2386 // we really only need the case with 1 argument, because CLANG always build
2387 // a struct of pointers to shared variables referenced in the outlined function
2388 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2389                            void *p_argv[]
2390 #if OMPT_SUPPORT
2391                            ,
2392                            void **exit_frame_ptr
2393 #endif
2394 ) {
2395 #if OMPT_SUPPORT
2396   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2397 #endif
2398 
2399   switch (argc) {
2400   default:
2401     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2402     fflush(stderr);
2403     exit(-1);
2404   case 0:
2405     (*pkfn)(&gtid, &tid);
2406     break;
2407   case 1:
2408     (*pkfn)(&gtid, &tid, p_argv[0]);
2409     break;
2410   case 2:
2411     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2412     break;
2413   case 3:
2414     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2415     break;
2416   case 4:
2417     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2418     break;
2419   case 5:
2420     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2421     break;
2422   case 6:
2423     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2424             p_argv[5]);
2425     break;
2426   case 7:
2427     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2428             p_argv[5], p_argv[6]);
2429     break;
2430   case 8:
2431     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2432             p_argv[5], p_argv[6], p_argv[7]);
2433     break;
2434   case 9:
2435     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2436             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2437     break;
2438   case 10:
2439     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2440             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2441     break;
2442   case 11:
2443     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2444             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2445     break;
2446   case 12:
2447     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2448             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2449             p_argv[11]);
2450     break;
2451   case 13:
2452     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2453             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2454             p_argv[11], p_argv[12]);
2455     break;
2456   case 14:
2457     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2458             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2459             p_argv[11], p_argv[12], p_argv[13]);
2460     break;
2461   case 15:
2462     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2463             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2464             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2465     break;
2466   }
2467 
2468   return 1;
2469 }
2470 
2471 #endif
2472 
2473 #if KMP_OS_LINUX
2474 // Functions for hidden helper task
2475 namespace {
2476 // Condition variable for initializing hidden helper team
2477 pthread_cond_t hidden_helper_threads_initz_cond_var;
2478 pthread_mutex_t hidden_helper_threads_initz_lock;
2479 volatile int hidden_helper_initz_signaled = FALSE;
2480 
2481 // Condition variable for deinitializing hidden helper team
2482 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2483 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2484 volatile int hidden_helper_deinitz_signaled = FALSE;
2485 
2486 // Condition variable for the wrapper function of main thread
2487 pthread_cond_t hidden_helper_main_thread_cond_var;
2488 pthread_mutex_t hidden_helper_main_thread_lock;
2489 volatile int hidden_helper_main_thread_signaled = FALSE;
2490 
2491 // Semaphore for worker threads. We don't use condition variable here in case
2492 // that when multiple signals are sent at the same time, only one thread might
2493 // be waken.
2494 sem_t hidden_helper_task_sem;
2495 } // namespace
2496 
2497 void __kmp_hidden_helper_worker_thread_wait() {
2498   int status = sem_wait(&hidden_helper_task_sem);
2499   KMP_CHECK_SYSFAIL("sem_wait", status);
2500 }
2501 
2502 void __kmp_do_initialize_hidden_helper_threads() {
2503   // Initialize condition variable
2504   int status =
2505       pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2506   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2507 
2508   status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2509   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2510 
2511   status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2512   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2513 
2514   status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2515   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2516 
2517   status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2518   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2519 
2520   status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2521   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2522 
2523   // Initialize the semaphore
2524   status = sem_init(&hidden_helper_task_sem, 0, 0);
2525   KMP_CHECK_SYSFAIL("sem_init", status);
2526 
2527   // Create a new thread to finish initialization
2528   pthread_t handle;
2529   status = pthread_create(
2530       &handle, nullptr,
2531       [](void *) -> void * {
2532         __kmp_hidden_helper_threads_initz_routine();
2533         return nullptr;
2534       },
2535       nullptr);
2536   KMP_CHECK_SYSFAIL("pthread_create", status);
2537 }
2538 
2539 void __kmp_hidden_helper_threads_initz_wait() {
2540   // Initial thread waits here for the completion of the initialization. The
2541   // condition variable will be notified by main thread of hidden helper teams.
2542   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2543   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2544 
2545   if (!TCR_4(hidden_helper_initz_signaled)) {
2546     status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2547                                &hidden_helper_threads_initz_lock);
2548     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2549   }
2550 
2551   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2552   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2553 }
2554 
2555 void __kmp_hidden_helper_initz_release() {
2556   // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2557   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2558   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2559 
2560   status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2561   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2562 
2563   TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2564 
2565   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2566   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2567 }
2568 
2569 void __kmp_hidden_helper_main_thread_wait() {
2570   // The main thread of hidden helper team will be blocked here. The
2571   // condition variable can only be signal in the destructor of RTL.
2572   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2573   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2574 
2575   if (!TCR_4(hidden_helper_main_thread_signaled)) {
2576     status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2577                                &hidden_helper_main_thread_lock);
2578     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2579   }
2580 
2581   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2582   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2583 }
2584 
2585 void __kmp_hidden_helper_main_thread_release() {
2586   // The initial thread of OpenMP RTL should call this function to wake up the
2587   // main thread of hidden helper team.
2588   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2589   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2590 
2591   status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2592   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2593 
2594   // The hidden helper team is done here
2595   TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2596 
2597   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2598   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2599 }
2600 
2601 void __kmp_hidden_helper_worker_thread_signal() {
2602   int status = sem_post(&hidden_helper_task_sem);
2603   KMP_CHECK_SYSFAIL("sem_post", status);
2604 }
2605 
2606 void __kmp_hidden_helper_threads_deinitz_wait() {
2607   // Initial thread waits here for the completion of the deinitialization. The
2608   // condition variable will be notified by main thread of hidden helper teams.
2609   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2610   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2611 
2612   if (!TCR_4(hidden_helper_deinitz_signaled)) {
2613     status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2614                                &hidden_helper_threads_deinitz_lock);
2615     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2616   }
2617 
2618   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2619   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2620 }
2621 
2622 void __kmp_hidden_helper_threads_deinitz_release() {
2623   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2624   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2625 
2626   status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2627   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2628 
2629   TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2630 
2631   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2632   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2633 }
2634 #else // KMP_OS_LINUX
2635 void __kmp_hidden_helper_worker_thread_wait() {
2636   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2637 }
2638 
2639 void __kmp_do_initialize_hidden_helper_threads() {
2640   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2641 }
2642 
2643 void __kmp_hidden_helper_threads_initz_wait() {
2644   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2645 }
2646 
2647 void __kmp_hidden_helper_initz_release() {
2648   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2649 }
2650 
2651 void __kmp_hidden_helper_main_thread_wait() {
2652   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2653 }
2654 
2655 void __kmp_hidden_helper_main_thread_release() {
2656   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2657 }
2658 
2659 void __kmp_hidden_helper_worker_thread_signal() {
2660   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2661 }
2662 
2663 void __kmp_hidden_helper_threads_deinitz_wait() {
2664   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2665 }
2666 
2667 void __kmp_hidden_helper_threads_deinitz_release() {
2668   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2669 }
2670 #endif // KMP_OS_LINUX
2671 
2672 // end of file //
2673