1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
30 #include <sys/time.h>
31 #include <sys/times.h>
32 #include <unistd.h>
33 
34 #if KMP_OS_LINUX && !KMP_OS_CNK
35 #include <sys/sysinfo.h>
36 #if KMP_USE_FUTEX
37 // We should really include <futex.h>, but that causes compatibility problems on
38 // different Linux* OS distributions that either require that you include (or
39 // break when you try to include) <pci/types.h>. Since all we need is the two
40 // macros below (which are part of the kernel ABI, so can't change) we just
41 // define the constants here and don't include <futex.h>
42 #ifndef FUTEX_WAIT
43 #define FUTEX_WAIT 0
44 #endif
45 #ifndef FUTEX_WAKE
46 #define FUTEX_WAKE 1
47 #endif
48 #endif
49 #elif KMP_OS_DARWIN
50 #include <mach/mach.h>
51 #include <sys/sysctl.h>
52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
53 #include <pthread_np.h>
54 #elif KMP_OS_NETBSD
55 #include <sys/types.h>
56 #include <sys/sysctl.h>
57 #endif
58 
59 #include <ctype.h>
60 #include <dirent.h>
61 #include <fcntl.h>
62 
63 #include "tsan_annotations.h"
64 
65 struct kmp_sys_timer {
66   struct timespec start;
67 };
68 
69 // Convert timespec to nanoseconds.
70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
71 
72 static struct kmp_sys_timer __kmp_sys_timer_data;
73 
74 #if KMP_HANDLE_SIGNALS
75 typedef void (*sig_func_t)(int);
76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
77 static sigset_t __kmp_sigset;
78 #endif
79 
80 static int __kmp_init_runtime = FALSE;
81 
82 static int __kmp_fork_count = 0;
83 
84 static pthread_condattr_t __kmp_suspend_cond_attr;
85 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
86 
87 static kmp_cond_align_t __kmp_wait_cv;
88 static kmp_mutex_align_t __kmp_wait_mx;
89 
90 kmp_uint64 __kmp_ticks_per_msec = 1000000;
91 
92 #ifdef DEBUG_SUSPEND
93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
94   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
95                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
96                cond->c_cond.__c_waiting);
97 }
98 #endif
99 
100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
101 
102 /* Affinity support */
103 
104 void __kmp_affinity_bind_thread(int which) {
105   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
106               "Illegal set affinity operation when not capable");
107 
108   kmp_affin_mask_t *mask;
109   KMP_CPU_ALLOC_ON_STACK(mask);
110   KMP_CPU_ZERO(mask);
111   KMP_CPU_SET(which, mask);
112   __kmp_set_system_affinity(mask, TRUE);
113   KMP_CPU_FREE_FROM_STACK(mask);
114 }
115 
116 /* Determine if we can access affinity functionality on this version of
117  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
118  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
119 void __kmp_affinity_determine_capable(const char *env_var) {
120 // Check and see if the OS supports thread affinity.
121 
122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
123 
124   int gCode;
125   int sCode;
126   unsigned char *buf;
127   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
128 
129   // If Linux* OS:
130   // If the syscall fails or returns a suggestion for the size,
131   // then we don't have to search for an appropriate size.
132   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
133   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
134                 "initial getaffinity call returned %d errno = %d\n",
135                 gCode, errno));
136 
137   // if ((gCode < 0) && (errno == ENOSYS))
138   if (gCode < 0) {
139     // System call not supported
140     if (__kmp_affinity_verbose ||
141         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
142          (__kmp_affinity_type != affinity_default) &&
143          (__kmp_affinity_type != affinity_disabled))) {
144       int error = errno;
145       kmp_msg_t err_code = KMP_ERR(error);
146       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
147                 err_code, __kmp_msg_null);
148       if (__kmp_generate_warnings == kmp_warnings_off) {
149         __kmp_str_free(&err_code.str);
150       }
151     }
152     KMP_AFFINITY_DISABLE();
153     KMP_INTERNAL_FREE(buf);
154     return;
155   }
156   if (gCode > 0) { // Linux* OS only
157     // The optimal situation: the OS returns the size of the buffer it expects.
158     //
159     // A verification of correct behavior is that Isetaffinity on a NULL
160     // buffer with the same size fails with errno set to EFAULT.
161     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
162     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
163                   "setaffinity for mask size %d returned %d errno = %d\n",
164                   gCode, sCode, errno));
165     if (sCode < 0) {
166       if (errno == ENOSYS) {
167         if (__kmp_affinity_verbose ||
168             (__kmp_affinity_warnings &&
169              (__kmp_affinity_type != affinity_none) &&
170              (__kmp_affinity_type != affinity_default) &&
171              (__kmp_affinity_type != affinity_disabled))) {
172           int error = errno;
173           kmp_msg_t err_code = KMP_ERR(error);
174           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
175                     err_code, __kmp_msg_null);
176           if (__kmp_generate_warnings == kmp_warnings_off) {
177             __kmp_str_free(&err_code.str);
178           }
179         }
180         KMP_AFFINITY_DISABLE();
181         KMP_INTERNAL_FREE(buf);
182       }
183       if (errno == EFAULT) {
184         KMP_AFFINITY_ENABLE(gCode);
185         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
186                       "affinity supported (mask size %d)\n",
187                       (int)__kmp_affin_mask_size));
188         KMP_INTERNAL_FREE(buf);
189         return;
190       }
191     }
192   }
193 
194   // Call the getaffinity system call repeatedly with increasing set sizes
195   // until we succeed, or reach an upper bound on the search.
196   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
197                 "searching for proper set size\n"));
198   int size;
199   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
200     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
201     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
202                   "getaffinity for mask size %d returned %d errno = %d\n",
203                   size, gCode, errno));
204 
205     if (gCode < 0) {
206       if (errno == ENOSYS) {
207         // We shouldn't get here
208         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
209                       "inconsistent OS call behavior: errno == ENOSYS for mask "
210                       "size %d\n",
211                       size));
212         if (__kmp_affinity_verbose ||
213             (__kmp_affinity_warnings &&
214              (__kmp_affinity_type != affinity_none) &&
215              (__kmp_affinity_type != affinity_default) &&
216              (__kmp_affinity_type != affinity_disabled))) {
217           int error = errno;
218           kmp_msg_t err_code = KMP_ERR(error);
219           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
220                     err_code, __kmp_msg_null);
221           if (__kmp_generate_warnings == kmp_warnings_off) {
222             __kmp_str_free(&err_code.str);
223           }
224         }
225         KMP_AFFINITY_DISABLE();
226         KMP_INTERNAL_FREE(buf);
227         return;
228       }
229       continue;
230     }
231 
232     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
233     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
234                   "setaffinity for mask size %d returned %d errno = %d\n",
235                   gCode, sCode, errno));
236     if (sCode < 0) {
237       if (errno == ENOSYS) { // Linux* OS only
238         // We shouldn't get here
239         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
240                       "inconsistent OS call behavior: errno == ENOSYS for mask "
241                       "size %d\n",
242                       size));
243         if (__kmp_affinity_verbose ||
244             (__kmp_affinity_warnings &&
245              (__kmp_affinity_type != affinity_none) &&
246              (__kmp_affinity_type != affinity_default) &&
247              (__kmp_affinity_type != affinity_disabled))) {
248           int error = errno;
249           kmp_msg_t err_code = KMP_ERR(error);
250           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
251                     err_code, __kmp_msg_null);
252           if (__kmp_generate_warnings == kmp_warnings_off) {
253             __kmp_str_free(&err_code.str);
254           }
255         }
256         KMP_AFFINITY_DISABLE();
257         KMP_INTERNAL_FREE(buf);
258         return;
259       }
260       if (errno == EFAULT) {
261         KMP_AFFINITY_ENABLE(gCode);
262         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
263                       "affinity supported (mask size %d)\n",
264                       (int)__kmp_affin_mask_size));
265         KMP_INTERNAL_FREE(buf);
266         return;
267       }
268     }
269   }
270   // save uncaught error code
271   // int error = errno;
272   KMP_INTERNAL_FREE(buf);
273   // restore uncaught error code, will be printed at the next KMP_WARNING below
274   // errno = error;
275 
276   // Affinity is not supported
277   KMP_AFFINITY_DISABLE();
278   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
279                 "cannot determine mask size - affinity not supported\n"));
280   if (__kmp_affinity_verbose ||
281       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
282        (__kmp_affinity_type != affinity_default) &&
283        (__kmp_affinity_type != affinity_disabled))) {
284     KMP_WARNING(AffCantGetMaskSize, env_var);
285   }
286 }
287 
288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
289 
290 #if KMP_USE_FUTEX
291 
292 int __kmp_futex_determine_capable() {
293   int loc = 0;
294   int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
295   int retval = (rc == 0) || (errno != ENOSYS);
296 
297   KA_TRACE(10,
298            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
299   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
300                 retval ? "" : " not"));
301 
302   return retval;
303 }
304 
305 #endif // KMP_USE_FUTEX
306 
307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
309    use compare_and_store for these routines */
310 
311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
312   kmp_int8 old_value, new_value;
313 
314   old_value = TCR_1(*p);
315   new_value = old_value | d;
316 
317   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
318     KMP_CPU_PAUSE();
319     old_value = TCR_1(*p);
320     new_value = old_value | d;
321   }
322   return old_value;
323 }
324 
325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
326   kmp_int8 old_value, new_value;
327 
328   old_value = TCR_1(*p);
329   new_value = old_value & d;
330 
331   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
332     KMP_CPU_PAUSE();
333     old_value = TCR_1(*p);
334     new_value = old_value & d;
335   }
336   return old_value;
337 }
338 
339 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
340   kmp_uint32 old_value, new_value;
341 
342   old_value = TCR_4(*p);
343   new_value = old_value | d;
344 
345   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
346     KMP_CPU_PAUSE();
347     old_value = TCR_4(*p);
348     new_value = old_value | d;
349   }
350   return old_value;
351 }
352 
353 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
354   kmp_uint32 old_value, new_value;
355 
356   old_value = TCR_4(*p);
357   new_value = old_value & d;
358 
359   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
360     KMP_CPU_PAUSE();
361     old_value = TCR_4(*p);
362     new_value = old_value & d;
363   }
364   return old_value;
365 }
366 
367 #if KMP_ARCH_X86
368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
369   kmp_int8 old_value, new_value;
370 
371   old_value = TCR_1(*p);
372   new_value = old_value + d;
373 
374   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
375     KMP_CPU_PAUSE();
376     old_value = TCR_1(*p);
377     new_value = old_value + d;
378   }
379   return old_value;
380 }
381 
382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
383   kmp_int64 old_value, new_value;
384 
385   old_value = TCR_8(*p);
386   new_value = old_value + d;
387 
388   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
389     KMP_CPU_PAUSE();
390     old_value = TCR_8(*p);
391     new_value = old_value + d;
392   }
393   return old_value;
394 }
395 #endif /* KMP_ARCH_X86 */
396 
397 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
398   kmp_uint64 old_value, new_value;
399 
400   old_value = TCR_8(*p);
401   new_value = old_value | d;
402   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
403     KMP_CPU_PAUSE();
404     old_value = TCR_8(*p);
405     new_value = old_value | d;
406   }
407   return old_value;
408 }
409 
410 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
411   kmp_uint64 old_value, new_value;
412 
413   old_value = TCR_8(*p);
414   new_value = old_value & d;
415   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416     KMP_CPU_PAUSE();
417     old_value = TCR_8(*p);
418     new_value = old_value & d;
419   }
420   return old_value;
421 }
422 
423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
424 
425 void __kmp_terminate_thread(int gtid) {
426   int status;
427   kmp_info_t *th = __kmp_threads[gtid];
428 
429   if (!th)
430     return;
431 
432 #ifdef KMP_CANCEL_THREADS
433   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
434   status = pthread_cancel(th->th.th_info.ds.ds_thread);
435   if (status != 0 && status != ESRCH) {
436     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
437                 __kmp_msg_null);
438   }
439 #endif
440   KMP_YIELD(TRUE);
441 } //
442 
443 /* Set thread stack info according to values returned by pthread_getattr_np().
444    If values are unreasonable, assume call failed and use incremental stack
445    refinement method instead. Returns TRUE if the stack parameters could be
446    determined exactly, FALSE if incremental refinement is necessary. */
447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
448   int stack_data;
449 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
450         KMP_OS_HURD
451   pthread_attr_t attr;
452   int status;
453   size_t size = 0;
454   void *addr = 0;
455 
456   /* Always do incremental stack refinement for ubermaster threads since the
457      initial thread stack range can be reduced by sibling thread creation so
458      pthread_attr_getstack may cause thread gtid aliasing */
459   if (!KMP_UBER_GTID(gtid)) {
460 
461     /* Fetch the real thread attributes */
462     status = pthread_attr_init(&attr);
463     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
464 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
465     status = pthread_attr_get_np(pthread_self(), &attr);
466     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
467 #else
468     status = pthread_getattr_np(pthread_self(), &attr);
469     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
470 #endif
471     status = pthread_attr_getstack(&attr, &addr, &size);
472     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
473     KA_TRACE(60,
474              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
475               " %lu, low addr: %p\n",
476               gtid, size, addr));
477     status = pthread_attr_destroy(&attr);
478     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
479   }
480 
481   if (size != 0 && addr != 0) { // was stack parameter determination successful?
482     /* Store the correct base and size */
483     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
484     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
485     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
486     return TRUE;
487   }
488 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
489               KMP_OS_HURD */
490   /* Use incremental refinement starting from initial conservative estimate */
491   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
492   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
493   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
494   return FALSE;
495 }
496 
497 static void *__kmp_launch_worker(void *thr) {
498   int status, old_type, old_state;
499 #ifdef KMP_BLOCK_SIGNALS
500   sigset_t new_set, old_set;
501 #endif /* KMP_BLOCK_SIGNALS */
502   void *exit_val;
503 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
504         KMP_OS_OPENBSD || KMP_OS_HURD
505   void *volatile padding = 0;
506 #endif
507   int gtid;
508 
509   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
510   __kmp_gtid_set_specific(gtid);
511 #ifdef KMP_TDATA_GTID
512   __kmp_gtid = gtid;
513 #endif
514 #if KMP_STATS_ENABLED
515   // set thread local index to point to thread-specific stats
516   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
517   __kmp_stats_thread_ptr->startLife();
518   KMP_SET_THREAD_STATE(IDLE);
519   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
520 #endif
521 
522 #if USE_ITT_BUILD
523   __kmp_itt_thread_name(gtid);
524 #endif /* USE_ITT_BUILD */
525 
526 #if KMP_AFFINITY_SUPPORTED
527   __kmp_affinity_set_init_mask(gtid, FALSE);
528 #endif
529 
530 #ifdef KMP_CANCEL_THREADS
531   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
532   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
533   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
534   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
535   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
536 #endif
537 
538 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
539   // Set FP control regs to be a copy of the parallel initialization thread's.
540   __kmp_clear_x87_fpu_status_word();
541   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
542   __kmp_load_mxcsr(&__kmp_init_mxcsr);
543 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
544 
545 #ifdef KMP_BLOCK_SIGNALS
546   status = sigfillset(&new_set);
547   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
548   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
549   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
550 #endif /* KMP_BLOCK_SIGNALS */
551 
552 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
553         KMP_OS_OPENBSD
554   if (__kmp_stkoffset > 0 && gtid > 0) {
555     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
556   }
557 #endif
558 
559   KMP_MB();
560   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
561 
562   __kmp_check_stack_overlap((kmp_info_t *)thr);
563 
564   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
565 
566 #ifdef KMP_BLOCK_SIGNALS
567   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
568   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
569 #endif /* KMP_BLOCK_SIGNALS */
570 
571   return exit_val;
572 }
573 
574 #if KMP_USE_MONITOR
575 /* The monitor thread controls all of the threads in the complex */
576 
577 static void *__kmp_launch_monitor(void *thr) {
578   int status, old_type, old_state;
579 #ifdef KMP_BLOCK_SIGNALS
580   sigset_t new_set;
581 #endif /* KMP_BLOCK_SIGNALS */
582   struct timespec interval;
583 
584   KMP_MB(); /* Flush all pending memory write invalidates.  */
585 
586   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
587 
588   /* register us as the monitor thread */
589   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
590 #ifdef KMP_TDATA_GTID
591   __kmp_gtid = KMP_GTID_MONITOR;
592 #endif
593 
594   KMP_MB();
595 
596 #if USE_ITT_BUILD
597   // Instruct Intel(R) Threading Tools to ignore monitor thread.
598   __kmp_itt_thread_ignore();
599 #endif /* USE_ITT_BUILD */
600 
601   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
602                        (kmp_info_t *)thr);
603 
604   __kmp_check_stack_overlap((kmp_info_t *)thr);
605 
606 #ifdef KMP_CANCEL_THREADS
607   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
608   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
609   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
610   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
611   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
612 #endif
613 
614 #if KMP_REAL_TIME_FIX
615   // This is a potential fix which allows application with real-time scheduling
616   // policy work. However, decision about the fix is not made yet, so it is
617   // disabled by default.
618   { // Are program started with real-time scheduling policy?
619     int sched = sched_getscheduler(0);
620     if (sched == SCHED_FIFO || sched == SCHED_RR) {
621       // Yes, we are a part of real-time application. Try to increase the
622       // priority of the monitor.
623       struct sched_param param;
624       int max_priority = sched_get_priority_max(sched);
625       int rc;
626       KMP_WARNING(RealTimeSchedNotSupported);
627       sched_getparam(0, &param);
628       if (param.sched_priority < max_priority) {
629         param.sched_priority += 1;
630         rc = sched_setscheduler(0, sched, &param);
631         if (rc != 0) {
632           int error = errno;
633           kmp_msg_t err_code = KMP_ERR(error);
634           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
635                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
636           if (__kmp_generate_warnings == kmp_warnings_off) {
637             __kmp_str_free(&err_code.str);
638           }
639         }
640       } else {
641         // We cannot abort here, because number of CPUs may be enough for all
642         // the threads, including the monitor thread, so application could
643         // potentially work...
644         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
645                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
646                   __kmp_msg_null);
647       }
648     }
649     // AC: free thread that waits for monitor started
650     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
651   }
652 #endif // KMP_REAL_TIME_FIX
653 
654   KMP_MB(); /* Flush all pending memory write invalidates.  */
655 
656   if (__kmp_monitor_wakeups == 1) {
657     interval.tv_sec = 1;
658     interval.tv_nsec = 0;
659   } else {
660     interval.tv_sec = 0;
661     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
662   }
663 
664   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
665 
666   while (!TCR_4(__kmp_global.g.g_done)) {
667     struct timespec now;
668     struct timeval tval;
669 
670     /*  This thread monitors the state of the system */
671 
672     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
673 
674     status = gettimeofday(&tval, NULL);
675     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
676     TIMEVAL_TO_TIMESPEC(&tval, &now);
677 
678     now.tv_sec += interval.tv_sec;
679     now.tv_nsec += interval.tv_nsec;
680 
681     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
682       now.tv_sec += 1;
683       now.tv_nsec -= KMP_NSEC_PER_SEC;
684     }
685 
686     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
687     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
688     // AC: the monitor should not fall asleep if g_done has been set
689     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
690       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
691                                       &__kmp_wait_mx.m_mutex, &now);
692       if (status != 0) {
693         if (status != ETIMEDOUT && status != EINTR) {
694           KMP_SYSFAIL("pthread_cond_timedwait", status);
695         }
696       }
697     }
698     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
699     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
700 
701     TCW_4(__kmp_global.g.g_time.dt.t_value,
702           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
703 
704     KMP_MB(); /* Flush all pending memory write invalidates.  */
705   }
706 
707   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
708 
709 #ifdef KMP_BLOCK_SIGNALS
710   status = sigfillset(&new_set);
711   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
712   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
713   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
714 #endif /* KMP_BLOCK_SIGNALS */
715 
716   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
717 
718   if (__kmp_global.g.g_abort != 0) {
719     /* now we need to terminate the worker threads  */
720     /* the value of t_abort is the signal we caught */
721 
722     int gtid;
723 
724     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
725                   __kmp_global.g.g_abort));
726 
727     /* terminate the OpenMP worker threads */
728     /* TODO this is not valid for sibling threads!!
729      * the uber master might not be 0 anymore.. */
730     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
731       __kmp_terminate_thread(gtid);
732 
733     __kmp_cleanup();
734 
735     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
736                   __kmp_global.g.g_abort));
737 
738     if (__kmp_global.g.g_abort > 0)
739       raise(__kmp_global.g.g_abort);
740   }
741 
742   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
743 
744   return thr;
745 }
746 #endif // KMP_USE_MONITOR
747 
748 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
749   pthread_t handle;
750   pthread_attr_t thread_attr;
751   int status;
752 
753   th->th.th_info.ds.ds_gtid = gtid;
754 
755 #if KMP_STATS_ENABLED
756   // sets up worker thread stats
757   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
758 
759   // th->th.th_stats is used to transfer thread-specific stats-pointer to
760   // __kmp_launch_worker. So when thread is created (goes into
761   // __kmp_launch_worker) it will set its thread local pointer to
762   // th->th.th_stats
763   if (!KMP_UBER_GTID(gtid)) {
764     th->th.th_stats = __kmp_stats_list->push_back(gtid);
765   } else {
766     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
767     // so set the th->th.th_stats field to it.
768     th->th.th_stats = __kmp_stats_thread_ptr;
769   }
770   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
771 
772 #endif // KMP_STATS_ENABLED
773 
774   if (KMP_UBER_GTID(gtid)) {
775     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
776     th->th.th_info.ds.ds_thread = pthread_self();
777     __kmp_set_stack_info(gtid, th);
778     __kmp_check_stack_overlap(th);
779     return;
780   }
781 
782   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
783 
784   KMP_MB(); /* Flush all pending memory write invalidates.  */
785 
786 #ifdef KMP_THREAD_ATTR
787   status = pthread_attr_init(&thread_attr);
788   if (status != 0) {
789     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
790   }
791   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
792   if (status != 0) {
793     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
794   }
795 
796   /* Set stack size for this thread now.
797      The multiple of 2 is there because on some machines, requesting an unusual
798      stacksize causes the thread to have an offset before the dummy alloca()
799      takes place to create the offset.  Since we want the user to have a
800      sufficient stacksize AND support a stack offset, we alloca() twice the
801      offset so that the upcoming alloca() does not eliminate any premade offset,
802      and also gives the user the stack space they requested for all threads */
803   stack_size += gtid * __kmp_stkoffset * 2;
804 
805   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
806                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
807                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
808 
809 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
810   status = pthread_attr_setstacksize(&thread_attr, stack_size);
811 #ifdef KMP_BACKUP_STKSIZE
812   if (status != 0) {
813     if (!__kmp_env_stksize) {
814       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
815       __kmp_stksize = KMP_BACKUP_STKSIZE;
816       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
817                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
818                     "bytes\n",
819                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
820       status = pthread_attr_setstacksize(&thread_attr, stack_size);
821     }
822   }
823 #endif /* KMP_BACKUP_STKSIZE */
824   if (status != 0) {
825     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
826                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
827   }
828 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
829 
830 #endif /* KMP_THREAD_ATTR */
831 
832   status =
833       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
834   if (status != 0 || !handle) { // ??? Why do we check handle??
835 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
836     if (status == EINVAL) {
837       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
838                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
839     }
840     if (status == ENOMEM) {
841       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
842                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
843     }
844 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
845     if (status == EAGAIN) {
846       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
847                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
848     }
849     KMP_SYSFAIL("pthread_create", status);
850   }
851 
852   th->th.th_info.ds.ds_thread = handle;
853 
854 #ifdef KMP_THREAD_ATTR
855   status = pthread_attr_destroy(&thread_attr);
856   if (status) {
857     kmp_msg_t err_code = KMP_ERR(status);
858     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
859               __kmp_msg_null);
860     if (__kmp_generate_warnings == kmp_warnings_off) {
861       __kmp_str_free(&err_code.str);
862     }
863   }
864 #endif /* KMP_THREAD_ATTR */
865 
866   KMP_MB(); /* Flush all pending memory write invalidates.  */
867 
868   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
869 
870 } // __kmp_create_worker
871 
872 #if KMP_USE_MONITOR
873 void __kmp_create_monitor(kmp_info_t *th) {
874   pthread_t handle;
875   pthread_attr_t thread_attr;
876   size_t size;
877   int status;
878   int auto_adj_size = FALSE;
879 
880   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
881     // We don't need monitor thread in case of MAX_BLOCKTIME
882     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
883                   "MAX blocktime\n"));
884     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
885     th->th.th_info.ds.ds_gtid = 0;
886     return;
887   }
888   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
889 
890   KMP_MB(); /* Flush all pending memory write invalidates.  */
891 
892   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
893   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
894 #if KMP_REAL_TIME_FIX
895   TCW_4(__kmp_global.g.g_time.dt.t_value,
896         -1); // Will use it for synchronization a bit later.
897 #else
898   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
899 #endif // KMP_REAL_TIME_FIX
900 
901 #ifdef KMP_THREAD_ATTR
902   if (__kmp_monitor_stksize == 0) {
903     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
904     auto_adj_size = TRUE;
905   }
906   status = pthread_attr_init(&thread_attr);
907   if (status != 0) {
908     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
909   }
910   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
911   if (status != 0) {
912     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
913   }
914 
915 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
916   status = pthread_attr_getstacksize(&thread_attr, &size);
917   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
918 #else
919   size = __kmp_sys_min_stksize;
920 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
921 #endif /* KMP_THREAD_ATTR */
922 
923   if (__kmp_monitor_stksize == 0) {
924     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
925   }
926   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
927     __kmp_monitor_stksize = __kmp_sys_min_stksize;
928   }
929 
930   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
931                 "requested stacksize = %lu bytes\n",
932                 size, __kmp_monitor_stksize));
933 
934 retry:
935 
936 /* Set stack size for this thread now. */
937 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
938   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
939                 __kmp_monitor_stksize));
940   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
941   if (status != 0) {
942     if (auto_adj_size) {
943       __kmp_monitor_stksize *= 2;
944       goto retry;
945     }
946     kmp_msg_t err_code = KMP_ERR(status);
947     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
948               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
949               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
950     if (__kmp_generate_warnings == kmp_warnings_off) {
951       __kmp_str_free(&err_code.str);
952     }
953   }
954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
955 
956   status =
957       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
958 
959   if (status != 0) {
960 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
961     if (status == EINVAL) {
962       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
963         __kmp_monitor_stksize *= 2;
964         goto retry;
965       }
966       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
967                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
968                   __kmp_msg_null);
969     }
970     if (status == ENOMEM) {
971       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
972                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
973                   __kmp_msg_null);
974     }
975 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
976     if (status == EAGAIN) {
977       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
978                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
979     }
980     KMP_SYSFAIL("pthread_create", status);
981   }
982 
983   th->th.th_info.ds.ds_thread = handle;
984 
985 #if KMP_REAL_TIME_FIX
986   // Wait for the monitor thread is really started and set its *priority*.
987   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
988                    sizeof(__kmp_global.g.g_time.dt.t_value));
989   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
990                &__kmp_neq_4, NULL);
991 #endif // KMP_REAL_TIME_FIX
992 
993 #ifdef KMP_THREAD_ATTR
994   status = pthread_attr_destroy(&thread_attr);
995   if (status != 0) {
996     kmp_msg_t err_code = KMP_ERR(status);
997     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
998               __kmp_msg_null);
999     if (__kmp_generate_warnings == kmp_warnings_off) {
1000       __kmp_str_free(&err_code.str);
1001     }
1002   }
1003 #endif
1004 
1005   KMP_MB(); /* Flush all pending memory write invalidates.  */
1006 
1007   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1008                 th->th.th_info.ds.ds_thread));
1009 
1010 } // __kmp_create_monitor
1011 #endif // KMP_USE_MONITOR
1012 
1013 void __kmp_exit_thread(int exit_status) {
1014   pthread_exit((void *)(intptr_t)exit_status);
1015 } // __kmp_exit_thread
1016 
1017 #if KMP_USE_MONITOR
1018 void __kmp_resume_monitor();
1019 
1020 void __kmp_reap_monitor(kmp_info_t *th) {
1021   int status;
1022   void *exit_val;
1023 
1024   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1025                 " %#.8lx\n",
1026                 th->th.th_info.ds.ds_thread));
1027 
1028   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1029   // If both tid and gtid are 0, it means the monitor did not ever start.
1030   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1031   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1032   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1033     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1034     return;
1035   }
1036 
1037   KMP_MB(); /* Flush all pending memory write invalidates.  */
1038 
1039   /* First, check to see whether the monitor thread exists to wake it up. This
1040      is to avoid performance problem when the monitor sleeps during
1041      blocktime-size interval */
1042 
1043   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1044   if (status != ESRCH) {
1045     __kmp_resume_monitor(); // Wake up the monitor thread
1046   }
1047   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1048   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1049   if (exit_val != th) {
1050     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1051   }
1052 
1053   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1054   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1055 
1056   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1057                 " %#.8lx\n",
1058                 th->th.th_info.ds.ds_thread));
1059 
1060   KMP_MB(); /* Flush all pending memory write invalidates.  */
1061 }
1062 #endif // KMP_USE_MONITOR
1063 
1064 void __kmp_reap_worker(kmp_info_t *th) {
1065   int status;
1066   void *exit_val;
1067 
1068   KMP_MB(); /* Flush all pending memory write invalidates.  */
1069 
1070   KA_TRACE(
1071       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1072 
1073   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1074 #ifdef KMP_DEBUG
1075   /* Don't expose these to the user until we understand when they trigger */
1076   if (status != 0) {
1077     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1078   }
1079   if (exit_val != th) {
1080     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1081                   "exit_val = %p\n",
1082                   th->th.th_info.ds.ds_gtid, exit_val));
1083   }
1084 #endif /* KMP_DEBUG */
1085 
1086   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1087                 th->th.th_info.ds.ds_gtid));
1088 
1089   KMP_MB(); /* Flush all pending memory write invalidates.  */
1090 }
1091 
1092 #if KMP_HANDLE_SIGNALS
1093 
1094 static void __kmp_null_handler(int signo) {
1095   //  Do nothing, for doing SIG_IGN-type actions.
1096 } // __kmp_null_handler
1097 
1098 static void __kmp_team_handler(int signo) {
1099   if (__kmp_global.g.g_abort == 0) {
1100 /* Stage 1 signal handler, let's shut down all of the threads */
1101 #ifdef KMP_DEBUG
1102     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1103 #endif
1104     switch (signo) {
1105     case SIGHUP:
1106     case SIGINT:
1107     case SIGQUIT:
1108     case SIGILL:
1109     case SIGABRT:
1110     case SIGFPE:
1111     case SIGBUS:
1112     case SIGSEGV:
1113 #ifdef SIGSYS
1114     case SIGSYS:
1115 #endif
1116     case SIGTERM:
1117       if (__kmp_debug_buf) {
1118         __kmp_dump_debug_buffer();
1119       }
1120       KMP_MB(); // Flush all pending memory write invalidates.
1121       TCW_4(__kmp_global.g.g_abort, signo);
1122       KMP_MB(); // Flush all pending memory write invalidates.
1123       TCW_4(__kmp_global.g.g_done, TRUE);
1124       KMP_MB(); // Flush all pending memory write invalidates.
1125       break;
1126     default:
1127 #ifdef KMP_DEBUG
1128       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1129 #endif
1130       break;
1131     }
1132   }
1133 } // __kmp_team_handler
1134 
1135 static void __kmp_sigaction(int signum, const struct sigaction *act,
1136                             struct sigaction *oldact) {
1137   int rc = sigaction(signum, act, oldact);
1138   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1139 }
1140 
1141 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1142                                       int parallel_init) {
1143   KMP_MB(); // Flush all pending memory write invalidates.
1144   KB_TRACE(60,
1145            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1146   if (parallel_init) {
1147     struct sigaction new_action;
1148     struct sigaction old_action;
1149     new_action.sa_handler = handler_func;
1150     new_action.sa_flags = 0;
1151     sigfillset(&new_action.sa_mask);
1152     __kmp_sigaction(sig, &new_action, &old_action);
1153     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1154       sigaddset(&__kmp_sigset, sig);
1155     } else {
1156       // Restore/keep user's handler if one previously installed.
1157       __kmp_sigaction(sig, &old_action, NULL);
1158     }
1159   } else {
1160     // Save initial/system signal handlers to see if user handlers installed.
1161     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1162   }
1163   KMP_MB(); // Flush all pending memory write invalidates.
1164 } // __kmp_install_one_handler
1165 
1166 static void __kmp_remove_one_handler(int sig) {
1167   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1168   if (sigismember(&__kmp_sigset, sig)) {
1169     struct sigaction old;
1170     KMP_MB(); // Flush all pending memory write invalidates.
1171     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1172     if ((old.sa_handler != __kmp_team_handler) &&
1173         (old.sa_handler != __kmp_null_handler)) {
1174       // Restore the users signal handler.
1175       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1176                     "restoring: sig=%d\n",
1177                     sig));
1178       __kmp_sigaction(sig, &old, NULL);
1179     }
1180     sigdelset(&__kmp_sigset, sig);
1181     KMP_MB(); // Flush all pending memory write invalidates.
1182   }
1183 } // __kmp_remove_one_handler
1184 
1185 void __kmp_install_signals(int parallel_init) {
1186   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1187   if (__kmp_handle_signals || !parallel_init) {
1188     // If ! parallel_init, we do not install handlers, just save original
1189     // handlers. Let us do it even __handle_signals is 0.
1190     sigemptyset(&__kmp_sigset);
1191     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1192     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1193     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1194     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1195     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1196     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1197     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1198     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1199 #ifdef SIGSYS
1200     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1201 #endif // SIGSYS
1202     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1203 #ifdef SIGPIPE
1204     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1205 #endif // SIGPIPE
1206   }
1207 } // __kmp_install_signals
1208 
1209 void __kmp_remove_signals(void) {
1210   int sig;
1211   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1212   for (sig = 1; sig < NSIG; ++sig) {
1213     __kmp_remove_one_handler(sig);
1214   }
1215 } // __kmp_remove_signals
1216 
1217 #endif // KMP_HANDLE_SIGNALS
1218 
1219 void __kmp_enable(int new_state) {
1220 #ifdef KMP_CANCEL_THREADS
1221   int status, old_state;
1222   status = pthread_setcancelstate(new_state, &old_state);
1223   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1224   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1225 #endif
1226 }
1227 
1228 void __kmp_disable(int *old_state) {
1229 #ifdef KMP_CANCEL_THREADS
1230   int status;
1231   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1232   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1233 #endif
1234 }
1235 
1236 static void __kmp_atfork_prepare(void) {
1237   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1238   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1239 }
1240 
1241 static void __kmp_atfork_parent(void) {
1242   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1243   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1244 }
1245 
1246 /* Reset the library so execution in the child starts "all over again" with
1247    clean data structures in initial states.  Don't worry about freeing memory
1248    allocated by parent, just abandon it to be safe. */
1249 static void __kmp_atfork_child(void) {
1250   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1251   /* TODO make sure this is done right for nested/sibling */
1252   // ATT:  Memory leaks are here? TODO: Check it and fix.
1253   /* KMP_ASSERT( 0 ); */
1254 
1255   ++__kmp_fork_count;
1256 
1257 #if KMP_AFFINITY_SUPPORTED
1258 #if KMP_OS_LINUX
1259   // reset the affinity in the child to the initial thread
1260   // affinity in the parent
1261   kmp_set_thread_affinity_mask_initial();
1262 #endif
1263   // Set default not to bind threads tightly in the child (we’re expecting
1264   // over-subscription after the fork and this can improve things for
1265   // scripting languages that use OpenMP inside process-parallel code).
1266   __kmp_affinity_type = affinity_none;
1267 #if OMP_40_ENABLED
1268   if (__kmp_nested_proc_bind.bind_types != NULL) {
1269     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1270   }
1271 #endif // OMP_40_ENABLED
1272 #endif // KMP_AFFINITY_SUPPORTED
1273 
1274   __kmp_init_runtime = FALSE;
1275 #if KMP_USE_MONITOR
1276   __kmp_init_monitor = 0;
1277 #endif
1278   __kmp_init_parallel = FALSE;
1279   __kmp_init_middle = FALSE;
1280   __kmp_init_serial = FALSE;
1281   TCW_4(__kmp_init_gtid, FALSE);
1282   __kmp_init_common = FALSE;
1283 
1284   TCW_4(__kmp_init_user_locks, FALSE);
1285 #if !KMP_USE_DYNAMIC_LOCK
1286   __kmp_user_lock_table.used = 1;
1287   __kmp_user_lock_table.allocated = 0;
1288   __kmp_user_lock_table.table = NULL;
1289   __kmp_lock_blocks = NULL;
1290 #endif
1291 
1292   __kmp_all_nth = 0;
1293   TCW_4(__kmp_nth, 0);
1294 
1295   __kmp_thread_pool = NULL;
1296   __kmp_thread_pool_insert_pt = NULL;
1297   __kmp_team_pool = NULL;
1298 
1299   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1300      here so threadprivate doesn't use stale data */
1301   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1302                 __kmp_threadpriv_cache_list));
1303 
1304   while (__kmp_threadpriv_cache_list != NULL) {
1305 
1306     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1307       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1308                     &(*__kmp_threadpriv_cache_list->addr)));
1309 
1310       *__kmp_threadpriv_cache_list->addr = NULL;
1311     }
1312     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1313   }
1314 
1315   __kmp_init_runtime = FALSE;
1316 
1317   /* reset statically initialized locks */
1318   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1319   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1320   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1321   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1322 
1323 #if USE_ITT_BUILD
1324   __kmp_itt_reset(); // reset ITT's global state
1325 #endif /* USE_ITT_BUILD */
1326 
1327   /* This is necessary to make sure no stale data is left around */
1328   /* AC: customers complain that we use unsafe routines in the atfork
1329      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1330      in dynamic_link when check the presence of shared tbbmalloc library.
1331      Suggestion is to make the library initialization lazier, similar
1332      to what done for __kmpc_begin(). */
1333   // TODO: synchronize all static initializations with regular library
1334   //       startup; look at kmp_global.cpp and etc.
1335   //__kmp_internal_begin ();
1336 }
1337 
1338 void __kmp_register_atfork(void) {
1339   if (__kmp_need_register_atfork) {
1340     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1341                                 __kmp_atfork_child);
1342     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1343     __kmp_need_register_atfork = FALSE;
1344   }
1345 }
1346 
1347 void __kmp_suspend_initialize(void) {
1348   int status;
1349   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1350   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1351   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1352   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1353 }
1354 
1355 static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1356   ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1357   if (th->th.th_suspend_init_count <= __kmp_fork_count) {
1358     /* this means we haven't initialized the suspension pthread objects for this
1359        thread in this instance of the process */
1360     int status;
1361     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1362                                &__kmp_suspend_cond_attr);
1363     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1364     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1365                                 &__kmp_suspend_mutex_attr);
1366     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1367     *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1;
1368     ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1369   }
1370 }
1371 
1372 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1373   if (th->th.th_suspend_init_count > __kmp_fork_count) {
1374     /* this means we have initialize the suspension pthread objects for this
1375        thread in this instance of the process */
1376     int status;
1377 
1378     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1379     if (status != 0 && status != EBUSY) {
1380       KMP_SYSFAIL("pthread_cond_destroy", status);
1381     }
1382     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1383     if (status != 0 && status != EBUSY) {
1384       KMP_SYSFAIL("pthread_mutex_destroy", status);
1385     }
1386     --th->th.th_suspend_init_count;
1387     KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count);
1388   }
1389 }
1390 
1391 // return true if lock obtained, false otherwise
1392 int __kmp_try_suspend_mx(kmp_info_t *th) {
1393   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1394 }
1395 
1396 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1397   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1398   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1399 }
1400 
1401 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1402   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1403   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1404 }
1405 
1406 /* This routine puts the calling thread to sleep after setting the
1407    sleep bit for the indicated flag variable to true. */
1408 template <class C>
1409 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1410   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1411   kmp_info_t *th = __kmp_threads[th_gtid];
1412   int status;
1413   typename C::flag_t old_spin;
1414 
1415   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1416                 flag->get()));
1417 
1418   __kmp_suspend_initialize_thread(th);
1419 
1420   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1421   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1422 
1423   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1424                 th_gtid, flag->get()));
1425 
1426   /* TODO: shouldn't this use release semantics to ensure that
1427      __kmp_suspend_initialize_thread gets called first? */
1428   old_spin = flag->set_sleeping();
1429 #if OMP_50_ENABLED
1430   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1431       __kmp_pause_status != kmp_soft_paused) {
1432     flag->unset_sleeping();
1433     status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1434     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1435     return;
1436   }
1437 #endif
1438   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1439                " was %x\n",
1440                th_gtid, flag->get(), flag->load(), old_spin));
1441 
1442   if (flag->done_check_val(old_spin)) {
1443     old_spin = flag->unset_sleeping();
1444     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1445                  "for spin(%p)\n",
1446                  th_gtid, flag->get()));
1447   } else {
1448     /* Encapsulate in a loop as the documentation states that this may
1449        "with low probability" return when the condition variable has
1450        not been signaled or broadcast */
1451     int deactivated = FALSE;
1452     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1453 
1454     while (flag->is_sleeping()) {
1455 #ifdef DEBUG_SUSPEND
1456       char buffer[128];
1457       __kmp_suspend_count++;
1458       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1459       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1460                    buffer);
1461 #endif
1462       // Mark the thread as no longer active (only in the first iteration of the
1463       // loop).
1464       if (!deactivated) {
1465         th->th.th_active = FALSE;
1466         if (th->th.th_active_in_pool) {
1467           th->th.th_active_in_pool = FALSE;
1468           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1469           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1470         }
1471         deactivated = TRUE;
1472       }
1473 
1474 #if USE_SUSPEND_TIMEOUT
1475       struct timespec now;
1476       struct timeval tval;
1477       int msecs;
1478 
1479       status = gettimeofday(&tval, NULL);
1480       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1481       TIMEVAL_TO_TIMESPEC(&tval, &now);
1482 
1483       msecs = (4 * __kmp_dflt_blocktime) + 200;
1484       now.tv_sec += msecs / 1000;
1485       now.tv_nsec += (msecs % 1000) * 1000;
1486 
1487       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1488                     "pthread_cond_timedwait\n",
1489                     th_gtid));
1490       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1491                                       &th->th.th_suspend_mx.m_mutex, &now);
1492 #else
1493       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1494                     " pthread_cond_wait\n",
1495                     th_gtid));
1496       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1497                                  &th->th.th_suspend_mx.m_mutex);
1498 #endif
1499 
1500       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1501         KMP_SYSFAIL("pthread_cond_wait", status);
1502       }
1503 #ifdef KMP_DEBUG
1504       if (status == ETIMEDOUT) {
1505         if (flag->is_sleeping()) {
1506           KF_TRACE(100,
1507                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1508         } else {
1509           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1510                        "not set!\n",
1511                        th_gtid));
1512         }
1513       } else if (flag->is_sleeping()) {
1514         KF_TRACE(100,
1515                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1516       }
1517 #endif
1518     } // while
1519 
1520     // Mark the thread as active again (if it was previous marked as inactive)
1521     if (deactivated) {
1522       th->th.th_active = TRUE;
1523       if (TCR_4(th->th.th_in_pool)) {
1524         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1525         th->th.th_active_in_pool = TRUE;
1526       }
1527     }
1528   }
1529 #ifdef DEBUG_SUSPEND
1530   {
1531     char buffer[128];
1532     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1533     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1534                  buffer);
1535   }
1536 #endif
1537 
1538   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1539   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1540   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1541 }
1542 
1543 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1544   __kmp_suspend_template(th_gtid, flag);
1545 }
1546 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1547   __kmp_suspend_template(th_gtid, flag);
1548 }
1549 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1550   __kmp_suspend_template(th_gtid, flag);
1551 }
1552 
1553 /* This routine signals the thread specified by target_gtid to wake up
1554    after setting the sleep bit indicated by the flag argument to FALSE.
1555    The target thread must already have called __kmp_suspend_template() */
1556 template <class C>
1557 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1558   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1559   kmp_info_t *th = __kmp_threads[target_gtid];
1560   int status;
1561 
1562 #ifdef KMP_DEBUG
1563   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1564 #endif
1565 
1566   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1567                 gtid, target_gtid));
1568   KMP_DEBUG_ASSERT(gtid != target_gtid);
1569 
1570   __kmp_suspend_initialize_thread(th);
1571 
1572   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1573   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1574 
1575   if (!flag) { // coming from __kmp_null_resume_wrapper
1576     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1577   }
1578 
1579   // First, check if the flag is null or its type has changed. If so, someone
1580   // else woke it up.
1581   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1582     // simply shows what
1583     // flag was cast to
1584     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1585                  "awake: flag(%p)\n",
1586                  gtid, target_gtid, NULL));
1587     status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1588     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1589     return;
1590   } else { // if multiple threads are sleeping, flag should be internally
1591     // referring to a specific thread here
1592     typename C::flag_t old_spin = flag->unset_sleeping();
1593     if (!flag->is_sleeping_val(old_spin)) {
1594       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1595                    "awake: flag(%p): "
1596                    "%u => %u\n",
1597                    gtid, target_gtid, flag->get(), old_spin, flag->load()));
1598       status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1599       KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1600       return;
1601     }
1602     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1603                  "sleep bit for flag's loc(%p): "
1604                  "%u => %u\n",
1605                  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1606   }
1607   TCW_PTR(th->th.th_sleep_loc, NULL);
1608 
1609 #ifdef DEBUG_SUSPEND
1610   {
1611     char buffer[128];
1612     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1613     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1614                  target_gtid, buffer);
1615   }
1616 #endif
1617   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1618   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1619   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1620   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1621   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1622                 " for T#%d\n",
1623                 gtid, target_gtid));
1624 }
1625 
1626 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1627   __kmp_resume_template(target_gtid, flag);
1628 }
1629 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1630   __kmp_resume_template(target_gtid, flag);
1631 }
1632 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1633   __kmp_resume_template(target_gtid, flag);
1634 }
1635 
1636 #if KMP_USE_MONITOR
1637 void __kmp_resume_monitor() {
1638   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1639   int status;
1640 #ifdef KMP_DEBUG
1641   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1642   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1643                 KMP_GTID_MONITOR));
1644   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1645 #endif
1646   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1647   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1648 #ifdef DEBUG_SUSPEND
1649   {
1650     char buffer[128];
1651     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1652     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1653                  KMP_GTID_MONITOR, buffer);
1654   }
1655 #endif
1656   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1657   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1658   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1659   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1660   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1661                 " for T#%d\n",
1662                 gtid, KMP_GTID_MONITOR));
1663 }
1664 #endif // KMP_USE_MONITOR
1665 
1666 void __kmp_yield() { sched_yield(); }
1667 
1668 void __kmp_gtid_set_specific(int gtid) {
1669   if (__kmp_init_gtid) {
1670     int status;
1671     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1672                                  (void *)(intptr_t)(gtid + 1));
1673     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1674   } else {
1675     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1676   }
1677 }
1678 
1679 int __kmp_gtid_get_specific() {
1680   int gtid;
1681   if (!__kmp_init_gtid) {
1682     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1683                   "KMP_GTID_SHUTDOWN\n"));
1684     return KMP_GTID_SHUTDOWN;
1685   }
1686   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1687   if (gtid == 0) {
1688     gtid = KMP_GTID_DNE;
1689   } else {
1690     gtid--;
1691   }
1692   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1693                 __kmp_gtid_threadprivate_key, gtid));
1694   return gtid;
1695 }
1696 
1697 double __kmp_read_cpu_time(void) {
1698   /*clock_t   t;*/
1699   struct tms buffer;
1700 
1701   /*t =*/times(&buffer);
1702 
1703   return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1704 }
1705 
1706 int __kmp_read_system_info(struct kmp_sys_info *info) {
1707   int status;
1708   struct rusage r_usage;
1709 
1710   memset(info, 0, sizeof(*info));
1711 
1712   status = getrusage(RUSAGE_SELF, &r_usage);
1713   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1714 
1715   // The maximum resident set size utilized (in kilobytes)
1716   info->maxrss = r_usage.ru_maxrss;
1717   // The number of page faults serviced without any I/O
1718   info->minflt = r_usage.ru_minflt;
1719   // The number of page faults serviced that required I/O
1720   info->majflt = r_usage.ru_majflt;
1721   // The number of times a process was "swapped" out of memory
1722   info->nswap = r_usage.ru_nswap;
1723   // The number of times the file system had to perform input
1724   info->inblock = r_usage.ru_inblock;
1725   // The number of times the file system had to perform output
1726   info->oublock = r_usage.ru_oublock;
1727   // The number of times a context switch was voluntarily
1728   info->nvcsw = r_usage.ru_nvcsw;
1729   // The number of times a context switch was forced
1730   info->nivcsw = r_usage.ru_nivcsw;
1731 
1732   return (status != 0);
1733 }
1734 
1735 void __kmp_read_system_time(double *delta) {
1736   double t_ns;
1737   struct timeval tval;
1738   struct timespec stop;
1739   int status;
1740 
1741   status = gettimeofday(&tval, NULL);
1742   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1743   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1744   t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1745   *delta = (t_ns * 1e-9);
1746 }
1747 
1748 void __kmp_clear_system_time(void) {
1749   struct timeval tval;
1750   int status;
1751   status = gettimeofday(&tval, NULL);
1752   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1753   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1754 }
1755 
1756 static int __kmp_get_xproc(void) {
1757 
1758   int r = 0;
1759 
1760 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
1761         KMP_OS_OPENBSD || KMP_OS_HURD
1762 
1763   r = sysconf(_SC_NPROCESSORS_ONLN);
1764 
1765 #elif KMP_OS_DARWIN
1766 
1767   // Bug C77011 High "OpenMP Threads and number of active cores".
1768 
1769   // Find the number of available CPUs.
1770   kern_return_t rc;
1771   host_basic_info_data_t info;
1772   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1773   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1774   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1775     // Cannot use KA_TRACE() here because this code works before trace support
1776     // is initialized.
1777     r = info.avail_cpus;
1778   } else {
1779     KMP_WARNING(CantGetNumAvailCPU);
1780     KMP_INFORM(AssumedNumCPU);
1781   }
1782 
1783 #else
1784 
1785 #error "Unknown or unsupported OS."
1786 
1787 #endif
1788 
1789   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1790 
1791 } // __kmp_get_xproc
1792 
1793 int __kmp_read_from_file(char const *path, char const *format, ...) {
1794   int result;
1795   va_list args;
1796 
1797   va_start(args, format);
1798   FILE *f = fopen(path, "rb");
1799   if (f == NULL)
1800     return 0;
1801   result = vfscanf(f, format, args);
1802   fclose(f);
1803 
1804   return result;
1805 }
1806 
1807 void __kmp_runtime_initialize(void) {
1808   int status;
1809   pthread_mutexattr_t mutex_attr;
1810   pthread_condattr_t cond_attr;
1811 
1812   if (__kmp_init_runtime) {
1813     return;
1814   }
1815 
1816 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1817   if (!__kmp_cpuinfo.initialized) {
1818     __kmp_query_cpuid(&__kmp_cpuinfo);
1819   }
1820 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1821 
1822   __kmp_xproc = __kmp_get_xproc();
1823 
1824   if (sysconf(_SC_THREADS)) {
1825 
1826     /* Query the maximum number of threads */
1827     __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1828     if (__kmp_sys_max_nth == -1) {
1829       /* Unlimited threads for NPTL */
1830       __kmp_sys_max_nth = INT_MAX;
1831     } else if (__kmp_sys_max_nth <= 1) {
1832       /* Can't tell, just use PTHREAD_THREADS_MAX */
1833       __kmp_sys_max_nth = KMP_MAX_NTH;
1834     }
1835 
1836     /* Query the minimum stack size */
1837     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1838     if (__kmp_sys_min_stksize <= 1) {
1839       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1840     }
1841   }
1842 
1843   /* Set up minimum number of threads to switch to TLS gtid */
1844   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1845 
1846   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1847                               __kmp_internal_end_dest);
1848   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1849   status = pthread_mutexattr_init(&mutex_attr);
1850   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1851   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1852   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1853   status = pthread_condattr_init(&cond_attr);
1854   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1855   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1856   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1857 #if USE_ITT_BUILD
1858   __kmp_itt_initialize();
1859 #endif /* USE_ITT_BUILD */
1860 
1861   __kmp_init_runtime = TRUE;
1862 }
1863 
1864 void __kmp_runtime_destroy(void) {
1865   int status;
1866 
1867   if (!__kmp_init_runtime) {
1868     return; // Nothing to do.
1869   }
1870 
1871 #if USE_ITT_BUILD
1872   __kmp_itt_destroy();
1873 #endif /* USE_ITT_BUILD */
1874 
1875   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1876   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1877 
1878   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1879   if (status != 0 && status != EBUSY) {
1880     KMP_SYSFAIL("pthread_mutex_destroy", status);
1881   }
1882   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1883   if (status != 0 && status != EBUSY) {
1884     KMP_SYSFAIL("pthread_cond_destroy", status);
1885   }
1886 #if KMP_AFFINITY_SUPPORTED
1887   __kmp_affinity_uninitialize();
1888 #endif
1889 
1890   __kmp_init_runtime = FALSE;
1891 }
1892 
1893 /* Put the thread to sleep for a time period */
1894 /* NOTE: not currently used anywhere */
1895 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1896 
1897 /* Calculate the elapsed wall clock time for the user */
1898 void __kmp_elapsed(double *t) {
1899   int status;
1900 #ifdef FIX_SGI_CLOCK
1901   struct timespec ts;
1902 
1903   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1904   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1905   *t =
1906       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1907 #else
1908   struct timeval tv;
1909 
1910   status = gettimeofday(&tv, NULL);
1911   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1912   *t =
1913       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1914 #endif
1915 }
1916 
1917 /* Calculate the elapsed wall clock tick for the user */
1918 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1919 
1920 /* Return the current time stamp in nsec */
1921 kmp_uint64 __kmp_now_nsec() {
1922   struct timeval t;
1923   gettimeofday(&t, NULL);
1924   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1925                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1926   return nsec;
1927 }
1928 
1929 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1930 /* Measure clock ticks per millisecond */
1931 void __kmp_initialize_system_tick() {
1932   kmp_uint64 now, nsec2, diff;
1933   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1934   kmp_uint64 nsec = __kmp_now_nsec();
1935   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1936   while ((now = __kmp_hardware_timestamp()) < goal)
1937     ;
1938   nsec2 = __kmp_now_nsec();
1939   diff = nsec2 - nsec;
1940   if (diff > 0) {
1941     kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff);
1942     if (tpms > 0)
1943       __kmp_ticks_per_msec = tpms;
1944   }
1945 }
1946 #endif
1947 
1948 /* Determine whether the given address is mapped into the current address
1949    space. */
1950 
1951 int __kmp_is_address_mapped(void *addr) {
1952 
1953   int found = 0;
1954   int rc;
1955 
1956 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_HURD
1957 
1958   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
1959      ranges mapped into the address space. */
1960 
1961   char *name = __kmp_str_format("/proc/%d/maps", getpid());
1962   FILE *file = NULL;
1963 
1964   file = fopen(name, "r");
1965   KMP_ASSERT(file != NULL);
1966 
1967   for (;;) {
1968 
1969     void *beginning = NULL;
1970     void *ending = NULL;
1971     char perms[5];
1972 
1973     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1974     if (rc == EOF) {
1975       break;
1976     }
1977     KMP_ASSERT(rc == 3 &&
1978                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1979 
1980     // Ending address is not included in the region, but beginning is.
1981     if ((addr >= beginning) && (addr < ending)) {
1982       perms[2] = 0; // 3th and 4th character does not matter.
1983       if (strcmp(perms, "rw") == 0) {
1984         // Memory we are looking for should be readable and writable.
1985         found = 1;
1986       }
1987       break;
1988     }
1989   }
1990 
1991   // Free resources.
1992   fclose(file);
1993   KMP_INTERNAL_FREE(name);
1994 
1995 #elif KMP_OS_DARWIN
1996 
1997   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
1998      using vm interface. */
1999 
2000   int buffer;
2001   vm_size_t count;
2002   rc = vm_read_overwrite(
2003       mach_task_self(), // Task to read memory of.
2004       (vm_address_t)(addr), // Address to read from.
2005       1, // Number of bytes to be read.
2006       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2007       &count // Address of var to save number of read bytes in.
2008       );
2009   if (rc == 0) {
2010     // Memory successfully read.
2011     found = 1;
2012   }
2013 
2014 #elif KMP_OS_NETBSD
2015 
2016   int mib[5];
2017   mib[0] = CTL_VM;
2018   mib[1] = VM_PROC;
2019   mib[2] = VM_PROC_MAP;
2020   mib[3] = getpid();
2021   mib[4] = sizeof(struct kinfo_vmentry);
2022 
2023   size_t size;
2024   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2025   KMP_ASSERT(!rc);
2026   KMP_ASSERT(size);
2027 
2028   size = size * 4 / 3;
2029   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2030   KMP_ASSERT(kiv);
2031 
2032   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2033   KMP_ASSERT(!rc);
2034   KMP_ASSERT(size);
2035 
2036   for (size_t i = 0; i < size; i++) {
2037     if (kiv[i].kve_start >= (uint64_t)addr &&
2038         kiv[i].kve_end <= (uint64_t)addr) {
2039       found = 1;
2040       break;
2041     }
2042   }
2043   KMP_INTERNAL_FREE(kiv);
2044 #elif KMP_OS_DRAGONFLY || KMP_OS_OPENBSD
2045 
2046   // FIXME(DragonFly, OpenBSD): Implement this
2047   found = 1;
2048 
2049 #else
2050 
2051 #error "Unknown or unsupported OS"
2052 
2053 #endif
2054 
2055   return found;
2056 
2057 } // __kmp_is_address_mapped
2058 
2059 #ifdef USE_LOAD_BALANCE
2060 
2061 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2062 
2063 // The function returns the rounded value of the system load average
2064 // during given time interval which depends on the value of
2065 // __kmp_load_balance_interval variable (default is 60 sec, other values
2066 // may be 300 sec or 900 sec).
2067 // It returns -1 in case of error.
2068 int __kmp_get_load_balance(int max) {
2069   double averages[3];
2070   int ret_avg = 0;
2071 
2072   int res = getloadavg(averages, 3);
2073 
2074   // Check __kmp_load_balance_interval to determine which of averages to use.
2075   // getloadavg() may return the number of samples less than requested that is
2076   // less than 3.
2077   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2078     ret_avg = averages[0]; // 1 min
2079   } else if ((__kmp_load_balance_interval >= 180 &&
2080               __kmp_load_balance_interval < 600) &&
2081              (res >= 2)) {
2082     ret_avg = averages[1]; // 5 min
2083   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2084     ret_avg = averages[2]; // 15 min
2085   } else { // Error occurred
2086     return -1;
2087   }
2088 
2089   return ret_avg;
2090 }
2091 
2092 #else // Linux* OS
2093 
2094 // The fuction returns number of running (not sleeping) threads, or -1 in case
2095 // of error. Error could be reported if Linux* OS kernel too old (without
2096 // "/proc" support). Counting running threads stops if max running threads
2097 // encountered.
2098 int __kmp_get_load_balance(int max) {
2099   static int permanent_error = 0;
2100   static int glb_running_threads = 0; // Saved count of the running threads for
2101   // the thread balance algortihm
2102   static double glb_call_time = 0; /* Thread balance algorithm call time */
2103 
2104   int running_threads = 0; // Number of running threads in the system.
2105 
2106   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2107   struct dirent *proc_entry = NULL;
2108 
2109   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2110   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2111   struct dirent *task_entry = NULL;
2112   int task_path_fixed_len;
2113 
2114   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2115   int stat_file = -1;
2116   int stat_path_fixed_len;
2117 
2118   int total_processes = 0; // Total number of processes in system.
2119   int total_threads = 0; // Total number of threads in system.
2120 
2121   double call_time = 0.0;
2122 
2123   __kmp_str_buf_init(&task_path);
2124   __kmp_str_buf_init(&stat_path);
2125 
2126   __kmp_elapsed(&call_time);
2127 
2128   if (glb_call_time &&
2129       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2130     running_threads = glb_running_threads;
2131     goto finish;
2132   }
2133 
2134   glb_call_time = call_time;
2135 
2136   // Do not spend time on scanning "/proc/" if we have a permanent error.
2137   if (permanent_error) {
2138     running_threads = -1;
2139     goto finish;
2140   }
2141 
2142   if (max <= 0) {
2143     max = INT_MAX;
2144   }
2145 
2146   // Open "/proc/" directory.
2147   proc_dir = opendir("/proc");
2148   if (proc_dir == NULL) {
2149     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2150     // error now and in subsequent calls.
2151     running_threads = -1;
2152     permanent_error = 1;
2153     goto finish;
2154   }
2155 
2156   // Initialize fixed part of task_path. This part will not change.
2157   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2158   task_path_fixed_len = task_path.used; // Remember number of used characters.
2159 
2160   proc_entry = readdir(proc_dir);
2161   while (proc_entry != NULL) {
2162     // Proc entry is a directory and name starts with a digit. Assume it is a
2163     // process' directory.
2164     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2165 
2166       ++total_processes;
2167       // Make sure init process is the very first in "/proc", so we can replace
2168       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2169       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2170       // true (where "=>" is implication). Since C++ does not have => operator,
2171       // let us replace it with its equivalent: a => b == ! a || b.
2172       KMP_DEBUG_ASSERT(total_processes != 1 ||
2173                        strcmp(proc_entry->d_name, "1") == 0);
2174 
2175       // Construct task_path.
2176       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2177       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2178                         KMP_STRLEN(proc_entry->d_name));
2179       __kmp_str_buf_cat(&task_path, "/task", 5);
2180 
2181       task_dir = opendir(task_path.str);
2182       if (task_dir == NULL) {
2183         // Process can finish between reading "/proc/" directory entry and
2184         // opening process' "task/" directory. So, in general case we should not
2185         // complain, but have to skip this process and read the next one. But on
2186         // systems with no "task/" support we will spend lot of time to scan
2187         // "/proc/" tree again and again without any benefit. "init" process
2188         // (its pid is 1) should exist always, so, if we cannot open
2189         // "/proc/1/task/" directory, it means "task/" is not supported by
2190         // kernel. Report an error now and in the future.
2191         if (strcmp(proc_entry->d_name, "1") == 0) {
2192           running_threads = -1;
2193           permanent_error = 1;
2194           goto finish;
2195         }
2196       } else {
2197         // Construct fixed part of stat file path.
2198         __kmp_str_buf_clear(&stat_path);
2199         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2200         __kmp_str_buf_cat(&stat_path, "/", 1);
2201         stat_path_fixed_len = stat_path.used;
2202 
2203         task_entry = readdir(task_dir);
2204         while (task_entry != NULL) {
2205           // It is a directory and name starts with a digit.
2206           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2207             ++total_threads;
2208 
2209             // Consruct complete stat file path. Easiest way would be:
2210             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2211             //  task_entry->d_name );
2212             // but seriae of __kmp_str_buf_cat works a bit faster.
2213             stat_path.used =
2214                 stat_path_fixed_len; // Reset stat path to its fixed part.
2215             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2216                               KMP_STRLEN(task_entry->d_name));
2217             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2218 
2219             // Note: Low-level API (open/read/close) is used. High-level API
2220             // (fopen/fclose)  works ~ 30 % slower.
2221             stat_file = open(stat_path.str, O_RDONLY);
2222             if (stat_file == -1) {
2223               // We cannot report an error because task (thread) can terminate
2224               // just before reading this file.
2225             } else {
2226               /* Content of "stat" file looks like:
2227                  24285 (program) S ...
2228 
2229                  It is a single line (if program name does not include funny
2230                  symbols). First number is a thread id, then name of executable
2231                  file name in paretheses, then state of the thread. We need just
2232                  thread state.
2233 
2234                  Good news: Length of program name is 15 characters max. Longer
2235                  names are truncated.
2236 
2237                  Thus, we need rather short buffer: 15 chars for program name +
2238                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2239 
2240                  Bad news: Program name may contain special symbols like space,
2241                  closing parenthesis, or even new line. This makes parsing
2242                  "stat" file not 100 % reliable. In case of fanny program names
2243                  parsing may fail (report incorrect thread state).
2244 
2245                  Parsing "status" file looks more promissing (due to different
2246                  file structure and escaping special symbols) but reading and
2247                  parsing of "status" file works slower.
2248                   -- ln
2249               */
2250               char buffer[65];
2251               int len;
2252               len = read(stat_file, buffer, sizeof(buffer) - 1);
2253               if (len >= 0) {
2254                 buffer[len] = 0;
2255                 // Using scanf:
2256                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2257                 // looks very nice, but searching for a closing parenthesis
2258                 // works a bit faster.
2259                 char *close_parent = strstr(buffer, ") ");
2260                 if (close_parent != NULL) {
2261                   char state = *(close_parent + 2);
2262                   if (state == 'R') {
2263                     ++running_threads;
2264                     if (running_threads >= max) {
2265                       goto finish;
2266                     }
2267                   }
2268                 }
2269               }
2270               close(stat_file);
2271               stat_file = -1;
2272             }
2273           }
2274           task_entry = readdir(task_dir);
2275         }
2276         closedir(task_dir);
2277         task_dir = NULL;
2278       }
2279     }
2280     proc_entry = readdir(proc_dir);
2281   }
2282 
2283   // There _might_ be a timing hole where the thread executing this
2284   // code get skipped in the load balance, and running_threads is 0.
2285   // Assert in the debug builds only!!!
2286   KMP_DEBUG_ASSERT(running_threads > 0);
2287   if (running_threads <= 0) {
2288     running_threads = 1;
2289   }
2290 
2291 finish: // Clean up and exit.
2292   if (proc_dir != NULL) {
2293     closedir(proc_dir);
2294   }
2295   __kmp_str_buf_free(&task_path);
2296   if (task_dir != NULL) {
2297     closedir(task_dir);
2298   }
2299   __kmp_str_buf_free(&stat_path);
2300   if (stat_file != -1) {
2301     close(stat_file);
2302   }
2303 
2304   glb_running_threads = running_threads;
2305 
2306   return running_threads;
2307 
2308 } // __kmp_get_load_balance
2309 
2310 #endif // KMP_OS_DARWIN
2311 
2312 #endif // USE_LOAD_BALANCE
2313 
2314 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2315       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2316 
2317 // we really only need the case with 1 argument, because CLANG always build
2318 // a struct of pointers to shared variables referenced in the outlined function
2319 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2320                            void *p_argv[]
2321 #if OMPT_SUPPORT
2322                            ,
2323                            void **exit_frame_ptr
2324 #endif
2325                            ) {
2326 #if OMPT_SUPPORT
2327   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2328 #endif
2329 
2330   switch (argc) {
2331   default:
2332     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2333     fflush(stderr);
2334     exit(-1);
2335   case 0:
2336     (*pkfn)(&gtid, &tid);
2337     break;
2338   case 1:
2339     (*pkfn)(&gtid, &tid, p_argv[0]);
2340     break;
2341   case 2:
2342     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2343     break;
2344   case 3:
2345     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2346     break;
2347   case 4:
2348     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2349     break;
2350   case 5:
2351     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2352     break;
2353   case 6:
2354     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2355             p_argv[5]);
2356     break;
2357   case 7:
2358     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2359             p_argv[5], p_argv[6]);
2360     break;
2361   case 8:
2362     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2363             p_argv[5], p_argv[6], p_argv[7]);
2364     break;
2365   case 9:
2366     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2367             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2368     break;
2369   case 10:
2370     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2371             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2372     break;
2373   case 11:
2374     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2375             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2376     break;
2377   case 12:
2378     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2379             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2380             p_argv[11]);
2381     break;
2382   case 13:
2383     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2384             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2385             p_argv[11], p_argv[12]);
2386     break;
2387   case 14:
2388     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2389             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2390             p_argv[11], p_argv[12], p_argv[13]);
2391     break;
2392   case 15:
2393     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2394             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2395             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2396     break;
2397   }
2398 
2399 #if OMPT_SUPPORT
2400   *exit_frame_ptr = 0;
2401 #endif
2402 
2403   return 1;
2404 }
2405 
2406 #endif
2407 
2408 // end of file //
2409