1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 
6 //===----------------------------------------------------------------------===//
7 //
8 //                     The LLVM Compiler Infrastructure
9 //
10 // This file is dual licensed under the MIT and the University of Illinois Open
11 // Source Licenses. See LICENSE.txt for details.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 
16 #include "kmp.h"
17 #include "kmp_affinity.h"
18 #include "kmp_i18n.h"
19 #include "kmp_io.h"
20 #include "kmp_itt.h"
21 #include "kmp_lock.h"
22 #include "kmp_stats.h"
23 #include "kmp_str.h"
24 #include "kmp_wait_release.h"
25 #include "kmp_wrapper_getpid.h"
26 
27 #if !KMP_OS_FREEBSD && !KMP_OS_NETBSD
28 #include <alloca.h>
29 #endif
30 #include <math.h> // HUGE_VAL.
31 #include <sys/resource.h>
32 #include <sys/syscall.h>
33 #include <sys/time.h>
34 #include <sys/times.h>
35 #include <unistd.h>
36 
37 #if KMP_OS_LINUX && !KMP_OS_CNK
38 #include <sys/sysinfo.h>
39 #if KMP_USE_FUTEX
40 // We should really include <futex.h>, but that causes compatibility problems on
41 // different Linux* OS distributions that either require that you include (or
42 // break when you try to include) <pci/types.h>. Since all we need is the two
43 // macros below (which are part of the kernel ABI, so can't change) we just
44 // define the constants here and don't include <futex.h>
45 #ifndef FUTEX_WAIT
46 #define FUTEX_WAIT 0
47 #endif
48 #ifndef FUTEX_WAKE
49 #define FUTEX_WAKE 1
50 #endif
51 #endif
52 #elif KMP_OS_DARWIN
53 #include <mach/mach.h>
54 #include <sys/sysctl.h>
55 #elif KMP_OS_FREEBSD
56 #include <pthread_np.h>
57 #endif
58 
59 #include <ctype.h>
60 #include <dirent.h>
61 #include <fcntl.h>
62 
63 #include "tsan_annotations.h"
64 
65 struct kmp_sys_timer {
66   struct timespec start;
67 };
68 
69 // Convert timespec to nanoseconds.
70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
71 
72 static struct kmp_sys_timer __kmp_sys_timer_data;
73 
74 #if KMP_HANDLE_SIGNALS
75 typedef void (*sig_func_t)(int);
76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
77 static sigset_t __kmp_sigset;
78 #endif
79 
80 static int __kmp_init_runtime = FALSE;
81 
82 static int __kmp_fork_count = 0;
83 
84 static pthread_condattr_t __kmp_suspend_cond_attr;
85 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
86 
87 static kmp_cond_align_t __kmp_wait_cv;
88 static kmp_mutex_align_t __kmp_wait_mx;
89 
90 kmp_uint64 __kmp_ticks_per_msec = 1000000;
91 
92 #ifdef DEBUG_SUSPEND
93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
94   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
95                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
96                cond->c_cond.__c_waiting);
97 }
98 #endif
99 
100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
101 
102 /* Affinity support */
103 
104 void __kmp_affinity_bind_thread(int which) {
105   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
106               "Illegal set affinity operation when not capable");
107 
108   kmp_affin_mask_t *mask;
109   KMP_CPU_ALLOC_ON_STACK(mask);
110   KMP_CPU_ZERO(mask);
111   KMP_CPU_SET(which, mask);
112   __kmp_set_system_affinity(mask, TRUE);
113   KMP_CPU_FREE_FROM_STACK(mask);
114 }
115 
116 /* Determine if we can access affinity functionality on this version of
117  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
118  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
119 void __kmp_affinity_determine_capable(const char *env_var) {
120 // Check and see if the OS supports thread affinity.
121 
122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
123 
124   int gCode;
125   int sCode;
126   unsigned char *buf;
127   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
128 
129   // If Linux* OS:
130   // If the syscall fails or returns a suggestion for the size,
131   // then we don't have to search for an appropriate size.
132   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
133   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
134                 "initial getaffinity call returned %d errno = %d\n",
135                 gCode, errno));
136 
137   // if ((gCode < 0) && (errno == ENOSYS))
138   if (gCode < 0) {
139     // System call not supported
140     if (__kmp_affinity_verbose ||
141         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
142          (__kmp_affinity_type != affinity_default) &&
143          (__kmp_affinity_type != affinity_disabled))) {
144       int error = errno;
145       kmp_msg_t err_code = KMP_ERR(error);
146       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
147                 err_code, __kmp_msg_null);
148       if (__kmp_generate_warnings == kmp_warnings_off) {
149         __kmp_str_free(&err_code.str);
150       }
151     }
152     KMP_AFFINITY_DISABLE();
153     KMP_INTERNAL_FREE(buf);
154     return;
155   }
156   if (gCode > 0) { // Linux* OS only
157     // The optimal situation: the OS returns the size of the buffer it expects.
158     //
159     // A verification of correct behavior is that Isetaffinity on a NULL
160     // buffer with the same size fails with errno set to EFAULT.
161     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
162     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
163                   "setaffinity for mask size %d returned %d errno = %d\n",
164                   gCode, sCode, errno));
165     if (sCode < 0) {
166       if (errno == ENOSYS) {
167         if (__kmp_affinity_verbose ||
168             (__kmp_affinity_warnings &&
169              (__kmp_affinity_type != affinity_none) &&
170              (__kmp_affinity_type != affinity_default) &&
171              (__kmp_affinity_type != affinity_disabled))) {
172           int error = errno;
173           kmp_msg_t err_code = KMP_ERR(error);
174           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
175                     err_code, __kmp_msg_null);
176           if (__kmp_generate_warnings == kmp_warnings_off) {
177             __kmp_str_free(&err_code.str);
178           }
179         }
180         KMP_AFFINITY_DISABLE();
181         KMP_INTERNAL_FREE(buf);
182       }
183       if (errno == EFAULT) {
184         KMP_AFFINITY_ENABLE(gCode);
185         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
186                       "affinity supported (mask size %d)\n",
187                       (int)__kmp_affin_mask_size));
188         KMP_INTERNAL_FREE(buf);
189         return;
190       }
191     }
192   }
193 
194   // Call the getaffinity system call repeatedly with increasing set sizes
195   // until we succeed, or reach an upper bound on the search.
196   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
197                 "searching for proper set size\n"));
198   int size;
199   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
200     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
201     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
202                   "getaffinity for mask size %d returned %d errno = %d\n",
203                   size, gCode, errno));
204 
205     if (gCode < 0) {
206       if (errno == ENOSYS) {
207         // We shouldn't get here
208         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
209                       "inconsistent OS call behavior: errno == ENOSYS for mask "
210                       "size %d\n",
211                       size));
212         if (__kmp_affinity_verbose ||
213             (__kmp_affinity_warnings &&
214              (__kmp_affinity_type != affinity_none) &&
215              (__kmp_affinity_type != affinity_default) &&
216              (__kmp_affinity_type != affinity_disabled))) {
217           int error = errno;
218           kmp_msg_t err_code = KMP_ERR(error);
219           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
220                     err_code, __kmp_msg_null);
221           if (__kmp_generate_warnings == kmp_warnings_off) {
222             __kmp_str_free(&err_code.str);
223           }
224         }
225         KMP_AFFINITY_DISABLE();
226         KMP_INTERNAL_FREE(buf);
227         return;
228       }
229       continue;
230     }
231 
232     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
233     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
234                   "setaffinity for mask size %d returned %d errno = %d\n",
235                   gCode, sCode, errno));
236     if (sCode < 0) {
237       if (errno == ENOSYS) { // Linux* OS only
238         // We shouldn't get here
239         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
240                       "inconsistent OS call behavior: errno == ENOSYS for mask "
241                       "size %d\n",
242                       size));
243         if (__kmp_affinity_verbose ||
244             (__kmp_affinity_warnings &&
245              (__kmp_affinity_type != affinity_none) &&
246              (__kmp_affinity_type != affinity_default) &&
247              (__kmp_affinity_type != affinity_disabled))) {
248           int error = errno;
249           kmp_msg_t err_code = KMP_ERR(error);
250           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
251                     err_code, __kmp_msg_null);
252           if (__kmp_generate_warnings == kmp_warnings_off) {
253             __kmp_str_free(&err_code.str);
254           }
255         }
256         KMP_AFFINITY_DISABLE();
257         KMP_INTERNAL_FREE(buf);
258         return;
259       }
260       if (errno == EFAULT) {
261         KMP_AFFINITY_ENABLE(gCode);
262         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
263                       "affinity supported (mask size %d)\n",
264                       (int)__kmp_affin_mask_size));
265         KMP_INTERNAL_FREE(buf);
266         return;
267       }
268     }
269   }
270   // save uncaught error code
271   // int error = errno;
272   KMP_INTERNAL_FREE(buf);
273   // restore uncaught error code, will be printed at the next KMP_WARNING below
274   // errno = error;
275 
276   // Affinity is not supported
277   KMP_AFFINITY_DISABLE();
278   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
279                 "cannot determine mask size - affinity not supported\n"));
280   if (__kmp_affinity_verbose ||
281       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
282        (__kmp_affinity_type != affinity_default) &&
283        (__kmp_affinity_type != affinity_disabled))) {
284     KMP_WARNING(AffCantGetMaskSize, env_var);
285   }
286 }
287 
288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
289 
290 #if KMP_USE_FUTEX
291 
292 int __kmp_futex_determine_capable() {
293   int loc = 0;
294   int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
295   int retval = (rc == 0) || (errno != ENOSYS);
296 
297   KA_TRACE(10,
298            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
299   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
300                 retval ? "" : " not"));
301 
302   return retval;
303 }
304 
305 #endif // KMP_USE_FUTEX
306 
307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
309    use compare_and_store for these routines */
310 
311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
312   kmp_int8 old_value, new_value;
313 
314   old_value = TCR_1(*p);
315   new_value = old_value | d;
316 
317   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
318     KMP_CPU_PAUSE();
319     old_value = TCR_1(*p);
320     new_value = old_value | d;
321   }
322   return old_value;
323 }
324 
325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
326   kmp_int8 old_value, new_value;
327 
328   old_value = TCR_1(*p);
329   new_value = old_value & d;
330 
331   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
332     KMP_CPU_PAUSE();
333     old_value = TCR_1(*p);
334     new_value = old_value & d;
335   }
336   return old_value;
337 }
338 
339 kmp_int32 __kmp_test_then_or32(volatile kmp_int32 *p, kmp_int32 d) {
340   kmp_int32 old_value, new_value;
341 
342   old_value = TCR_4(*p);
343   new_value = old_value | d;
344 
345   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
346     KMP_CPU_PAUSE();
347     old_value = TCR_4(*p);
348     new_value = old_value | d;
349   }
350   return old_value;
351 }
352 
353 kmp_int32 __kmp_test_then_and32(volatile kmp_int32 *p, kmp_int32 d) {
354   kmp_int32 old_value, new_value;
355 
356   old_value = TCR_4(*p);
357   new_value = old_value & d;
358 
359   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
360     KMP_CPU_PAUSE();
361     old_value = TCR_4(*p);
362     new_value = old_value & d;
363   }
364   return old_value;
365 }
366 
367 #if KMP_ARCH_X86
368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
369   kmp_int8 old_value, new_value;
370 
371   old_value = TCR_1(*p);
372   new_value = old_value + d;
373 
374   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
375     KMP_CPU_PAUSE();
376     old_value = TCR_1(*p);
377     new_value = old_value + d;
378   }
379   return old_value;
380 }
381 
382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
383   kmp_int64 old_value, new_value;
384 
385   old_value = TCR_8(*p);
386   new_value = old_value + d;
387 
388   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
389     KMP_CPU_PAUSE();
390     old_value = TCR_8(*p);
391     new_value = old_value + d;
392   }
393   return old_value;
394 }
395 #endif /* KMP_ARCH_X86 */
396 
397 kmp_int64 __kmp_test_then_or64(volatile kmp_int64 *p, kmp_int64 d) {
398   kmp_int64 old_value, new_value;
399 
400   old_value = TCR_8(*p);
401   new_value = old_value | d;
402   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
403     KMP_CPU_PAUSE();
404     old_value = TCR_8(*p);
405     new_value = old_value | d;
406   }
407   return old_value;
408 }
409 
410 kmp_int64 __kmp_test_then_and64(volatile kmp_int64 *p, kmp_int64 d) {
411   kmp_int64 old_value, new_value;
412 
413   old_value = TCR_8(*p);
414   new_value = old_value & d;
415   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416     KMP_CPU_PAUSE();
417     old_value = TCR_8(*p);
418     new_value = old_value & d;
419   }
420   return old_value;
421 }
422 
423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
424 
425 void __kmp_terminate_thread(int gtid) {
426   int status;
427   kmp_info_t *th = __kmp_threads[gtid];
428 
429   if (!th)
430     return;
431 
432 #ifdef KMP_CANCEL_THREADS
433   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
434   status = pthread_cancel(th->th.th_info.ds.ds_thread);
435   if (status != 0 && status != ESRCH) {
436     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
437               __kmp_msg_null);
438   }; // if
439 #endif
440   __kmp_yield(TRUE);
441 } //
442 
443 /* Set thread stack info according to values returned by pthread_getattr_np().
444    If values are unreasonable, assume call failed and use incremental stack
445    refinement method instead. Returns TRUE if the stack parameters could be
446    determined exactly, FALSE if incremental refinement is necessary. */
447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
448   int stack_data;
449 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
450   /* Linux* OS only -- no pthread_getattr_np support on OS X* */
451   pthread_attr_t attr;
452   int status;
453   size_t size = 0;
454   void *addr = 0;
455 
456   /* Always do incremental stack refinement for ubermaster threads since the
457      initial thread stack range can be reduced by sibling thread creation so
458      pthread_attr_getstack may cause thread gtid aliasing */
459   if (!KMP_UBER_GTID(gtid)) {
460 
461     /* Fetch the real thread attributes */
462     status = pthread_attr_init(&attr);
463     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
464 #if KMP_OS_FREEBSD || KMP_OS_NETBSD
465     status = pthread_attr_get_np(pthread_self(), &attr);
466     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
467 #else
468     status = pthread_getattr_np(pthread_self(), &attr);
469     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
470 #endif
471     status = pthread_attr_getstack(&attr, &addr, &size);
472     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
473     KA_TRACE(60,
474              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
475               " %lu, low addr: %p\n",
476               gtid, size, addr));
477     status = pthread_attr_destroy(&attr);
478     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
479   }
480 
481   if (size != 0 && addr != 0) { // was stack parameter determination successful?
482     /* Store the correct base and size */
483     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
484     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
485     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
486     return TRUE;
487   }
488 #endif /* KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD */
489   /* Use incremental refinement starting from initial conservative estimate */
490   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
491   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
492   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
493   return FALSE;
494 }
495 
496 static void *__kmp_launch_worker(void *thr) {
497   int status, old_type, old_state;
498 #ifdef KMP_BLOCK_SIGNALS
499   sigset_t new_set, old_set;
500 #endif /* KMP_BLOCK_SIGNALS */
501   void *exit_val;
502 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
503   void *volatile padding = 0;
504 #endif
505   int gtid;
506 
507   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
508   __kmp_gtid_set_specific(gtid);
509 #ifdef KMP_TDATA_GTID
510   __kmp_gtid = gtid;
511 #endif
512 #if KMP_STATS_ENABLED
513   // set __thread local index to point to thread-specific stats
514   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
515   KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life);
516   KMP_SET_THREAD_STATE(IDLE);
517   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
518 #endif
519 
520 #if USE_ITT_BUILD
521   __kmp_itt_thread_name(gtid);
522 #endif /* USE_ITT_BUILD */
523 
524 #if KMP_AFFINITY_SUPPORTED
525   __kmp_affinity_set_init_mask(gtid, FALSE);
526 #endif
527 
528 #ifdef KMP_CANCEL_THREADS
529   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
530   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
531   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
532   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
533   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
534 #endif
535 
536 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
537   // Set FP control regs to be a copy of the parallel initialization thread's.
538   __kmp_clear_x87_fpu_status_word();
539   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
540   __kmp_load_mxcsr(&__kmp_init_mxcsr);
541 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
542 
543 #ifdef KMP_BLOCK_SIGNALS
544   status = sigfillset(&new_set);
545   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
546   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
547   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
548 #endif /* KMP_BLOCK_SIGNALS */
549 
550 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
551   if (__kmp_stkoffset > 0 && gtid > 0) {
552     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
553   }
554 #endif
555 
556   KMP_MB();
557   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
558 
559   __kmp_check_stack_overlap((kmp_info_t *)thr);
560 
561   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
562 
563 #ifdef KMP_BLOCK_SIGNALS
564   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
565   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
566 #endif /* KMP_BLOCK_SIGNALS */
567 
568   return exit_val;
569 }
570 
571 #if KMP_USE_MONITOR
572 /* The monitor thread controls all of the threads in the complex */
573 
574 static void *__kmp_launch_monitor(void *thr) {
575   int status, old_type, old_state;
576 #ifdef KMP_BLOCK_SIGNALS
577   sigset_t new_set;
578 #endif /* KMP_BLOCK_SIGNALS */
579   struct timespec interval;
580   int yield_count;
581   int yield_cycles = 0;
582 
583   KMP_MB(); /* Flush all pending memory write invalidates.  */
584 
585   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
586 
587   /* register us as the monitor thread */
588   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
589 #ifdef KMP_TDATA_GTID
590   __kmp_gtid = KMP_GTID_MONITOR;
591 #endif
592 
593   KMP_MB();
594 
595 #if USE_ITT_BUILD
596   // Instruct Intel(R) Threading Tools to ignore monitor thread.
597   __kmp_itt_thread_ignore();
598 #endif /* USE_ITT_BUILD */
599 
600   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
601                        (kmp_info_t *)thr);
602 
603   __kmp_check_stack_overlap((kmp_info_t *)thr);
604 
605 #ifdef KMP_CANCEL_THREADS
606   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
607   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
608   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
609   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
610   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
611 #endif
612 
613 #if KMP_REAL_TIME_FIX
614   // This is a potential fix which allows application with real-time scheduling
615   // policy work. However, decision about the fix is not made yet, so it is
616   // disabled by default.
617   { // Are program started with real-time scheduling policy?
618     int sched = sched_getscheduler(0);
619     if (sched == SCHED_FIFO || sched == SCHED_RR) {
620       // Yes, we are a part of real-time application. Try to increase the
621       // priority of the monitor.
622       struct sched_param param;
623       int max_priority = sched_get_priority_max(sched);
624       int rc;
625       KMP_WARNING(RealTimeSchedNotSupported);
626       sched_getparam(0, &param);
627       if (param.sched_priority < max_priority) {
628         param.sched_priority += 1;
629         rc = sched_setscheduler(0, sched, &param);
630         if (rc != 0) {
631           int error = errno;
632           kmp_msg_t err_code = KMP_ERR(error);
633           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
634                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
635           if (__kmp_generate_warnings == kmp_warnings_off) {
636             __kmp_str_free(&err_code.str);
637           }
638         }; // if
639       } else {
640         // We cannot abort here, because number of CPUs may be enough for all
641         // the threads, including the monitor thread, so application could
642         // potentially work...
643         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
644                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
645                   __kmp_msg_null);
646       }; // if
647     }; // if
648     // AC: free thread that waits for monitor started
649     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
650   }
651 #endif // KMP_REAL_TIME_FIX
652 
653   KMP_MB(); /* Flush all pending memory write invalidates.  */
654 
655   if (__kmp_monitor_wakeups == 1) {
656     interval.tv_sec = 1;
657     interval.tv_nsec = 0;
658   } else {
659     interval.tv_sec = 0;
660     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
661   }
662 
663   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
664 
665   if (__kmp_yield_cycle) {
666     __kmp_yielding_on = 0; /* Start out with yielding shut off */
667     yield_count = __kmp_yield_off_count;
668   } else {
669     __kmp_yielding_on = 1; /* Yielding is on permanently */
670   }
671 
672   while (!TCR_4(__kmp_global.g.g_done)) {
673     struct timespec now;
674     struct timeval tval;
675 
676     /*  This thread monitors the state of the system */
677 
678     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
679 
680     status = gettimeofday(&tval, NULL);
681     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
682     TIMEVAL_TO_TIMESPEC(&tval, &now);
683 
684     now.tv_sec += interval.tv_sec;
685     now.tv_nsec += interval.tv_nsec;
686 
687     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
688       now.tv_sec += 1;
689       now.tv_nsec -= KMP_NSEC_PER_SEC;
690     }
691 
692     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
693     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
694     // AC: the monitor should not fall asleep if g_done has been set
695     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
696       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
697                                       &__kmp_wait_mx.m_mutex, &now);
698       if (status != 0) {
699         if (status != ETIMEDOUT && status != EINTR) {
700           KMP_SYSFAIL("pthread_cond_timedwait", status);
701         };
702       };
703     };
704     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
705     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
706 
707     if (__kmp_yield_cycle) {
708       yield_cycles++;
709       if ((yield_cycles % yield_count) == 0) {
710         if (__kmp_yielding_on) {
711           __kmp_yielding_on = 0; /* Turn it off now */
712           yield_count = __kmp_yield_off_count;
713         } else {
714           __kmp_yielding_on = 1; /* Turn it on now */
715           yield_count = __kmp_yield_on_count;
716         }
717         yield_cycles = 0;
718       }
719     } else {
720       __kmp_yielding_on = 1;
721     }
722 
723     TCW_4(__kmp_global.g.g_time.dt.t_value,
724           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
725 
726     KMP_MB(); /* Flush all pending memory write invalidates.  */
727   }
728 
729   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
730 
731 #ifdef KMP_BLOCK_SIGNALS
732   status = sigfillset(&new_set);
733   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
734   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
735   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
736 #endif /* KMP_BLOCK_SIGNALS */
737 
738   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
739 
740   if (__kmp_global.g.g_abort != 0) {
741     /* now we need to terminate the worker threads  */
742     /* the value of t_abort is the signal we caught */
743 
744     int gtid;
745 
746     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
747                   __kmp_global.g.g_abort));
748 
749     /* terminate the OpenMP worker threads */
750     /* TODO this is not valid for sibling threads!!
751      * the uber master might not be 0 anymore.. */
752     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
753       __kmp_terminate_thread(gtid);
754 
755     __kmp_cleanup();
756 
757     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
758                   __kmp_global.g.g_abort));
759 
760     if (__kmp_global.g.g_abort > 0)
761       raise(__kmp_global.g.g_abort);
762   }
763 
764   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
765 
766   return thr;
767 }
768 #endif // KMP_USE_MONITOR
769 
770 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
771   pthread_t handle;
772   pthread_attr_t thread_attr;
773   int status;
774 
775   th->th.th_info.ds.ds_gtid = gtid;
776 
777 #if KMP_STATS_ENABLED
778   // sets up worker thread stats
779   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
780 
781   // th->th.th_stats is used to transfer thread-specific stats-pointer to
782   // __kmp_launch_worker. So when thread is created (goes into
783   // __kmp_launch_worker) it will set its __thread local pointer to
784   // th->th.th_stats
785   if (!KMP_UBER_GTID(gtid)) {
786     th->th.th_stats = __kmp_stats_list->push_back(gtid);
787   } else {
788     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
789     // so set the th->th.th_stats field to it.
790     th->th.th_stats = __kmp_stats_thread_ptr;
791   }
792   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
793 
794 #endif // KMP_STATS_ENABLED
795 
796   if (KMP_UBER_GTID(gtid)) {
797     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
798     th->th.th_info.ds.ds_thread = pthread_self();
799     __kmp_set_stack_info(gtid, th);
800     __kmp_check_stack_overlap(th);
801     return;
802   }; // if
803 
804   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
805 
806   KMP_MB(); /* Flush all pending memory write invalidates.  */
807 
808 #ifdef KMP_THREAD_ATTR
809   status = pthread_attr_init(&thread_attr);
810   if (status != 0) {
811     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantInitThreadAttrs), KMP_ERR(status),
812               __kmp_msg_null);
813   }; // if
814   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
815   if (status != 0) {
816     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerState), KMP_ERR(status),
817               __kmp_msg_null);
818   }; // if
819 
820   /* Set stack size for this thread now.
821      The multiple of 2 is there because on some machines, requesting an unusual
822      stacksize causes the thread to have an offset before the dummy alloca()
823      takes place to create the offset.  Since we want the user to have a
824      sufficient stacksize AND support a stack offset, we alloca() twice the
825      offset so that the upcoming alloca() does not eliminate any premade offset,
826      and also gives the user the stack space they requested for all threads */
827   stack_size += gtid * __kmp_stkoffset * 2;
828 
829   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
830                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
831                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
832 
833 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
834   status = pthread_attr_setstacksize(&thread_attr, stack_size);
835 #ifdef KMP_BACKUP_STKSIZE
836   if (status != 0) {
837     if (!__kmp_env_stksize) {
838       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
839       __kmp_stksize = KMP_BACKUP_STKSIZE;
840       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
841                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
842                     "bytes\n",
843                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
844       status = pthread_attr_setstacksize(&thread_attr, stack_size);
845     }; // if
846   }; // if
847 #endif /* KMP_BACKUP_STKSIZE */
848   if (status != 0) {
849     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size),
850               KMP_ERR(status), KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
851   }; // if
852 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
853 
854 #endif /* KMP_THREAD_ATTR */
855 
856   status =
857       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
858   if (status != 0 || !handle) { // ??? Why do we check handle??
859 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
860     if (status == EINVAL) {
861       __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size),
862                 KMP_ERR(status), KMP_HNT(IncreaseWorkerStackSize),
863                 __kmp_msg_null);
864     };
865     if (status == ENOMEM) {
866       __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size),
867                 KMP_ERR(status), KMP_HNT(DecreaseWorkerStackSize),
868                 __kmp_msg_null);
869     };
870 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
871     if (status == EAGAIN) {
872       __kmp_msg(kmp_ms_fatal, KMP_MSG(NoResourcesForWorkerThread),
873                 KMP_ERR(status), KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
874     }; // if
875     KMP_SYSFAIL("pthread_create", status);
876   }; // if
877 
878   th->th.th_info.ds.ds_thread = handle;
879 
880 #ifdef KMP_THREAD_ATTR
881   status = pthread_attr_destroy(&thread_attr);
882   if (status) {
883     kmp_msg_t err_code = KMP_ERR(status);
884     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
885               __kmp_msg_null);
886     if (__kmp_generate_warnings == kmp_warnings_off) {
887       __kmp_str_free(&err_code.str);
888     }
889   }; // if
890 #endif /* KMP_THREAD_ATTR */
891 
892   KMP_MB(); /* Flush all pending memory write invalidates.  */
893 
894   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
895 
896 } // __kmp_create_worker
897 
898 #if KMP_USE_MONITOR
899 void __kmp_create_monitor(kmp_info_t *th) {
900   pthread_t handle;
901   pthread_attr_t thread_attr;
902   size_t size;
903   int status;
904   int auto_adj_size = FALSE;
905 
906   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
907     // We don't need monitor thread in case of MAX_BLOCKTIME
908     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
909                   "MAX blocktime\n"));
910     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
911     th->th.th_info.ds.ds_gtid = 0;
912     return;
913   }
914   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
915 
916   KMP_MB(); /* Flush all pending memory write invalidates.  */
917 
918   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
919   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
920 #if KMP_REAL_TIME_FIX
921   TCW_4(__kmp_global.g.g_time.dt.t_value,
922         -1); // Will use it for synchronization a bit later.
923 #else
924   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
925 #endif // KMP_REAL_TIME_FIX
926 
927 #ifdef KMP_THREAD_ATTR
928   if (__kmp_monitor_stksize == 0) {
929     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
930     auto_adj_size = TRUE;
931   }
932   status = pthread_attr_init(&thread_attr);
933   if (status != 0) {
934     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantInitThreadAttrs), KMP_ERR(status),
935               __kmp_msg_null);
936   }; // if
937   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
938   if (status != 0) {
939     __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetMonitorState), KMP_ERR(status),
940               __kmp_msg_null);
941   }; // if
942 
943 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
944   status = pthread_attr_getstacksize(&thread_attr, &size);
945   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
946 #else
947   size = __kmp_sys_min_stksize;
948 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
949 #endif /* KMP_THREAD_ATTR */
950 
951   if (__kmp_monitor_stksize == 0) {
952     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
953   }
954   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
955     __kmp_monitor_stksize = __kmp_sys_min_stksize;
956   }
957 
958   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
959                 "requested stacksize = %lu bytes\n",
960                 size, __kmp_monitor_stksize));
961 
962 retry:
963 
964 /* Set stack size for this thread now. */
965 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
966   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
967                 __kmp_monitor_stksize));
968   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
969   if (status != 0) {
970     if (auto_adj_size) {
971       __kmp_monitor_stksize *= 2;
972       goto retry;
973     }
974     kmp_msg_t err_code = KMP_ERR(status);
975     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
976               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
977               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
978     if (__kmp_generate_warnings == kmp_warnings_off) {
979       __kmp_str_free(&err_code.str);
980     }
981   }; // if
982 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
983 
984   status =
985       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
986 
987   if (status != 0) {
988 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
989     if (status == EINVAL) {
990       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
991         __kmp_monitor_stksize *= 2;
992         goto retry;
993       }
994       __kmp_msg(
995           kmp_ms_fatal, KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
996           KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), __kmp_msg_null);
997     }; // if
998     if (status == ENOMEM) {
999       __kmp_msg(
1000           kmp_ms_fatal, KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1001           KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), __kmp_msg_null);
1002     }; // if
1003 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1004     if (status == EAGAIN) {
1005       __kmp_msg(kmp_ms_fatal, KMP_MSG(NoResourcesForMonitorThread),
1006                 KMP_ERR(status), KMP_HNT(DecreaseNumberOfThreadsInUse),
1007                 __kmp_msg_null);
1008     }; // if
1009     KMP_SYSFAIL("pthread_create", status);
1010   }; // if
1011 
1012   th->th.th_info.ds.ds_thread = handle;
1013 
1014 #if KMP_REAL_TIME_FIX
1015   // Wait for the monitor thread is really started and set its *priority*.
1016   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1017                    sizeof(__kmp_global.g.g_time.dt.t_value));
1018   __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value,
1019                      -1, &__kmp_neq_4, NULL);
1020 #endif // KMP_REAL_TIME_FIX
1021 
1022 #ifdef KMP_THREAD_ATTR
1023   status = pthread_attr_destroy(&thread_attr);
1024   if (status != 0) {
1025     kmp_msg_t err_code = KMP_ERR(status);
1026     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1027               __kmp_msg_null);
1028     if (__kmp_generate_warnings == kmp_warnings_off) {
1029       __kmp_str_free(&err_code.str);
1030     }
1031   }; // if
1032 #endif
1033 
1034   KMP_MB(); /* Flush all pending memory write invalidates.  */
1035 
1036   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1037                 th->th.th_info.ds.ds_thread));
1038 
1039 } // __kmp_create_monitor
1040 #endif // KMP_USE_MONITOR
1041 
1042 void __kmp_exit_thread(int exit_status) {
1043   pthread_exit((void *)(intptr_t)exit_status);
1044 } // __kmp_exit_thread
1045 
1046 #if KMP_USE_MONITOR
1047 void __kmp_resume_monitor();
1048 
1049 void __kmp_reap_monitor(kmp_info_t *th) {
1050   int status;
1051   void *exit_val;
1052 
1053   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1054                 " %#.8lx\n",
1055                 th->th.th_info.ds.ds_thread));
1056 
1057   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1058   // If both tid and gtid are 0, it means the monitor did not ever start.
1059   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1060   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1061   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1062     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1063     return;
1064   }; // if
1065 
1066   KMP_MB(); /* Flush all pending memory write invalidates.  */
1067 
1068   /* First, check to see whether the monitor thread exists to wake it up. This
1069      is to avoid performance problem when the monitor sleeps during
1070      blocktime-size interval */
1071 
1072   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1073   if (status != ESRCH) {
1074     __kmp_resume_monitor(); // Wake up the monitor thread
1075   }
1076   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1077   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1078   if (exit_val != th) {
1079     __kmp_msg(kmp_ms_fatal, KMP_MSG(ReapMonitorError), KMP_ERR(status),
1080               __kmp_msg_null);
1081   }
1082 
1083   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1084   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1085 
1086   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1087                 " %#.8lx\n",
1088                 th->th.th_info.ds.ds_thread));
1089 
1090   KMP_MB(); /* Flush all pending memory write invalidates.  */
1091 }
1092 #endif // KMP_USE_MONITOR
1093 
1094 void __kmp_reap_worker(kmp_info_t *th) {
1095   int status;
1096   void *exit_val;
1097 
1098   KMP_MB(); /* Flush all pending memory write invalidates.  */
1099 
1100   KA_TRACE(
1101       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1102 
1103   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1104 #ifdef KMP_DEBUG
1105   /* Don't expose these to the user until we understand when they trigger */
1106   if (status != 0) {
1107     __kmp_msg(kmp_ms_fatal, KMP_MSG(ReapWorkerError), KMP_ERR(status),
1108               __kmp_msg_null);
1109   }
1110   if (exit_val != th) {
1111     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1112                   "exit_val = %p\n",
1113                   th->th.th_info.ds.ds_gtid, exit_val));
1114   }
1115 #endif /* KMP_DEBUG */
1116 
1117   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1118                 th->th.th_info.ds.ds_gtid));
1119 
1120   KMP_MB(); /* Flush all pending memory write invalidates.  */
1121 }
1122 
1123 #if KMP_HANDLE_SIGNALS
1124 
1125 static void __kmp_null_handler(int signo) {
1126   //  Do nothing, for doing SIG_IGN-type actions.
1127 } // __kmp_null_handler
1128 
1129 static void __kmp_team_handler(int signo) {
1130   if (__kmp_global.g.g_abort == 0) {
1131 /* Stage 1 signal handler, let's shut down all of the threads */
1132 #ifdef KMP_DEBUG
1133     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1134 #endif
1135     switch (signo) {
1136     case SIGHUP:
1137     case SIGINT:
1138     case SIGQUIT:
1139     case SIGILL:
1140     case SIGABRT:
1141     case SIGFPE:
1142     case SIGBUS:
1143     case SIGSEGV:
1144 #ifdef SIGSYS
1145     case SIGSYS:
1146 #endif
1147     case SIGTERM:
1148       if (__kmp_debug_buf) {
1149         __kmp_dump_debug_buffer();
1150       }; // if
1151       KMP_MB(); // Flush all pending memory write invalidates.
1152       TCW_4(__kmp_global.g.g_abort, signo);
1153       KMP_MB(); // Flush all pending memory write invalidates.
1154       TCW_4(__kmp_global.g.g_done, TRUE);
1155       KMP_MB(); // Flush all pending memory write invalidates.
1156       break;
1157     default:
1158 #ifdef KMP_DEBUG
1159       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1160 #endif
1161       break;
1162     }; // switch
1163   }; // if
1164 } // __kmp_team_handler
1165 
1166 static void __kmp_sigaction(int signum, const struct sigaction *act,
1167                             struct sigaction *oldact) {
1168   int rc = sigaction(signum, act, oldact);
1169   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1170 }
1171 
1172 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1173                                       int parallel_init) {
1174   KMP_MB(); // Flush all pending memory write invalidates.
1175   KB_TRACE(60,
1176            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1177   if (parallel_init) {
1178     struct sigaction new_action;
1179     struct sigaction old_action;
1180     new_action.sa_handler = handler_func;
1181     new_action.sa_flags = 0;
1182     sigfillset(&new_action.sa_mask);
1183     __kmp_sigaction(sig, &new_action, &old_action);
1184     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1185       sigaddset(&__kmp_sigset, sig);
1186     } else {
1187       // Restore/keep user's handler if one previously installed.
1188       __kmp_sigaction(sig, &old_action, NULL);
1189     }; // if
1190   } else {
1191     // Save initial/system signal handlers to see if user handlers installed.
1192     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1193   }; // if
1194   KMP_MB(); // Flush all pending memory write invalidates.
1195 } // __kmp_install_one_handler
1196 
1197 static void __kmp_remove_one_handler(int sig) {
1198   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1199   if (sigismember(&__kmp_sigset, sig)) {
1200     struct sigaction old;
1201     KMP_MB(); // Flush all pending memory write invalidates.
1202     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1203     if ((old.sa_handler != __kmp_team_handler) &&
1204         (old.sa_handler != __kmp_null_handler)) {
1205       // Restore the users signal handler.
1206       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1207                     "restoring: sig=%d\n",
1208                     sig));
1209       __kmp_sigaction(sig, &old, NULL);
1210     }; // if
1211     sigdelset(&__kmp_sigset, sig);
1212     KMP_MB(); // Flush all pending memory write invalidates.
1213   }; // if
1214 } // __kmp_remove_one_handler
1215 
1216 void __kmp_install_signals(int parallel_init) {
1217   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1218   if (__kmp_handle_signals || !parallel_init) {
1219     // If ! parallel_init, we do not install handlers, just save original
1220     // handlers. Let us do it even __handle_signals is 0.
1221     sigemptyset(&__kmp_sigset);
1222     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1223     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1224     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1225     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1226     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1227     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1228     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1229     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1230 #ifdef SIGSYS
1231     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1232 #endif // SIGSYS
1233     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1234 #ifdef SIGPIPE
1235     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1236 #endif // SIGPIPE
1237   }; // if
1238 } // __kmp_install_signals
1239 
1240 void __kmp_remove_signals(void) {
1241   int sig;
1242   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1243   for (sig = 1; sig < NSIG; ++sig) {
1244     __kmp_remove_one_handler(sig);
1245   }; // for sig
1246 } // __kmp_remove_signals
1247 
1248 #endif // KMP_HANDLE_SIGNALS
1249 
1250 void __kmp_enable(int new_state) {
1251 #ifdef KMP_CANCEL_THREADS
1252   int status, old_state;
1253   status = pthread_setcancelstate(new_state, &old_state);
1254   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1255   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1256 #endif
1257 }
1258 
1259 void __kmp_disable(int *old_state) {
1260 #ifdef KMP_CANCEL_THREADS
1261   int status;
1262   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1263   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1264 #endif
1265 }
1266 
1267 static void __kmp_atfork_prepare(void) { /*  nothing to do  */
1268 }
1269 
1270 static void __kmp_atfork_parent(void) { /*  nothing to do  */
1271 }
1272 
1273 /* Reset the library so execution in the child starts "all over again" with
1274    clean data structures in initial states.  Don't worry about freeing memory
1275    allocated by parent, just abandon it to be safe. */
1276 static void __kmp_atfork_child(void) {
1277   /* TODO make sure this is done right for nested/sibling */
1278   // ATT:  Memory leaks are here? TODO: Check it and fix.
1279   /* KMP_ASSERT( 0 ); */
1280 
1281   ++__kmp_fork_count;
1282 
1283   __kmp_init_runtime = FALSE;
1284 #if KMP_USE_MONITOR
1285   __kmp_init_monitor = 0;
1286 #endif
1287   __kmp_init_parallel = FALSE;
1288   __kmp_init_middle = FALSE;
1289   __kmp_init_serial = FALSE;
1290   TCW_4(__kmp_init_gtid, FALSE);
1291   __kmp_init_common = FALSE;
1292 
1293   TCW_4(__kmp_init_user_locks, FALSE);
1294 #if !KMP_USE_DYNAMIC_LOCK
1295   __kmp_user_lock_table.used = 1;
1296   __kmp_user_lock_table.allocated = 0;
1297   __kmp_user_lock_table.table = NULL;
1298   __kmp_lock_blocks = NULL;
1299 #endif
1300 
1301   __kmp_all_nth = 0;
1302   TCW_4(__kmp_nth, 0);
1303 
1304   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1305      here so threadprivate doesn't use stale data */
1306   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1307                 __kmp_threadpriv_cache_list));
1308 
1309   while (__kmp_threadpriv_cache_list != NULL) {
1310 
1311     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1312       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1313                     &(*__kmp_threadpriv_cache_list->addr)));
1314 
1315       *__kmp_threadpriv_cache_list->addr = NULL;
1316     }
1317     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1318   }
1319 
1320   __kmp_init_runtime = FALSE;
1321 
1322   /* reset statically initialized locks */
1323   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1324   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1325   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1326 
1327   /* This is necessary to make sure no stale data is left around */
1328   /* AC: customers complain that we use unsafe routines in the atfork
1329      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1330      in dynamic_link when check the presence of shared tbbmalloc library.
1331      Suggestion is to make the library initialization lazier, similar
1332      to what done for __kmpc_begin(). */
1333   // TODO: synchronize all static initializations with regular library
1334   //       startup; look at kmp_global.cpp and etc.
1335   //__kmp_internal_begin ();
1336 }
1337 
1338 void __kmp_register_atfork(void) {
1339   if (__kmp_need_register_atfork) {
1340     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1341                                 __kmp_atfork_child);
1342     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1343     __kmp_need_register_atfork = FALSE;
1344   }
1345 }
1346 
1347 void __kmp_suspend_initialize(void) {
1348   int status;
1349   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1350   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1351   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1352   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1353 }
1354 
1355 static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1356   ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1357   if (th->th.th_suspend_init_count <= __kmp_fork_count) {
1358     /* this means we haven't initialized the suspension pthread objects for this
1359        thread in this instance of the process */
1360     int status;
1361     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1362                                &__kmp_suspend_cond_attr);
1363     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1364     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1365                                 &__kmp_suspend_mutex_attr);
1366     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1367     *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1;
1368     ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1369   };
1370 }
1371 
1372 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1373   if (th->th.th_suspend_init_count > __kmp_fork_count) {
1374     /* this means we have initialize the suspension pthread objects for this
1375        thread in this instance of the process */
1376     int status;
1377 
1378     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1379     if (status != 0 && status != EBUSY) {
1380       KMP_SYSFAIL("pthread_cond_destroy", status);
1381     };
1382     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1383     if (status != 0 && status != EBUSY) {
1384       KMP_SYSFAIL("pthread_mutex_destroy", status);
1385     };
1386     --th->th.th_suspend_init_count;
1387     KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count);
1388   }
1389 }
1390 
1391 
1392 /* This routine puts the calling thread to sleep after setting the
1393    sleep bit for the indicated flag variable to true. */
1394 template <class C>
1395 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1396   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1397   kmp_info_t *th = __kmp_threads[th_gtid];
1398   int status;
1399   typename C::flag_t old_spin;
1400 
1401   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1402                 flag->get()));
1403 
1404   __kmp_suspend_initialize_thread(th);
1405 
1406   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1407   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1408 
1409   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1410                 th_gtid, flag->get()));
1411 
1412   /* TODO: shouldn't this use release semantics to ensure that
1413      __kmp_suspend_initialize_thread gets called first? */
1414   old_spin = flag->set_sleeping();
1415 
1416   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1417                " was %x\n",
1418                th_gtid, flag->get(), *(flag->get()), old_spin));
1419 
1420   if (flag->done_check_val(old_spin)) {
1421     old_spin = flag->unset_sleeping();
1422     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1423                  "for spin(%p)\n",
1424                  th_gtid, flag->get()));
1425   } else {
1426     /* Encapsulate in a loop as the documentation states that this may
1427        "with low probability" return when the condition variable has
1428        not been signaled or broadcast */
1429     int deactivated = FALSE;
1430     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1431 
1432     while (flag->is_sleeping()) {
1433 #ifdef DEBUG_SUSPEND
1434       char buffer[128];
1435       __kmp_suspend_count++;
1436       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1437       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1438                    buffer);
1439 #endif
1440       // Mark the thread as no longer active (only in the first iteration of the
1441       // loop).
1442       if (!deactivated) {
1443         th->th.th_active = FALSE;
1444         if (th->th.th_active_in_pool) {
1445           th->th.th_active_in_pool = FALSE;
1446           KMP_TEST_THEN_DEC32((kmp_int32 *)&__kmp_thread_pool_active_nth);
1447           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1448         }
1449         deactivated = TRUE;
1450       }
1451 
1452 #if USE_SUSPEND_TIMEOUT
1453       struct timespec now;
1454       struct timeval tval;
1455       int msecs;
1456 
1457       status = gettimeofday(&tval, NULL);
1458       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1459       TIMEVAL_TO_TIMESPEC(&tval, &now);
1460 
1461       msecs = (4 * __kmp_dflt_blocktime) + 200;
1462       now.tv_sec += msecs / 1000;
1463       now.tv_nsec += (msecs % 1000) * 1000;
1464 
1465       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1466                     "pthread_cond_timedwait\n",
1467                     th_gtid));
1468       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1469                                       &th->th.th_suspend_mx.m_mutex, &now);
1470 #else
1471       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1472                     " pthread_cond_wait\n",
1473                     th_gtid));
1474       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1475                                  &th->th.th_suspend_mx.m_mutex);
1476 #endif
1477 
1478       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1479         KMP_SYSFAIL("pthread_cond_wait", status);
1480       }
1481 #ifdef KMP_DEBUG
1482       if (status == ETIMEDOUT) {
1483         if (flag->is_sleeping()) {
1484           KF_TRACE(100,
1485                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1486         } else {
1487           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1488                        "not set!\n",
1489                        th_gtid));
1490         }
1491       } else if (flag->is_sleeping()) {
1492         KF_TRACE(100,
1493                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1494       }
1495 #endif
1496     } // while
1497 
1498     // Mark the thread as active again (if it was previous marked as inactive)
1499     if (deactivated) {
1500       th->th.th_active = TRUE;
1501       if (TCR_4(th->th.th_in_pool)) {
1502         KMP_TEST_THEN_INC32((kmp_int32 *)&__kmp_thread_pool_active_nth);
1503         th->th.th_active_in_pool = TRUE;
1504       }
1505     }
1506   }
1507 #ifdef DEBUG_SUSPEND
1508   {
1509     char buffer[128];
1510     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1511     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1512                  buffer);
1513   }
1514 #endif
1515 
1516   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1517   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1518   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1519 }
1520 
1521 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1522   __kmp_suspend_template(th_gtid, flag);
1523 }
1524 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1525   __kmp_suspend_template(th_gtid, flag);
1526 }
1527 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1528   __kmp_suspend_template(th_gtid, flag);
1529 }
1530 
1531 /* This routine signals the thread specified by target_gtid to wake up
1532    after setting the sleep bit indicated by the flag argument to FALSE.
1533    The target thread must already have called __kmp_suspend_template() */
1534 template <class C>
1535 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1536   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1537   kmp_info_t *th = __kmp_threads[target_gtid];
1538   int status;
1539 
1540 #ifdef KMP_DEBUG
1541   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1542 #endif
1543 
1544   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1545                 gtid, target_gtid));
1546   KMP_DEBUG_ASSERT(gtid != target_gtid);
1547 
1548   __kmp_suspend_initialize_thread(th);
1549 
1550   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1551   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1552 
1553   if (!flag) { // coming from __kmp_null_resume_wrapper
1554     flag = (C *)th->th.th_sleep_loc;
1555   }
1556 
1557   // First, check if the flag is null or its type has changed. If so, someone
1558   // else woke it up.
1559   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1560     // simply shows what
1561     // flag was cast to
1562     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1563                  "awake: flag(%p)\n",
1564                  gtid, target_gtid, NULL));
1565     status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1566     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1567     return;
1568   } else { // if multiple threads are sleeping, flag should be internally
1569     // referring to a specific thread here
1570     typename C::flag_t old_spin = flag->unset_sleeping();
1571     if (!flag->is_sleeping_val(old_spin)) {
1572       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1573                    "awake: flag(%p): "
1574                    "%u => %u\n",
1575                    gtid, target_gtid, flag->get(), old_spin, *flag->get()));
1576       status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1577       KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1578       return;
1579     }
1580     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1581                  "sleep bit for flag's loc(%p): "
1582                  "%u => %u\n",
1583                  gtid, target_gtid, flag->get(), old_spin, *flag->get()));
1584   }
1585   TCW_PTR(th->th.th_sleep_loc, NULL);
1586 
1587 #ifdef DEBUG_SUSPEND
1588   {
1589     char buffer[128];
1590     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1591     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1592                  target_gtid, buffer);
1593   }
1594 #endif
1595   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1596   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1597   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1598   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1599   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1600                 " for T#%d\n",
1601                 gtid, target_gtid));
1602 }
1603 
1604 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1605   __kmp_resume_template(target_gtid, flag);
1606 }
1607 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1608   __kmp_resume_template(target_gtid, flag);
1609 }
1610 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1611   __kmp_resume_template(target_gtid, flag);
1612 }
1613 
1614 #if KMP_USE_MONITOR
1615 void __kmp_resume_monitor() {
1616   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1617   int status;
1618 #ifdef KMP_DEBUG
1619   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1620   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1621                 KMP_GTID_MONITOR));
1622   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1623 #endif
1624   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1625   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1626 #ifdef DEBUG_SUSPEND
1627   {
1628     char buffer[128];
1629     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1630     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1631                  KMP_GTID_MONITOR, buffer);
1632   }
1633 #endif
1634   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1635   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1636   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1637   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1638   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1639                 " for T#%d\n",
1640                 gtid, KMP_GTID_MONITOR));
1641 }
1642 #endif // KMP_USE_MONITOR
1643 
1644 void __kmp_yield(int cond) {
1645   if (!cond)
1646     return;
1647 #if KMP_USE_MONITOR
1648   if (!__kmp_yielding_on)
1649     return;
1650 #else
1651   if (__kmp_yield_cycle && !KMP_YIELD_NOW())
1652     return;
1653 #endif
1654   sched_yield();
1655 }
1656 
1657 void __kmp_gtid_set_specific(int gtid) {
1658   if (__kmp_init_gtid) {
1659     int status;
1660     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1661                                  (void *)(intptr_t)(gtid + 1));
1662     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1663   } else {
1664     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1665   }
1666 }
1667 
1668 int __kmp_gtid_get_specific() {
1669   int gtid;
1670   if (!__kmp_init_gtid) {
1671     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1672                   "KMP_GTID_SHUTDOWN\n"));
1673     return KMP_GTID_SHUTDOWN;
1674   }
1675   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1676   if (gtid == 0) {
1677     gtid = KMP_GTID_DNE;
1678   } else {
1679     gtid--;
1680   }
1681   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1682                 __kmp_gtid_threadprivate_key, gtid));
1683   return gtid;
1684 }
1685 
1686 double __kmp_read_cpu_time(void) {
1687   /*clock_t   t;*/
1688   struct tms buffer;
1689 
1690   /*t =*/times(&buffer);
1691 
1692   return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1693 }
1694 
1695 int __kmp_read_system_info(struct kmp_sys_info *info) {
1696   int status;
1697   struct rusage r_usage;
1698 
1699   memset(info, 0, sizeof(*info));
1700 
1701   status = getrusage(RUSAGE_SELF, &r_usage);
1702   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1703 
1704   // The maximum resident set size utilized (in kilobytes)
1705   info->maxrss = r_usage.ru_maxrss;
1706   // The number of page faults serviced without any I/O
1707   info->minflt = r_usage.ru_minflt;
1708   // The number of page faults serviced that required I/O
1709   info->majflt = r_usage.ru_majflt;
1710   // The number of times a process was "swapped" out of memory
1711   info->nswap = r_usage.ru_nswap;
1712   // The number of times the file system had to perform input
1713   info->inblock = r_usage.ru_inblock;
1714   // The number of times the file system had to perform output
1715   info->oublock = r_usage.ru_oublock;
1716   // The number of times a context switch was voluntarily
1717   info->nvcsw = r_usage.ru_nvcsw;
1718   // The number of times a context switch was forced
1719   info->nivcsw = r_usage.ru_nivcsw;
1720 
1721   return (status != 0);
1722 }
1723 
1724 void __kmp_read_system_time(double *delta) {
1725   double t_ns;
1726   struct timeval tval;
1727   struct timespec stop;
1728   int status;
1729 
1730   status = gettimeofday(&tval, NULL);
1731   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1732   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1733   t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1734   *delta = (t_ns * 1e-9);
1735 }
1736 
1737 void __kmp_clear_system_time(void) {
1738   struct timeval tval;
1739   int status;
1740   status = gettimeofday(&tval, NULL);
1741   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1742   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1743 }
1744 
1745 #ifdef BUILD_TV
1746 
1747 void __kmp_tv_threadprivate_store(kmp_info_t *th, void *global_addr,
1748                                   void *thread_addr) {
1749   struct tv_data *p;
1750 
1751   p = (struct tv_data *)__kmp_allocate(sizeof(*p));
1752 
1753   p->u.tp.global_addr = global_addr;
1754   p->u.tp.thread_addr = thread_addr;
1755 
1756   p->type = (void *)1;
1757 
1758   p->next = th->th.th_local.tv_data;
1759   th->th.th_local.tv_data = p;
1760 
1761   if (p->next == 0) {
1762     int rc = pthread_setspecific(__kmp_tv_key, p);
1763     KMP_CHECK_SYSFAIL("pthread_setspecific", rc);
1764   }
1765 }
1766 
1767 #endif /* BUILD_TV */
1768 
1769 static int __kmp_get_xproc(void) {
1770 
1771   int r = 0;
1772 
1773 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD
1774 
1775   r = sysconf(_SC_NPROCESSORS_ONLN);
1776 
1777 #elif KMP_OS_DARWIN
1778 
1779   // Bug C77011 High "OpenMP Threads and number of active cores".
1780 
1781   // Find the number of available CPUs.
1782   kern_return_t rc;
1783   host_basic_info_data_t info;
1784   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1785   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1786   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1787 // Cannot use KA_TRACE() here because this code works before trace support is
1788 // initialized.
1789     r = info.avail_cpus;
1790   } else {
1791     KMP_WARNING(CantGetNumAvailCPU);
1792     KMP_INFORM(AssumedNumCPU);
1793   }; // if
1794 
1795 #else
1796 
1797 #error "Unknown or unsupported OS."
1798 
1799 #endif
1800 
1801   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1802 
1803 } // __kmp_get_xproc
1804 
1805 int __kmp_read_from_file(char const *path, char const *format, ...) {
1806   int result;
1807   va_list args;
1808 
1809   va_start(args, format);
1810   FILE *f = fopen(path, "rb");
1811   if (f == NULL)
1812     return 0;
1813   result = vfscanf(f, format, args);
1814   fclose(f);
1815 
1816   return result;
1817 }
1818 
1819 void __kmp_runtime_initialize(void) {
1820   int status;
1821   pthread_mutexattr_t mutex_attr;
1822   pthread_condattr_t cond_attr;
1823 
1824   if (__kmp_init_runtime) {
1825     return;
1826   }; // if
1827 
1828 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1829   if (!__kmp_cpuinfo.initialized) {
1830     __kmp_query_cpuid(&__kmp_cpuinfo);
1831   }; // if
1832 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1833 
1834   __kmp_xproc = __kmp_get_xproc();
1835 
1836   if (sysconf(_SC_THREADS)) {
1837 
1838     /* Query the maximum number of threads */
1839     __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1840     if (__kmp_sys_max_nth == -1) {
1841       /* Unlimited threads for NPTL */
1842       __kmp_sys_max_nth = INT_MAX;
1843     } else if (__kmp_sys_max_nth <= 1) {
1844       /* Can't tell, just use PTHREAD_THREADS_MAX */
1845       __kmp_sys_max_nth = KMP_MAX_NTH;
1846     }
1847 
1848     /* Query the minimum stack size */
1849     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1850     if (__kmp_sys_min_stksize <= 1) {
1851       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1852     }
1853   }
1854 
1855   /* Set up minimum number of threads to switch to TLS gtid */
1856   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1857 
1858 #ifdef BUILD_TV
1859   {
1860     int rc = pthread_key_create(&__kmp_tv_key, 0);
1861     KMP_CHECK_SYSFAIL("pthread_key_create", rc);
1862   }
1863 #endif
1864 
1865   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1866                               __kmp_internal_end_dest);
1867   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1868   status = pthread_mutexattr_init(&mutex_attr);
1869   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1870   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1871   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1872   status = pthread_condattr_init(&cond_attr);
1873   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1874   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1875   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1876 #if USE_ITT_BUILD
1877   __kmp_itt_initialize();
1878 #endif /* USE_ITT_BUILD */
1879 
1880   __kmp_init_runtime = TRUE;
1881 }
1882 
1883 void __kmp_runtime_destroy(void) {
1884   int status;
1885 
1886   if (!__kmp_init_runtime) {
1887     return; // Nothing to do.
1888   };
1889 
1890 #if USE_ITT_BUILD
1891   __kmp_itt_destroy();
1892 #endif /* USE_ITT_BUILD */
1893 
1894   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1895   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1896 #ifdef BUILD_TV
1897   status = pthread_key_delete(__kmp_tv_key);
1898   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1899 #endif
1900 
1901   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1902   if (status != 0 && status != EBUSY) {
1903     KMP_SYSFAIL("pthread_mutex_destroy", status);
1904   }
1905   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1906   if (status != 0 && status != EBUSY) {
1907     KMP_SYSFAIL("pthread_cond_destroy", status);
1908   }
1909 #if KMP_AFFINITY_SUPPORTED
1910   __kmp_affinity_uninitialize();
1911 #endif
1912 
1913   __kmp_init_runtime = FALSE;
1914 }
1915 
1916 /* Put the thread to sleep for a time period */
1917 /* NOTE: not currently used anywhere */
1918 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1919 
1920 /* Calculate the elapsed wall clock time for the user */
1921 void __kmp_elapsed(double *t) {
1922   int status;
1923 #ifdef FIX_SGI_CLOCK
1924   struct timespec ts;
1925 
1926   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1927   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1928   *t =
1929       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1930 #else
1931   struct timeval tv;
1932 
1933   status = gettimeofday(&tv, NULL);
1934   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1935   *t =
1936       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1937 #endif
1938 }
1939 
1940 /* Calculate the elapsed wall clock tick for the user */
1941 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1942 
1943 /* Return the current time stamp in nsec */
1944 kmp_uint64 __kmp_now_nsec() {
1945   struct timeval t;
1946   gettimeofday(&t, NULL);
1947   return KMP_NSEC_PER_SEC * t.tv_sec + 1000 * t.tv_usec;
1948 }
1949 
1950 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1951 /* Measure clock ticks per millisecond */
1952 void __kmp_initialize_system_tick() {
1953   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1954   kmp_uint64 nsec = __kmp_now_nsec();
1955   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1956   kmp_uint64 now;
1957   while ((now = __kmp_hardware_timestamp()) < goal)
1958     ;
1959   __kmp_ticks_per_msec =
1960       (kmp_uint64)(1e6 * (delay + (now - goal)) / (__kmp_now_nsec() - nsec));
1961 }
1962 #endif
1963 
1964 /* Determine whether the given address is mapped into the current address
1965    space. */
1966 
1967 int __kmp_is_address_mapped(void *addr) {
1968 
1969   int found = 0;
1970   int rc;
1971 
1972 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1973 
1974   /* On Linux* OS, read the /proc/<pid>/maps pseudo-file to get all the address
1975      ranges mapped into the address space. */
1976 
1977   char *name = __kmp_str_format("/proc/%d/maps", getpid());
1978   FILE *file = NULL;
1979 
1980   file = fopen(name, "r");
1981   KMP_ASSERT(file != NULL);
1982 
1983   for (;;) {
1984 
1985     void *beginning = NULL;
1986     void *ending = NULL;
1987     char perms[5];
1988 
1989     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1990     if (rc == EOF) {
1991       break;
1992     }; // if
1993     KMP_ASSERT(rc == 3 &&
1994                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1995 
1996     // Ending address is not included in the region, but beginning is.
1997     if ((addr >= beginning) && (addr < ending)) {
1998       perms[2] = 0; // 3th and 4th character does not matter.
1999       if (strcmp(perms, "rw") == 0) {
2000         // Memory we are looking for should be readable and writable.
2001         found = 1;
2002       }; // if
2003       break;
2004     }; // if
2005 
2006   }; // forever
2007 
2008   // Free resources.
2009   fclose(file);
2010   KMP_INTERNAL_FREE(name);
2011 
2012 #elif KMP_OS_DARWIN
2013 
2014   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2015      using vm interface. */
2016 
2017   int buffer;
2018   vm_size_t count;
2019   rc = vm_read_overwrite(
2020       mach_task_self(), // Task to read memory of.
2021       (vm_address_t)(addr), // Address to read from.
2022       1, // Number of bytes to be read.
2023       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2024       &count // Address of var to save number of read bytes in.
2025       );
2026   if (rc == 0) {
2027     // Memory successfully read.
2028     found = 1;
2029   }; // if
2030 
2031 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD
2032 
2033   // FIXME(FreeBSD, NetBSD): Implement this
2034   found = 1;
2035 
2036 #else
2037 
2038 #error "Unknown or unsupported OS"
2039 
2040 #endif
2041 
2042   return found;
2043 
2044 } // __kmp_is_address_mapped
2045 
2046 #ifdef USE_LOAD_BALANCE
2047 
2048 #if KMP_OS_DARWIN
2049 
2050 // The function returns the rounded value of the system load average
2051 // during given time interval which depends on the value of
2052 // __kmp_load_balance_interval variable (default is 60 sec, other values
2053 // may be 300 sec or 900 sec).
2054 // It returns -1 in case of error.
2055 int __kmp_get_load_balance(int max) {
2056   double averages[3];
2057   int ret_avg = 0;
2058 
2059   int res = getloadavg(averages, 3);
2060 
2061   // Check __kmp_load_balance_interval to determine which of averages to use.
2062   // getloadavg() may return the number of samples less than requested that is
2063   // less than 3.
2064   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2065     ret_avg = averages[0]; // 1 min
2066   } else if ((__kmp_load_balance_interval >= 180 &&
2067               __kmp_load_balance_interval < 600) &&
2068              (res >= 2)) {
2069     ret_avg = averages[1]; // 5 min
2070   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2071     ret_avg = averages[2]; // 15 min
2072   } else { // Error occurred
2073     return -1;
2074   }
2075 
2076   return ret_avg;
2077 }
2078 
2079 #else // Linux* OS
2080 
2081 // The fuction returns number of running (not sleeping) threads, or -1 in case
2082 // of error. Error could be reported if Linux* OS kernel too old (without
2083 // "/proc" support). Counting running threads stops if max running threads
2084 // encountered.
2085 int __kmp_get_load_balance(int max) {
2086   static int permanent_error = 0;
2087   static int glb_running_threads = 0; // Saved count of the running threads for
2088   // the thread balance algortihm
2089   static double glb_call_time = 0; /* Thread balance algorithm call time */
2090 
2091   int running_threads = 0; // Number of running threads in the system.
2092 
2093   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2094   struct dirent *proc_entry = NULL;
2095 
2096   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2097   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2098   struct dirent *task_entry = NULL;
2099   int task_path_fixed_len;
2100 
2101   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2102   int stat_file = -1;
2103   int stat_path_fixed_len;
2104 
2105   int total_processes = 0; // Total number of processes in system.
2106   int total_threads = 0; // Total number of threads in system.
2107 
2108   double call_time = 0.0;
2109 
2110   __kmp_str_buf_init(&task_path);
2111   __kmp_str_buf_init(&stat_path);
2112 
2113   __kmp_elapsed(&call_time);
2114 
2115   if (glb_call_time &&
2116       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2117     running_threads = glb_running_threads;
2118     goto finish;
2119   }
2120 
2121   glb_call_time = call_time;
2122 
2123   // Do not spend time on scanning "/proc/" if we have a permanent error.
2124   if (permanent_error) {
2125     running_threads = -1;
2126     goto finish;
2127   }; // if
2128 
2129   if (max <= 0) {
2130     max = INT_MAX;
2131   }; // if
2132 
2133   // Open "/proc/" directory.
2134   proc_dir = opendir("/proc");
2135   if (proc_dir == NULL) {
2136     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2137     // error now and in subsequent calls.
2138     running_threads = -1;
2139     permanent_error = 1;
2140     goto finish;
2141   }; // if
2142 
2143   // Initialize fixed part of task_path. This part will not change.
2144   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2145   task_path_fixed_len = task_path.used; // Remember number of used characters.
2146 
2147   proc_entry = readdir(proc_dir);
2148   while (proc_entry != NULL) {
2149     // Proc entry is a directory and name starts with a digit. Assume it is a
2150     // process' directory.
2151     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2152 
2153       ++total_processes;
2154       // Make sure init process is the very first in "/proc", so we can replace
2155       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2156       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2157       // true (where "=>" is implication). Since C++ does not have => operator,
2158       // let us replace it with its equivalent: a => b == ! a || b.
2159       KMP_DEBUG_ASSERT(total_processes != 1 ||
2160                        strcmp(proc_entry->d_name, "1") == 0);
2161 
2162       // Construct task_path.
2163       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2164       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2165                         KMP_STRLEN(proc_entry->d_name));
2166       __kmp_str_buf_cat(&task_path, "/task", 5);
2167 
2168       task_dir = opendir(task_path.str);
2169       if (task_dir == NULL) {
2170         // Process can finish between reading "/proc/" directory entry and
2171         // opening process' "task/" directory. So, in general case we should not
2172         // complain, but have to skip this process and read the next one. But on
2173         // systems with no "task/" support we will spend lot of time to scan
2174         // "/proc/" tree again and again without any benefit. "init" process
2175         // (its pid is 1) should exist always, so, if we cannot open
2176         // "/proc/1/task/" directory, it means "task/" is not supported by
2177         // kernel. Report an error now and in the future.
2178         if (strcmp(proc_entry->d_name, "1") == 0) {
2179           running_threads = -1;
2180           permanent_error = 1;
2181           goto finish;
2182         }; // if
2183       } else {
2184         // Construct fixed part of stat file path.
2185         __kmp_str_buf_clear(&stat_path);
2186         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2187         __kmp_str_buf_cat(&stat_path, "/", 1);
2188         stat_path_fixed_len = stat_path.used;
2189 
2190         task_entry = readdir(task_dir);
2191         while (task_entry != NULL) {
2192           // It is a directory and name starts with a digit.
2193           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2194             ++total_threads;
2195 
2196             // Consruct complete stat file path. Easiest way would be:
2197             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2198             //  task_entry->d_name );
2199             // but seriae of __kmp_str_buf_cat works a bit faster.
2200             stat_path.used =
2201                 stat_path_fixed_len; // Reset stat path to its fixed part.
2202             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2203                               KMP_STRLEN(task_entry->d_name));
2204             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2205 
2206             // Note: Low-level API (open/read/close) is used. High-level API
2207             // (fopen/fclose)  works ~ 30 % slower.
2208             stat_file = open(stat_path.str, O_RDONLY);
2209             if (stat_file == -1) {
2210               // We cannot report an error because task (thread) can terminate
2211               // just before reading this file.
2212             } else {
2213               /* Content of "stat" file looks like:
2214                  24285 (program) S ...
2215 
2216                  It is a single line (if program name does not include funny
2217                  symbols). First number is a thread id, then name of executable
2218                  file name in paretheses, then state of the thread. We need just
2219                  thread state.
2220 
2221                  Good news: Length of program name is 15 characters max. Longer
2222                  names are truncated.
2223 
2224                  Thus, we need rather short buffer: 15 chars for program name +
2225                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2226 
2227                  Bad news: Program name may contain special symbols like space,
2228                  closing parenthesis, or even new line. This makes parsing
2229                  "stat" file not 100 % reliable. In case of fanny program names
2230                  parsing may fail (report incorrect thread state).
2231 
2232                  Parsing "status" file looks more promissing (due to different
2233                  file structure and escaping special symbols) but reading and
2234                  parsing of "status" file works slower.
2235                   -- ln
2236               */
2237               char buffer[65];
2238               int len;
2239               len = read(stat_file, buffer, sizeof(buffer) - 1);
2240               if (len >= 0) {
2241                 buffer[len] = 0;
2242                 // Using scanf:
2243                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2244                 // looks very nice, but searching for a closing parenthesis
2245                 // works a bit faster.
2246                 char *close_parent = strstr(buffer, ") ");
2247                 if (close_parent != NULL) {
2248                   char state = *(close_parent + 2);
2249                   if (state == 'R') {
2250                     ++running_threads;
2251                     if (running_threads >= max) {
2252                       goto finish;
2253                     }; // if
2254                   }; // if
2255                 }; // if
2256               }; // if
2257               close(stat_file);
2258               stat_file = -1;
2259             }; // if
2260           }; // if
2261           task_entry = readdir(task_dir);
2262         }; // while
2263         closedir(task_dir);
2264         task_dir = NULL;
2265       }; // if
2266     }; // if
2267     proc_entry = readdir(proc_dir);
2268   }; // while
2269 
2270   // There _might_ be a timing hole where the thread executing this
2271   // code get skipped in the load balance, and running_threads is 0.
2272   // Assert in the debug builds only!!!
2273   KMP_DEBUG_ASSERT(running_threads > 0);
2274   if (running_threads <= 0) {
2275     running_threads = 1;
2276   }
2277 
2278 finish: // Clean up and exit.
2279   if (proc_dir != NULL) {
2280     closedir(proc_dir);
2281   }; // if
2282   __kmp_str_buf_free(&task_path);
2283   if (task_dir != NULL) {
2284     closedir(task_dir);
2285   }; // if
2286   __kmp_str_buf_free(&stat_path);
2287   if (stat_file != -1) {
2288     close(stat_file);
2289   }; // if
2290 
2291   glb_running_threads = running_threads;
2292 
2293   return running_threads;
2294 
2295 } // __kmp_get_load_balance
2296 
2297 #endif // KMP_OS_DARWIN
2298 
2299 #endif // USE_LOAD_BALANCE
2300 
2301 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2302 
2303 // we really only need the case with 1 argument, because CLANG always build
2304 // a struct of pointers to shared variables referenced in the outlined function
2305 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2306                            void *p_argv[]
2307 #if OMPT_SUPPORT
2308                            ,
2309                            void **exit_frame_ptr
2310 #endif
2311                            ) {
2312 #if OMPT_SUPPORT
2313   *exit_frame_ptr = __builtin_frame_address(0);
2314 #endif
2315 
2316   switch (argc) {
2317   default:
2318     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2319     fflush(stderr);
2320     exit(-1);
2321   case 0:
2322     (*pkfn)(&gtid, &tid);
2323     break;
2324   case 1:
2325     (*pkfn)(&gtid, &tid, p_argv[0]);
2326     break;
2327   case 2:
2328     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2329     break;
2330   case 3:
2331     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2332     break;
2333   case 4:
2334     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2335     break;
2336   case 5:
2337     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2338     break;
2339   case 6:
2340     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2341             p_argv[5]);
2342     break;
2343   case 7:
2344     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2345             p_argv[5], p_argv[6]);
2346     break;
2347   case 8:
2348     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2349             p_argv[5], p_argv[6], p_argv[7]);
2350     break;
2351   case 9:
2352     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2353             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2354     break;
2355   case 10:
2356     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2357             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2358     break;
2359   case 11:
2360     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2361             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2362     break;
2363   case 12:
2364     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2365             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2366             p_argv[11]);
2367     break;
2368   case 13:
2369     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2370             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2371             p_argv[11], p_argv[12]);
2372     break;
2373   case 14:
2374     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2375             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2376             p_argv[11], p_argv[12], p_argv[13]);
2377     break;
2378   case 15:
2379     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2380             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2381             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2382     break;
2383   }
2384 
2385 #if OMPT_SUPPORT
2386   *exit_frame_ptr = 0;
2387 #endif
2388 
2389   return 1;
2390 }
2391 
2392 #endif
2393 
2394 // end of file //
2395