1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 6 //===----------------------------------------------------------------------===// 7 // 8 // The LLVM Compiler Infrastructure 9 // 10 // This file is dual licensed under the MIT and the University of Illinois Open 11 // Source Licenses. See LICENSE.txt for details. 12 // 13 //===----------------------------------------------------------------------===// 14 15 16 #include "kmp.h" 17 #include "kmp_affinity.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_lock.h" 22 #include "kmp_stats.h" 23 #include "kmp_str.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_wrapper_getpid.h" 26 27 #if !KMP_OS_FREEBSD && !KMP_OS_NETBSD 28 #include <alloca.h> 29 #endif 30 #include <math.h> // HUGE_VAL. 31 #include <sys/resource.h> 32 #include <sys/syscall.h> 33 #include <sys/time.h> 34 #include <sys/times.h> 35 #include <unistd.h> 36 37 #if KMP_OS_LINUX && !KMP_OS_CNK 38 #include <sys/sysinfo.h> 39 #if KMP_USE_FUTEX 40 // We should really include <futex.h>, but that causes compatibility problems on 41 // different Linux* OS distributions that either require that you include (or 42 // break when you try to include) <pci/types.h>. Since all we need is the two 43 // macros below (which are part of the kernel ABI, so can't change) we just 44 // define the constants here and don't include <futex.h> 45 #ifndef FUTEX_WAIT 46 #define FUTEX_WAIT 0 47 #endif 48 #ifndef FUTEX_WAKE 49 #define FUTEX_WAKE 1 50 #endif 51 #endif 52 #elif KMP_OS_DARWIN 53 #include <mach/mach.h> 54 #include <sys/sysctl.h> 55 #elif KMP_OS_FREEBSD 56 #include <pthread_np.h> 57 #endif 58 59 #include <ctype.h> 60 #include <dirent.h> 61 #include <fcntl.h> 62 63 #include "tsan_annotations.h" 64 65 struct kmp_sys_timer { 66 struct timespec start; 67 }; 68 69 // Convert timespec to nanoseconds. 70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec) 71 72 static struct kmp_sys_timer __kmp_sys_timer_data; 73 74 #if KMP_HANDLE_SIGNALS 75 typedef void (*sig_func_t)(int); 76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 77 static sigset_t __kmp_sigset; 78 #endif 79 80 static int __kmp_init_runtime = FALSE; 81 82 static int __kmp_fork_count = 0; 83 84 static pthread_condattr_t __kmp_suspend_cond_attr; 85 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 86 87 static kmp_cond_align_t __kmp_wait_cv; 88 static kmp_mutex_align_t __kmp_wait_mx; 89 90 kmp_uint64 __kmp_ticks_per_msec = 1000000; 91 92 #ifdef DEBUG_SUSPEND 93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 94 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 95 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 96 cond->c_cond.__c_waiting); 97 } 98 #endif 99 100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED) 101 102 /* Affinity support */ 103 104 void __kmp_affinity_bind_thread(int which) { 105 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 106 "Illegal set affinity operation when not capable"); 107 108 kmp_affin_mask_t *mask; 109 KMP_CPU_ALLOC_ON_STACK(mask); 110 KMP_CPU_ZERO(mask); 111 KMP_CPU_SET(which, mask); 112 __kmp_set_system_affinity(mask, TRUE); 113 KMP_CPU_FREE_FROM_STACK(mask); 114 } 115 116 /* Determine if we can access affinity functionality on this version of 117 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 118 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 119 void __kmp_affinity_determine_capable(const char *env_var) { 120 // Check and see if the OS supports thread affinity. 121 122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 123 124 int gCode; 125 int sCode; 126 unsigned char *buf; 127 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 128 129 // If Linux* OS: 130 // If the syscall fails or returns a suggestion for the size, 131 // then we don't have to search for an appropriate size. 132 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 133 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 134 "initial getaffinity call returned %d errno = %d\n", 135 gCode, errno)); 136 137 // if ((gCode < 0) && (errno == ENOSYS)) 138 if (gCode < 0) { 139 // System call not supported 140 if (__kmp_affinity_verbose || 141 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 142 (__kmp_affinity_type != affinity_default) && 143 (__kmp_affinity_type != affinity_disabled))) { 144 int error = errno; 145 kmp_msg_t err_code = KMP_ERR(error); 146 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 147 err_code, __kmp_msg_null); 148 if (__kmp_generate_warnings == kmp_warnings_off) { 149 __kmp_str_free(&err_code.str); 150 } 151 } 152 KMP_AFFINITY_DISABLE(); 153 KMP_INTERNAL_FREE(buf); 154 return; 155 } 156 if (gCode > 0) { // Linux* OS only 157 // The optimal situation: the OS returns the size of the buffer it expects. 158 // 159 // A verification of correct behavior is that Isetaffinity on a NULL 160 // buffer with the same size fails with errno set to EFAULT. 161 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 162 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 163 "setaffinity for mask size %d returned %d errno = %d\n", 164 gCode, sCode, errno)); 165 if (sCode < 0) { 166 if (errno == ENOSYS) { 167 if (__kmp_affinity_verbose || 168 (__kmp_affinity_warnings && 169 (__kmp_affinity_type != affinity_none) && 170 (__kmp_affinity_type != affinity_default) && 171 (__kmp_affinity_type != affinity_disabled))) { 172 int error = errno; 173 kmp_msg_t err_code = KMP_ERR(error); 174 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 175 err_code, __kmp_msg_null); 176 if (__kmp_generate_warnings == kmp_warnings_off) { 177 __kmp_str_free(&err_code.str); 178 } 179 } 180 KMP_AFFINITY_DISABLE(); 181 KMP_INTERNAL_FREE(buf); 182 } 183 if (errno == EFAULT) { 184 KMP_AFFINITY_ENABLE(gCode); 185 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 186 "affinity supported (mask size %d)\n", 187 (int)__kmp_affin_mask_size)); 188 KMP_INTERNAL_FREE(buf); 189 return; 190 } 191 } 192 } 193 194 // Call the getaffinity system call repeatedly with increasing set sizes 195 // until we succeed, or reach an upper bound on the search. 196 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 197 "searching for proper set size\n")); 198 int size; 199 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 200 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 201 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 202 "getaffinity for mask size %d returned %d errno = %d\n", 203 size, gCode, errno)); 204 205 if (gCode < 0) { 206 if (errno == ENOSYS) { 207 // We shouldn't get here 208 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 209 "inconsistent OS call behavior: errno == ENOSYS for mask " 210 "size %d\n", 211 size)); 212 if (__kmp_affinity_verbose || 213 (__kmp_affinity_warnings && 214 (__kmp_affinity_type != affinity_none) && 215 (__kmp_affinity_type != affinity_default) && 216 (__kmp_affinity_type != affinity_disabled))) { 217 int error = errno; 218 kmp_msg_t err_code = KMP_ERR(error); 219 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 220 err_code, __kmp_msg_null); 221 if (__kmp_generate_warnings == kmp_warnings_off) { 222 __kmp_str_free(&err_code.str); 223 } 224 } 225 KMP_AFFINITY_DISABLE(); 226 KMP_INTERNAL_FREE(buf); 227 return; 228 } 229 continue; 230 } 231 232 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 233 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 234 "setaffinity for mask size %d returned %d errno = %d\n", 235 gCode, sCode, errno)); 236 if (sCode < 0) { 237 if (errno == ENOSYS) { // Linux* OS only 238 // We shouldn't get here 239 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 240 "inconsistent OS call behavior: errno == ENOSYS for mask " 241 "size %d\n", 242 size)); 243 if (__kmp_affinity_verbose || 244 (__kmp_affinity_warnings && 245 (__kmp_affinity_type != affinity_none) && 246 (__kmp_affinity_type != affinity_default) && 247 (__kmp_affinity_type != affinity_disabled))) { 248 int error = errno; 249 kmp_msg_t err_code = KMP_ERR(error); 250 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 251 err_code, __kmp_msg_null); 252 if (__kmp_generate_warnings == kmp_warnings_off) { 253 __kmp_str_free(&err_code.str); 254 } 255 } 256 KMP_AFFINITY_DISABLE(); 257 KMP_INTERNAL_FREE(buf); 258 return; 259 } 260 if (errno == EFAULT) { 261 KMP_AFFINITY_ENABLE(gCode); 262 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 263 "affinity supported (mask size %d)\n", 264 (int)__kmp_affin_mask_size)); 265 KMP_INTERNAL_FREE(buf); 266 return; 267 } 268 } 269 } 270 // save uncaught error code 271 // int error = errno; 272 KMP_INTERNAL_FREE(buf); 273 // restore uncaught error code, will be printed at the next KMP_WARNING below 274 // errno = error; 275 276 // Affinity is not supported 277 KMP_AFFINITY_DISABLE(); 278 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 279 "cannot determine mask size - affinity not supported\n")); 280 if (__kmp_affinity_verbose || 281 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 282 (__kmp_affinity_type != affinity_default) && 283 (__kmp_affinity_type != affinity_disabled))) { 284 KMP_WARNING(AffCantGetMaskSize, env_var); 285 } 286 } 287 288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 289 290 #if KMP_USE_FUTEX 291 292 int __kmp_futex_determine_capable() { 293 int loc = 0; 294 int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 295 int retval = (rc == 0) || (errno != ENOSYS); 296 297 KA_TRACE(10, 298 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 299 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 300 retval ? "" : " not")); 301 302 return retval; 303 } 304 305 #endif // KMP_USE_FUTEX 306 307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 309 use compare_and_store for these routines */ 310 311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 312 kmp_int8 old_value, new_value; 313 314 old_value = TCR_1(*p); 315 new_value = old_value | d; 316 317 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 318 KMP_CPU_PAUSE(); 319 old_value = TCR_1(*p); 320 new_value = old_value | d; 321 } 322 return old_value; 323 } 324 325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 326 kmp_int8 old_value, new_value; 327 328 old_value = TCR_1(*p); 329 new_value = old_value & d; 330 331 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 332 KMP_CPU_PAUSE(); 333 old_value = TCR_1(*p); 334 new_value = old_value & d; 335 } 336 return old_value; 337 } 338 339 kmp_int32 __kmp_test_then_or32(volatile kmp_int32 *p, kmp_int32 d) { 340 kmp_int32 old_value, new_value; 341 342 old_value = TCR_4(*p); 343 new_value = old_value | d; 344 345 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 346 KMP_CPU_PAUSE(); 347 old_value = TCR_4(*p); 348 new_value = old_value | d; 349 } 350 return old_value; 351 } 352 353 kmp_int32 __kmp_test_then_and32(volatile kmp_int32 *p, kmp_int32 d) { 354 kmp_int32 old_value, new_value; 355 356 old_value = TCR_4(*p); 357 new_value = old_value & d; 358 359 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 360 KMP_CPU_PAUSE(); 361 old_value = TCR_4(*p); 362 new_value = old_value & d; 363 } 364 return old_value; 365 } 366 367 #if KMP_ARCH_X86 368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 369 kmp_int8 old_value, new_value; 370 371 old_value = TCR_1(*p); 372 new_value = old_value + d; 373 374 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 375 KMP_CPU_PAUSE(); 376 old_value = TCR_1(*p); 377 new_value = old_value + d; 378 } 379 return old_value; 380 } 381 382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 383 kmp_int64 old_value, new_value; 384 385 old_value = TCR_8(*p); 386 new_value = old_value + d; 387 388 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 389 KMP_CPU_PAUSE(); 390 old_value = TCR_8(*p); 391 new_value = old_value + d; 392 } 393 return old_value; 394 } 395 #endif /* KMP_ARCH_X86 */ 396 397 kmp_int64 __kmp_test_then_or64(volatile kmp_int64 *p, kmp_int64 d) { 398 kmp_int64 old_value, new_value; 399 400 old_value = TCR_8(*p); 401 new_value = old_value | d; 402 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 403 KMP_CPU_PAUSE(); 404 old_value = TCR_8(*p); 405 new_value = old_value | d; 406 } 407 return old_value; 408 } 409 410 kmp_int64 __kmp_test_then_and64(volatile kmp_int64 *p, kmp_int64 d) { 411 kmp_int64 old_value, new_value; 412 413 old_value = TCR_8(*p); 414 new_value = old_value & d; 415 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 416 KMP_CPU_PAUSE(); 417 old_value = TCR_8(*p); 418 new_value = old_value & d; 419 } 420 return old_value; 421 } 422 423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 424 425 void __kmp_terminate_thread(int gtid) { 426 int status; 427 kmp_info_t *th = __kmp_threads[gtid]; 428 429 if (!th) 430 return; 431 432 #ifdef KMP_CANCEL_THREADS 433 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 434 status = pthread_cancel(th->th.th_info.ds.ds_thread); 435 if (status != 0 && status != ESRCH) { 436 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 437 __kmp_msg_null); 438 }; // if 439 #endif 440 __kmp_yield(TRUE); 441 } // 442 443 /* Set thread stack info according to values returned by pthread_getattr_np(). 444 If values are unreasonable, assume call failed and use incremental stack 445 refinement method instead. Returns TRUE if the stack parameters could be 446 determined exactly, FALSE if incremental refinement is necessary. */ 447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 448 int stack_data; 449 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 450 /* Linux* OS only -- no pthread_getattr_np support on OS X* */ 451 pthread_attr_t attr; 452 int status; 453 size_t size = 0; 454 void *addr = 0; 455 456 /* Always do incremental stack refinement for ubermaster threads since the 457 initial thread stack range can be reduced by sibling thread creation so 458 pthread_attr_getstack may cause thread gtid aliasing */ 459 if (!KMP_UBER_GTID(gtid)) { 460 461 /* Fetch the real thread attributes */ 462 status = pthread_attr_init(&attr); 463 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 464 #if KMP_OS_FREEBSD || KMP_OS_NETBSD 465 status = pthread_attr_get_np(pthread_self(), &attr); 466 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 467 #else 468 status = pthread_getattr_np(pthread_self(), &attr); 469 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 470 #endif 471 status = pthread_attr_getstack(&attr, &addr, &size); 472 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 473 KA_TRACE(60, 474 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 475 " %lu, low addr: %p\n", 476 gtid, size, addr)); 477 status = pthread_attr_destroy(&attr); 478 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 479 } 480 481 if (size != 0 && addr != 0) { // was stack parameter determination successful? 482 /* Store the correct base and size */ 483 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 484 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 485 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 486 return TRUE; 487 } 488 #endif /* KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD */ 489 /* Use incremental refinement starting from initial conservative estimate */ 490 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 491 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 492 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 493 return FALSE; 494 } 495 496 static void *__kmp_launch_worker(void *thr) { 497 int status, old_type, old_state; 498 #ifdef KMP_BLOCK_SIGNALS 499 sigset_t new_set, old_set; 500 #endif /* KMP_BLOCK_SIGNALS */ 501 void *exit_val; 502 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 503 void *volatile padding = 0; 504 #endif 505 int gtid; 506 507 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 508 __kmp_gtid_set_specific(gtid); 509 #ifdef KMP_TDATA_GTID 510 __kmp_gtid = gtid; 511 #endif 512 #if KMP_STATS_ENABLED 513 // set __thread local index to point to thread-specific stats 514 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 515 KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life); 516 KMP_SET_THREAD_STATE(IDLE); 517 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 518 #endif 519 520 #if USE_ITT_BUILD 521 __kmp_itt_thread_name(gtid); 522 #endif /* USE_ITT_BUILD */ 523 524 #if KMP_AFFINITY_SUPPORTED 525 __kmp_affinity_set_init_mask(gtid, FALSE); 526 #endif 527 528 #ifdef KMP_CANCEL_THREADS 529 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 530 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 531 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 532 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 533 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 534 #endif 535 536 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 537 // Set FP control regs to be a copy of the parallel initialization thread's. 538 __kmp_clear_x87_fpu_status_word(); 539 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 540 __kmp_load_mxcsr(&__kmp_init_mxcsr); 541 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 542 543 #ifdef KMP_BLOCK_SIGNALS 544 status = sigfillset(&new_set); 545 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 546 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 547 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 548 #endif /* KMP_BLOCK_SIGNALS */ 549 550 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 551 if (__kmp_stkoffset > 0 && gtid > 0) { 552 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 553 } 554 #endif 555 556 KMP_MB(); 557 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 558 559 __kmp_check_stack_overlap((kmp_info_t *)thr); 560 561 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 562 563 #ifdef KMP_BLOCK_SIGNALS 564 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 565 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 566 #endif /* KMP_BLOCK_SIGNALS */ 567 568 return exit_val; 569 } 570 571 #if KMP_USE_MONITOR 572 /* The monitor thread controls all of the threads in the complex */ 573 574 static void *__kmp_launch_monitor(void *thr) { 575 int status, old_type, old_state; 576 #ifdef KMP_BLOCK_SIGNALS 577 sigset_t new_set; 578 #endif /* KMP_BLOCK_SIGNALS */ 579 struct timespec interval; 580 int yield_count; 581 int yield_cycles = 0; 582 583 KMP_MB(); /* Flush all pending memory write invalidates. */ 584 585 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 586 587 /* register us as the monitor thread */ 588 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 589 #ifdef KMP_TDATA_GTID 590 __kmp_gtid = KMP_GTID_MONITOR; 591 #endif 592 593 KMP_MB(); 594 595 #if USE_ITT_BUILD 596 // Instruct Intel(R) Threading Tools to ignore monitor thread. 597 __kmp_itt_thread_ignore(); 598 #endif /* USE_ITT_BUILD */ 599 600 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 601 (kmp_info_t *)thr); 602 603 __kmp_check_stack_overlap((kmp_info_t *)thr); 604 605 #ifdef KMP_CANCEL_THREADS 606 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 607 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 608 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 609 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 610 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 611 #endif 612 613 #if KMP_REAL_TIME_FIX 614 // This is a potential fix which allows application with real-time scheduling 615 // policy work. However, decision about the fix is not made yet, so it is 616 // disabled by default. 617 { // Are program started with real-time scheduling policy? 618 int sched = sched_getscheduler(0); 619 if (sched == SCHED_FIFO || sched == SCHED_RR) { 620 // Yes, we are a part of real-time application. Try to increase the 621 // priority of the monitor. 622 struct sched_param param; 623 int max_priority = sched_get_priority_max(sched); 624 int rc; 625 KMP_WARNING(RealTimeSchedNotSupported); 626 sched_getparam(0, ¶m); 627 if (param.sched_priority < max_priority) { 628 param.sched_priority += 1; 629 rc = sched_setscheduler(0, sched, ¶m); 630 if (rc != 0) { 631 int error = errno; 632 kmp_msg_t err_code = KMP_ERR(error); 633 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 634 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 635 if (__kmp_generate_warnings == kmp_warnings_off) { 636 __kmp_str_free(&err_code.str); 637 } 638 }; // if 639 } else { 640 // We cannot abort here, because number of CPUs may be enough for all 641 // the threads, including the monitor thread, so application could 642 // potentially work... 643 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 644 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 645 __kmp_msg_null); 646 }; // if 647 }; // if 648 // AC: free thread that waits for monitor started 649 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 650 } 651 #endif // KMP_REAL_TIME_FIX 652 653 KMP_MB(); /* Flush all pending memory write invalidates. */ 654 655 if (__kmp_monitor_wakeups == 1) { 656 interval.tv_sec = 1; 657 interval.tv_nsec = 0; 658 } else { 659 interval.tv_sec = 0; 660 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 661 } 662 663 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 664 665 if (__kmp_yield_cycle) { 666 __kmp_yielding_on = 0; /* Start out with yielding shut off */ 667 yield_count = __kmp_yield_off_count; 668 } else { 669 __kmp_yielding_on = 1; /* Yielding is on permanently */ 670 } 671 672 while (!TCR_4(__kmp_global.g.g_done)) { 673 struct timespec now; 674 struct timeval tval; 675 676 /* This thread monitors the state of the system */ 677 678 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 679 680 status = gettimeofday(&tval, NULL); 681 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 682 TIMEVAL_TO_TIMESPEC(&tval, &now); 683 684 now.tv_sec += interval.tv_sec; 685 now.tv_nsec += interval.tv_nsec; 686 687 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 688 now.tv_sec += 1; 689 now.tv_nsec -= KMP_NSEC_PER_SEC; 690 } 691 692 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 693 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 694 // AC: the monitor should not fall asleep if g_done has been set 695 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 696 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 697 &__kmp_wait_mx.m_mutex, &now); 698 if (status != 0) { 699 if (status != ETIMEDOUT && status != EINTR) { 700 KMP_SYSFAIL("pthread_cond_timedwait", status); 701 }; 702 }; 703 }; 704 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 705 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 706 707 if (__kmp_yield_cycle) { 708 yield_cycles++; 709 if ((yield_cycles % yield_count) == 0) { 710 if (__kmp_yielding_on) { 711 __kmp_yielding_on = 0; /* Turn it off now */ 712 yield_count = __kmp_yield_off_count; 713 } else { 714 __kmp_yielding_on = 1; /* Turn it on now */ 715 yield_count = __kmp_yield_on_count; 716 } 717 yield_cycles = 0; 718 } 719 } else { 720 __kmp_yielding_on = 1; 721 } 722 723 TCW_4(__kmp_global.g.g_time.dt.t_value, 724 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 725 726 KMP_MB(); /* Flush all pending memory write invalidates. */ 727 } 728 729 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 730 731 #ifdef KMP_BLOCK_SIGNALS 732 status = sigfillset(&new_set); 733 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 734 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 735 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 736 #endif /* KMP_BLOCK_SIGNALS */ 737 738 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 739 740 if (__kmp_global.g.g_abort != 0) { 741 /* now we need to terminate the worker threads */ 742 /* the value of t_abort is the signal we caught */ 743 744 int gtid; 745 746 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 747 __kmp_global.g.g_abort)); 748 749 /* terminate the OpenMP worker threads */ 750 /* TODO this is not valid for sibling threads!! 751 * the uber master might not be 0 anymore.. */ 752 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 753 __kmp_terminate_thread(gtid); 754 755 __kmp_cleanup(); 756 757 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 758 __kmp_global.g.g_abort)); 759 760 if (__kmp_global.g.g_abort > 0) 761 raise(__kmp_global.g.g_abort); 762 } 763 764 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 765 766 return thr; 767 } 768 #endif // KMP_USE_MONITOR 769 770 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 771 pthread_t handle; 772 pthread_attr_t thread_attr; 773 int status; 774 775 th->th.th_info.ds.ds_gtid = gtid; 776 777 #if KMP_STATS_ENABLED 778 // sets up worker thread stats 779 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 780 781 // th->th.th_stats is used to transfer thread-specific stats-pointer to 782 // __kmp_launch_worker. So when thread is created (goes into 783 // __kmp_launch_worker) it will set its __thread local pointer to 784 // th->th.th_stats 785 if (!KMP_UBER_GTID(gtid)) { 786 th->th.th_stats = __kmp_stats_list->push_back(gtid); 787 } else { 788 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 789 // so set the th->th.th_stats field to it. 790 th->th.th_stats = __kmp_stats_thread_ptr; 791 } 792 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 793 794 #endif // KMP_STATS_ENABLED 795 796 if (KMP_UBER_GTID(gtid)) { 797 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 798 th->th.th_info.ds.ds_thread = pthread_self(); 799 __kmp_set_stack_info(gtid, th); 800 __kmp_check_stack_overlap(th); 801 return; 802 }; // if 803 804 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 805 806 KMP_MB(); /* Flush all pending memory write invalidates. */ 807 808 #ifdef KMP_THREAD_ATTR 809 status = pthread_attr_init(&thread_attr); 810 if (status != 0) { 811 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), 812 __kmp_msg_null); 813 }; // if 814 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 815 if (status != 0) { 816 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerState), KMP_ERR(status), 817 __kmp_msg_null); 818 }; // if 819 820 /* Set stack size for this thread now. 821 The multiple of 2 is there because on some machines, requesting an unusual 822 stacksize causes the thread to have an offset before the dummy alloca() 823 takes place to create the offset. Since we want the user to have a 824 sufficient stacksize AND support a stack offset, we alloca() twice the 825 offset so that the upcoming alloca() does not eliminate any premade offset, 826 and also gives the user the stack space they requested for all threads */ 827 stack_size += gtid * __kmp_stkoffset * 2; 828 829 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 830 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 831 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 832 833 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 834 status = pthread_attr_setstacksize(&thread_attr, stack_size); 835 #ifdef KMP_BACKUP_STKSIZE 836 if (status != 0) { 837 if (!__kmp_env_stksize) { 838 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 839 __kmp_stksize = KMP_BACKUP_STKSIZE; 840 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 841 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 842 "bytes\n", 843 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 844 status = pthread_attr_setstacksize(&thread_attr, stack_size); 845 }; // if 846 }; // if 847 #endif /* KMP_BACKUP_STKSIZE */ 848 if (status != 0) { 849 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size), 850 KMP_ERR(status), KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 851 }; // if 852 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 853 854 #endif /* KMP_THREAD_ATTR */ 855 856 status = 857 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 858 if (status != 0 || !handle) { // ??? Why do we check handle?? 859 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 860 if (status == EINVAL) { 861 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size), 862 KMP_ERR(status), KMP_HNT(IncreaseWorkerStackSize), 863 __kmp_msg_null); 864 }; 865 if (status == ENOMEM) { 866 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetWorkerStackSize, stack_size), 867 KMP_ERR(status), KMP_HNT(DecreaseWorkerStackSize), 868 __kmp_msg_null); 869 }; 870 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 871 if (status == EAGAIN) { 872 __kmp_msg(kmp_ms_fatal, KMP_MSG(NoResourcesForWorkerThread), 873 KMP_ERR(status), KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 874 }; // if 875 KMP_SYSFAIL("pthread_create", status); 876 }; // if 877 878 th->th.th_info.ds.ds_thread = handle; 879 880 #ifdef KMP_THREAD_ATTR 881 status = pthread_attr_destroy(&thread_attr); 882 if (status) { 883 kmp_msg_t err_code = KMP_ERR(status); 884 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 885 __kmp_msg_null); 886 if (__kmp_generate_warnings == kmp_warnings_off) { 887 __kmp_str_free(&err_code.str); 888 } 889 }; // if 890 #endif /* KMP_THREAD_ATTR */ 891 892 KMP_MB(); /* Flush all pending memory write invalidates. */ 893 894 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 895 896 } // __kmp_create_worker 897 898 #if KMP_USE_MONITOR 899 void __kmp_create_monitor(kmp_info_t *th) { 900 pthread_t handle; 901 pthread_attr_t thread_attr; 902 size_t size; 903 int status; 904 int auto_adj_size = FALSE; 905 906 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 907 // We don't need monitor thread in case of MAX_BLOCKTIME 908 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 909 "MAX blocktime\n")); 910 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 911 th->th.th_info.ds.ds_gtid = 0; 912 return; 913 } 914 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 915 916 KMP_MB(); /* Flush all pending memory write invalidates. */ 917 918 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 919 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 920 #if KMP_REAL_TIME_FIX 921 TCW_4(__kmp_global.g.g_time.dt.t_value, 922 -1); // Will use it for synchronization a bit later. 923 #else 924 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 925 #endif // KMP_REAL_TIME_FIX 926 927 #ifdef KMP_THREAD_ATTR 928 if (__kmp_monitor_stksize == 0) { 929 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 930 auto_adj_size = TRUE; 931 } 932 status = pthread_attr_init(&thread_attr); 933 if (status != 0) { 934 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), 935 __kmp_msg_null); 936 }; // if 937 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 938 if (status != 0) { 939 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantSetMonitorState), KMP_ERR(status), 940 __kmp_msg_null); 941 }; // if 942 943 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 944 status = pthread_attr_getstacksize(&thread_attr, &size); 945 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 946 #else 947 size = __kmp_sys_min_stksize; 948 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 949 #endif /* KMP_THREAD_ATTR */ 950 951 if (__kmp_monitor_stksize == 0) { 952 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 953 } 954 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 955 __kmp_monitor_stksize = __kmp_sys_min_stksize; 956 } 957 958 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 959 "requested stacksize = %lu bytes\n", 960 size, __kmp_monitor_stksize)); 961 962 retry: 963 964 /* Set stack size for this thread now. */ 965 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 966 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 967 __kmp_monitor_stksize)); 968 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 969 if (status != 0) { 970 if (auto_adj_size) { 971 __kmp_monitor_stksize *= 2; 972 goto retry; 973 } 974 kmp_msg_t err_code = KMP_ERR(status); 975 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 976 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 977 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 978 if (__kmp_generate_warnings == kmp_warnings_off) { 979 __kmp_str_free(&err_code.str); 980 } 981 }; // if 982 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 983 984 status = 985 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 986 987 if (status != 0) { 988 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 989 if (status == EINVAL) { 990 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 991 __kmp_monitor_stksize *= 2; 992 goto retry; 993 } 994 __kmp_msg( 995 kmp_ms_fatal, KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 996 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), __kmp_msg_null); 997 }; // if 998 if (status == ENOMEM) { 999 __kmp_msg( 1000 kmp_ms_fatal, KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1001 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), __kmp_msg_null); 1002 }; // if 1003 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1004 if (status == EAGAIN) { 1005 __kmp_msg(kmp_ms_fatal, KMP_MSG(NoResourcesForMonitorThread), 1006 KMP_ERR(status), KMP_HNT(DecreaseNumberOfThreadsInUse), 1007 __kmp_msg_null); 1008 }; // if 1009 KMP_SYSFAIL("pthread_create", status); 1010 }; // if 1011 1012 th->th.th_info.ds.ds_thread = handle; 1013 1014 #if KMP_REAL_TIME_FIX 1015 // Wait for the monitor thread is really started and set its *priority*. 1016 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 1017 sizeof(__kmp_global.g.g_time.dt.t_value)); 1018 __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, 1019 -1, &__kmp_neq_4, NULL); 1020 #endif // KMP_REAL_TIME_FIX 1021 1022 #ifdef KMP_THREAD_ATTR 1023 status = pthread_attr_destroy(&thread_attr); 1024 if (status != 0) { 1025 kmp_msg_t err_code = KMP_ERR(status); 1026 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 1027 __kmp_msg_null); 1028 if (__kmp_generate_warnings == kmp_warnings_off) { 1029 __kmp_str_free(&err_code.str); 1030 } 1031 }; // if 1032 #endif 1033 1034 KMP_MB(); /* Flush all pending memory write invalidates. */ 1035 1036 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1037 th->th.th_info.ds.ds_thread)); 1038 1039 } // __kmp_create_monitor 1040 #endif // KMP_USE_MONITOR 1041 1042 void __kmp_exit_thread(int exit_status) { 1043 pthread_exit((void *)(intptr_t)exit_status); 1044 } // __kmp_exit_thread 1045 1046 #if KMP_USE_MONITOR 1047 void __kmp_resume_monitor(); 1048 1049 void __kmp_reap_monitor(kmp_info_t *th) { 1050 int status; 1051 void *exit_val; 1052 1053 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1054 " %#.8lx\n", 1055 th->th.th_info.ds.ds_thread)); 1056 1057 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1058 // If both tid and gtid are 0, it means the monitor did not ever start. 1059 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1060 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1061 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1062 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1063 return; 1064 }; // if 1065 1066 KMP_MB(); /* Flush all pending memory write invalidates. */ 1067 1068 /* First, check to see whether the monitor thread exists to wake it up. This 1069 is to avoid performance problem when the monitor sleeps during 1070 blocktime-size interval */ 1071 1072 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1073 if (status != ESRCH) { 1074 __kmp_resume_monitor(); // Wake up the monitor thread 1075 } 1076 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1077 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1078 if (exit_val != th) { 1079 __kmp_msg(kmp_ms_fatal, KMP_MSG(ReapMonitorError), KMP_ERR(status), 1080 __kmp_msg_null); 1081 } 1082 1083 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1084 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1085 1086 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1087 " %#.8lx\n", 1088 th->th.th_info.ds.ds_thread)); 1089 1090 KMP_MB(); /* Flush all pending memory write invalidates. */ 1091 } 1092 #endif // KMP_USE_MONITOR 1093 1094 void __kmp_reap_worker(kmp_info_t *th) { 1095 int status; 1096 void *exit_val; 1097 1098 KMP_MB(); /* Flush all pending memory write invalidates. */ 1099 1100 KA_TRACE( 1101 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1102 1103 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1104 #ifdef KMP_DEBUG 1105 /* Don't expose these to the user until we understand when they trigger */ 1106 if (status != 0) { 1107 __kmp_msg(kmp_ms_fatal, KMP_MSG(ReapWorkerError), KMP_ERR(status), 1108 __kmp_msg_null); 1109 } 1110 if (exit_val != th) { 1111 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1112 "exit_val = %p\n", 1113 th->th.th_info.ds.ds_gtid, exit_val)); 1114 } 1115 #endif /* KMP_DEBUG */ 1116 1117 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1118 th->th.th_info.ds.ds_gtid)); 1119 1120 KMP_MB(); /* Flush all pending memory write invalidates. */ 1121 } 1122 1123 #if KMP_HANDLE_SIGNALS 1124 1125 static void __kmp_null_handler(int signo) { 1126 // Do nothing, for doing SIG_IGN-type actions. 1127 } // __kmp_null_handler 1128 1129 static void __kmp_team_handler(int signo) { 1130 if (__kmp_global.g.g_abort == 0) { 1131 /* Stage 1 signal handler, let's shut down all of the threads */ 1132 #ifdef KMP_DEBUG 1133 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1134 #endif 1135 switch (signo) { 1136 case SIGHUP: 1137 case SIGINT: 1138 case SIGQUIT: 1139 case SIGILL: 1140 case SIGABRT: 1141 case SIGFPE: 1142 case SIGBUS: 1143 case SIGSEGV: 1144 #ifdef SIGSYS 1145 case SIGSYS: 1146 #endif 1147 case SIGTERM: 1148 if (__kmp_debug_buf) { 1149 __kmp_dump_debug_buffer(); 1150 }; // if 1151 KMP_MB(); // Flush all pending memory write invalidates. 1152 TCW_4(__kmp_global.g.g_abort, signo); 1153 KMP_MB(); // Flush all pending memory write invalidates. 1154 TCW_4(__kmp_global.g.g_done, TRUE); 1155 KMP_MB(); // Flush all pending memory write invalidates. 1156 break; 1157 default: 1158 #ifdef KMP_DEBUG 1159 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1160 #endif 1161 break; 1162 }; // switch 1163 }; // if 1164 } // __kmp_team_handler 1165 1166 static void __kmp_sigaction(int signum, const struct sigaction *act, 1167 struct sigaction *oldact) { 1168 int rc = sigaction(signum, act, oldact); 1169 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1170 } 1171 1172 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1173 int parallel_init) { 1174 KMP_MB(); // Flush all pending memory write invalidates. 1175 KB_TRACE(60, 1176 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1177 if (parallel_init) { 1178 struct sigaction new_action; 1179 struct sigaction old_action; 1180 new_action.sa_handler = handler_func; 1181 new_action.sa_flags = 0; 1182 sigfillset(&new_action.sa_mask); 1183 __kmp_sigaction(sig, &new_action, &old_action); 1184 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1185 sigaddset(&__kmp_sigset, sig); 1186 } else { 1187 // Restore/keep user's handler if one previously installed. 1188 __kmp_sigaction(sig, &old_action, NULL); 1189 }; // if 1190 } else { 1191 // Save initial/system signal handlers to see if user handlers installed. 1192 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1193 }; // if 1194 KMP_MB(); // Flush all pending memory write invalidates. 1195 } // __kmp_install_one_handler 1196 1197 static void __kmp_remove_one_handler(int sig) { 1198 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1199 if (sigismember(&__kmp_sigset, sig)) { 1200 struct sigaction old; 1201 KMP_MB(); // Flush all pending memory write invalidates. 1202 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1203 if ((old.sa_handler != __kmp_team_handler) && 1204 (old.sa_handler != __kmp_null_handler)) { 1205 // Restore the users signal handler. 1206 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1207 "restoring: sig=%d\n", 1208 sig)); 1209 __kmp_sigaction(sig, &old, NULL); 1210 }; // if 1211 sigdelset(&__kmp_sigset, sig); 1212 KMP_MB(); // Flush all pending memory write invalidates. 1213 }; // if 1214 } // __kmp_remove_one_handler 1215 1216 void __kmp_install_signals(int parallel_init) { 1217 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1218 if (__kmp_handle_signals || !parallel_init) { 1219 // If ! parallel_init, we do not install handlers, just save original 1220 // handlers. Let us do it even __handle_signals is 0. 1221 sigemptyset(&__kmp_sigset); 1222 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1223 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1224 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1225 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1226 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1227 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1228 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1229 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1230 #ifdef SIGSYS 1231 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1232 #endif // SIGSYS 1233 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1234 #ifdef SIGPIPE 1235 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1236 #endif // SIGPIPE 1237 }; // if 1238 } // __kmp_install_signals 1239 1240 void __kmp_remove_signals(void) { 1241 int sig; 1242 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1243 for (sig = 1; sig < NSIG; ++sig) { 1244 __kmp_remove_one_handler(sig); 1245 }; // for sig 1246 } // __kmp_remove_signals 1247 1248 #endif // KMP_HANDLE_SIGNALS 1249 1250 void __kmp_enable(int new_state) { 1251 #ifdef KMP_CANCEL_THREADS 1252 int status, old_state; 1253 status = pthread_setcancelstate(new_state, &old_state); 1254 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1255 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1256 #endif 1257 } 1258 1259 void __kmp_disable(int *old_state) { 1260 #ifdef KMP_CANCEL_THREADS 1261 int status; 1262 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1263 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1264 #endif 1265 } 1266 1267 static void __kmp_atfork_prepare(void) { /* nothing to do */ 1268 } 1269 1270 static void __kmp_atfork_parent(void) { /* nothing to do */ 1271 } 1272 1273 /* Reset the library so execution in the child starts "all over again" with 1274 clean data structures in initial states. Don't worry about freeing memory 1275 allocated by parent, just abandon it to be safe. */ 1276 static void __kmp_atfork_child(void) { 1277 /* TODO make sure this is done right for nested/sibling */ 1278 // ATT: Memory leaks are here? TODO: Check it and fix. 1279 /* KMP_ASSERT( 0 ); */ 1280 1281 ++__kmp_fork_count; 1282 1283 __kmp_init_runtime = FALSE; 1284 #if KMP_USE_MONITOR 1285 __kmp_init_monitor = 0; 1286 #endif 1287 __kmp_init_parallel = FALSE; 1288 __kmp_init_middle = FALSE; 1289 __kmp_init_serial = FALSE; 1290 TCW_4(__kmp_init_gtid, FALSE); 1291 __kmp_init_common = FALSE; 1292 1293 TCW_4(__kmp_init_user_locks, FALSE); 1294 #if !KMP_USE_DYNAMIC_LOCK 1295 __kmp_user_lock_table.used = 1; 1296 __kmp_user_lock_table.allocated = 0; 1297 __kmp_user_lock_table.table = NULL; 1298 __kmp_lock_blocks = NULL; 1299 #endif 1300 1301 __kmp_all_nth = 0; 1302 TCW_4(__kmp_nth, 0); 1303 1304 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1305 here so threadprivate doesn't use stale data */ 1306 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1307 __kmp_threadpriv_cache_list)); 1308 1309 while (__kmp_threadpriv_cache_list != NULL) { 1310 1311 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1312 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1313 &(*__kmp_threadpriv_cache_list->addr))); 1314 1315 *__kmp_threadpriv_cache_list->addr = NULL; 1316 } 1317 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1318 } 1319 1320 __kmp_init_runtime = FALSE; 1321 1322 /* reset statically initialized locks */ 1323 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1324 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1325 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1326 1327 /* This is necessary to make sure no stale data is left around */ 1328 /* AC: customers complain that we use unsafe routines in the atfork 1329 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1330 in dynamic_link when check the presence of shared tbbmalloc library. 1331 Suggestion is to make the library initialization lazier, similar 1332 to what done for __kmpc_begin(). */ 1333 // TODO: synchronize all static initializations with regular library 1334 // startup; look at kmp_global.cpp and etc. 1335 //__kmp_internal_begin (); 1336 } 1337 1338 void __kmp_register_atfork(void) { 1339 if (__kmp_need_register_atfork) { 1340 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1341 __kmp_atfork_child); 1342 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1343 __kmp_need_register_atfork = FALSE; 1344 } 1345 } 1346 1347 void __kmp_suspend_initialize(void) { 1348 int status; 1349 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1350 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1351 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1352 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1353 } 1354 1355 static void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1356 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1357 if (th->th.th_suspend_init_count <= __kmp_fork_count) { 1358 /* this means we haven't initialized the suspension pthread objects for this 1359 thread in this instance of the process */ 1360 int status; 1361 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1362 &__kmp_suspend_cond_attr); 1363 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1364 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1365 &__kmp_suspend_mutex_attr); 1366 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1367 *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1; 1368 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1369 }; 1370 } 1371 1372 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1373 if (th->th.th_suspend_init_count > __kmp_fork_count) { 1374 /* this means we have initialize the suspension pthread objects for this 1375 thread in this instance of the process */ 1376 int status; 1377 1378 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1379 if (status != 0 && status != EBUSY) { 1380 KMP_SYSFAIL("pthread_cond_destroy", status); 1381 }; 1382 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1383 if (status != 0 && status != EBUSY) { 1384 KMP_SYSFAIL("pthread_mutex_destroy", status); 1385 }; 1386 --th->th.th_suspend_init_count; 1387 KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count); 1388 } 1389 } 1390 1391 1392 /* This routine puts the calling thread to sleep after setting the 1393 sleep bit for the indicated flag variable to true. */ 1394 template <class C> 1395 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1396 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1397 kmp_info_t *th = __kmp_threads[th_gtid]; 1398 int status; 1399 typename C::flag_t old_spin; 1400 1401 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1402 flag->get())); 1403 1404 __kmp_suspend_initialize_thread(th); 1405 1406 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1407 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1408 1409 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1410 th_gtid, flag->get())); 1411 1412 /* TODO: shouldn't this use release semantics to ensure that 1413 __kmp_suspend_initialize_thread gets called first? */ 1414 old_spin = flag->set_sleeping(); 1415 1416 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1417 " was %x\n", 1418 th_gtid, flag->get(), *(flag->get()), old_spin)); 1419 1420 if (flag->done_check_val(old_spin)) { 1421 old_spin = flag->unset_sleeping(); 1422 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1423 "for spin(%p)\n", 1424 th_gtid, flag->get())); 1425 } else { 1426 /* Encapsulate in a loop as the documentation states that this may 1427 "with low probability" return when the condition variable has 1428 not been signaled or broadcast */ 1429 int deactivated = FALSE; 1430 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1431 1432 while (flag->is_sleeping()) { 1433 #ifdef DEBUG_SUSPEND 1434 char buffer[128]; 1435 __kmp_suspend_count++; 1436 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1437 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1438 buffer); 1439 #endif 1440 // Mark the thread as no longer active (only in the first iteration of the 1441 // loop). 1442 if (!deactivated) { 1443 th->th.th_active = FALSE; 1444 if (th->th.th_active_in_pool) { 1445 th->th.th_active_in_pool = FALSE; 1446 KMP_TEST_THEN_DEC32((kmp_int32 *)&__kmp_thread_pool_active_nth); 1447 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1448 } 1449 deactivated = TRUE; 1450 } 1451 1452 #if USE_SUSPEND_TIMEOUT 1453 struct timespec now; 1454 struct timeval tval; 1455 int msecs; 1456 1457 status = gettimeofday(&tval, NULL); 1458 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1459 TIMEVAL_TO_TIMESPEC(&tval, &now); 1460 1461 msecs = (4 * __kmp_dflt_blocktime) + 200; 1462 now.tv_sec += msecs / 1000; 1463 now.tv_nsec += (msecs % 1000) * 1000; 1464 1465 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1466 "pthread_cond_timedwait\n", 1467 th_gtid)); 1468 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1469 &th->th.th_suspend_mx.m_mutex, &now); 1470 #else 1471 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1472 " pthread_cond_wait\n", 1473 th_gtid)); 1474 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1475 &th->th.th_suspend_mx.m_mutex); 1476 #endif 1477 1478 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1479 KMP_SYSFAIL("pthread_cond_wait", status); 1480 } 1481 #ifdef KMP_DEBUG 1482 if (status == ETIMEDOUT) { 1483 if (flag->is_sleeping()) { 1484 KF_TRACE(100, 1485 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1486 } else { 1487 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1488 "not set!\n", 1489 th_gtid)); 1490 } 1491 } else if (flag->is_sleeping()) { 1492 KF_TRACE(100, 1493 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1494 } 1495 #endif 1496 } // while 1497 1498 // Mark the thread as active again (if it was previous marked as inactive) 1499 if (deactivated) { 1500 th->th.th_active = TRUE; 1501 if (TCR_4(th->th.th_in_pool)) { 1502 KMP_TEST_THEN_INC32((kmp_int32 *)&__kmp_thread_pool_active_nth); 1503 th->th.th_active_in_pool = TRUE; 1504 } 1505 } 1506 } 1507 #ifdef DEBUG_SUSPEND 1508 { 1509 char buffer[128]; 1510 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1511 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1512 buffer); 1513 } 1514 #endif 1515 1516 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1517 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1518 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1519 } 1520 1521 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 1522 __kmp_suspend_template(th_gtid, flag); 1523 } 1524 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 1525 __kmp_suspend_template(th_gtid, flag); 1526 } 1527 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1528 __kmp_suspend_template(th_gtid, flag); 1529 } 1530 1531 /* This routine signals the thread specified by target_gtid to wake up 1532 after setting the sleep bit indicated by the flag argument to FALSE. 1533 The target thread must already have called __kmp_suspend_template() */ 1534 template <class C> 1535 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1536 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1537 kmp_info_t *th = __kmp_threads[target_gtid]; 1538 int status; 1539 1540 #ifdef KMP_DEBUG 1541 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1542 #endif 1543 1544 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1545 gtid, target_gtid)); 1546 KMP_DEBUG_ASSERT(gtid != target_gtid); 1547 1548 __kmp_suspend_initialize_thread(th); 1549 1550 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1551 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1552 1553 if (!flag) { // coming from __kmp_null_resume_wrapper 1554 flag = (C *)th->th.th_sleep_loc; 1555 } 1556 1557 // First, check if the flag is null or its type has changed. If so, someone 1558 // else woke it up. 1559 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1560 // simply shows what 1561 // flag was cast to 1562 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1563 "awake: flag(%p)\n", 1564 gtid, target_gtid, NULL)); 1565 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1566 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1567 return; 1568 } else { // if multiple threads are sleeping, flag should be internally 1569 // referring to a specific thread here 1570 typename C::flag_t old_spin = flag->unset_sleeping(); 1571 if (!flag->is_sleeping_val(old_spin)) { 1572 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1573 "awake: flag(%p): " 1574 "%u => %u\n", 1575 gtid, target_gtid, flag->get(), old_spin, *flag->get())); 1576 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1577 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1578 return; 1579 } 1580 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1581 "sleep bit for flag's loc(%p): " 1582 "%u => %u\n", 1583 gtid, target_gtid, flag->get(), old_spin, *flag->get())); 1584 } 1585 TCW_PTR(th->th.th_sleep_loc, NULL); 1586 1587 #ifdef DEBUG_SUSPEND 1588 { 1589 char buffer[128]; 1590 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1591 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1592 target_gtid, buffer); 1593 } 1594 #endif 1595 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1596 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1597 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1598 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1599 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1600 " for T#%d\n", 1601 gtid, target_gtid)); 1602 } 1603 1604 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 1605 __kmp_resume_template(target_gtid, flag); 1606 } 1607 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 1608 __kmp_resume_template(target_gtid, flag); 1609 } 1610 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1611 __kmp_resume_template(target_gtid, flag); 1612 } 1613 1614 #if KMP_USE_MONITOR 1615 void __kmp_resume_monitor() { 1616 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1617 int status; 1618 #ifdef KMP_DEBUG 1619 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1620 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1621 KMP_GTID_MONITOR)); 1622 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1623 #endif 1624 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1625 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1626 #ifdef DEBUG_SUSPEND 1627 { 1628 char buffer[128]; 1629 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1630 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1631 KMP_GTID_MONITOR, buffer); 1632 } 1633 #endif 1634 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1635 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1636 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1637 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1638 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1639 " for T#%d\n", 1640 gtid, KMP_GTID_MONITOR)); 1641 } 1642 #endif // KMP_USE_MONITOR 1643 1644 void __kmp_yield(int cond) { 1645 if (!cond) 1646 return; 1647 #if KMP_USE_MONITOR 1648 if (!__kmp_yielding_on) 1649 return; 1650 #else 1651 if (__kmp_yield_cycle && !KMP_YIELD_NOW()) 1652 return; 1653 #endif 1654 sched_yield(); 1655 } 1656 1657 void __kmp_gtid_set_specific(int gtid) { 1658 if (__kmp_init_gtid) { 1659 int status; 1660 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1661 (void *)(intptr_t)(gtid + 1)); 1662 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1663 } else { 1664 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1665 } 1666 } 1667 1668 int __kmp_gtid_get_specific() { 1669 int gtid; 1670 if (!__kmp_init_gtid) { 1671 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1672 "KMP_GTID_SHUTDOWN\n")); 1673 return KMP_GTID_SHUTDOWN; 1674 } 1675 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1676 if (gtid == 0) { 1677 gtid = KMP_GTID_DNE; 1678 } else { 1679 gtid--; 1680 } 1681 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1682 __kmp_gtid_threadprivate_key, gtid)); 1683 return gtid; 1684 } 1685 1686 double __kmp_read_cpu_time(void) { 1687 /*clock_t t;*/ 1688 struct tms buffer; 1689 1690 /*t =*/times(&buffer); 1691 1692 return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC; 1693 } 1694 1695 int __kmp_read_system_info(struct kmp_sys_info *info) { 1696 int status; 1697 struct rusage r_usage; 1698 1699 memset(info, 0, sizeof(*info)); 1700 1701 status = getrusage(RUSAGE_SELF, &r_usage); 1702 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1703 1704 // The maximum resident set size utilized (in kilobytes) 1705 info->maxrss = r_usage.ru_maxrss; 1706 // The number of page faults serviced without any I/O 1707 info->minflt = r_usage.ru_minflt; 1708 // The number of page faults serviced that required I/O 1709 info->majflt = r_usage.ru_majflt; 1710 // The number of times a process was "swapped" out of memory 1711 info->nswap = r_usage.ru_nswap; 1712 // The number of times the file system had to perform input 1713 info->inblock = r_usage.ru_inblock; 1714 // The number of times the file system had to perform output 1715 info->oublock = r_usage.ru_oublock; 1716 // The number of times a context switch was voluntarily 1717 info->nvcsw = r_usage.ru_nvcsw; 1718 // The number of times a context switch was forced 1719 info->nivcsw = r_usage.ru_nivcsw; 1720 1721 return (status != 0); 1722 } 1723 1724 void __kmp_read_system_time(double *delta) { 1725 double t_ns; 1726 struct timeval tval; 1727 struct timespec stop; 1728 int status; 1729 1730 status = gettimeofday(&tval, NULL); 1731 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1732 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1733 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start); 1734 *delta = (t_ns * 1e-9); 1735 } 1736 1737 void __kmp_clear_system_time(void) { 1738 struct timeval tval; 1739 int status; 1740 status = gettimeofday(&tval, NULL); 1741 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1742 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1743 } 1744 1745 #ifdef BUILD_TV 1746 1747 void __kmp_tv_threadprivate_store(kmp_info_t *th, void *global_addr, 1748 void *thread_addr) { 1749 struct tv_data *p; 1750 1751 p = (struct tv_data *)__kmp_allocate(sizeof(*p)); 1752 1753 p->u.tp.global_addr = global_addr; 1754 p->u.tp.thread_addr = thread_addr; 1755 1756 p->type = (void *)1; 1757 1758 p->next = th->th.th_local.tv_data; 1759 th->th.th_local.tv_data = p; 1760 1761 if (p->next == 0) { 1762 int rc = pthread_setspecific(__kmp_tv_key, p); 1763 KMP_CHECK_SYSFAIL("pthread_setspecific", rc); 1764 } 1765 } 1766 1767 #endif /* BUILD_TV */ 1768 1769 static int __kmp_get_xproc(void) { 1770 1771 int r = 0; 1772 1773 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD 1774 1775 r = sysconf(_SC_NPROCESSORS_ONLN); 1776 1777 #elif KMP_OS_DARWIN 1778 1779 // Bug C77011 High "OpenMP Threads and number of active cores". 1780 1781 // Find the number of available CPUs. 1782 kern_return_t rc; 1783 host_basic_info_data_t info; 1784 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1785 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1786 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1787 // Cannot use KA_TRACE() here because this code works before trace support is 1788 // initialized. 1789 r = info.avail_cpus; 1790 } else { 1791 KMP_WARNING(CantGetNumAvailCPU); 1792 KMP_INFORM(AssumedNumCPU); 1793 }; // if 1794 1795 #else 1796 1797 #error "Unknown or unsupported OS." 1798 1799 #endif 1800 1801 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1802 1803 } // __kmp_get_xproc 1804 1805 int __kmp_read_from_file(char const *path, char const *format, ...) { 1806 int result; 1807 va_list args; 1808 1809 va_start(args, format); 1810 FILE *f = fopen(path, "rb"); 1811 if (f == NULL) 1812 return 0; 1813 result = vfscanf(f, format, args); 1814 fclose(f); 1815 1816 return result; 1817 } 1818 1819 void __kmp_runtime_initialize(void) { 1820 int status; 1821 pthread_mutexattr_t mutex_attr; 1822 pthread_condattr_t cond_attr; 1823 1824 if (__kmp_init_runtime) { 1825 return; 1826 }; // if 1827 1828 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1829 if (!__kmp_cpuinfo.initialized) { 1830 __kmp_query_cpuid(&__kmp_cpuinfo); 1831 }; // if 1832 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1833 1834 __kmp_xproc = __kmp_get_xproc(); 1835 1836 if (sysconf(_SC_THREADS)) { 1837 1838 /* Query the maximum number of threads */ 1839 __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX); 1840 if (__kmp_sys_max_nth == -1) { 1841 /* Unlimited threads for NPTL */ 1842 __kmp_sys_max_nth = INT_MAX; 1843 } else if (__kmp_sys_max_nth <= 1) { 1844 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1845 __kmp_sys_max_nth = KMP_MAX_NTH; 1846 } 1847 1848 /* Query the minimum stack size */ 1849 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1850 if (__kmp_sys_min_stksize <= 1) { 1851 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1852 } 1853 } 1854 1855 /* Set up minimum number of threads to switch to TLS gtid */ 1856 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1857 1858 #ifdef BUILD_TV 1859 { 1860 int rc = pthread_key_create(&__kmp_tv_key, 0); 1861 KMP_CHECK_SYSFAIL("pthread_key_create", rc); 1862 } 1863 #endif 1864 1865 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1866 __kmp_internal_end_dest); 1867 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1868 status = pthread_mutexattr_init(&mutex_attr); 1869 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1870 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1871 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1872 status = pthread_condattr_init(&cond_attr); 1873 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1874 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1875 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1876 #if USE_ITT_BUILD 1877 __kmp_itt_initialize(); 1878 #endif /* USE_ITT_BUILD */ 1879 1880 __kmp_init_runtime = TRUE; 1881 } 1882 1883 void __kmp_runtime_destroy(void) { 1884 int status; 1885 1886 if (!__kmp_init_runtime) { 1887 return; // Nothing to do. 1888 }; 1889 1890 #if USE_ITT_BUILD 1891 __kmp_itt_destroy(); 1892 #endif /* USE_ITT_BUILD */ 1893 1894 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1895 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1896 #ifdef BUILD_TV 1897 status = pthread_key_delete(__kmp_tv_key); 1898 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1899 #endif 1900 1901 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1902 if (status != 0 && status != EBUSY) { 1903 KMP_SYSFAIL("pthread_mutex_destroy", status); 1904 } 1905 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1906 if (status != 0 && status != EBUSY) { 1907 KMP_SYSFAIL("pthread_cond_destroy", status); 1908 } 1909 #if KMP_AFFINITY_SUPPORTED 1910 __kmp_affinity_uninitialize(); 1911 #endif 1912 1913 __kmp_init_runtime = FALSE; 1914 } 1915 1916 /* Put the thread to sleep for a time period */ 1917 /* NOTE: not currently used anywhere */ 1918 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1919 1920 /* Calculate the elapsed wall clock time for the user */ 1921 void __kmp_elapsed(double *t) { 1922 int status; 1923 #ifdef FIX_SGI_CLOCK 1924 struct timespec ts; 1925 1926 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1927 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1928 *t = 1929 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1930 #else 1931 struct timeval tv; 1932 1933 status = gettimeofday(&tv, NULL); 1934 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1935 *t = 1936 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1937 #endif 1938 } 1939 1940 /* Calculate the elapsed wall clock tick for the user */ 1941 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1942 1943 /* Return the current time stamp in nsec */ 1944 kmp_uint64 __kmp_now_nsec() { 1945 struct timeval t; 1946 gettimeofday(&t, NULL); 1947 return KMP_NSEC_PER_SEC * t.tv_sec + 1000 * t.tv_usec; 1948 } 1949 1950 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1951 /* Measure clock ticks per millisecond */ 1952 void __kmp_initialize_system_tick() { 1953 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1954 kmp_uint64 nsec = __kmp_now_nsec(); 1955 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1956 kmp_uint64 now; 1957 while ((now = __kmp_hardware_timestamp()) < goal) 1958 ; 1959 __kmp_ticks_per_msec = 1960 (kmp_uint64)(1e6 * (delay + (now - goal)) / (__kmp_now_nsec() - nsec)); 1961 } 1962 #endif 1963 1964 /* Determine whether the given address is mapped into the current address 1965 space. */ 1966 1967 int __kmp_is_address_mapped(void *addr) { 1968 1969 int found = 0; 1970 int rc; 1971 1972 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1973 1974 /* On Linux* OS, read the /proc/<pid>/maps pseudo-file to get all the address 1975 ranges mapped into the address space. */ 1976 1977 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 1978 FILE *file = NULL; 1979 1980 file = fopen(name, "r"); 1981 KMP_ASSERT(file != NULL); 1982 1983 for (;;) { 1984 1985 void *beginning = NULL; 1986 void *ending = NULL; 1987 char perms[5]; 1988 1989 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 1990 if (rc == EOF) { 1991 break; 1992 }; // if 1993 KMP_ASSERT(rc == 3 && 1994 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 1995 1996 // Ending address is not included in the region, but beginning is. 1997 if ((addr >= beginning) && (addr < ending)) { 1998 perms[2] = 0; // 3th and 4th character does not matter. 1999 if (strcmp(perms, "rw") == 0) { 2000 // Memory we are looking for should be readable and writable. 2001 found = 1; 2002 }; // if 2003 break; 2004 }; // if 2005 2006 }; // forever 2007 2008 // Free resources. 2009 fclose(file); 2010 KMP_INTERNAL_FREE(name); 2011 2012 #elif KMP_OS_DARWIN 2013 2014 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2015 using vm interface. */ 2016 2017 int buffer; 2018 vm_size_t count; 2019 rc = vm_read_overwrite( 2020 mach_task_self(), // Task to read memory of. 2021 (vm_address_t)(addr), // Address to read from. 2022 1, // Number of bytes to be read. 2023 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2024 &count // Address of var to save number of read bytes in. 2025 ); 2026 if (rc == 0) { 2027 // Memory successfully read. 2028 found = 1; 2029 }; // if 2030 2031 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD 2032 2033 // FIXME(FreeBSD, NetBSD): Implement this 2034 found = 1; 2035 2036 #else 2037 2038 #error "Unknown or unsupported OS" 2039 2040 #endif 2041 2042 return found; 2043 2044 } // __kmp_is_address_mapped 2045 2046 #ifdef USE_LOAD_BALANCE 2047 2048 #if KMP_OS_DARWIN 2049 2050 // The function returns the rounded value of the system load average 2051 // during given time interval which depends on the value of 2052 // __kmp_load_balance_interval variable (default is 60 sec, other values 2053 // may be 300 sec or 900 sec). 2054 // It returns -1 in case of error. 2055 int __kmp_get_load_balance(int max) { 2056 double averages[3]; 2057 int ret_avg = 0; 2058 2059 int res = getloadavg(averages, 3); 2060 2061 // Check __kmp_load_balance_interval to determine which of averages to use. 2062 // getloadavg() may return the number of samples less than requested that is 2063 // less than 3. 2064 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2065 ret_avg = averages[0]; // 1 min 2066 } else if ((__kmp_load_balance_interval >= 180 && 2067 __kmp_load_balance_interval < 600) && 2068 (res >= 2)) { 2069 ret_avg = averages[1]; // 5 min 2070 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2071 ret_avg = averages[2]; // 15 min 2072 } else { // Error occurred 2073 return -1; 2074 } 2075 2076 return ret_avg; 2077 } 2078 2079 #else // Linux* OS 2080 2081 // The fuction returns number of running (not sleeping) threads, or -1 in case 2082 // of error. Error could be reported if Linux* OS kernel too old (without 2083 // "/proc" support). Counting running threads stops if max running threads 2084 // encountered. 2085 int __kmp_get_load_balance(int max) { 2086 static int permanent_error = 0; 2087 static int glb_running_threads = 0; // Saved count of the running threads for 2088 // the thread balance algortihm 2089 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2090 2091 int running_threads = 0; // Number of running threads in the system. 2092 2093 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2094 struct dirent *proc_entry = NULL; 2095 2096 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2097 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2098 struct dirent *task_entry = NULL; 2099 int task_path_fixed_len; 2100 2101 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2102 int stat_file = -1; 2103 int stat_path_fixed_len; 2104 2105 int total_processes = 0; // Total number of processes in system. 2106 int total_threads = 0; // Total number of threads in system. 2107 2108 double call_time = 0.0; 2109 2110 __kmp_str_buf_init(&task_path); 2111 __kmp_str_buf_init(&stat_path); 2112 2113 __kmp_elapsed(&call_time); 2114 2115 if (glb_call_time && 2116 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2117 running_threads = glb_running_threads; 2118 goto finish; 2119 } 2120 2121 glb_call_time = call_time; 2122 2123 // Do not spend time on scanning "/proc/" if we have a permanent error. 2124 if (permanent_error) { 2125 running_threads = -1; 2126 goto finish; 2127 }; // if 2128 2129 if (max <= 0) { 2130 max = INT_MAX; 2131 }; // if 2132 2133 // Open "/proc/" directory. 2134 proc_dir = opendir("/proc"); 2135 if (proc_dir == NULL) { 2136 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2137 // error now and in subsequent calls. 2138 running_threads = -1; 2139 permanent_error = 1; 2140 goto finish; 2141 }; // if 2142 2143 // Initialize fixed part of task_path. This part will not change. 2144 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2145 task_path_fixed_len = task_path.used; // Remember number of used characters. 2146 2147 proc_entry = readdir(proc_dir); 2148 while (proc_entry != NULL) { 2149 // Proc entry is a directory and name starts with a digit. Assume it is a 2150 // process' directory. 2151 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2152 2153 ++total_processes; 2154 // Make sure init process is the very first in "/proc", so we can replace 2155 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2156 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2157 // true (where "=>" is implication). Since C++ does not have => operator, 2158 // let us replace it with its equivalent: a => b == ! a || b. 2159 KMP_DEBUG_ASSERT(total_processes != 1 || 2160 strcmp(proc_entry->d_name, "1") == 0); 2161 2162 // Construct task_path. 2163 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2164 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2165 KMP_STRLEN(proc_entry->d_name)); 2166 __kmp_str_buf_cat(&task_path, "/task", 5); 2167 2168 task_dir = opendir(task_path.str); 2169 if (task_dir == NULL) { 2170 // Process can finish between reading "/proc/" directory entry and 2171 // opening process' "task/" directory. So, in general case we should not 2172 // complain, but have to skip this process and read the next one. But on 2173 // systems with no "task/" support we will spend lot of time to scan 2174 // "/proc/" tree again and again without any benefit. "init" process 2175 // (its pid is 1) should exist always, so, if we cannot open 2176 // "/proc/1/task/" directory, it means "task/" is not supported by 2177 // kernel. Report an error now and in the future. 2178 if (strcmp(proc_entry->d_name, "1") == 0) { 2179 running_threads = -1; 2180 permanent_error = 1; 2181 goto finish; 2182 }; // if 2183 } else { 2184 // Construct fixed part of stat file path. 2185 __kmp_str_buf_clear(&stat_path); 2186 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2187 __kmp_str_buf_cat(&stat_path, "/", 1); 2188 stat_path_fixed_len = stat_path.used; 2189 2190 task_entry = readdir(task_dir); 2191 while (task_entry != NULL) { 2192 // It is a directory and name starts with a digit. 2193 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2194 ++total_threads; 2195 2196 // Consruct complete stat file path. Easiest way would be: 2197 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2198 // task_entry->d_name ); 2199 // but seriae of __kmp_str_buf_cat works a bit faster. 2200 stat_path.used = 2201 stat_path_fixed_len; // Reset stat path to its fixed part. 2202 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2203 KMP_STRLEN(task_entry->d_name)); 2204 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2205 2206 // Note: Low-level API (open/read/close) is used. High-level API 2207 // (fopen/fclose) works ~ 30 % slower. 2208 stat_file = open(stat_path.str, O_RDONLY); 2209 if (stat_file == -1) { 2210 // We cannot report an error because task (thread) can terminate 2211 // just before reading this file. 2212 } else { 2213 /* Content of "stat" file looks like: 2214 24285 (program) S ... 2215 2216 It is a single line (if program name does not include funny 2217 symbols). First number is a thread id, then name of executable 2218 file name in paretheses, then state of the thread. We need just 2219 thread state. 2220 2221 Good news: Length of program name is 15 characters max. Longer 2222 names are truncated. 2223 2224 Thus, we need rather short buffer: 15 chars for program name + 2225 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2226 2227 Bad news: Program name may contain special symbols like space, 2228 closing parenthesis, or even new line. This makes parsing 2229 "stat" file not 100 % reliable. In case of fanny program names 2230 parsing may fail (report incorrect thread state). 2231 2232 Parsing "status" file looks more promissing (due to different 2233 file structure and escaping special symbols) but reading and 2234 parsing of "status" file works slower. 2235 -- ln 2236 */ 2237 char buffer[65]; 2238 int len; 2239 len = read(stat_file, buffer, sizeof(buffer) - 1); 2240 if (len >= 0) { 2241 buffer[len] = 0; 2242 // Using scanf: 2243 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2244 // looks very nice, but searching for a closing parenthesis 2245 // works a bit faster. 2246 char *close_parent = strstr(buffer, ") "); 2247 if (close_parent != NULL) { 2248 char state = *(close_parent + 2); 2249 if (state == 'R') { 2250 ++running_threads; 2251 if (running_threads >= max) { 2252 goto finish; 2253 }; // if 2254 }; // if 2255 }; // if 2256 }; // if 2257 close(stat_file); 2258 stat_file = -1; 2259 }; // if 2260 }; // if 2261 task_entry = readdir(task_dir); 2262 }; // while 2263 closedir(task_dir); 2264 task_dir = NULL; 2265 }; // if 2266 }; // if 2267 proc_entry = readdir(proc_dir); 2268 }; // while 2269 2270 // There _might_ be a timing hole where the thread executing this 2271 // code get skipped in the load balance, and running_threads is 0. 2272 // Assert in the debug builds only!!! 2273 KMP_DEBUG_ASSERT(running_threads > 0); 2274 if (running_threads <= 0) { 2275 running_threads = 1; 2276 } 2277 2278 finish: // Clean up and exit. 2279 if (proc_dir != NULL) { 2280 closedir(proc_dir); 2281 }; // if 2282 __kmp_str_buf_free(&task_path); 2283 if (task_dir != NULL) { 2284 closedir(task_dir); 2285 }; // if 2286 __kmp_str_buf_free(&stat_path); 2287 if (stat_file != -1) { 2288 close(stat_file); 2289 }; // if 2290 2291 glb_running_threads = running_threads; 2292 2293 return running_threads; 2294 2295 } // __kmp_get_load_balance 2296 2297 #endif // KMP_OS_DARWIN 2298 2299 #endif // USE_LOAD_BALANCE 2300 2301 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64) 2302 2303 // we really only need the case with 1 argument, because CLANG always build 2304 // a struct of pointers to shared variables referenced in the outlined function 2305 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2306 void *p_argv[] 2307 #if OMPT_SUPPORT 2308 , 2309 void **exit_frame_ptr 2310 #endif 2311 ) { 2312 #if OMPT_SUPPORT 2313 *exit_frame_ptr = __builtin_frame_address(0); 2314 #endif 2315 2316 switch (argc) { 2317 default: 2318 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2319 fflush(stderr); 2320 exit(-1); 2321 case 0: 2322 (*pkfn)(>id, &tid); 2323 break; 2324 case 1: 2325 (*pkfn)(>id, &tid, p_argv[0]); 2326 break; 2327 case 2: 2328 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2329 break; 2330 case 3: 2331 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2332 break; 2333 case 4: 2334 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2335 break; 2336 case 5: 2337 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2338 break; 2339 case 6: 2340 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2341 p_argv[5]); 2342 break; 2343 case 7: 2344 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2345 p_argv[5], p_argv[6]); 2346 break; 2347 case 8: 2348 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2349 p_argv[5], p_argv[6], p_argv[7]); 2350 break; 2351 case 9: 2352 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2353 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2354 break; 2355 case 10: 2356 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2357 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2358 break; 2359 case 11: 2360 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2361 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2362 break; 2363 case 12: 2364 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2365 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2366 p_argv[11]); 2367 break; 2368 case 13: 2369 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2370 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2371 p_argv[11], p_argv[12]); 2372 break; 2373 case 14: 2374 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2375 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2376 p_argv[11], p_argv[12], p_argv[13]); 2377 break; 2378 case 15: 2379 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2380 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2381 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2382 break; 2383 } 2384 2385 #if OMPT_SUPPORT 2386 *exit_frame_ptr = 0; 2387 #endif 2388 2389 return 1; 2390 } 2391 2392 #endif 2393 2394 // end of file // 2395