1 /*
2  * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_i18n.h"
15 #include "kmp_itt.h"
16 #include "kmp_stats.h"
17 #include "kmp_wait_release.h"
18 #include "kmp_taskdeps.h"
19 
20 #if OMPT_SUPPORT
21 #include "ompt-specific.h"
22 #endif
23 
24 #include "tsan_annotations.h"
25 
26 /* forward declaration */
27 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
28                                  kmp_info_t *this_thr);
29 static void __kmp_alloc_task_deque(kmp_info_t *thread,
30                                    kmp_thread_data_t *thread_data);
31 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
32                                            kmp_task_team_t *task_team);
33 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
34 
35 #ifdef BUILD_TIED_TASK_STACK
36 
37 //  __kmp_trace_task_stack: print the tied tasks from the task stack in order
38 //  from top do bottom
39 //
40 //  gtid: global thread identifier for thread containing stack
41 //  thread_data: thread data for task team thread containing stack
42 //  threshold: value above which the trace statement triggers
43 //  location: string identifying call site of this function (for trace)
44 static void __kmp_trace_task_stack(kmp_int32 gtid,
45                                    kmp_thread_data_t *thread_data,
46                                    int threshold, char *location) {
47   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
48   kmp_taskdata_t **stack_top = task_stack->ts_top;
49   kmp_int32 entries = task_stack->ts_entries;
50   kmp_taskdata_t *tied_task;
51 
52   KA_TRACE(
53       threshold,
54       ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
55        "first_block = %p, stack_top = %p \n",
56        location, gtid, entries, task_stack->ts_first_block, stack_top));
57 
58   KMP_DEBUG_ASSERT(stack_top != NULL);
59   KMP_DEBUG_ASSERT(entries > 0);
60 
61   while (entries != 0) {
62     KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
63     // fix up ts_top if we need to pop from previous block
64     if (entries & TASK_STACK_INDEX_MASK == 0) {
65       kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
66 
67       stack_block = stack_block->sb_prev;
68       stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
69     }
70 
71     // finish bookkeeping
72     stack_top--;
73     entries--;
74 
75     tied_task = *stack_top;
76 
77     KMP_DEBUG_ASSERT(tied_task != NULL);
78     KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
79 
80     KA_TRACE(threshold,
81              ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, "
82               "stack_top=%p, tied_task=%p\n",
83               location, gtid, entries, stack_top, tied_task));
84   }
85   KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
86 
87   KA_TRACE(threshold,
88            ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
89             location, gtid));
90 }
91 
92 //  __kmp_init_task_stack: initialize the task stack for the first time
93 //  after a thread_data structure is created.
94 //  It should not be necessary to do this again (assuming the stack works).
95 //
96 //  gtid: global thread identifier of calling thread
97 //  thread_data: thread data for task team thread containing stack
98 static void __kmp_init_task_stack(kmp_int32 gtid,
99                                   kmp_thread_data_t *thread_data) {
100   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
101   kmp_stack_block_t *first_block;
102 
103   // set up the first block of the stack
104   first_block = &task_stack->ts_first_block;
105   task_stack->ts_top = (kmp_taskdata_t **)first_block;
106   memset((void *)first_block, '\0',
107          TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
108 
109   // initialize the stack to be empty
110   task_stack->ts_entries = TASK_STACK_EMPTY;
111   first_block->sb_next = NULL;
112   first_block->sb_prev = NULL;
113 }
114 
115 //  __kmp_free_task_stack: free the task stack when thread_data is destroyed.
116 //
117 //  gtid: global thread identifier for calling thread
118 //  thread_data: thread info for thread containing stack
119 static void __kmp_free_task_stack(kmp_int32 gtid,
120                                   kmp_thread_data_t *thread_data) {
121   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
122   kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
123 
124   KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
125   // free from the second block of the stack
126   while (stack_block != NULL) {
127     kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
128 
129     stack_block->sb_next = NULL;
130     stack_block->sb_prev = NULL;
131     if (stack_block != &task_stack->ts_first_block) {
132       __kmp_thread_free(thread,
133                         stack_block); // free the block, if not the first
134     }
135     stack_block = next_block;
136   }
137   // initialize the stack to be empty
138   task_stack->ts_entries = 0;
139   task_stack->ts_top = NULL;
140 }
141 
142 //  __kmp_push_task_stack: Push the tied task onto the task stack.
143 //     Grow the stack if necessary by allocating another block.
144 //
145 //  gtid: global thread identifier for calling thread
146 //  thread: thread info for thread containing stack
147 //  tied_task: the task to push on the stack
148 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
149                                   kmp_taskdata_t *tied_task) {
150   // GEH - need to consider what to do if tt_threads_data not allocated yet
151   kmp_thread_data_t *thread_data =
152       &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
153   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
154 
155   if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
156     return; // Don't push anything on stack if team or team tasks are serialized
157   }
158 
159   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
160   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
161 
162   KA_TRACE(20,
163            ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
164             gtid, thread, tied_task));
165   // Store entry
166   *(task_stack->ts_top) = tied_task;
167 
168   // Do bookkeeping for next push
169   task_stack->ts_top++;
170   task_stack->ts_entries++;
171 
172   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
173     // Find beginning of this task block
174     kmp_stack_block_t *stack_block =
175         (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
176 
177     // Check if we already have a block
178     if (stack_block->sb_next !=
179         NULL) { // reset ts_top to beginning of next block
180       task_stack->ts_top = &stack_block->sb_next->sb_block[0];
181     } else { // Alloc new block and link it up
182       kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
183           thread, sizeof(kmp_stack_block_t));
184 
185       task_stack->ts_top = &new_block->sb_block[0];
186       stack_block->sb_next = new_block;
187       new_block->sb_prev = stack_block;
188       new_block->sb_next = NULL;
189 
190       KA_TRACE(
191           30,
192           ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
193            gtid, tied_task, new_block));
194     }
195   }
196   KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
197                 tied_task));
198 }
199 
200 //  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return
201 //  the task, just check to make sure it matches the ending task passed in.
202 //
203 //  gtid: global thread identifier for the calling thread
204 //  thread: thread info structure containing stack
205 //  tied_task: the task popped off the stack
206 //  ending_task: the task that is ending (should match popped task)
207 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
208                                  kmp_taskdata_t *ending_task) {
209   // GEH - need to consider what to do if tt_threads_data not allocated yet
210   kmp_thread_data_t *thread_data =
211       &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
212   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
213   kmp_taskdata_t *tied_task;
214 
215   if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
216     // Don't pop anything from stack if team or team tasks are serialized
217     return;
218   }
219 
220   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
221   KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
222 
223   KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
224                 thread));
225 
226   // fix up ts_top if we need to pop from previous block
227   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
228     kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
229 
230     stack_block = stack_block->sb_prev;
231     task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
232   }
233 
234   // finish bookkeeping
235   task_stack->ts_top--;
236   task_stack->ts_entries--;
237 
238   tied_task = *(task_stack->ts_top);
239 
240   KMP_DEBUG_ASSERT(tied_task != NULL);
241   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
242   KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
243 
244   KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
245                 tied_task));
246   return;
247 }
248 #endif /* BUILD_TIED_TASK_STACK */
249 
250 // returns 1 if new task is allowed to execute, 0 otherwise
251 // checks Task Scheduling constraint (if requested) and
252 // mutexinoutset dependencies if any
253 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
254                                   const kmp_taskdata_t *tasknew,
255                                   const kmp_taskdata_t *taskcurr) {
256   if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
257     // Check if the candidate obeys the Task Scheduling Constraints (TSC)
258     // only descendant of all deferred tied tasks can be scheduled, checking
259     // the last one is enough, as it in turn is the descendant of all others
260     kmp_taskdata_t *current = taskcurr->td_last_tied;
261     KMP_DEBUG_ASSERT(current != NULL);
262     // check if the task is not suspended on barrier
263     if (current->td_flags.tasktype == TASK_EXPLICIT ||
264         current->td_taskwait_thread > 0) { // <= 0 on barrier
265       kmp_int32 level = current->td_level;
266       kmp_taskdata_t *parent = tasknew->td_parent;
267       while (parent != current && parent->td_level > level) {
268         // check generation up to the level of the current task
269         parent = parent->td_parent;
270         KMP_DEBUG_ASSERT(parent != NULL);
271       }
272       if (parent != current)
273         return false;
274     }
275   }
276   // Check mutexinoutset dependencies, acquire locks
277   kmp_depnode_t *node = tasknew->td_depnode;
278   if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) {
279     for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
280       KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
281       if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
282         continue;
283       // could not get the lock, release previous locks
284       for (int j = i - 1; j >= 0; --j)
285         __kmp_release_lock(node->dn.mtx_locks[j], gtid);
286       return false;
287     }
288     // negative num_locks means all locks acquired successfully
289     node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
290   }
291   return true;
292 }
293 
294 // __kmp_realloc_task_deque:
295 // Re-allocates a task deque for a particular thread, copies the content from
296 // the old deque and adjusts the necessary data structures relating to the
297 // deque. This operation must be done with the deque_lock being held
298 static void __kmp_realloc_task_deque(kmp_info_t *thread,
299                                      kmp_thread_data_t *thread_data) {
300   kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
301   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size);
302   kmp_int32 new_size = 2 * size;
303 
304   KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
305                 "%d] for thread_data %p\n",
306                 __kmp_gtid_from_thread(thread), size, new_size, thread_data));
307 
308   kmp_taskdata_t **new_deque =
309       (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
310 
311   int i, j;
312   for (i = thread_data->td.td_deque_head, j = 0; j < size;
313        i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
314     new_deque[j] = thread_data->td.td_deque[i];
315 
316   __kmp_free(thread_data->td.td_deque);
317 
318   thread_data->td.td_deque_head = 0;
319   thread_data->td.td_deque_tail = size;
320   thread_data->td.td_deque = new_deque;
321   thread_data->td.td_deque_size = new_size;
322 }
323 
324 //  __kmp_push_task: Add a task to the thread's deque
325 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
326   kmp_info_t *thread = __kmp_threads[gtid];
327   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
328 
329   // We don't need to map to shadow gtid if it is already hidden helper thread
330   if (taskdata->td_flags.hidden_helper && !KMP_HIDDEN_HELPER_THREAD(gtid)) {
331     gtid = KMP_GTID_TO_SHADOW_GTID(gtid);
332     thread = __kmp_threads[gtid];
333   }
334 
335   kmp_task_team_t *task_team = thread->th.th_task_team;
336   kmp_int32 tid = __kmp_tid_from_gtid(gtid);
337   kmp_thread_data_t *thread_data;
338 
339   KA_TRACE(20,
340            ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
341 
342   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
343     // untied task needs to increment counter so that the task structure is not
344     // freed prematurely
345     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
346     KMP_DEBUG_USE_VAR(counter);
347     KA_TRACE(
348         20,
349         ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
350          gtid, counter, taskdata));
351   }
352 
353   // The first check avoids building task_team thread data if serialized
354   if (UNLIKELY(taskdata->td_flags.task_serial)) {
355     KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
356                   "TASK_NOT_PUSHED for task %p\n",
357                   gtid, taskdata));
358     return TASK_NOT_PUSHED;
359   }
360 
361   // Now that serialized tasks have returned, we can assume that we are not in
362   // immediate exec mode
363   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
364   if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) {
365     __kmp_enable_tasking(task_team, thread);
366   }
367   KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
368   KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
369 
370   // Find tasking deque specific to encountering thread
371   thread_data = &task_team->tt.tt_threads_data[tid];
372 
373   // No lock needed since only owner can allocate. If the task is hidden_helper,
374   // we don't need it either because we have initialized the dequeue for hidden
375   // helper thread data.
376   if (UNLIKELY(thread_data->td.td_deque == NULL)) {
377     __kmp_alloc_task_deque(thread, thread_data);
378   }
379 
380   int locked = 0;
381   // Check if deque is full
382   if (TCR_4(thread_data->td.td_deque_ntasks) >=
383       TASK_DEQUE_SIZE(thread_data->td)) {
384     if (__kmp_enable_task_throttling &&
385         __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
386                               thread->th.th_current_task)) {
387       KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
388                     "TASK_NOT_PUSHED for task %p\n",
389                     gtid, taskdata));
390       return TASK_NOT_PUSHED;
391     } else {
392       __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
393       locked = 1;
394       if (TCR_4(thread_data->td.td_deque_ntasks) >=
395           TASK_DEQUE_SIZE(thread_data->td)) {
396         // expand deque to push the task which is not allowed to execute
397         __kmp_realloc_task_deque(thread, thread_data);
398       }
399     }
400   }
401   // Lock the deque for the task push operation
402   if (!locked) {
403     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
404     // Need to recheck as we can get a proxy task from thread outside of OpenMP
405     if (TCR_4(thread_data->td.td_deque_ntasks) >=
406         TASK_DEQUE_SIZE(thread_data->td)) {
407       if (__kmp_enable_task_throttling &&
408           __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
409                                 thread->th.th_current_task)) {
410         __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
411         KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
412                       "returning TASK_NOT_PUSHED for task %p\n",
413                       gtid, taskdata));
414         return TASK_NOT_PUSHED;
415       } else {
416         // expand deque to push the task which is not allowed to execute
417         __kmp_realloc_task_deque(thread, thread_data);
418       }
419     }
420   }
421   // Must have room since no thread can add tasks but calling thread
422   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
423                    TASK_DEQUE_SIZE(thread_data->td));
424 
425   thread_data->td.td_deque[thread_data->td.td_deque_tail] =
426       taskdata; // Push taskdata
427   // Wrap index.
428   thread_data->td.td_deque_tail =
429       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
430   TCW_4(thread_data->td.td_deque_ntasks,
431         TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
432   KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
433   KMP_FSYNC_RELEASING(taskdata); // releasing child
434   KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
435                 "task=%p ntasks=%d head=%u tail=%u\n",
436                 gtid, taskdata, thread_data->td.td_deque_ntasks,
437                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
438 
439   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
440 
441   // Signal one worker thread to execute the task
442   if (taskdata->td_flags.hidden_helper) {
443     // Wake hidden helper threads up if they're sleeping
444     __kmp_hidden_helper_worker_thread_signal();
445   }
446 
447   return TASK_SUCCESSFULLY_PUSHED;
448 }
449 
450 // __kmp_pop_current_task_from_thread: set up current task from called thread
451 // when team ends
452 //
453 // this_thr: thread structure to set current_task in.
454 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
455   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
456                 "this_thread=%p, curtask=%p, "
457                 "curtask_parent=%p\n",
458                 0, this_thr, this_thr->th.th_current_task,
459                 this_thr->th.th_current_task->td_parent));
460 
461   this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
462 
463   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
464                 "this_thread=%p, curtask=%p, "
465                 "curtask_parent=%p\n",
466                 0, this_thr, this_thr->th.th_current_task,
467                 this_thr->th.th_current_task->td_parent));
468 }
469 
470 // __kmp_push_current_task_to_thread: set up current task in called thread for a
471 // new team
472 //
473 // this_thr: thread structure to set up
474 // team: team for implicit task data
475 // tid: thread within team to set up
476 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
477                                        int tid) {
478   // current task of the thread is a parent of the new just created implicit
479   // tasks of new team
480   KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
481                 "curtask=%p "
482                 "parent_task=%p\n",
483                 tid, this_thr, this_thr->th.th_current_task,
484                 team->t.t_implicit_task_taskdata[tid].td_parent));
485 
486   KMP_DEBUG_ASSERT(this_thr != NULL);
487 
488   if (tid == 0) {
489     if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
490       team->t.t_implicit_task_taskdata[0].td_parent =
491           this_thr->th.th_current_task;
492       this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
493     }
494   } else {
495     team->t.t_implicit_task_taskdata[tid].td_parent =
496         team->t.t_implicit_task_taskdata[0].td_parent;
497     this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
498   }
499 
500   KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
501                 "curtask=%p "
502                 "parent_task=%p\n",
503                 tid, this_thr, this_thr->th.th_current_task,
504                 team->t.t_implicit_task_taskdata[tid].td_parent));
505 }
506 
507 // __kmp_task_start: bookkeeping for a task starting execution
508 //
509 // GTID: global thread id of calling thread
510 // task: task starting execution
511 // current_task: task suspending
512 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
513                              kmp_taskdata_t *current_task) {
514   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
515   kmp_info_t *thread = __kmp_threads[gtid];
516 
517   KA_TRACE(10,
518            ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
519             gtid, taskdata, current_task));
520 
521   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
522 
523   // mark currently executing task as suspended
524   // TODO: GEH - make sure root team implicit task is initialized properly.
525   // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
526   current_task->td_flags.executing = 0;
527 
528 // Add task to stack if tied
529 #ifdef BUILD_TIED_TASK_STACK
530   if (taskdata->td_flags.tiedness == TASK_TIED) {
531     __kmp_push_task_stack(gtid, thread, taskdata);
532   }
533 #endif /* BUILD_TIED_TASK_STACK */
534 
535   // mark starting task as executing and as current task
536   thread->th.th_current_task = taskdata;
537 
538   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
539                    taskdata->td_flags.tiedness == TASK_UNTIED);
540   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
541                    taskdata->td_flags.tiedness == TASK_UNTIED);
542   taskdata->td_flags.started = 1;
543   taskdata->td_flags.executing = 1;
544   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
545   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
546 
547   // GEH TODO: shouldn't we pass some sort of location identifier here?
548   // APT: yes, we will pass location here.
549   // need to store current thread state (in a thread or taskdata structure)
550   // before setting work_state, otherwise wrong state is set after end of task
551 
552   KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
553 
554   return;
555 }
556 
557 #if OMPT_SUPPORT
558 //------------------------------------------------------------------------------
559 // __ompt_task_init:
560 //   Initialize OMPT fields maintained by a task. This will only be called after
561 //   ompt_start_tool, so we already know whether ompt is enabled or not.
562 
563 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
564   // The calls to __ompt_task_init already have the ompt_enabled condition.
565   task->ompt_task_info.task_data.value = 0;
566   task->ompt_task_info.frame.exit_frame = ompt_data_none;
567   task->ompt_task_info.frame.enter_frame = ompt_data_none;
568   task->ompt_task_info.frame.exit_frame_flags =
569       ompt_frame_runtime | ompt_frame_framepointer;
570   task->ompt_task_info.frame.enter_frame_flags =
571       ompt_frame_runtime | ompt_frame_framepointer;
572 }
573 
574 // __ompt_task_start:
575 //   Build and trigger task-begin event
576 static inline void __ompt_task_start(kmp_task_t *task,
577                                      kmp_taskdata_t *current_task,
578                                      kmp_int32 gtid) {
579   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
580   ompt_task_status_t status = ompt_task_switch;
581   if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
582     status = ompt_task_yield;
583     __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
584   }
585   /* let OMPT know that we're about to run this task */
586   if (ompt_enabled.ompt_callback_task_schedule) {
587     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
588         &(current_task->ompt_task_info.task_data), status,
589         &(taskdata->ompt_task_info.task_data));
590   }
591   taskdata->ompt_task_info.scheduling_parent = current_task;
592 }
593 
594 // __ompt_task_finish:
595 //   Build and trigger final task-schedule event
596 static inline void __ompt_task_finish(kmp_task_t *task,
597                                       kmp_taskdata_t *resumed_task,
598                                       ompt_task_status_t status) {
599   if (ompt_enabled.ompt_callback_task_schedule) {
600     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
601     if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
602         taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
603       status = ompt_task_cancel;
604     }
605 
606     /* let OMPT know that we're returning to the callee task */
607     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
608         &(taskdata->ompt_task_info.task_data), status,
609         (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL));
610   }
611 }
612 #endif
613 
614 template <bool ompt>
615 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
616                                                kmp_task_t *task,
617                                                void *frame_address,
618                                                void *return_address) {
619   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
620   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
621 
622   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
623                 "current_task=%p\n",
624                 gtid, loc_ref, taskdata, current_task));
625 
626   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
627     // untied task needs to increment counter so that the task structure is not
628     // freed prematurely
629     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
630     KMP_DEBUG_USE_VAR(counter);
631     KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
632                   "incremented for task %p\n",
633                   gtid, counter, taskdata));
634   }
635 
636   taskdata->td_flags.task_serial =
637       1; // Execute this task immediately, not deferred.
638   __kmp_task_start(gtid, task, current_task);
639 
640 #if OMPT_SUPPORT
641   if (ompt) {
642     if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
643       current_task->ompt_task_info.frame.enter_frame.ptr =
644           taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
645       current_task->ompt_task_info.frame.enter_frame_flags =
646           taskdata->ompt_task_info.frame.exit_frame_flags =
647               ompt_frame_application | ompt_frame_framepointer;
648     }
649     if (ompt_enabled.ompt_callback_task_create) {
650       ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
651       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
652           &(parent_info->task_data), &(parent_info->frame),
653           &(taskdata->ompt_task_info.task_data),
654           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
655           return_address);
656     }
657     __ompt_task_start(task, current_task, gtid);
658   }
659 #endif // OMPT_SUPPORT
660 
661   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
662                 loc_ref, taskdata));
663 }
664 
665 #if OMPT_SUPPORT
666 OMPT_NOINLINE
667 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
668                                            kmp_task_t *task,
669                                            void *frame_address,
670                                            void *return_address) {
671   __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
672                                            return_address);
673 }
674 #endif // OMPT_SUPPORT
675 
676 // __kmpc_omp_task_begin_if0: report that a given serialized task has started
677 // execution
678 //
679 // loc_ref: source location information; points to beginning of task block.
680 // gtid: global thread number.
681 // task: task thunk for the started task.
682 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
683                                kmp_task_t *task) {
684 #if OMPT_SUPPORT
685   if (UNLIKELY(ompt_enabled.enabled)) {
686     OMPT_STORE_RETURN_ADDRESS(gtid);
687     __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
688                                    OMPT_GET_FRAME_ADDRESS(1),
689                                    OMPT_LOAD_RETURN_ADDRESS(gtid));
690     return;
691   }
692 #endif
693   __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
694 }
695 
696 #ifdef TASK_UNUSED
697 // __kmpc_omp_task_begin: report that a given task has started execution
698 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
699 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
700   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
701 
702   KA_TRACE(
703       10,
704       ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
705        gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
706 
707   __kmp_task_start(gtid, task, current_task);
708 
709   KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
710                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
711   return;
712 }
713 #endif // TASK_UNUSED
714 
715 // __kmp_free_task: free the current task space and the space for shareds
716 //
717 // gtid: Global thread ID of calling thread
718 // taskdata: task to free
719 // thread: thread data structure of caller
720 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
721                             kmp_info_t *thread) {
722   KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
723                 taskdata));
724 
725   // Check to make sure all flags and counters have the correct values
726   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
727   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
728   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
729   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
730   KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
731                    taskdata->td_flags.task_serial == 1);
732   KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
733 
734   taskdata->td_flags.freed = 1;
735   ANNOTATE_HAPPENS_BEFORE(taskdata);
736 // deallocate the taskdata and shared variable blocks associated with this task
737 #if USE_FAST_MEMORY
738   __kmp_fast_free(thread, taskdata);
739 #else /* ! USE_FAST_MEMORY */
740   __kmp_thread_free(thread, taskdata);
741 #endif
742   KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
743 }
744 
745 // __kmp_free_task_and_ancestors: free the current task and ancestors without
746 // children
747 //
748 // gtid: Global thread ID of calling thread
749 // taskdata: task to free
750 // thread: thread data structure of caller
751 static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
752                                           kmp_taskdata_t *taskdata,
753                                           kmp_info_t *thread) {
754   // Proxy tasks must always be allowed to free their parents
755   // because they can be run in background even in serial mode.
756   kmp_int32 team_serial =
757       (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
758       !taskdata->td_flags.proxy;
759   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
760 
761   kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
762   KMP_DEBUG_ASSERT(children >= 0);
763 
764   // Now, go up the ancestor tree to see if any ancestors can now be freed.
765   while (children == 0) {
766     kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
767 
768     KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
769                   "and freeing itself\n",
770                   gtid, taskdata));
771 
772     // --- Deallocate my ancestor task ---
773     __kmp_free_task(gtid, taskdata, thread);
774 
775     taskdata = parent_taskdata;
776 
777     if (team_serial)
778       return;
779     // Stop checking ancestors at implicit task instead of walking up ancestor
780     // tree to avoid premature deallocation of ancestors.
781     if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
782       if (taskdata->td_dephash) { // do we need to cleanup dephash?
783         int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
784         kmp_tasking_flags_t flags_old = taskdata->td_flags;
785         if (children == 0 && flags_old.complete == 1) {
786           kmp_tasking_flags_t flags_new = flags_old;
787           flags_new.complete = 0;
788           if (KMP_COMPARE_AND_STORE_ACQ32(
789                   RCAST(kmp_int32 *, &taskdata->td_flags),
790                   *RCAST(kmp_int32 *, &flags_old),
791                   *RCAST(kmp_int32 *, &flags_new))) {
792             KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
793                            "dephash of implicit task %p\n",
794                            gtid, taskdata));
795             // cleanup dephash of finished implicit task
796             __kmp_dephash_free_entries(thread, taskdata->td_dephash);
797           }
798         }
799       }
800       return;
801     }
802     // Predecrement simulated by "- 1" calculation
803     children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
804     KMP_DEBUG_ASSERT(children >= 0);
805   }
806 
807   KA_TRACE(
808       20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
809            "not freeing it yet\n",
810            gtid, taskdata, children));
811 }
812 
813 // __kmp_task_finish: bookkeeping to do when a task finishes execution
814 //
815 // gtid: global thread ID for calling thread
816 // task: task to be finished
817 // resumed_task: task to be resumed.  (may be NULL if task is serialized)
818 //
819 // template<ompt>: effectively ompt_enabled.enabled!=0
820 // the version with ompt=false is inlined, allowing to optimize away all ompt
821 // code in this case
822 template <bool ompt>
823 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
824                               kmp_taskdata_t *resumed_task) {
825   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
826   kmp_info_t *thread = __kmp_threads[gtid];
827   kmp_task_team_t *task_team =
828       thread->th.th_task_team; // might be NULL for serial teams...
829   kmp_int32 children = 0;
830 
831   KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
832                 "task %p\n",
833                 gtid, taskdata, resumed_task));
834 
835   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
836 
837 // Pop task from stack if tied
838 #ifdef BUILD_TIED_TASK_STACK
839   if (taskdata->td_flags.tiedness == TASK_TIED) {
840     __kmp_pop_task_stack(gtid, thread, taskdata);
841   }
842 #endif /* BUILD_TIED_TASK_STACK */
843 
844   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
845     // untied task needs to check the counter so that the task structure is not
846     // freed prematurely
847     kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
848     KA_TRACE(
849         20,
850         ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
851          gtid, counter, taskdata));
852     if (counter > 0) {
853       // untied task is not done, to be continued possibly by other thread, do
854       // not free it now
855       if (resumed_task == NULL) {
856         KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
857         resumed_task = taskdata->td_parent; // In a serialized task, the resumed
858         // task is the parent
859       }
860       thread->th.th_current_task = resumed_task; // restore current_task
861       resumed_task->td_flags.executing = 1; // resume previous task
862       KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
863                     "resuming task %p\n",
864                     gtid, taskdata, resumed_task));
865       return;
866     }
867   }
868 
869   // bookkeeping for resuming task:
870   // GEH - note tasking_ser => task_serial
871   KMP_DEBUG_ASSERT(
872       (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
873       taskdata->td_flags.task_serial);
874   if (taskdata->td_flags.task_serial) {
875     if (resumed_task == NULL) {
876       resumed_task = taskdata->td_parent; // In a serialized task, the resumed
877       // task is the parent
878     }
879   } else {
880     KMP_DEBUG_ASSERT(resumed_task !=
881                      NULL); // verify that resumed task is passed as argument
882   }
883 
884   /* If the tasks' destructor thunk flag has been set, we need to invoke the
885      destructor thunk that has been generated by the compiler. The code is
886      placed here, since at this point other tasks might have been released
887      hence overlapping the destructor invocations with some other work in the
888      released tasks.  The OpenMP spec is not specific on when the destructors
889      are invoked, so we should be free to choose. */
890   if (UNLIKELY(taskdata->td_flags.destructors_thunk)) {
891     kmp_routine_entry_t destr_thunk = task->data1.destructors;
892     KMP_ASSERT(destr_thunk);
893     destr_thunk(gtid, task);
894   }
895 
896   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
897   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
898   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
899 
900   bool detach = false;
901   if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) {
902     if (taskdata->td_allow_completion_event.type ==
903         KMP_EVENT_ALLOW_COMPLETION) {
904       // event hasn't been fulfilled yet. Try to detach task.
905       __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
906       if (taskdata->td_allow_completion_event.type ==
907           KMP_EVENT_ALLOW_COMPLETION) {
908         // task finished execution
909         KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
910         taskdata->td_flags.executing = 0; // suspend the finishing task
911 
912 #if OMPT_SUPPORT
913         // For a detached task, which is not completed, we switch back
914         // the omp_fulfill_event signals completion
915         // locking is necessary to avoid a race with ompt_task_late_fulfill
916         if (ompt)
917           __ompt_task_finish(task, resumed_task, ompt_task_detach);
918 #endif
919 
920         // no access to taskdata after this point!
921         // __kmp_fulfill_event might free taskdata at any time from now
922 
923         taskdata->td_flags.proxy = TASK_PROXY; // proxify!
924         detach = true;
925       }
926       __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
927     }
928   }
929 
930   if (!detach) {
931     taskdata->td_flags.complete = 1; // mark the task as completed
932 
933 #if OMPT_SUPPORT
934     // This is not a detached task, we are done here
935     if (ompt)
936       __ompt_task_finish(task, resumed_task, ompt_task_complete);
937 #endif
938 
939     // Only need to keep track of count if team parallel and tasking not
940     // serialized, or task is detachable and event has already been fulfilled
941     if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) ||
942         taskdata->td_flags.detachable == TASK_DETACHABLE ||
943         taskdata->td_flags.hidden_helper) {
944       // Predecrement simulated by "- 1" calculation
945       children =
946           KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
947       KMP_DEBUG_ASSERT(children >= 0);
948       if (taskdata->td_taskgroup)
949         KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
950       __kmp_release_deps(gtid, taskdata);
951     } else if (task_team && task_team->tt.tt_found_proxy_tasks) {
952       // if we found proxy tasks there could exist a dependency chain
953       // with the proxy task as origin
954       __kmp_release_deps(gtid, taskdata);
955     }
956     // td_flags.executing must be marked as 0 after __kmp_release_deps has been
957     // called. Othertwise, if a task is executed immediately from the
958     // release_deps code, the flag will be reset to 1 again by this same
959     // function
960     KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
961     taskdata->td_flags.executing = 0; // suspend the finishing task
962   }
963 
964   KA_TRACE(
965       20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
966            gtid, taskdata, children));
967 
968   // Free this task and then ancestor tasks if they have no children.
969   // Restore th_current_task first as suggested by John:
970   // johnmc: if an asynchronous inquiry peers into the runtime system
971   // it doesn't see the freed task as the current task.
972   thread->th.th_current_task = resumed_task;
973   if (!detach)
974     __kmp_free_task_and_ancestors(gtid, taskdata, thread);
975 
976   // TODO: GEH - make sure root team implicit task is initialized properly.
977   // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
978   resumed_task->td_flags.executing = 1; // resume previous task
979 
980   KA_TRACE(
981       10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
982            gtid, taskdata, resumed_task));
983 
984   return;
985 }
986 
987 template <bool ompt>
988 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
989                                                   kmp_int32 gtid,
990                                                   kmp_task_t *task) {
991   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
992                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
993   KMP_DEBUG_ASSERT(gtid >= 0);
994   // this routine will provide task to resume
995   __kmp_task_finish<ompt>(gtid, task, NULL);
996 
997   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
998                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
999 
1000 #if OMPT_SUPPORT
1001   if (ompt) {
1002     ompt_frame_t *ompt_frame;
1003     __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
1004     ompt_frame->enter_frame = ompt_data_none;
1005     ompt_frame->enter_frame_flags =
1006         ompt_frame_runtime | ompt_frame_framepointer;
1007   }
1008 #endif
1009 
1010   return;
1011 }
1012 
1013 #if OMPT_SUPPORT
1014 OMPT_NOINLINE
1015 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
1016                                        kmp_task_t *task) {
1017   __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
1018 }
1019 #endif // OMPT_SUPPORT
1020 
1021 // __kmpc_omp_task_complete_if0: report that a task has completed execution
1022 //
1023 // loc_ref: source location information; points to end of task block.
1024 // gtid: global thread number.
1025 // task: task thunk for the completed task.
1026 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
1027                                   kmp_task_t *task) {
1028 #if OMPT_SUPPORT
1029   if (UNLIKELY(ompt_enabled.enabled)) {
1030     __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
1031     return;
1032   }
1033 #endif
1034   __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
1035 }
1036 
1037 #ifdef TASK_UNUSED
1038 // __kmpc_omp_task_complete: report that a task has completed execution
1039 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
1040 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
1041                               kmp_task_t *task) {
1042   KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
1043                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1044 
1045   __kmp_task_finish<false>(gtid, task,
1046                            NULL); // Not sure how to find task to resume
1047 
1048   KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
1049                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1050   return;
1051 }
1052 #endif // TASK_UNUSED
1053 
1054 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1055 // task for a given thread
1056 //
1057 // loc_ref:  reference to source location of parallel region
1058 // this_thr:  thread data structure corresponding to implicit task
1059 // team: team for this_thr
1060 // tid: thread id of given thread within team
1061 // set_curr_task: TRUE if need to push current task to thread
1062 // NOTE: Routine does not set up the implicit task ICVS.  This is assumed to
1063 // have already been done elsewhere.
1064 // TODO: Get better loc_ref.  Value passed in may be NULL
1065 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
1066                               kmp_team_t *team, int tid, int set_curr_task) {
1067   kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
1068 
1069   KF_TRACE(
1070       10,
1071       ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1072        tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
1073 
1074   task->td_task_id = KMP_GEN_TASK_ID();
1075   task->td_team = team;
1076   //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info
1077   //    in debugger)
1078   task->td_ident = loc_ref;
1079   task->td_taskwait_ident = NULL;
1080   task->td_taskwait_counter = 0;
1081   task->td_taskwait_thread = 0;
1082 
1083   task->td_flags.tiedness = TASK_TIED;
1084   task->td_flags.tasktype = TASK_IMPLICIT;
1085   task->td_flags.proxy = TASK_FULL;
1086 
1087   // All implicit tasks are executed immediately, not deferred
1088   task->td_flags.task_serial = 1;
1089   task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1090   task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1091 
1092   task->td_flags.started = 1;
1093   task->td_flags.executing = 1;
1094   task->td_flags.complete = 0;
1095   task->td_flags.freed = 0;
1096 
1097   task->td_depnode = NULL;
1098   task->td_last_tied = task;
1099   task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1100 
1101   if (set_curr_task) { // only do this init first time thread is created
1102     KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
1103     // Not used: don't need to deallocate implicit task
1104     KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
1105     task->td_taskgroup = NULL; // An implicit task does not have taskgroup
1106     task->td_dephash = NULL;
1107     __kmp_push_current_task_to_thread(this_thr, team, tid);
1108   } else {
1109     KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
1110     KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
1111   }
1112 
1113 #if OMPT_SUPPORT
1114   if (UNLIKELY(ompt_enabled.enabled))
1115     __ompt_task_init(task, tid);
1116 #endif
1117 
1118   KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
1119                 team, task));
1120 }
1121 
1122 // __kmp_finish_implicit_task: Release resources associated to implicit tasks
1123 // at the end of parallel regions. Some resources are kept for reuse in the next
1124 // parallel region.
1125 //
1126 // thread:  thread data structure corresponding to implicit task
1127 void __kmp_finish_implicit_task(kmp_info_t *thread) {
1128   kmp_taskdata_t *task = thread->th.th_current_task;
1129   if (task->td_dephash) {
1130     int children;
1131     task->td_flags.complete = 1;
1132     children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
1133     kmp_tasking_flags_t flags_old = task->td_flags;
1134     if (children == 0 && flags_old.complete == 1) {
1135       kmp_tasking_flags_t flags_new = flags_old;
1136       flags_new.complete = 0;
1137       if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
1138                                       *RCAST(kmp_int32 *, &flags_old),
1139                                       *RCAST(kmp_int32 *, &flags_new))) {
1140         KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1141                        "dephash of implicit task %p\n",
1142                        thread->th.th_info.ds.ds_gtid, task));
1143         __kmp_dephash_free_entries(thread, task->td_dephash);
1144       }
1145     }
1146   }
1147 }
1148 
1149 // __kmp_free_implicit_task: Release resources associated to implicit tasks
1150 // when these are destroyed regions
1151 //
1152 // thread:  thread data structure corresponding to implicit task
1153 void __kmp_free_implicit_task(kmp_info_t *thread) {
1154   kmp_taskdata_t *task = thread->th.th_current_task;
1155   if (task && task->td_dephash) {
1156     __kmp_dephash_free(thread, task->td_dephash);
1157     task->td_dephash = NULL;
1158   }
1159 }
1160 
1161 // Round up a size to a power of two specified by val: Used to insert padding
1162 // between structures co-allocated using a single malloc() call
1163 static size_t __kmp_round_up_to_val(size_t size, size_t val) {
1164   if (size & (val - 1)) {
1165     size &= ~(val - 1);
1166     if (size <= KMP_SIZE_T_MAX - val) {
1167       size += val; // Round up if there is no overflow.
1168     }
1169   }
1170   return size;
1171 } // __kmp_round_up_to_va
1172 
1173 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1174 //
1175 // loc_ref: source location information
1176 // gtid: global thread number.
1177 // flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1178 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1179 // sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including
1180 // private vars accessed in task.
1181 // sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed
1182 // in task.
1183 // task_entry: Pointer to task code entry point generated by compiler.
1184 // returns: a pointer to the allocated kmp_task_t structure (task).
1185 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1186                              kmp_tasking_flags_t *flags,
1187                              size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1188                              kmp_routine_entry_t task_entry) {
1189   kmp_task_t *task;
1190   kmp_taskdata_t *taskdata;
1191   kmp_info_t *thread = __kmp_threads[gtid];
1192   kmp_info_t *encountering_thread = thread;
1193   kmp_team_t *team = thread->th.th_team;
1194   kmp_taskdata_t *parent_task = thread->th.th_current_task;
1195   size_t shareds_offset;
1196 
1197   if (UNLIKELY(!TCR_4(__kmp_init_middle)))
1198     __kmp_middle_initialize();
1199 
1200   if (flags->hidden_helper) {
1201     if (__kmp_enable_hidden_helper) {
1202       if (!TCR_4(__kmp_init_hidden_helper))
1203         __kmp_hidden_helper_initialize();
1204 
1205       // For a hidden helper task encountered by a regular thread, we will push
1206       // the task to the (gtid%__kmp_hidden_helper_threads_num)-th hidden helper
1207       // thread.
1208       if (!KMP_HIDDEN_HELPER_THREAD(gtid)) {
1209         thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)];
1210         // We don't change the parent-child relation for hidden helper task as
1211         // we need that to do per-task-region synchronization.
1212       }
1213     } else {
1214       // If the hidden helper task is not enabled, reset the flag to FALSE.
1215       flags->hidden_helper = FALSE;
1216     }
1217   }
1218 
1219   KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1220                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1221                 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
1222                 sizeof_shareds, task_entry));
1223 
1224   KMP_DEBUG_ASSERT(parent_task);
1225   if (parent_task->td_flags.final) {
1226     if (flags->merged_if0) {
1227     }
1228     flags->final = 1;
1229   }
1230 
1231   if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
1232     // Untied task encountered causes the TSC algorithm to check entire deque of
1233     // the victim thread. If no untied task encountered, then checking the head
1234     // of the deque should be enough.
1235     KMP_CHECK_UPDATE(
1236         encountering_thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
1237   }
1238 
1239   // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1240   // the tasking setup
1241   // when that happens is too late.
1242   if (UNLIKELY(flags->proxy == TASK_PROXY ||
1243                flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) {
1244     if (flags->proxy == TASK_PROXY) {
1245       flags->tiedness = TASK_UNTIED;
1246       flags->merged_if0 = 1;
1247     }
1248     /* are we running in a sequential parallel or tskm_immediate_exec... we need
1249        tasking support enabled */
1250     if ((encountering_thread->th.th_task_team) == NULL) {
1251       /* This should only happen if the team is serialized
1252           setup a task team and propagate it to the thread */
1253       KMP_DEBUG_ASSERT(team->t.t_serialized);
1254       KA_TRACE(30,
1255                ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1256                 gtid));
1257       __kmp_task_team_setup(
1258           encountering_thread, team,
1259           1); // 1 indicates setup the current team regardless of nthreads
1260       encountering_thread->th.th_task_team =
1261           team->t.t_task_team[encountering_thread->th.th_task_state];
1262     }
1263     kmp_task_team_t *task_team = encountering_thread->th.th_task_team;
1264 
1265     /* tasking must be enabled now as the task might not be pushed */
1266     if (!KMP_TASKING_ENABLED(task_team)) {
1267       KA_TRACE(
1268           30,
1269           ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
1270       __kmp_enable_tasking(task_team, encountering_thread);
1271       kmp_int32 tid = encountering_thread->th.th_info.ds.ds_tid;
1272       kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
1273       // No lock needed since only owner can allocate
1274       if (thread_data->td.td_deque == NULL) {
1275         __kmp_alloc_task_deque(encountering_thread, thread_data);
1276       }
1277     }
1278 
1279     if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) &&
1280         task_team->tt.tt_found_proxy_tasks == FALSE)
1281       TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
1282     if (flags->hidden_helper &&
1283         task_team->tt.tt_hidden_helper_task_encountered == FALSE)
1284       TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE);
1285   }
1286 
1287   // Calculate shared structure offset including padding after kmp_task_t struct
1288   // to align pointers in shared struct
1289   shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
1290   shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
1291 
1292   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1293   KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
1294                 shareds_offset));
1295   KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
1296                 sizeof_shareds));
1297 
1298   // Avoid double allocation here by combining shareds with taskdata
1299 #if USE_FAST_MEMORY
1300   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(
1301       encountering_thread, shareds_offset + sizeof_shareds);
1302 #else /* ! USE_FAST_MEMORY */
1303   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(
1304       encountering_thread, shareds_offset + sizeof_shareds);
1305 #endif /* USE_FAST_MEMORY */
1306   ANNOTATE_HAPPENS_AFTER(taskdata);
1307 
1308   task = KMP_TASKDATA_TO_TASK(taskdata);
1309 
1310 // Make sure task & taskdata are aligned appropriately
1311 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
1312   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
1313   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
1314 #else
1315   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
1316   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
1317 #endif
1318   if (sizeof_shareds > 0) {
1319     // Avoid double allocation here by combining shareds with taskdata
1320     task->shareds = &((char *)taskdata)[shareds_offset];
1321     // Make sure shareds struct is aligned to pointer size
1322     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
1323                      0);
1324   } else {
1325     task->shareds = NULL;
1326   }
1327   task->routine = task_entry;
1328   task->part_id = 0; // AC: Always start with 0 part id
1329 
1330   taskdata->td_task_id = KMP_GEN_TASK_ID();
1331   taskdata->td_team = thread->th.th_team;
1332   taskdata->td_alloc_thread = encountering_thread;
1333   taskdata->td_parent = parent_task;
1334   taskdata->td_level = parent_task->td_level + 1; // increment nesting level
1335   KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
1336   taskdata->td_ident = loc_ref;
1337   taskdata->td_taskwait_ident = NULL;
1338   taskdata->td_taskwait_counter = 0;
1339   taskdata->td_taskwait_thread = 0;
1340   KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
1341   // avoid copying icvs for proxy tasks
1342   if (flags->proxy == TASK_FULL)
1343     copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
1344 
1345   taskdata->td_flags.tiedness = flags->tiedness;
1346   taskdata->td_flags.final = flags->final;
1347   taskdata->td_flags.merged_if0 = flags->merged_if0;
1348   taskdata->td_flags.destructors_thunk = flags->destructors_thunk;
1349   taskdata->td_flags.proxy = flags->proxy;
1350   taskdata->td_flags.detachable = flags->detachable;
1351   taskdata->td_flags.hidden_helper = flags->hidden_helper;
1352   taskdata->encountering_gtid = gtid;
1353   taskdata->td_task_team = thread->th.th_task_team;
1354   taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
1355   taskdata->td_flags.tasktype = TASK_EXPLICIT;
1356 
1357   // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1358   taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1359 
1360   // GEH - TODO: fix this to copy parent task's value of team_serial flag
1361   taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1362 
1363   // GEH - Note we serialize the task if the team is serialized to make sure
1364   // implicit parallel region tasks are not left until program termination to
1365   // execute. Also, it helps locality to execute immediately.
1366 
1367   taskdata->td_flags.task_serial =
1368       (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
1369        taskdata->td_flags.tasking_ser || flags->merged_if0);
1370 
1371   taskdata->td_flags.started = 0;
1372   taskdata->td_flags.executing = 0;
1373   taskdata->td_flags.complete = 0;
1374   taskdata->td_flags.freed = 0;
1375 
1376   taskdata->td_flags.native = flags->native;
1377 
1378   KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
1379   // start at one because counts current task and children
1380   KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
1381   taskdata->td_taskgroup =
1382       parent_task->td_taskgroup; // task inherits taskgroup from the parent task
1383   taskdata->td_dephash = NULL;
1384   taskdata->td_depnode = NULL;
1385   if (flags->tiedness == TASK_UNTIED)
1386     taskdata->td_last_tied = NULL; // will be set when the task is scheduled
1387   else
1388     taskdata->td_last_tied = taskdata;
1389   taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1390 #if OMPT_SUPPORT
1391   if (UNLIKELY(ompt_enabled.enabled))
1392     __ompt_task_init(taskdata, gtid);
1393 #endif
1394   // Only need to keep track of child task counts if team parallel and tasking
1395   // not serialized or if it is a proxy or detachable or hidden helper task
1396   if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE ||
1397       flags->hidden_helper ||
1398       !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
1399     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
1400     if (parent_task->td_taskgroup)
1401       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
1402     // Only need to keep track of allocated child tasks for explicit tasks since
1403     // implicit not deallocated
1404     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
1405       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
1406     }
1407   }
1408 
1409   if (flags->hidden_helper) {
1410     taskdata->td_flags.task_serial = FALSE;
1411     // Increment the number of hidden helper tasks to be executed
1412     KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks);
1413   }
1414 
1415   KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1416                 gtid, taskdata, taskdata->td_parent));
1417   ANNOTATE_HAPPENS_BEFORE(task);
1418 
1419   return task;
1420 }
1421 
1422 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1423                                   kmp_int32 flags, size_t sizeof_kmp_task_t,
1424                                   size_t sizeof_shareds,
1425                                   kmp_routine_entry_t task_entry) {
1426   kmp_task_t *retval;
1427   kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
1428   __kmp_assert_valid_gtid(gtid);
1429   input_flags->native = FALSE;
1430   // __kmp_task_alloc() sets up all other runtime flags
1431   KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1432                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1433                 gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied",
1434                 input_flags->proxy ? "proxy" : "",
1435                 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
1436                 sizeof_shareds, task_entry));
1437 
1438   retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
1439                             sizeof_shareds, task_entry);
1440 
1441   KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
1442 
1443   return retval;
1444 }
1445 
1446 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1447                                          kmp_int32 flags,
1448                                          size_t sizeof_kmp_task_t,
1449                                          size_t sizeof_shareds,
1450                                          kmp_routine_entry_t task_entry,
1451                                          kmp_int64 device_id) {
1452   if (__kmp_enable_hidden_helper) {
1453     auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags);
1454     input_flags.hidden_helper = TRUE;
1455   }
1456 
1457   return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
1458                                sizeof_shareds, task_entry);
1459 }
1460 
1461 /*!
1462 @ingroup TASKING
1463 @param loc_ref location of the original task directive
1464 @param gtid Global Thread ID of encountering thread
1465 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1466 task''
1467 @param naffins Number of affinity items
1468 @param affin_list List of affinity items
1469 @return Returns non-zero if registering affinity information was not successful.
1470  Returns 0 if registration was successful
1471 This entry registers the affinity information attached to a task with the task
1472 thunk structure kmp_taskdata_t.
1473 */
1474 kmp_int32
1475 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
1476                                   kmp_task_t *new_task, kmp_int32 naffins,
1477                                   kmp_task_affinity_info_t *affin_list) {
1478   return 0;
1479 }
1480 
1481 //  __kmp_invoke_task: invoke the specified task
1482 //
1483 // gtid: global thread ID of caller
1484 // task: the task to invoke
1485 // current_task: the task to resume after task invocation
1486 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
1487                               kmp_taskdata_t *current_task) {
1488   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1489   kmp_info_t *thread;
1490   int discard = 0 /* false */;
1491   KA_TRACE(
1492       30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1493            gtid, taskdata, current_task));
1494   KMP_DEBUG_ASSERT(task);
1495   if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY &&
1496                taskdata->td_flags.complete == 1)) {
1497     // This is a proxy task that was already completed but it needs to run
1498     // its bottom-half finish
1499     KA_TRACE(
1500         30,
1501         ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1502          gtid, taskdata));
1503 
1504     __kmp_bottom_half_finish_proxy(gtid, task);
1505 
1506     KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1507                   "proxy task %p, resuming task %p\n",
1508                   gtid, taskdata, current_task));
1509 
1510     return;
1511   }
1512 
1513 #if OMPT_SUPPORT
1514   // For untied tasks, the first task executed only calls __kmpc_omp_task and
1515   // does not execute code.
1516   ompt_thread_info_t oldInfo;
1517   if (UNLIKELY(ompt_enabled.enabled)) {
1518     // Store the threads states and restore them after the task
1519     thread = __kmp_threads[gtid];
1520     oldInfo = thread->th.ompt_thread_info;
1521     thread->th.ompt_thread_info.wait_id = 0;
1522     thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
1523                                             ? ompt_state_work_serial
1524                                             : ompt_state_work_parallel;
1525     taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1526   }
1527 #endif
1528 
1529   // Decreament the counter of hidden helper tasks to be executed
1530   if (taskdata->td_flags.hidden_helper) {
1531     // Hidden helper tasks can only be executed by hidden helper threads
1532     KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid));
1533     KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks);
1534   }
1535 
1536   // Proxy tasks are not handled by the runtime
1537   if (taskdata->td_flags.proxy != TASK_PROXY) {
1538     ANNOTATE_HAPPENS_AFTER(task);
1539     __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
1540   }
1541 
1542   // TODO: cancel tasks if the parallel region has also been cancelled
1543   // TODO: check if this sequence can be hoisted above __kmp_task_start
1544   // if cancellation has been enabled for this run ...
1545   if (UNLIKELY(__kmp_omp_cancellation)) {
1546     thread = __kmp_threads[gtid];
1547     kmp_team_t *this_team = thread->th.th_team;
1548     kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
1549     if ((taskgroup && taskgroup->cancel_request) ||
1550         (this_team->t.t_cancel_request == cancel_parallel)) {
1551 #if OMPT_SUPPORT && OMPT_OPTIONAL
1552       ompt_data_t *task_data;
1553       if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
1554         __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
1555         ompt_callbacks.ompt_callback(ompt_callback_cancel)(
1556             task_data,
1557             ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
1558                                                       : ompt_cancel_parallel) |
1559                 ompt_cancel_discarded_task,
1560             NULL);
1561       }
1562 #endif
1563       KMP_COUNT_BLOCK(TASK_cancelled);
1564       // this task belongs to a task group and we need to cancel it
1565       discard = 1 /* true */;
1566     }
1567   }
1568 
1569   // Invoke the task routine and pass in relevant data.
1570   // Thunks generated by gcc take a different argument list.
1571   if (!discard) {
1572     if (taskdata->td_flags.tiedness == TASK_UNTIED) {
1573       taskdata->td_last_tied = current_task->td_last_tied;
1574       KMP_DEBUG_ASSERT(taskdata->td_last_tied);
1575     }
1576 #if KMP_STATS_ENABLED
1577     KMP_COUNT_BLOCK(TASK_executed);
1578     switch (KMP_GET_THREAD_STATE()) {
1579     case FORK_JOIN_BARRIER:
1580       KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
1581       break;
1582     case PLAIN_BARRIER:
1583       KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
1584       break;
1585     case TASKYIELD:
1586       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
1587       break;
1588     case TASKWAIT:
1589       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
1590       break;
1591     case TASKGROUP:
1592       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
1593       break;
1594     default:
1595       KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
1596       break;
1597     }
1598 #endif // KMP_STATS_ENABLED
1599 
1600 // OMPT task begin
1601 #if OMPT_SUPPORT
1602     if (UNLIKELY(ompt_enabled.enabled))
1603       __ompt_task_start(task, current_task, gtid);
1604 #endif
1605 
1606 #if OMPD_SUPPORT
1607     if (ompd_state & OMPD_ENABLE_BP)
1608       ompd_bp_task_begin();
1609 #endif
1610 
1611 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1612     kmp_uint64 cur_time;
1613     kmp_int32 kmp_itt_count_task =
1614         __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
1615         current_task->td_flags.tasktype == TASK_IMPLICIT;
1616     if (kmp_itt_count_task) {
1617       thread = __kmp_threads[gtid];
1618       // Time outer level explicit task on barrier for adjusting imbalance time
1619       if (thread->th.th_bar_arrive_time)
1620         cur_time = __itt_get_timestamp();
1621       else
1622         kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
1623     }
1624     KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task)
1625 #endif
1626 
1627 #ifdef KMP_GOMP_COMPAT
1628     if (taskdata->td_flags.native) {
1629       ((void (*)(void *))(*(task->routine)))(task->shareds);
1630     } else
1631 #endif /* KMP_GOMP_COMPAT */
1632     {
1633       (*(task->routine))(gtid, task);
1634     }
1635     KMP_POP_PARTITIONED_TIMER();
1636 
1637 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1638     if (kmp_itt_count_task) {
1639       // Barrier imbalance - adjust arrive time with the task duration
1640       thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
1641     }
1642     KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed)
1643     KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent
1644 #endif
1645   }
1646 
1647 #if OMPD_SUPPORT
1648   if (ompd_state & OMPD_ENABLE_BP)
1649     ompd_bp_task_end();
1650 #endif
1651 
1652   // Proxy tasks are not handled by the runtime
1653   if (taskdata->td_flags.proxy != TASK_PROXY) {
1654     ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent);
1655 #if OMPT_SUPPORT
1656     if (UNLIKELY(ompt_enabled.enabled)) {
1657       thread->th.ompt_thread_info = oldInfo;
1658       if (taskdata->td_flags.tiedness == TASK_TIED) {
1659         taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1660       }
1661       __kmp_task_finish<true>(gtid, task, current_task);
1662     } else
1663 #endif
1664       __kmp_task_finish<false>(gtid, task, current_task);
1665   }
1666 
1667   KA_TRACE(
1668       30,
1669       ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1670        gtid, taskdata, current_task));
1671   return;
1672 }
1673 
1674 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1675 //
1676 // loc_ref: location of original task pragma (ignored)
1677 // gtid: Global Thread ID of encountering thread
1678 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1679 // Returns:
1680 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1681 //    be resumed later.
1682 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1683 //    resumed later.
1684 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
1685                                 kmp_task_t *new_task) {
1686   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1687 
1688   KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
1689                 loc_ref, new_taskdata));
1690 
1691 #if OMPT_SUPPORT
1692   kmp_taskdata_t *parent;
1693   if (UNLIKELY(ompt_enabled.enabled)) {
1694     parent = new_taskdata->td_parent;
1695     if (ompt_enabled.ompt_callback_task_create) {
1696       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1697           &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
1698           &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
1699           OMPT_GET_RETURN_ADDRESS(0));
1700     }
1701   }
1702 #endif
1703 
1704   /* Should we execute the new task or queue it? For now, let's just always try
1705      to queue it.  If the queue fills up, then we'll execute it.  */
1706 
1707   if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1708   { // Execute this task immediately
1709     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1710     new_taskdata->td_flags.task_serial = 1;
1711     __kmp_invoke_task(gtid, new_task, current_task);
1712   }
1713 
1714   KA_TRACE(
1715       10,
1716       ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
1717        "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
1718        gtid, loc_ref, new_taskdata));
1719 
1720   ANNOTATE_HAPPENS_BEFORE(new_task);
1721 #if OMPT_SUPPORT
1722   if (UNLIKELY(ompt_enabled.enabled)) {
1723     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1724   }
1725 #endif
1726   return TASK_CURRENT_NOT_QUEUED;
1727 }
1728 
1729 // __kmp_omp_task: Schedule a non-thread-switchable task for execution
1730 //
1731 // gtid: Global Thread ID of encountering thread
1732 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
1733 // serialize_immediate: if TRUE then if the task is executed immediately its
1734 // execution will be serialized
1735 // Returns:
1736 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1737 //    be resumed later.
1738 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1739 //    resumed later.
1740 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
1741                          bool serialize_immediate) {
1742   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1743 
1744   /* Should we execute the new task or queue it? For now, let's just always try
1745      to queue it.  If the queue fills up, then we'll execute it.  */
1746   if (new_taskdata->td_flags.proxy == TASK_PROXY ||
1747       __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1748   { // Execute this task immediately
1749     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1750     if (serialize_immediate)
1751       new_taskdata->td_flags.task_serial = 1;
1752     __kmp_invoke_task(gtid, new_task, current_task);
1753   }
1754 
1755   ANNOTATE_HAPPENS_BEFORE(new_task);
1756   return TASK_CURRENT_NOT_QUEUED;
1757 }
1758 
1759 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
1760 // non-thread-switchable task from the parent thread only!
1761 //
1762 // loc_ref: location of original task pragma (ignored)
1763 // gtid: Global Thread ID of encountering thread
1764 // new_task: non-thread-switchable task thunk allocated by
1765 // __kmp_omp_task_alloc()
1766 // Returns:
1767 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1768 //    be resumed later.
1769 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1770 //    resumed later.
1771 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
1772                           kmp_task_t *new_task) {
1773   kmp_int32 res;
1774   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1775 
1776 #if KMP_DEBUG || OMPT_SUPPORT
1777   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1778 #endif
1779   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1780                 new_taskdata));
1781   __kmp_assert_valid_gtid(gtid);
1782 
1783 #if OMPT_SUPPORT
1784   kmp_taskdata_t *parent = NULL;
1785   if (UNLIKELY(ompt_enabled.enabled)) {
1786     if (!new_taskdata->td_flags.started) {
1787       OMPT_STORE_RETURN_ADDRESS(gtid);
1788       parent = new_taskdata->td_parent;
1789       if (!parent->ompt_task_info.frame.enter_frame.ptr) {
1790         parent->ompt_task_info.frame.enter_frame.ptr =
1791             OMPT_GET_FRAME_ADDRESS(0);
1792       }
1793       if (ompt_enabled.ompt_callback_task_create) {
1794         ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1795             &(parent->ompt_task_info.task_data),
1796             &(parent->ompt_task_info.frame),
1797             &(new_taskdata->ompt_task_info.task_data),
1798             ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1799             OMPT_LOAD_RETURN_ADDRESS(gtid));
1800       }
1801     } else {
1802       // We are scheduling the continuation of an UNTIED task.
1803       // Scheduling back to the parent task.
1804       __ompt_task_finish(new_task,
1805                          new_taskdata->ompt_task_info.scheduling_parent,
1806                          ompt_task_switch);
1807       new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1808     }
1809   }
1810 #endif
1811 
1812   res = __kmp_omp_task(gtid, new_task, true);
1813 
1814   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1815                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1816                 gtid, loc_ref, new_taskdata));
1817 #if OMPT_SUPPORT
1818   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1819     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1820   }
1821 #endif
1822   return res;
1823 }
1824 
1825 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
1826 // a taskloop task with the correct OMPT return address
1827 //
1828 // loc_ref: location of original task pragma (ignored)
1829 // gtid: Global Thread ID of encountering thread
1830 // new_task: non-thread-switchable task thunk allocated by
1831 // __kmp_omp_task_alloc()
1832 // codeptr_ra: return address for OMPT callback
1833 // Returns:
1834 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1835 //    be resumed later.
1836 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1837 //    resumed later.
1838 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
1839                                   kmp_task_t *new_task, void *codeptr_ra) {
1840   kmp_int32 res;
1841   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1842 
1843 #if KMP_DEBUG || OMPT_SUPPORT
1844   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1845 #endif
1846   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1847                 new_taskdata));
1848 
1849 #if OMPT_SUPPORT
1850   kmp_taskdata_t *parent = NULL;
1851   if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
1852     parent = new_taskdata->td_parent;
1853     if (!parent->ompt_task_info.frame.enter_frame.ptr)
1854       parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1855     if (ompt_enabled.ompt_callback_task_create) {
1856       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1857           &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
1858           &(new_taskdata->ompt_task_info.task_data),
1859           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1860           codeptr_ra);
1861     }
1862   }
1863 #endif
1864 
1865   res = __kmp_omp_task(gtid, new_task, true);
1866 
1867   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1868                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1869                 gtid, loc_ref, new_taskdata));
1870 #if OMPT_SUPPORT
1871   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1872     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1873   }
1874 #endif
1875   return res;
1876 }
1877 
1878 template <bool ompt>
1879 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
1880                                               void *frame_address,
1881                                               void *return_address) {
1882   kmp_taskdata_t *taskdata = nullptr;
1883   kmp_info_t *thread;
1884   int thread_finished = FALSE;
1885   KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
1886 
1887   KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
1888   KMP_DEBUG_ASSERT(gtid >= 0);
1889 
1890   if (__kmp_tasking_mode != tskm_immediate_exec) {
1891     thread = __kmp_threads[gtid];
1892     taskdata = thread->th.th_current_task;
1893 
1894 #if OMPT_SUPPORT && OMPT_OPTIONAL
1895     ompt_data_t *my_task_data;
1896     ompt_data_t *my_parallel_data;
1897 
1898     if (ompt) {
1899       my_task_data = &(taskdata->ompt_task_info.task_data);
1900       my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
1901 
1902       taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
1903 
1904       if (ompt_enabled.ompt_callback_sync_region) {
1905         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1906             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1907             my_task_data, return_address);
1908       }
1909 
1910       if (ompt_enabled.ompt_callback_sync_region_wait) {
1911         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1912             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1913             my_task_data, return_address);
1914       }
1915     }
1916 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1917 
1918 // Debugger: The taskwait is active. Store location and thread encountered the
1919 // taskwait.
1920 #if USE_ITT_BUILD
1921 // Note: These values are used by ITT events as well.
1922 #endif /* USE_ITT_BUILD */
1923     taskdata->td_taskwait_counter += 1;
1924     taskdata->td_taskwait_ident = loc_ref;
1925     taskdata->td_taskwait_thread = gtid + 1;
1926 
1927 #if USE_ITT_BUILD
1928     void *itt_sync_obj = NULL;
1929 #if USE_ITT_NOTIFY
1930     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
1931 #endif /* USE_ITT_NOTIFY */
1932 #endif /* USE_ITT_BUILD */
1933 
1934     bool must_wait =
1935         !taskdata->td_flags.team_serial && !taskdata->td_flags.final;
1936 
1937     must_wait = must_wait || (thread->th.th_task_team != NULL &&
1938                               thread->th.th_task_team->tt.tt_found_proxy_tasks);
1939     // If hidden helper thread is encountered, we must enable wait here.
1940     must_wait =
1941         must_wait ||
1942         (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL &&
1943          thread->th.th_task_team->tt.tt_hidden_helper_task_encountered);
1944 
1945     if (must_wait) {
1946       kmp_flag_32<false, false> flag(
1947           RCAST(std::atomic<kmp_uint32> *,
1948                 &(taskdata->td_incomplete_child_tasks)),
1949           0U);
1950       while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
1951         flag.execute_tasks(thread, gtid, FALSE,
1952                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
1953                            __kmp_task_stealing_constraint);
1954       }
1955     }
1956 #if USE_ITT_BUILD
1957     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
1958     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children
1959 #endif /* USE_ITT_BUILD */
1960 
1961     // Debugger:  The taskwait is completed. Location remains, but thread is
1962     // negated.
1963     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
1964 
1965 #if OMPT_SUPPORT && OMPT_OPTIONAL
1966     if (ompt) {
1967       if (ompt_enabled.ompt_callback_sync_region_wait) {
1968         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1969             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1970             my_task_data, return_address);
1971       }
1972       if (ompt_enabled.ompt_callback_sync_region) {
1973         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1974             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1975             my_task_data, return_address);
1976       }
1977       taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
1978     }
1979 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1980 
1981     ANNOTATE_HAPPENS_AFTER(taskdata);
1982   }
1983 
1984   KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
1985                 "returning TASK_CURRENT_NOT_QUEUED\n",
1986                 gtid, taskdata));
1987 
1988   return TASK_CURRENT_NOT_QUEUED;
1989 }
1990 
1991 #if OMPT_SUPPORT && OMPT_OPTIONAL
1992 OMPT_NOINLINE
1993 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
1994                                           void *frame_address,
1995                                           void *return_address) {
1996   return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
1997                                             return_address);
1998 }
1999 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2000 
2001 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
2002 // complete
2003 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
2004 #if OMPT_SUPPORT && OMPT_OPTIONAL
2005   if (UNLIKELY(ompt_enabled.enabled)) {
2006     OMPT_STORE_RETURN_ADDRESS(gtid);
2007     return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
2008                                     OMPT_LOAD_RETURN_ADDRESS(gtid));
2009   }
2010 #endif
2011   return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
2012 }
2013 
2014 // __kmpc_omp_taskyield: switch to a different task
2015 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
2016   kmp_taskdata_t *taskdata = NULL;
2017   kmp_info_t *thread;
2018   int thread_finished = FALSE;
2019 
2020   KMP_COUNT_BLOCK(OMP_TASKYIELD);
2021   KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
2022 
2023   KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
2024                 gtid, loc_ref, end_part));
2025   __kmp_assert_valid_gtid(gtid);
2026 
2027   if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
2028     thread = __kmp_threads[gtid];
2029     taskdata = thread->th.th_current_task;
2030 // Should we model this as a task wait or not?
2031 // Debugger: The taskwait is active. Store location and thread encountered the
2032 // taskwait.
2033 #if USE_ITT_BUILD
2034 // Note: These values are used by ITT events as well.
2035 #endif /* USE_ITT_BUILD */
2036     taskdata->td_taskwait_counter += 1;
2037     taskdata->td_taskwait_ident = loc_ref;
2038     taskdata->td_taskwait_thread = gtid + 1;
2039 
2040 #if USE_ITT_BUILD
2041     void *itt_sync_obj = NULL;
2042 #if USE_ITT_NOTIFY
2043     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2044 #endif /* USE_ITT_NOTIFY */
2045 #endif /* USE_ITT_BUILD */
2046     if (!taskdata->td_flags.team_serial) {
2047       kmp_task_team_t *task_team = thread->th.th_task_team;
2048       if (task_team != NULL) {
2049         if (KMP_TASKING_ENABLED(task_team)) {
2050 #if OMPT_SUPPORT
2051           if (UNLIKELY(ompt_enabled.enabled))
2052             thread->th.ompt_thread_info.ompt_task_yielded = 1;
2053 #endif
2054           __kmp_execute_tasks_32(
2055               thread, gtid, (kmp_flag_32<> *)NULL, FALSE,
2056               &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2057               __kmp_task_stealing_constraint);
2058 #if OMPT_SUPPORT
2059           if (UNLIKELY(ompt_enabled.enabled))
2060             thread->th.ompt_thread_info.ompt_task_yielded = 0;
2061 #endif
2062         }
2063       }
2064     }
2065 #if USE_ITT_BUILD
2066     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2067 #endif /* USE_ITT_BUILD */
2068 
2069     // Debugger:  The taskwait is completed. Location remains, but thread is
2070     // negated.
2071     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
2072   }
2073 
2074   KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
2075                 "returning TASK_CURRENT_NOT_QUEUED\n",
2076                 gtid, taskdata));
2077 
2078   return TASK_CURRENT_NOT_QUEUED;
2079 }
2080 
2081 // Task Reduction implementation
2082 //
2083 // Note: initial implementation didn't take into account the possibility
2084 // to specify omp_orig for initializer of the UDR (user defined reduction).
2085 // Corrected implementation takes into account the omp_orig object.
2086 // Compiler is free to use old implementation if omp_orig is not specified.
2087 
2088 /*!
2089 @ingroup BASIC_TYPES
2090 @{
2091 */
2092 
2093 /*!
2094 Flags for special info per task reduction item.
2095 */
2096 typedef struct kmp_taskred_flags {
2097   /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */
2098   unsigned lazy_priv : 1;
2099   unsigned reserved31 : 31;
2100 } kmp_taskred_flags_t;
2101 
2102 /*!
2103 Internal struct for reduction data item related info set up by compiler.
2104 */
2105 typedef struct kmp_task_red_input {
2106   void *reduce_shar; /**< shared between tasks item to reduce into */
2107   size_t reduce_size; /**< size of data item in bytes */
2108   // three compiler-generated routines (init, fini are optional):
2109   void *reduce_init; /**< data initialization routine (single parameter) */
2110   void *reduce_fini; /**< data finalization routine */
2111   void *reduce_comb; /**< data combiner routine */
2112   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2113 } kmp_task_red_input_t;
2114 
2115 /*!
2116 Internal struct for reduction data item related info saved by the library.
2117 */
2118 typedef struct kmp_taskred_data {
2119   void *reduce_shar; /**< shared between tasks item to reduce into */
2120   size_t reduce_size; /**< size of data item */
2121   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2122   void *reduce_priv; /**< array of thread specific items */
2123   void *reduce_pend; /**< end of private data for faster comparison op */
2124   // three compiler-generated routines (init, fini are optional):
2125   void *reduce_comb; /**< data combiner routine */
2126   void *reduce_init; /**< data initialization routine (two parameters) */
2127   void *reduce_fini; /**< data finalization routine */
2128   void *reduce_orig; /**< original item (can be used in UDR initializer) */
2129 } kmp_taskred_data_t;
2130 
2131 /*!
2132 Internal struct for reduction data item related info set up by compiler.
2133 
2134 New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2135 */
2136 typedef struct kmp_taskred_input {
2137   void *reduce_shar; /**< shared between tasks item to reduce into */
2138   void *reduce_orig; /**< original reduction item used for initialization */
2139   size_t reduce_size; /**< size of data item */
2140   // three compiler-generated routines (init, fini are optional):
2141   void *reduce_init; /**< data initialization routine (two parameters) */
2142   void *reduce_fini; /**< data finalization routine */
2143   void *reduce_comb; /**< data combiner routine */
2144   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2145 } kmp_taskred_input_t;
2146 /*!
2147 @}
2148 */
2149 
2150 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
2151 template <>
2152 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2153                                              kmp_task_red_input_t &src) {
2154   item.reduce_orig = NULL;
2155 }
2156 template <>
2157 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2158                                             kmp_taskred_input_t &src) {
2159   if (src.reduce_orig != NULL) {
2160     item.reduce_orig = src.reduce_orig;
2161   } else {
2162     item.reduce_orig = src.reduce_shar;
2163   } // non-NULL reduce_orig means new interface used
2164 }
2165 
2166 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j);
2167 template <>
2168 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2169                                            size_t offset) {
2170   ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
2171 }
2172 template <>
2173 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2174                                           size_t offset) {
2175   ((void (*)(void *, void *))item.reduce_init)(
2176       (char *)(item.reduce_priv) + offset, item.reduce_orig);
2177 }
2178 
2179 template <typename T>
2180 void *__kmp_task_reduction_init(int gtid, int num, T *data) {
2181   __kmp_assert_valid_gtid(gtid);
2182   kmp_info_t *thread = __kmp_threads[gtid];
2183   kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
2184   kmp_uint32 nth = thread->th.th_team_nproc;
2185   kmp_taskred_data_t *arr;
2186 
2187   // check input data just in case
2188   KMP_ASSERT(tg != NULL);
2189   KMP_ASSERT(data != NULL);
2190   KMP_ASSERT(num > 0);
2191   if (nth == 1) {
2192     KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2193                   gtid, tg));
2194     return (void *)tg;
2195   }
2196   KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2197                 gtid, tg, num));
2198   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2199       thread, num * sizeof(kmp_taskred_data_t));
2200   for (int i = 0; i < num; ++i) {
2201     size_t size = data[i].reduce_size - 1;
2202     // round the size up to cache line per thread-specific item
2203     size += CACHE_LINE - size % CACHE_LINE;
2204     KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
2205     arr[i].reduce_shar = data[i].reduce_shar;
2206     arr[i].reduce_size = size;
2207     arr[i].flags = data[i].flags;
2208     arr[i].reduce_comb = data[i].reduce_comb;
2209     arr[i].reduce_init = data[i].reduce_init;
2210     arr[i].reduce_fini = data[i].reduce_fini;
2211     __kmp_assign_orig<T>(arr[i], data[i]);
2212     if (!arr[i].flags.lazy_priv) {
2213       // allocate cache-line aligned block and fill it with zeros
2214       arr[i].reduce_priv = __kmp_allocate(nth * size);
2215       arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
2216       if (arr[i].reduce_init != NULL) {
2217         // initialize all thread-specific items
2218         for (size_t j = 0; j < nth; ++j) {
2219           __kmp_call_init<T>(arr[i], j * size);
2220         }
2221       }
2222     } else {
2223       // only allocate space for pointers now,
2224       // objects will be lazily allocated/initialized if/when requested
2225       // note that __kmp_allocate zeroes the allocated memory
2226       arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
2227     }
2228   }
2229   tg->reduce_data = (void *)arr;
2230   tg->reduce_num_data = num;
2231   return (void *)tg;
2232 }
2233 
2234 /*!
2235 @ingroup TASKING
2236 @param gtid      Global thread ID
2237 @param num       Number of data items to reduce
2238 @param data      Array of data for reduction
2239 @return The taskgroup identifier
2240 
2241 Initialize task reduction for the taskgroup.
2242 
2243 Note: this entry supposes the optional compiler-generated initializer routine
2244 has single parameter - pointer to object to be initialized. That means
2245 the reduction either does not use omp_orig object, or the omp_orig is accessible
2246 without help of the runtime library.
2247 */
2248 void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
2249   return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
2250 }
2251 
2252 /*!
2253 @ingroup TASKING
2254 @param gtid      Global thread ID
2255 @param num       Number of data items to reduce
2256 @param data      Array of data for reduction
2257 @return The taskgroup identifier
2258 
2259 Initialize task reduction for the taskgroup.
2260 
2261 Note: this entry supposes the optional compiler-generated initializer routine
2262 has two parameters, pointer to object to be initialized and pointer to omp_orig
2263 */
2264 void *__kmpc_taskred_init(int gtid, int num, void *data) {
2265   return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
2266 }
2267 
2268 // Copy task reduction data (except for shared pointers).
2269 template <typename T>
2270 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
2271                                     kmp_taskgroup_t *tg, void *reduce_data) {
2272   kmp_taskred_data_t *arr;
2273   KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2274                 " from data %p\n",
2275                 thr, tg, reduce_data));
2276   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2277       thr, num * sizeof(kmp_taskred_data_t));
2278   // threads will share private copies, thunk routines, sizes, flags, etc.:
2279   KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
2280   for (int i = 0; i < num; ++i) {
2281     arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
2282   }
2283   tg->reduce_data = (void *)arr;
2284   tg->reduce_num_data = num;
2285 }
2286 
2287 /*!
2288 @ingroup TASKING
2289 @param gtid    Global thread ID
2290 @param tskgrp  The taskgroup ID (optional)
2291 @param data    Shared location of the item
2292 @return The pointer to per-thread data
2293 
2294 Get thread-specific location of data item
2295 */
2296 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
2297   __kmp_assert_valid_gtid(gtid);
2298   kmp_info_t *thread = __kmp_threads[gtid];
2299   kmp_int32 nth = thread->th.th_team_nproc;
2300   if (nth == 1)
2301     return data; // nothing to do
2302 
2303   kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
2304   if (tg == NULL)
2305     tg = thread->th.th_current_task->td_taskgroup;
2306   KMP_ASSERT(tg != NULL);
2307   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
2308   kmp_int32 num = tg->reduce_num_data;
2309   kmp_int32 tid = thread->th.th_info.ds.ds_tid;
2310 
2311   KMP_ASSERT(data != NULL);
2312   while (tg != NULL) {
2313     for (int i = 0; i < num; ++i) {
2314       if (!arr[i].flags.lazy_priv) {
2315         if (data == arr[i].reduce_shar ||
2316             (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
2317           return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
2318       } else {
2319         // check shared location first
2320         void **p_priv = (void **)(arr[i].reduce_priv);
2321         if (data == arr[i].reduce_shar)
2322           goto found;
2323         // check if we get some thread specific location as parameter
2324         for (int j = 0; j < nth; ++j)
2325           if (data == p_priv[j])
2326             goto found;
2327         continue; // not found, continue search
2328       found:
2329         if (p_priv[tid] == NULL) {
2330           // allocate thread specific object lazily
2331           p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
2332           if (arr[i].reduce_init != NULL) {
2333             if (arr[i].reduce_orig != NULL) { // new interface
2334               ((void (*)(void *, void *))arr[i].reduce_init)(
2335                   p_priv[tid], arr[i].reduce_orig);
2336             } else { // old interface (single parameter)
2337               ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
2338             }
2339           }
2340         }
2341         return p_priv[tid];
2342       }
2343     }
2344     tg = tg->parent;
2345     arr = (kmp_taskred_data_t *)(tg->reduce_data);
2346     num = tg->reduce_num_data;
2347   }
2348   KMP_ASSERT2(0, "Unknown task reduction item");
2349   return NULL; // ERROR, this line never executed
2350 }
2351 
2352 // Finalize task reduction.
2353 // Called from __kmpc_end_taskgroup()
2354 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
2355   kmp_int32 nth = th->th.th_team_nproc;
2356   KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1
2357   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
2358   kmp_int32 num = tg->reduce_num_data;
2359   for (int i = 0; i < num; ++i) {
2360     void *sh_data = arr[i].reduce_shar;
2361     void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
2362     void (*f_comb)(void *, void *) =
2363         (void (*)(void *, void *))(arr[i].reduce_comb);
2364     if (!arr[i].flags.lazy_priv) {
2365       void *pr_data = arr[i].reduce_priv;
2366       size_t size = arr[i].reduce_size;
2367       for (int j = 0; j < nth; ++j) {
2368         void *priv_data = (char *)pr_data + j * size;
2369         f_comb(sh_data, priv_data); // combine results
2370         if (f_fini)
2371           f_fini(priv_data); // finalize if needed
2372       }
2373     } else {
2374       void **pr_data = (void **)(arr[i].reduce_priv);
2375       for (int j = 0; j < nth; ++j) {
2376         if (pr_data[j] != NULL) {
2377           f_comb(sh_data, pr_data[j]); // combine results
2378           if (f_fini)
2379             f_fini(pr_data[j]); // finalize if needed
2380           __kmp_free(pr_data[j]);
2381         }
2382       }
2383     }
2384     __kmp_free(arr[i].reduce_priv);
2385   }
2386   __kmp_thread_free(th, arr);
2387   tg->reduce_data = NULL;
2388   tg->reduce_num_data = 0;
2389 }
2390 
2391 // Cleanup task reduction data for parallel or worksharing,
2392 // do not touch task private data other threads still working with.
2393 // Called from __kmpc_end_taskgroup()
2394 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
2395   __kmp_thread_free(th, tg->reduce_data);
2396   tg->reduce_data = NULL;
2397   tg->reduce_num_data = 0;
2398 }
2399 
2400 template <typename T>
2401 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2402                                          int num, T *data) {
2403   __kmp_assert_valid_gtid(gtid);
2404   kmp_info_t *thr = __kmp_threads[gtid];
2405   kmp_int32 nth = thr->th.th_team_nproc;
2406   __kmpc_taskgroup(loc, gtid); // form new taskgroup first
2407   if (nth == 1) {
2408     KA_TRACE(10,
2409              ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2410               gtid, thr->th.th_current_task->td_taskgroup));
2411     return (void *)thr->th.th_current_task->td_taskgroup;
2412   }
2413   kmp_team_t *team = thr->th.th_team;
2414   void *reduce_data;
2415   kmp_taskgroup_t *tg;
2416   reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
2417   if (reduce_data == NULL &&
2418       __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
2419                                  (void *)1)) {
2420     // single thread enters this block to initialize common reduction data
2421     KMP_DEBUG_ASSERT(reduce_data == NULL);
2422     // first initialize own data, then make a copy other threads can use
2423     tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
2424     reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
2425     KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
2426     // fini counters should be 0 at this point
2427     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
2428     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
2429     KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
2430   } else {
2431     while (
2432         (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
2433         (void *)1) { // wait for task reduction initialization
2434       KMP_CPU_PAUSE();
2435     }
2436     KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
2437     tg = thr->th.th_current_task->td_taskgroup;
2438     __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
2439   }
2440   return tg;
2441 }
2442 
2443 /*!
2444 @ingroup TASKING
2445 @param loc       Source location info
2446 @param gtid      Global thread ID
2447 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2448 @param num       Number of data items to reduce
2449 @param data      Array of data for reduction
2450 @return The taskgroup identifier
2451 
2452 Initialize task reduction for a parallel or worksharing.
2453 
2454 Note: this entry supposes the optional compiler-generated initializer routine
2455 has single parameter - pointer to object to be initialized. That means
2456 the reduction either does not use omp_orig object, or the omp_orig is accessible
2457 without help of the runtime library.
2458 */
2459 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2460                                           int num, void *data) {
2461   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2462                                             (kmp_task_red_input_t *)data);
2463 }
2464 
2465 /*!
2466 @ingroup TASKING
2467 @param loc       Source location info
2468 @param gtid      Global thread ID
2469 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2470 @param num       Number of data items to reduce
2471 @param data      Array of data for reduction
2472 @return The taskgroup identifier
2473 
2474 Initialize task reduction for a parallel or worksharing.
2475 
2476 Note: this entry supposes the optional compiler-generated initializer routine
2477 has two parameters, pointer to object to be initialized and pointer to omp_orig
2478 */
2479 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
2480                                    void *data) {
2481   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2482                                             (kmp_taskred_input_t *)data);
2483 }
2484 
2485 /*!
2486 @ingroup TASKING
2487 @param loc       Source location info
2488 @param gtid      Global thread ID
2489 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2490 
2491 Finalize task reduction for a parallel or worksharing.
2492 */
2493 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
2494   __kmpc_end_taskgroup(loc, gtid);
2495 }
2496 
2497 // __kmpc_taskgroup: Start a new taskgroup
2498 void __kmpc_taskgroup(ident_t *loc, int gtid) {
2499   __kmp_assert_valid_gtid(gtid);
2500   kmp_info_t *thread = __kmp_threads[gtid];
2501   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2502   kmp_taskgroup_t *tg_new =
2503       (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
2504   KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
2505   KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
2506   KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
2507   tg_new->parent = taskdata->td_taskgroup;
2508   tg_new->reduce_data = NULL;
2509   tg_new->reduce_num_data = 0;
2510   tg_new->gomp_data = NULL;
2511   taskdata->td_taskgroup = tg_new;
2512 
2513 #if OMPT_SUPPORT && OMPT_OPTIONAL
2514   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2515     void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2516     if (!codeptr)
2517       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2518     kmp_team_t *team = thread->th.th_team;
2519     ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
2520     // FIXME: I think this is wrong for lwt!
2521     ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
2522 
2523     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2524         ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2525         &(my_task_data), codeptr);
2526   }
2527 #endif
2528 }
2529 
2530 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2531 //                       and its descendants are complete
2532 void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
2533   __kmp_assert_valid_gtid(gtid);
2534   kmp_info_t *thread = __kmp_threads[gtid];
2535   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2536   kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
2537   int thread_finished = FALSE;
2538 
2539 #if OMPT_SUPPORT && OMPT_OPTIONAL
2540   kmp_team_t *team;
2541   ompt_data_t my_task_data;
2542   ompt_data_t my_parallel_data;
2543   void *codeptr = nullptr;
2544   if (UNLIKELY(ompt_enabled.enabled)) {
2545     team = thread->th.th_team;
2546     my_task_data = taskdata->ompt_task_info.task_data;
2547     // FIXME: I think this is wrong for lwt!
2548     my_parallel_data = team->t.ompt_team_info.parallel_data;
2549     codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2550     if (!codeptr)
2551       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2552   }
2553 #endif
2554 
2555   KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
2556   KMP_DEBUG_ASSERT(taskgroup != NULL);
2557   KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
2558 
2559   if (__kmp_tasking_mode != tskm_immediate_exec) {
2560     // mark task as waiting not on a barrier
2561     taskdata->td_taskwait_counter += 1;
2562     taskdata->td_taskwait_ident = loc;
2563     taskdata->td_taskwait_thread = gtid + 1;
2564 #if USE_ITT_BUILD
2565     // For ITT the taskgroup wait is similar to taskwait until we need to
2566     // distinguish them
2567     void *itt_sync_obj = NULL;
2568 #if USE_ITT_NOTIFY
2569     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2570 #endif /* USE_ITT_NOTIFY */
2571 #endif /* USE_ITT_BUILD */
2572 
2573 #if OMPT_SUPPORT && OMPT_OPTIONAL
2574     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2575       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2576           ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2577           &(my_task_data), codeptr);
2578     }
2579 #endif
2580 
2581     if (!taskdata->td_flags.team_serial ||
2582         (thread->th.th_task_team != NULL &&
2583          thread->th.th_task_team->tt.tt_found_proxy_tasks)) {
2584       kmp_flag_32<false, false> flag(
2585           RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U);
2586       while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
2587         flag.execute_tasks(thread, gtid, FALSE,
2588                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2589                            __kmp_task_stealing_constraint);
2590       }
2591     }
2592     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
2593 
2594 #if OMPT_SUPPORT && OMPT_OPTIONAL
2595     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2596       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2597           ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2598           &(my_task_data), codeptr);
2599     }
2600 #endif
2601 
2602 #if USE_ITT_BUILD
2603     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2604     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants
2605 #endif /* USE_ITT_BUILD */
2606   }
2607   KMP_DEBUG_ASSERT(taskgroup->count == 0);
2608 
2609   if (taskgroup->reduce_data != NULL &&
2610       !taskgroup->gomp_data) { // need to reduce?
2611     int cnt;
2612     void *reduce_data;
2613     kmp_team_t *t = thread->th.th_team;
2614     kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
2615     // check if <priv> data of the first reduction variable shared for the team
2616     void *priv0 = arr[0].reduce_priv;
2617     if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
2618         ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2619       // finishing task reduction on parallel
2620       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
2621       if (cnt == thread->th.th_team_nproc - 1) {
2622         // we are the last thread passing __kmpc_reduction_modifier_fini()
2623         // finalize task reduction:
2624         __kmp_task_reduction_fini(thread, taskgroup);
2625         // cleanup fields in the team structure:
2626         // TODO: is relaxed store enough here (whole barrier should follow)?
2627         __kmp_thread_free(thread, reduce_data);
2628         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
2629         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
2630       } else {
2631         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2632         // so do not finalize reduction, just clean own copy of the data
2633         __kmp_task_reduction_clean(thread, taskgroup);
2634       }
2635     } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
2636                    NULL &&
2637                ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2638       // finishing task reduction on worksharing
2639       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
2640       if (cnt == thread->th.th_team_nproc - 1) {
2641         // we are the last thread passing __kmpc_reduction_modifier_fini()
2642         __kmp_task_reduction_fini(thread, taskgroup);
2643         // cleanup fields in team structure:
2644         // TODO: is relaxed store enough here (whole barrier should follow)?
2645         __kmp_thread_free(thread, reduce_data);
2646         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
2647         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
2648       } else {
2649         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2650         // so do not finalize reduction, just clean own copy of the data
2651         __kmp_task_reduction_clean(thread, taskgroup);
2652       }
2653     } else {
2654       // finishing task reduction on taskgroup
2655       __kmp_task_reduction_fini(thread, taskgroup);
2656     }
2657   }
2658   // Restore parent taskgroup for the current task
2659   taskdata->td_taskgroup = taskgroup->parent;
2660   __kmp_thread_free(thread, taskgroup);
2661 
2662   KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
2663                 gtid, taskdata));
2664   ANNOTATE_HAPPENS_AFTER(taskdata);
2665 
2666 #if OMPT_SUPPORT && OMPT_OPTIONAL
2667   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2668     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2669         ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2670         &(my_task_data), codeptr);
2671   }
2672 #endif
2673 }
2674 
2675 // __kmp_remove_my_task: remove a task from my own deque
2676 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
2677                                         kmp_task_team_t *task_team,
2678                                         kmp_int32 is_constrained) {
2679   kmp_task_t *task;
2680   kmp_taskdata_t *taskdata;
2681   kmp_thread_data_t *thread_data;
2682   kmp_uint32 tail;
2683 
2684   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2685   KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
2686                    NULL); // Caller should check this condition
2687 
2688   thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
2689 
2690   KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
2691                 gtid, thread_data->td.td_deque_ntasks,
2692                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2693 
2694   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2695     KA_TRACE(10,
2696              ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
2697               "ntasks=%d head=%u tail=%u\n",
2698               gtid, thread_data->td.td_deque_ntasks,
2699               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2700     return NULL;
2701   }
2702 
2703   __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
2704 
2705   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2706     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2707     KA_TRACE(10,
2708              ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
2709               "ntasks=%d head=%u tail=%u\n",
2710               gtid, thread_data->td.td_deque_ntasks,
2711               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2712     return NULL;
2713   }
2714 
2715   tail = (thread_data->td.td_deque_tail - 1) &
2716          TASK_DEQUE_MASK(thread_data->td); // Wrap index.
2717   taskdata = thread_data->td.td_deque[tail];
2718 
2719   if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
2720                              thread->th.th_current_task)) {
2721     // The TSC does not allow to steal victim task
2722     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2723     KA_TRACE(10,
2724              ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
2725               "ntasks=%d head=%u tail=%u\n",
2726               gtid, thread_data->td.td_deque_ntasks,
2727               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2728     return NULL;
2729   }
2730 
2731   thread_data->td.td_deque_tail = tail;
2732   TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
2733 
2734   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2735 
2736   KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
2737                 "ntasks=%d head=%u tail=%u\n",
2738                 gtid, taskdata, thread_data->td.td_deque_ntasks,
2739                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2740 
2741   task = KMP_TASKDATA_TO_TASK(taskdata);
2742   return task;
2743 }
2744 
2745 // __kmp_steal_task: remove a task from another thread's deque
2746 // Assume that calling thread has already checked existence of
2747 // task_team thread_data before calling this routine.
2748 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
2749                                     kmp_task_team_t *task_team,
2750                                     std::atomic<kmp_int32> *unfinished_threads,
2751                                     int *thread_finished,
2752                                     kmp_int32 is_constrained) {
2753   kmp_task_t *task;
2754   kmp_taskdata_t *taskdata;
2755   kmp_taskdata_t *current;
2756   kmp_thread_data_t *victim_td, *threads_data;
2757   kmp_int32 target;
2758   kmp_int32 victim_tid;
2759 
2760   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2761 
2762   threads_data = task_team->tt.tt_threads_data;
2763   KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
2764 
2765   victim_tid = victim_thr->th.th_info.ds.ds_tid;
2766   victim_td = &threads_data[victim_tid];
2767 
2768   KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
2769                 "task_team=%p ntasks=%d head=%u tail=%u\n",
2770                 gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2771                 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2772                 victim_td->td.td_deque_tail));
2773 
2774   if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
2775     KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
2776                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2777                   gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2778                   victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2779                   victim_td->td.td_deque_tail));
2780     return NULL;
2781   }
2782 
2783   __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
2784 
2785   int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
2786   // Check again after we acquire the lock
2787   if (ntasks == 0) {
2788     __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2789     KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
2790                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2791                   gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2792                   victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2793     return NULL;
2794   }
2795 
2796   KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
2797   current = __kmp_threads[gtid]->th.th_current_task;
2798   taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
2799   if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2800     // Bump head pointer and Wrap.
2801     victim_td->td.td_deque_head =
2802         (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
2803   } else {
2804     if (!task_team->tt.tt_untied_task_encountered) {
2805       // The TSC does not allow to steal victim task
2806       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2807       KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
2808                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2809                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2810                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2811       return NULL;
2812     }
2813     int i;
2814     // walk through victim's deque trying to steal any task
2815     target = victim_td->td.td_deque_head;
2816     taskdata = NULL;
2817     for (i = 1; i < ntasks; ++i) {
2818       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2819       taskdata = victim_td->td.td_deque[target];
2820       if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2821         break; // found victim task
2822       } else {
2823         taskdata = NULL;
2824       }
2825     }
2826     if (taskdata == NULL) {
2827       // No appropriate candidate to steal found
2828       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2829       KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
2830                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2831                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2832                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2833       return NULL;
2834     }
2835     int prev = target;
2836     for (i = i + 1; i < ntasks; ++i) {
2837       // shift remaining tasks in the deque left by 1
2838       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2839       victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
2840       prev = target;
2841     }
2842     KMP_DEBUG_ASSERT(
2843         victim_td->td.td_deque_tail ==
2844         (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
2845     victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
2846   }
2847   if (*thread_finished) {
2848     // We need to un-mark this victim as a finished victim.  This must be done
2849     // before releasing the lock, or else other threads (starting with the
2850     // primary thread victim) might be prematurely released from the barrier!!!
2851     kmp_int32 count;
2852 
2853     count = KMP_ATOMIC_INC(unfinished_threads);
2854 
2855     KA_TRACE(
2856         20,
2857         ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
2858          gtid, count + 1, task_team));
2859 
2860     *thread_finished = FALSE;
2861   }
2862   TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
2863 
2864   __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2865 
2866   KMP_COUNT_BLOCK(TASK_stolen);
2867   KA_TRACE(10,
2868            ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
2869             "task_team=%p ntasks=%d head=%u tail=%u\n",
2870             gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
2871             ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2872 
2873   task = KMP_TASKDATA_TO_TASK(taskdata);
2874   return task;
2875 }
2876 
2877 // __kmp_execute_tasks_template: Choose and execute tasks until either the
2878 // condition is statisfied (return true) or there are none left (return false).
2879 //
2880 // final_spin is TRUE if this is the spin at the release barrier.
2881 // thread_finished indicates whether the thread is finished executing all
2882 // the tasks it has on its deque, and is at the release barrier.
2883 // spinner is the location on which to spin.
2884 // spinner == NULL means only execute a single task and return.
2885 // checker is the value to check to terminate the spin.
2886 template <class C>
2887 static inline int __kmp_execute_tasks_template(
2888     kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
2889     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
2890     kmp_int32 is_constrained) {
2891   kmp_task_team_t *task_team = thread->th.th_task_team;
2892   kmp_thread_data_t *threads_data;
2893   kmp_task_t *task;
2894   kmp_info_t *other_thread;
2895   kmp_taskdata_t *current_task = thread->th.th_current_task;
2896   std::atomic<kmp_int32> *unfinished_threads;
2897   kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
2898                       tid = thread->th.th_info.ds.ds_tid;
2899 
2900   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2901   KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
2902 
2903   if (task_team == NULL || current_task == NULL)
2904     return FALSE;
2905 
2906   KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
2907                 "*thread_finished=%d\n",
2908                 gtid, final_spin, *thread_finished));
2909 
2910   thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
2911   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
2912 
2913   KMP_DEBUG_ASSERT(threads_data != NULL);
2914 
2915   nthreads = task_team->tt.tt_nproc;
2916   unfinished_threads = &(task_team->tt.tt_unfinished_threads);
2917   KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks ||
2918                    task_team->tt.tt_hidden_helper_task_encountered);
2919   KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
2920 
2921   while (1) { // Outer loop keeps trying to find tasks in case of single thread
2922     // getting tasks from target constructs
2923     while (1) { // Inner loop to find a task and execute it
2924       task = NULL;
2925       if (use_own_tasks) { // check on own queue first
2926         task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
2927       }
2928       if ((task == NULL) && (nthreads > 1)) { // Steal a task
2929         int asleep = 1;
2930         use_own_tasks = 0;
2931         // Try to steal from the last place I stole from successfully.
2932         if (victim_tid == -2) { // haven't stolen anything yet
2933           victim_tid = threads_data[tid].td.td_deque_last_stolen;
2934           if (victim_tid !=
2935               -1) // if we have a last stolen from victim, get the thread
2936             other_thread = threads_data[victim_tid].td.td_thr;
2937         }
2938         if (victim_tid != -1) { // found last victim
2939           asleep = 0;
2940         } else if (!new_victim) { // no recent steals and we haven't already
2941           // used a new victim; select a random thread
2942           do { // Find a different thread to steal work from.
2943             // Pick a random thread. Initial plan was to cycle through all the
2944             // threads, and only return if we tried to steal from every thread,
2945             // and failed.  Arch says that's not such a great idea.
2946             victim_tid = __kmp_get_random(thread) % (nthreads - 1);
2947             if (victim_tid >= tid) {
2948               ++victim_tid; // Adjusts random distribution to exclude self
2949             }
2950             // Found a potential victim
2951             other_thread = threads_data[victim_tid].td.td_thr;
2952             // There is a slight chance that __kmp_enable_tasking() did not wake
2953             // up all threads waiting at the barrier.  If victim is sleeping,
2954             // then wake it up. Since we were going to pay the cache miss
2955             // penalty for referencing another thread's kmp_info_t struct
2956             // anyway,
2957             // the check shouldn't cost too much performance at this point. In
2958             // extra barrier mode, tasks do not sleep at the separate tasking
2959             // barrier, so this isn't a problem.
2960             asleep = 0;
2961             if ((__kmp_tasking_mode == tskm_task_teams) &&
2962                 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
2963                 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
2964                  NULL)) {
2965               asleep = 1;
2966               __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread),
2967                                         other_thread->th.th_sleep_loc);
2968               // A sleeping thread should not have any tasks on it's queue.
2969               // There is a slight possibility that it resumes, steals a task
2970               // from another thread, which spawns more tasks, all in the time
2971               // that it takes this thread to check => don't write an assertion
2972               // that the victim's queue is empty.  Try stealing from a
2973               // different thread.
2974             }
2975           } while (asleep);
2976         }
2977 
2978         if (!asleep) {
2979           // We have a victim to try to steal from
2980           task = __kmp_steal_task(other_thread, gtid, task_team,
2981                                   unfinished_threads, thread_finished,
2982                                   is_constrained);
2983         }
2984         if (task != NULL) { // set last stolen to victim
2985           if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
2986             threads_data[tid].td.td_deque_last_stolen = victim_tid;
2987             // The pre-refactored code did not try more than 1 successful new
2988             // vicitm, unless the last one generated more local tasks;
2989             // new_victim keeps track of this
2990             new_victim = 1;
2991           }
2992         } else { // No tasks found; unset last_stolen
2993           KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
2994           victim_tid = -2; // no successful victim found
2995         }
2996       }
2997 
2998       if (task == NULL)
2999         break; // break out of tasking loop
3000 
3001 // Found a task; execute it
3002 #if USE_ITT_BUILD && USE_ITT_NOTIFY
3003       if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
3004         if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
3005           // get the object reliably
3006           itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
3007         }
3008         __kmp_itt_task_starting(itt_sync_obj);
3009       }
3010 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
3011       __kmp_invoke_task(gtid, task, current_task);
3012 #if USE_ITT_BUILD
3013       if (itt_sync_obj != NULL)
3014         __kmp_itt_task_finished(itt_sync_obj);
3015 #endif /* USE_ITT_BUILD */
3016       // If this thread is only partway through the barrier and the condition is
3017       // met, then return now, so that the barrier gather/release pattern can
3018       // proceed. If this thread is in the last spin loop in the barrier,
3019       // waiting to be released, we know that the termination condition will not
3020       // be satisfied, so don't waste any cycles checking it.
3021       if (flag == NULL || (!final_spin && flag->done_check())) {
3022         KA_TRACE(
3023             15,
3024             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3025              gtid));
3026         return TRUE;
3027       }
3028       if (thread->th.th_task_team == NULL) {
3029         break;
3030       }
3031       KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
3032       // If execution of a stolen task results in more tasks being placed on our
3033       // run queue, reset use_own_tasks
3034       if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
3035         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
3036                       "other tasks, restart\n",
3037                       gtid));
3038         use_own_tasks = 1;
3039         new_victim = 0;
3040       }
3041     }
3042 
3043     // The task source has been exhausted. If in final spin loop of barrier,
3044     // check if termination condition is satisfied. The work queue may be empty
3045     // but there might be proxy tasks still executing.
3046     if (final_spin &&
3047         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0) {
3048       // First, decrement the #unfinished threads, if that has not already been
3049       // done.  This decrement might be to the spin location, and result in the
3050       // termination condition being satisfied.
3051       if (!*thread_finished) {
3052         kmp_int32 count;
3053 
3054         count = KMP_ATOMIC_DEC(unfinished_threads) - 1;
3055         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
3056                       "unfinished_threads to %d task_team=%p\n",
3057                       gtid, count, task_team));
3058         *thread_finished = TRUE;
3059       }
3060 
3061       // It is now unsafe to reference thread->th.th_team !!!
3062       // Decrementing task_team->tt.tt_unfinished_threads can allow the primary
3063       // thread to pass through the barrier, where it might reset each thread's
3064       // th.th_team field for the next parallel region. If we can steal more
3065       // work, we know that this has not happened yet.
3066       if (flag != NULL && flag->done_check()) {
3067         KA_TRACE(
3068             15,
3069             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3070              gtid));
3071         return TRUE;
3072       }
3073     }
3074 
3075     // If this thread's task team is NULL, primary thread has recognized that
3076     // there are no more tasks; bail out
3077     if (thread->th.th_task_team == NULL) {
3078       KA_TRACE(15,
3079                ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
3080       return FALSE;
3081     }
3082 
3083     // We could be getting tasks from target constructs; if this is the only
3084     // thread, keep trying to execute tasks from own queue
3085     if (nthreads == 1 &&
3086         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks))
3087       use_own_tasks = 1;
3088     else {
3089       KA_TRACE(15,
3090                ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
3091       return FALSE;
3092     }
3093   }
3094 }
3095 
3096 template <bool C, bool S>
3097 int __kmp_execute_tasks_32(
3098     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin,
3099     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3100     kmp_int32 is_constrained) {
3101   return __kmp_execute_tasks_template(
3102       thread, gtid, flag, final_spin,
3103       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3104 }
3105 
3106 template <bool C, bool S>
3107 int __kmp_execute_tasks_64(
3108     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin,
3109     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3110     kmp_int32 is_constrained) {
3111   return __kmp_execute_tasks_template(
3112       thread, gtid, flag, final_spin,
3113       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3114 }
3115 
3116 int __kmp_execute_tasks_oncore(
3117     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
3118     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3119     kmp_int32 is_constrained) {
3120   return __kmp_execute_tasks_template(
3121       thread, gtid, flag, final_spin,
3122       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3123 }
3124 
3125 template int
3126 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32,
3127                                      kmp_flag_32<false, false> *, int,
3128                                      int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3129 
3130 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32,
3131                                                  kmp_flag_64<false, true> *,
3132                                                  int,
3133                                                  int *USE_ITT_BUILD_ARG(void *),
3134                                                  kmp_int32);
3135 
3136 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32,
3137                                                  kmp_flag_64<true, false> *,
3138                                                  int,
3139                                                  int *USE_ITT_BUILD_ARG(void *),
3140                                                  kmp_int32);
3141 
3142 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3143 // next barrier so they can assist in executing enqueued tasks.
3144 // First thread in allocates the task team atomically.
3145 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
3146                                  kmp_info_t *this_thr) {
3147   kmp_thread_data_t *threads_data;
3148   int nthreads, i, is_init_thread;
3149 
3150   KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3151                 __kmp_gtid_from_thread(this_thr)));
3152 
3153   KMP_DEBUG_ASSERT(task_team != NULL);
3154   KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
3155 
3156   nthreads = task_team->tt.tt_nproc;
3157   KMP_DEBUG_ASSERT(nthreads > 0);
3158   KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
3159 
3160   // Allocate or increase the size of threads_data if necessary
3161   is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
3162 
3163   if (!is_init_thread) {
3164     // Some other thread already set up the array.
3165     KA_TRACE(
3166         20,
3167         ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3168          __kmp_gtid_from_thread(this_thr)));
3169     return;
3170   }
3171   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3172   KMP_DEBUG_ASSERT(threads_data != NULL);
3173 
3174   if (__kmp_tasking_mode == tskm_task_teams &&
3175       (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
3176     // Release any threads sleeping at the barrier, so that they can steal
3177     // tasks and execute them.  In extra barrier mode, tasks do not sleep
3178     // at the separate tasking barrier, so this isn't a problem.
3179     for (i = 0; i < nthreads; i++) {
3180       volatile void *sleep_loc;
3181       kmp_info_t *thread = threads_data[i].td.td_thr;
3182 
3183       if (i == this_thr->th.th_info.ds.ds_tid) {
3184         continue;
3185       }
3186       // Since we haven't locked the thread's suspend mutex lock at this
3187       // point, there is a small window where a thread might be putting
3188       // itself to sleep, but hasn't set the th_sleep_loc field yet.
3189       // To work around this, __kmp_execute_tasks_template() periodically checks
3190       // see if other threads are sleeping (using the same random mechanism that
3191       // is used for task stealing) and awakens them if they are.
3192       if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3193           NULL) {
3194         KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3195                       __kmp_gtid_from_thread(this_thr),
3196                       __kmp_gtid_from_thread(thread)));
3197         __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3198       } else {
3199         KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3200                       __kmp_gtid_from_thread(this_thr),
3201                       __kmp_gtid_from_thread(thread)));
3202       }
3203     }
3204   }
3205 
3206   KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3207                 __kmp_gtid_from_thread(this_thr)));
3208 }
3209 
3210 /* // TODO: Check the comment consistency
3211  * Utility routines for "task teams".  A task team (kmp_task_t) is kind of
3212  * like a shadow of the kmp_team_t data struct, with a different lifetime.
3213  * After a child * thread checks into a barrier and calls __kmp_release() from
3214  * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3215  * longer assume that the kmp_team_t structure is intact (at any moment, the
3216  * primary thread may exit the barrier code and free the team data structure,
3217  * and return the threads to the thread pool).
3218  *
3219  * This does not work with the tasking code, as the thread is still
3220  * expected to participate in the execution of any tasks that may have been
3221  * spawned my a member of the team, and the thread still needs access to all
3222  * to each thread in the team, so that it can steal work from it.
3223  *
3224  * Enter the existence of the kmp_task_team_t struct.  It employs a reference
3225  * counting mechanism, and is allocated by the primary thread before calling
3226  * __kmp_<barrier_kind>_release, and then is release by the last thread to
3227  * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes
3228  * of the kmp_task_team_t structs for consecutive barriers can overlap
3229  * (and will, unless the primary thread is the last thread to exit the barrier
3230  * release phase, which is not typical). The existence of such a struct is
3231  * useful outside the context of tasking.
3232  *
3233  * We currently use the existence of the threads array as an indicator that
3234  * tasks were spawned since the last barrier.  If the structure is to be
3235  * useful outside the context of tasking, then this will have to change, but
3236  * not setting the field minimizes the performance impact of tasking on
3237  * barriers, when no explicit tasks were spawned (pushed, actually).
3238  */
3239 
3240 static kmp_task_team_t *__kmp_free_task_teams =
3241     NULL; // Free list for task_team data structures
3242 // Lock for task team data structures
3243 kmp_bootstrap_lock_t __kmp_task_team_lock =
3244     KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
3245 
3246 // __kmp_alloc_task_deque:
3247 // Allocates a task deque for a particular thread, and initialize the necessary
3248 // data structures relating to the deque.  This only happens once per thread
3249 // per task team since task teams are recycled. No lock is needed during
3250 // allocation since each thread allocates its own deque.
3251 static void __kmp_alloc_task_deque(kmp_info_t *thread,
3252                                    kmp_thread_data_t *thread_data) {
3253   __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
3254   KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
3255 
3256   // Initialize last stolen task field to "none"
3257   thread_data->td.td_deque_last_stolen = -1;
3258 
3259   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
3260   KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
3261   KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
3262 
3263   KE_TRACE(
3264       10,
3265       ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3266        __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
3267   // Allocate space for task deque, and zero the deque
3268   // Cannot use __kmp_thread_calloc() because threads not around for
3269   // kmp_reap_task_team( ).
3270   thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
3271       INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
3272   thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
3273 }
3274 
3275 // __kmp_free_task_deque:
3276 // Deallocates a task deque for a particular thread. Happens at library
3277 // deallocation so don't need to reset all thread data fields.
3278 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
3279   if (thread_data->td.td_deque != NULL) {
3280     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3281     TCW_4(thread_data->td.td_deque_ntasks, 0);
3282     __kmp_free(thread_data->td.td_deque);
3283     thread_data->td.td_deque = NULL;
3284     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3285   }
3286 
3287 #ifdef BUILD_TIED_TASK_STACK
3288   // GEH: Figure out what to do here for td_susp_tied_tasks
3289   if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
3290     __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
3291   }
3292 #endif // BUILD_TIED_TASK_STACK
3293 }
3294 
3295 // __kmp_realloc_task_threads_data:
3296 // Allocates a threads_data array for a task team, either by allocating an
3297 // initial array or enlarging an existing array.  Only the first thread to get
3298 // the lock allocs or enlarges the array and re-initializes the array elements.
3299 // That thread returns "TRUE", the rest return "FALSE".
3300 // Assumes that the new array size is given by task_team -> tt.tt_nproc.
3301 // The current size is given by task_team -> tt.tt_max_threads.
3302 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
3303                                            kmp_task_team_t *task_team) {
3304   kmp_thread_data_t **threads_data_p;
3305   kmp_int32 nthreads, maxthreads;
3306   int is_init_thread = FALSE;
3307 
3308   if (TCR_4(task_team->tt.tt_found_tasks)) {
3309     // Already reallocated and initialized.
3310     return FALSE;
3311   }
3312 
3313   threads_data_p = &task_team->tt.tt_threads_data;
3314   nthreads = task_team->tt.tt_nproc;
3315   maxthreads = task_team->tt.tt_max_threads;
3316 
3317   // All threads must lock when they encounter the first task of the implicit
3318   // task region to make sure threads_data fields are (re)initialized before
3319   // used.
3320   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3321 
3322   if (!TCR_4(task_team->tt.tt_found_tasks)) {
3323     // first thread to enable tasking
3324     kmp_team_t *team = thread->th.th_team;
3325     int i;
3326 
3327     is_init_thread = TRUE;
3328     if (maxthreads < nthreads) {
3329 
3330       if (*threads_data_p != NULL) {
3331         kmp_thread_data_t *old_data = *threads_data_p;
3332         kmp_thread_data_t *new_data = NULL;
3333 
3334         KE_TRACE(
3335             10,
3336             ("__kmp_realloc_task_threads_data: T#%d reallocating "
3337              "threads data for task_team %p, new_size = %d, old_size = %d\n",
3338              __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
3339         // Reallocate threads_data to have more elements than current array
3340         // Cannot use __kmp_thread_realloc() because threads not around for
3341         // kmp_reap_task_team( ).  Note all new array entries are initialized
3342         // to zero by __kmp_allocate().
3343         new_data = (kmp_thread_data_t *)__kmp_allocate(
3344             nthreads * sizeof(kmp_thread_data_t));
3345         // copy old data to new data
3346         KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
3347                      (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
3348 
3349 #ifdef BUILD_TIED_TASK_STACK
3350         // GEH: Figure out if this is the right thing to do
3351         for (i = maxthreads; i < nthreads; i++) {
3352           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3353           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3354         }
3355 #endif // BUILD_TIED_TASK_STACK
3356        // Install the new data and free the old data
3357         (*threads_data_p) = new_data;
3358         __kmp_free(old_data);
3359       } else {
3360         KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3361                       "threads data for task_team %p, size = %d\n",
3362                       __kmp_gtid_from_thread(thread), task_team, nthreads));
3363         // Make the initial allocate for threads_data array, and zero entries
3364         // Cannot use __kmp_thread_calloc() because threads not around for
3365         // kmp_reap_task_team( ).
3366         ANNOTATE_IGNORE_WRITES_BEGIN();
3367         *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
3368             nthreads * sizeof(kmp_thread_data_t));
3369         ANNOTATE_IGNORE_WRITES_END();
3370 #ifdef BUILD_TIED_TASK_STACK
3371         // GEH: Figure out if this is the right thing to do
3372         for (i = 0; i < nthreads; i++) {
3373           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3374           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3375         }
3376 #endif // BUILD_TIED_TASK_STACK
3377       }
3378       task_team->tt.tt_max_threads = nthreads;
3379     } else {
3380       // If array has (more than) enough elements, go ahead and use it
3381       KMP_DEBUG_ASSERT(*threads_data_p != NULL);
3382     }
3383 
3384     // initialize threads_data pointers back to thread_info structures
3385     for (i = 0; i < nthreads; i++) {
3386       kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3387       thread_data->td.td_thr = team->t.t_threads[i];
3388 
3389       if (thread_data->td.td_deque_last_stolen >= nthreads) {
3390         // The last stolen field survives across teams / barrier, and the number
3391         // of threads may have changed.  It's possible (likely?) that a new
3392         // parallel region will exhibit the same behavior as previous region.
3393         thread_data->td.td_deque_last_stolen = -1;
3394       }
3395     }
3396 
3397     KMP_MB();
3398     TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
3399   }
3400 
3401   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3402   return is_init_thread;
3403 }
3404 
3405 // __kmp_free_task_threads_data:
3406 // Deallocates a threads_data array for a task team, including any attached
3407 // tasking deques.  Only occurs at library shutdown.
3408 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
3409   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3410   if (task_team->tt.tt_threads_data != NULL) {
3411     int i;
3412     for (i = 0; i < task_team->tt.tt_max_threads; i++) {
3413       __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
3414     }
3415     __kmp_free(task_team->tt.tt_threads_data);
3416     task_team->tt.tt_threads_data = NULL;
3417   }
3418   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3419 }
3420 
3421 // __kmp_allocate_task_team:
3422 // Allocates a task team associated with a specific team, taking it from
3423 // the global task team free list if possible.  Also initializes data
3424 // structures.
3425 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
3426                                                  kmp_team_t *team) {
3427   kmp_task_team_t *task_team = NULL;
3428   int nthreads;
3429 
3430   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3431                 (thread ? __kmp_gtid_from_thread(thread) : -1), team));
3432 
3433   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3434     // Take a task team from the task team pool
3435     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3436     if (__kmp_free_task_teams != NULL) {
3437       task_team = __kmp_free_task_teams;
3438       TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
3439       task_team->tt.tt_next = NULL;
3440     }
3441     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3442   }
3443 
3444   if (task_team == NULL) {
3445     KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3446                   "task team for team %p\n",
3447                   __kmp_gtid_from_thread(thread), team));
3448     // Allocate a new task team if one is not available. Cannot use
3449     // __kmp_thread_malloc because threads not around for kmp_reap_task_team.
3450     task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
3451     __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
3452 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
3453     // suppress race conditions detection on synchronization flags in debug mode
3454     // this helps to analyze library internals eliminating false positives
3455     __itt_suppress_mark_range(
3456         __itt_suppress_range, __itt_suppress_threading_errors,
3457         &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks));
3458     __itt_suppress_mark_range(__itt_suppress_range,
3459                               __itt_suppress_threading_errors,
3460                               CCAST(kmp_uint32 *, &task_team->tt.tt_active),
3461                               sizeof(task_team->tt.tt_active));
3462 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
3463     // Note: __kmp_allocate zeroes returned memory, othewise we would need:
3464     // task_team->tt.tt_threads_data = NULL;
3465     // task_team->tt.tt_max_threads = 0;
3466     // task_team->tt.tt_next = NULL;
3467   }
3468 
3469   TCW_4(task_team->tt.tt_found_tasks, FALSE);
3470   TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3471   task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
3472 
3473   KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
3474   TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3475   TCW_4(task_team->tt.tt_active, TRUE);
3476 
3477   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
3478                 "unfinished_threads init'd to %d\n",
3479                 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
3480                 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
3481   return task_team;
3482 }
3483 
3484 // __kmp_free_task_team:
3485 // Frees the task team associated with a specific thread, and adds it
3486 // to the global task team free list.
3487 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
3488   KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
3489                 thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
3490 
3491   // Put task team back on free list
3492   __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3493 
3494   KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
3495   task_team->tt.tt_next = __kmp_free_task_teams;
3496   TCW_PTR(__kmp_free_task_teams, task_team);
3497 
3498   __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3499 }
3500 
3501 // __kmp_reap_task_teams:
3502 // Free all the task teams on the task team free list.
3503 // Should only be done during library shutdown.
3504 // Cannot do anything that needs a thread structure or gtid since they are
3505 // already gone.
3506 void __kmp_reap_task_teams(void) {
3507   kmp_task_team_t *task_team;
3508 
3509   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3510     // Free all task_teams on the free list
3511     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3512     while ((task_team = __kmp_free_task_teams) != NULL) {
3513       __kmp_free_task_teams = task_team->tt.tt_next;
3514       task_team->tt.tt_next = NULL;
3515 
3516       // Free threads_data if necessary
3517       if (task_team->tt.tt_threads_data != NULL) {
3518         __kmp_free_task_threads_data(task_team);
3519       }
3520       __kmp_free(task_team);
3521     }
3522     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3523   }
3524 }
3525 
3526 // __kmp_wait_to_unref_task_teams:
3527 // Some threads could still be in the fork barrier release code, possibly
3528 // trying to steal tasks.  Wait for each thread to unreference its task team.
3529 void __kmp_wait_to_unref_task_teams(void) {
3530   kmp_info_t *thread;
3531   kmp_uint32 spins;
3532   int done;
3533 
3534   KMP_INIT_YIELD(spins);
3535 
3536   for (;;) {
3537     done = TRUE;
3538 
3539     // TODO: GEH - this may be is wrong because some sync would be necessary
3540     // in case threads are added to the pool during the traversal. Need to
3541     // verify that lock for thread pool is held when calling this routine.
3542     for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
3543          thread = thread->th.th_next_pool) {
3544 #if KMP_OS_WINDOWS
3545       DWORD exit_val;
3546 #endif
3547       if (TCR_PTR(thread->th.th_task_team) == NULL) {
3548         KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
3549                       __kmp_gtid_from_thread(thread)));
3550         continue;
3551       }
3552 #if KMP_OS_WINDOWS
3553       // TODO: GEH - add this check for Linux* OS / OS X* as well?
3554       if (!__kmp_is_thread_alive(thread, &exit_val)) {
3555         thread->th.th_task_team = NULL;
3556         continue;
3557       }
3558 #endif
3559 
3560       done = FALSE; // Because th_task_team pointer is not NULL for this thread
3561 
3562       KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
3563                     "unreference task_team\n",
3564                     __kmp_gtid_from_thread(thread)));
3565 
3566       if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
3567         volatile void *sleep_loc;
3568         // If the thread is sleeping, awaken it.
3569         if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3570             NULL) {
3571           KA_TRACE(
3572               10,
3573               ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
3574                __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
3575           __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3576         }
3577       }
3578     }
3579     if (done) {
3580       break;
3581     }
3582 
3583     // If oversubscribed or have waited a bit, yield.
3584     KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
3585   }
3586 }
3587 
3588 // __kmp_task_team_setup:  Create a task_team for the current team, but use
3589 // an already created, unused one if it already exists.
3590 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
3591   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3592 
3593   // If this task_team hasn't been created yet, allocate it. It will be used in
3594   // the region after the next.
3595   // If it exists, it is the current task team and shouldn't be touched yet as
3596   // it may still be in use.
3597   if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
3598       (always || team->t.t_nproc > 1)) {
3599     team->t.t_task_team[this_thr->th.th_task_state] =
3600         __kmp_allocate_task_team(this_thr, team);
3601     KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p"
3602                   " for team %d at parity=%d\n",
3603                   __kmp_gtid_from_thread(this_thr),
3604                   team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id,
3605                   this_thr->th.th_task_state));
3606   }
3607 
3608   // After threads exit the release, they will call sync, and then point to this
3609   // other task_team; make sure it is allocated and properly initialized. As
3610   // threads spin in the barrier release phase, they will continue to use the
3611   // previous task_team struct(above), until they receive the signal to stop
3612   // checking for tasks (they can't safely reference the kmp_team_t struct,
3613   // which could be reallocated by the primary thread). No task teams are formed
3614   // for serialized teams.
3615   if (team->t.t_nproc > 1) {
3616     int other_team = 1 - this_thr->th.th_task_state;
3617     KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2);
3618     if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
3619       team->t.t_task_team[other_team] =
3620           __kmp_allocate_task_team(this_thr, team);
3621       KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new "
3622                     "task_team %p for team %d at parity=%d\n",
3623                     __kmp_gtid_from_thread(this_thr),
3624                     team->t.t_task_team[other_team], team->t.t_id, other_team));
3625     } else { // Leave the old task team struct in place for the upcoming region;
3626       // adjust as needed
3627       kmp_task_team_t *task_team = team->t.t_task_team[other_team];
3628       if (!task_team->tt.tt_active ||
3629           team->t.t_nproc != task_team->tt.tt_nproc) {
3630         TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
3631         TCW_4(task_team->tt.tt_found_tasks, FALSE);
3632         TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3633         KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
3634                           team->t.t_nproc);
3635         TCW_4(task_team->tt.tt_active, TRUE);
3636       }
3637       // if team size has changed, the first thread to enable tasking will
3638       // realloc threads_data if necessary
3639       KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team "
3640                     "%p for team %d at parity=%d\n",
3641                     __kmp_gtid_from_thread(this_thr),
3642                     team->t.t_task_team[other_team], team->t.t_id, other_team));
3643     }
3644   }
3645 
3646   // For regular thread, task enabling should be called when the task is going
3647   // to be pushed to a dequeue. However, for the hidden helper thread, we need
3648   // it ahead of time so that some operations can be performed without race
3649   // condition.
3650   if (this_thr == __kmp_hidden_helper_main_thread) {
3651     for (int i = 0; i < 2; ++i) {
3652       kmp_task_team_t *task_team = team->t.t_task_team[i];
3653       if (KMP_TASKING_ENABLED(task_team)) {
3654         continue;
3655       }
3656       __kmp_enable_tasking(task_team, this_thr);
3657       for (int j = 0; j < task_team->tt.tt_nproc; ++j) {
3658         kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j];
3659         if (thread_data->td.td_deque == NULL) {
3660           __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data);
3661         }
3662       }
3663     }
3664   }
3665 }
3666 
3667 // __kmp_task_team_sync: Propagation of task team data from team to threads
3668 // which happens just after the release phase of a team barrier.  This may be
3669 // called by any thread, but only for teams with # threads > 1.
3670 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
3671   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3672 
3673   // Toggle the th_task_state field, to switch which task_team this thread
3674   // refers to
3675   this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state);
3676 
3677   // It is now safe to propagate the task team pointer from the team struct to
3678   // the current thread.
3679   TCW_PTR(this_thr->th.th_task_team,
3680           team->t.t_task_team[this_thr->th.th_task_state]);
3681   KA_TRACE(20,
3682            ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
3683             "%p from Team #%d (parity=%d)\n",
3684             __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
3685             team->t.t_id, this_thr->th.th_task_state));
3686 }
3687 
3688 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the
3689 // barrier gather phase. Only called by primary thread if #threads in team > 1
3690 // or if proxy tasks were created.
3691 //
3692 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
3693 // by passing in 0 optionally as the last argument. When wait is zero, primary
3694 // thread does not wait for unfinished_threads to reach 0.
3695 void __kmp_task_team_wait(
3696     kmp_info_t *this_thr,
3697     kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
3698   kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
3699 
3700   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3701   KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
3702 
3703   if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
3704     if (wait) {
3705       KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks "
3706                     "(for unfinished_threads to reach 0) on task_team = %p\n",
3707                     __kmp_gtid_from_thread(this_thr), task_team));
3708       // Worker threads may have dropped through to release phase, but could
3709       // still be executing tasks. Wait here for tasks to complete. To avoid
3710       // memory contention, only primary thread checks termination condition.
3711       kmp_flag_32<false, false> flag(
3712           RCAST(std::atomic<kmp_uint32> *,
3713                 &task_team->tt.tt_unfinished_threads),
3714           0U);
3715       flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
3716     }
3717     // Deactivate the old task team, so that the worker threads will stop
3718     // referencing it while spinning.
3719     KA_TRACE(
3720         20,
3721         ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: "
3722          "setting active to false, setting local and team's pointer to NULL\n",
3723          __kmp_gtid_from_thread(this_thr), task_team));
3724     KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
3725                      task_team->tt.tt_found_proxy_tasks == TRUE);
3726     TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3727     KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
3728     TCW_SYNC_4(task_team->tt.tt_active, FALSE);
3729     KMP_MB();
3730 
3731     TCW_PTR(this_thr->th.th_task_team, NULL);
3732   }
3733 }
3734 
3735 // __kmp_tasking_barrier:
3736 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier.
3737 // Internal function to execute all tasks prior to a regular barrier or a join
3738 // barrier. It is a full barrier itself, which unfortunately turns regular
3739 // barriers into double barriers and join barriers into 1 1/2 barriers.
3740 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
3741   std::atomic<kmp_uint32> *spin = RCAST(
3742       std::atomic<kmp_uint32> *,
3743       &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
3744   int flag = FALSE;
3745   KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
3746 
3747 #if USE_ITT_BUILD
3748   KMP_FSYNC_SPIN_INIT(spin, NULL);
3749 #endif /* USE_ITT_BUILD */
3750   kmp_flag_32<false, false> spin_flag(spin, 0U);
3751   while (!spin_flag.execute_tasks(thread, gtid, TRUE,
3752                                   &flag USE_ITT_BUILD_ARG(NULL), 0)) {
3753 #if USE_ITT_BUILD
3754     // TODO: What about itt_sync_obj??
3755     KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
3756 #endif /* USE_ITT_BUILD */
3757 
3758     if (TCR_4(__kmp_global.g.g_done)) {
3759       if (__kmp_global.g.g_abort)
3760         __kmp_abort_thread();
3761       break;
3762     }
3763     KMP_YIELD(TRUE);
3764   }
3765 #if USE_ITT_BUILD
3766   KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
3767 #endif /* USE_ITT_BUILD */
3768 }
3769 
3770 // __kmp_give_task puts a task into a given thread queue if:
3771 //  - the queue for that thread was created
3772 //  - there's space in that queue
3773 // Because of this, __kmp_push_task needs to check if there's space after
3774 // getting the lock
3775 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
3776                             kmp_int32 pass) {
3777   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
3778   kmp_task_team_t *task_team = taskdata->td_task_team;
3779 
3780   KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
3781                 taskdata, tid));
3782 
3783   // If task_team is NULL something went really bad...
3784   KMP_DEBUG_ASSERT(task_team != NULL);
3785 
3786   bool result = false;
3787   kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
3788 
3789   if (thread_data->td.td_deque == NULL) {
3790     // There's no queue in this thread, go find another one
3791     // We're guaranteed that at least one thread has a queue
3792     KA_TRACE(30,
3793              ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
3794               tid, taskdata));
3795     return result;
3796   }
3797 
3798   if (TCR_4(thread_data->td.td_deque_ntasks) >=
3799       TASK_DEQUE_SIZE(thread_data->td)) {
3800     KA_TRACE(
3801         30,
3802         ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
3803          taskdata, tid));
3804 
3805     // if this deque is bigger than the pass ratio give a chance to another
3806     // thread
3807     if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3808       return result;
3809 
3810     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3811     if (TCR_4(thread_data->td.td_deque_ntasks) >=
3812         TASK_DEQUE_SIZE(thread_data->td)) {
3813       // expand deque to push the task which is not allowed to execute
3814       __kmp_realloc_task_deque(thread, thread_data);
3815     }
3816 
3817   } else {
3818 
3819     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3820 
3821     if (TCR_4(thread_data->td.td_deque_ntasks) >=
3822         TASK_DEQUE_SIZE(thread_data->td)) {
3823       KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
3824                     "thread %d.\n",
3825                     taskdata, tid));
3826 
3827       // if this deque is bigger than the pass ratio give a chance to another
3828       // thread
3829       if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3830         goto release_and_exit;
3831 
3832       __kmp_realloc_task_deque(thread, thread_data);
3833     }
3834   }
3835 
3836   // lock is held here, and there is space in the deque
3837 
3838   thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
3839   // Wrap index.
3840   thread_data->td.td_deque_tail =
3841       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
3842   TCW_4(thread_data->td.td_deque_ntasks,
3843         TCR_4(thread_data->td.td_deque_ntasks) + 1);
3844 
3845   result = true;
3846   KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
3847                 taskdata, tid));
3848 
3849 release_and_exit:
3850   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3851 
3852   return result;
3853 }
3854 
3855 /* The finish of the proxy tasks is divided in two pieces:
3856     - the top half is the one that can be done from a thread outside the team
3857     - the bottom half must be run from a thread within the team
3858 
3859    In order to run the bottom half the task gets queued back into one of the
3860    threads of the team. Once the td_incomplete_child_task counter of the parent
3861    is decremented the threads can leave the barriers. So, the bottom half needs
3862    to be queued before the counter is decremented. The top half is therefore
3863    divided in two parts:
3864     - things that can be run before queuing the bottom half
3865     - things that must be run after queuing the bottom half
3866 
3867    This creates a second race as the bottom half can free the task before the
3868    second top half is executed. To avoid this we use the
3869    td_incomplete_child_task of the proxy task to synchronize the top and bottom
3870    half. */
3871 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3872   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
3873   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3874   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
3875   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
3876 
3877   taskdata->td_flags.complete = 1; // mark the task as completed
3878 
3879   if (taskdata->td_taskgroup)
3880     KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
3881 
3882   // Create an imaginary children for this task so the bottom half cannot
3883   // release the task before we have completed the second top half
3884   KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks);
3885 }
3886 
3887 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3888   kmp_int32 children = 0;
3889 
3890   // Predecrement simulated by "- 1" calculation
3891   children =
3892       KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
3893   KMP_DEBUG_ASSERT(children >= 0);
3894 
3895   // Remove the imaginary children
3896   KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks);
3897 }
3898 
3899 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
3900   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3901   kmp_info_t *thread = __kmp_threads[gtid];
3902 
3903   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3904   KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
3905                    1); // top half must run before bottom half
3906 
3907   // We need to wait to make sure the top half is finished
3908   // Spinning here should be ok as this should happen quickly
3909   while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0)
3910     ;
3911 
3912   __kmp_release_deps(gtid, taskdata);
3913   __kmp_free_task_and_ancestors(gtid, taskdata, thread);
3914 }
3915 
3916 /*!
3917 @ingroup TASKING
3918 @param gtid Global Thread ID of encountering thread
3919 @param ptask Task which execution is completed
3920 
3921 Execute the completion of a proxy task from a thread of that is part of the
3922 team. Run first and bottom halves directly.
3923 */
3924 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
3925   KMP_DEBUG_ASSERT(ptask != NULL);
3926   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3927   KA_TRACE(
3928       10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
3929            gtid, taskdata));
3930   __kmp_assert_valid_gtid(gtid);
3931   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3932 
3933   __kmp_first_top_half_finish_proxy(taskdata);
3934   __kmp_second_top_half_finish_proxy(taskdata);
3935   __kmp_bottom_half_finish_proxy(gtid, ptask);
3936 
3937   KA_TRACE(10,
3938            ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
3939             gtid, taskdata));
3940 }
3941 
3942 /*!
3943 @ingroup TASKING
3944 @param ptask Task which execution is completed
3945 
3946 Execute the completion of a proxy task from a thread that could not belong to
3947 the team.
3948 */
3949 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
3950   KMP_DEBUG_ASSERT(ptask != NULL);
3951   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3952 
3953   KA_TRACE(
3954       10,
3955       ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
3956        taskdata));
3957 
3958   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3959 
3960   __kmp_first_top_half_finish_proxy(taskdata);
3961 
3962   // Enqueue task to complete bottom half completion from a thread within the
3963   // corresponding team
3964   kmp_team_t *team = taskdata->td_team;
3965   kmp_int32 nthreads = team->t.t_nproc;
3966   kmp_info_t *thread;
3967 
3968   // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
3969   // but we cannot use __kmp_get_random here
3970   kmp_int32 start_k = 0;
3971   kmp_int32 pass = 1;
3972   kmp_int32 k = start_k;
3973 
3974   do {
3975     // For now we're just linearly trying to find a thread
3976     thread = team->t.t_threads[k];
3977     k = (k + 1) % nthreads;
3978 
3979     // we did a full pass through all the threads
3980     if (k == start_k)
3981       pass = pass << 1;
3982 
3983   } while (!__kmp_give_task(thread, k, ptask, pass));
3984 
3985   __kmp_second_top_half_finish_proxy(taskdata);
3986 
3987   KA_TRACE(
3988       10,
3989       ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
3990        taskdata));
3991 }
3992 
3993 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
3994                                                 kmp_task_t *task) {
3995   kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
3996   if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
3997     td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
3998     td->td_allow_completion_event.ed.task = task;
3999     __kmp_init_tas_lock(&td->td_allow_completion_event.lock);
4000   }
4001   return &td->td_allow_completion_event;
4002 }
4003 
4004 void __kmp_fulfill_event(kmp_event_t *event) {
4005   if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
4006     kmp_task_t *ptask = event->ed.task;
4007     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4008     bool detached = false;
4009     int gtid = __kmp_get_gtid();
4010 
4011     // The associated task might have completed or could be completing at this
4012     // point.
4013     // We need to take the lock to avoid races
4014     __kmp_acquire_tas_lock(&event->lock, gtid);
4015     if (taskdata->td_flags.proxy == TASK_PROXY) {
4016       detached = true;
4017     } else {
4018 #if OMPT_SUPPORT
4019       // The OMPT event must occur under mutual exclusion,
4020       // otherwise the tool might access ptask after free
4021       if (UNLIKELY(ompt_enabled.enabled))
4022         __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill);
4023 #endif
4024     }
4025     event->type = KMP_EVENT_UNINITIALIZED;
4026     __kmp_release_tas_lock(&event->lock, gtid);
4027 
4028     if (detached) {
4029 #if OMPT_SUPPORT
4030       // We free ptask afterwards and know the task is finished,
4031       // so locking is not necessary
4032       if (UNLIKELY(ompt_enabled.enabled))
4033         __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill);
4034 #endif
4035       // If the task detached complete the proxy task
4036       if (gtid >= 0) {
4037         kmp_team_t *team = taskdata->td_team;
4038         kmp_info_t *thread = __kmp_get_thread();
4039         if (thread->th.th_team == team) {
4040           __kmpc_proxy_task_completed(gtid, ptask);
4041           return;
4042         }
4043       }
4044 
4045       // fallback
4046       __kmpc_proxy_task_completed_ooo(ptask);
4047     }
4048   }
4049 }
4050 
4051 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
4052 // for taskloop
4053 //
4054 // thread:   allocating thread
4055 // task_src: pointer to source task to be duplicated
4056 // returns:  a pointer to the allocated kmp_task_t structure (task).
4057 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) {
4058   kmp_task_t *task;
4059   kmp_taskdata_t *taskdata;
4060   kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
4061   kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task
4062   size_t shareds_offset;
4063   size_t task_size;
4064 
4065   KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
4066                 task_src));
4067   KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
4068                    TASK_FULL); // it should not be proxy task
4069   KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
4070   task_size = taskdata_src->td_size_alloc;
4071 
4072   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
4073   KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
4074                 task_size));
4075 #if USE_FAST_MEMORY
4076   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
4077 #else
4078   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
4079 #endif /* USE_FAST_MEMORY */
4080   KMP_MEMCPY(taskdata, taskdata_src, task_size);
4081 
4082   task = KMP_TASKDATA_TO_TASK(taskdata);
4083 
4084   // Initialize new task (only specific fields not affected by memcpy)
4085   taskdata->td_task_id = KMP_GEN_TASK_ID();
4086   if (task->shareds != NULL) { // need setup shareds pointer
4087     shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
4088     task->shareds = &((char *)taskdata)[shareds_offset];
4089     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
4090                      0);
4091   }
4092   taskdata->td_alloc_thread = thread;
4093   taskdata->td_parent = parent_task;
4094   // task inherits the taskgroup from the parent task
4095   taskdata->td_taskgroup = parent_task->td_taskgroup;
4096   // tied task needs to initialize the td_last_tied at creation,
4097   // untied one does this when it is scheduled for execution
4098   if (taskdata->td_flags.tiedness == TASK_TIED)
4099     taskdata->td_last_tied = taskdata;
4100 
4101   // Only need to keep track of child task counts if team parallel and tasking
4102   // not serialized
4103   if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
4104     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
4105     if (parent_task->td_taskgroup)
4106       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
4107     // Only need to keep track of allocated child tasks for explicit tasks since
4108     // implicit not deallocated
4109     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
4110       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
4111   }
4112 
4113   KA_TRACE(20,
4114            ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
4115             thread, taskdata, taskdata->td_parent));
4116 #if OMPT_SUPPORT
4117   if (UNLIKELY(ompt_enabled.enabled))
4118     __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
4119 #endif
4120   return task;
4121 }
4122 
4123 // Routine optionally generated by the compiler for setting the lastprivate flag
4124 // and calling needed constructors for private/firstprivate objects
4125 // (used to form taskloop tasks from pattern task)
4126 // Parameters: dest task, src task, lastprivate flag.
4127 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
4128 
4129 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
4130 
4131 // class to encapsulate manipulating loop bounds in a taskloop task.
4132 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting
4133 // the loop bound variables.
4134 class kmp_taskloop_bounds_t {
4135   kmp_task_t *task;
4136   const kmp_taskdata_t *taskdata;
4137   size_t lower_offset;
4138   size_t upper_offset;
4139 
4140 public:
4141   kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
4142       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
4143         lower_offset((char *)lb - (char *)task),
4144         upper_offset((char *)ub - (char *)task) {
4145     KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
4146     KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
4147   }
4148   kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
4149       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
4150         lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
4151   size_t get_lower_offset() const { return lower_offset; }
4152   size_t get_upper_offset() const { return upper_offset; }
4153   kmp_uint64 get_lb() const {
4154     kmp_int64 retval;
4155 #if defined(KMP_GOMP_COMPAT)
4156     // Intel task just returns the lower bound normally
4157     if (!taskdata->td_flags.native) {
4158       retval = *(kmp_int64 *)((char *)task + lower_offset);
4159     } else {
4160       // GOMP task has to take into account the sizeof(long)
4161       if (taskdata->td_size_loop_bounds == 4) {
4162         kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
4163         retval = (kmp_int64)*lb;
4164       } else {
4165         kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
4166         retval = (kmp_int64)*lb;
4167       }
4168     }
4169 #else
4170     (void)taskdata;
4171     retval = *(kmp_int64 *)((char *)task + lower_offset);
4172 #endif // defined(KMP_GOMP_COMPAT)
4173     return retval;
4174   }
4175   kmp_uint64 get_ub() const {
4176     kmp_int64 retval;
4177 #if defined(KMP_GOMP_COMPAT)
4178     // Intel task just returns the upper bound normally
4179     if (!taskdata->td_flags.native) {
4180       retval = *(kmp_int64 *)((char *)task + upper_offset);
4181     } else {
4182       // GOMP task has to take into account the sizeof(long)
4183       if (taskdata->td_size_loop_bounds == 4) {
4184         kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
4185         retval = (kmp_int64)*ub;
4186       } else {
4187         kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
4188         retval = (kmp_int64)*ub;
4189       }
4190     }
4191 #else
4192     retval = *(kmp_int64 *)((char *)task + upper_offset);
4193 #endif // defined(KMP_GOMP_COMPAT)
4194     return retval;
4195   }
4196   void set_lb(kmp_uint64 lb) {
4197 #if defined(KMP_GOMP_COMPAT)
4198     // Intel task just sets the lower bound normally
4199     if (!taskdata->td_flags.native) {
4200       *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4201     } else {
4202       // GOMP task has to take into account the sizeof(long)
4203       if (taskdata->td_size_loop_bounds == 4) {
4204         kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
4205         *lower = (kmp_uint32)lb;
4206       } else {
4207         kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
4208         *lower = (kmp_uint64)lb;
4209       }
4210     }
4211 #else
4212     *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4213 #endif // defined(KMP_GOMP_COMPAT)
4214   }
4215   void set_ub(kmp_uint64 ub) {
4216 #if defined(KMP_GOMP_COMPAT)
4217     // Intel task just sets the upper bound normally
4218     if (!taskdata->td_flags.native) {
4219       *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4220     } else {
4221       // GOMP task has to take into account the sizeof(long)
4222       if (taskdata->td_size_loop_bounds == 4) {
4223         kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
4224         *upper = (kmp_uint32)ub;
4225       } else {
4226         kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
4227         *upper = (kmp_uint64)ub;
4228       }
4229     }
4230 #else
4231     *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4232 #endif // defined(KMP_GOMP_COMPAT)
4233   }
4234 };
4235 
4236 // __kmp_taskloop_linear: Start tasks of the taskloop linearly
4237 //
4238 // loc        Source location information
4239 // gtid       Global thread ID
4240 // task       Pattern task, exposes the loop iteration range
4241 // lb         Pointer to loop lower bound in task structure
4242 // ub         Pointer to loop upper bound in task structure
4243 // st         Loop stride
4244 // ub_glob    Global upper bound (used for lastprivate check)
4245 // num_tasks  Number of tasks to execute
4246 // grainsize  Number of loop iterations per task
4247 // extras     Number of chunks with grainsize+1 iterations
4248 // last_chunk Reduction of grainsize for last task
4249 // tc         Iterations count
4250 // task_dup   Tasks duplication routine
4251 // codeptr_ra Return address for OMPT events
4252 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
4253                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4254                            kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4255                            kmp_uint64 grainsize, kmp_uint64 extras,
4256                            kmp_int64 last_chunk, kmp_uint64 tc,
4257 #if OMPT_SUPPORT
4258                            void *codeptr_ra,
4259 #endif
4260                            void *task_dup) {
4261   KMP_COUNT_BLOCK(OMP_TASKLOOP);
4262   KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
4263   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4264   // compiler provides global bounds here
4265   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4266   kmp_uint64 lower = task_bounds.get_lb();
4267   kmp_uint64 upper = task_bounds.get_ub();
4268   kmp_uint64 i;
4269   kmp_info_t *thread = __kmp_threads[gtid];
4270   kmp_taskdata_t *current_task = thread->th.th_current_task;
4271   kmp_task_t *next_task;
4272   kmp_int32 lastpriv = 0;
4273 
4274   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4275                              (last_chunk < 0 ? last_chunk : extras));
4276   KMP_DEBUG_ASSERT(num_tasks > extras);
4277   KMP_DEBUG_ASSERT(num_tasks > 0);
4278   KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4279                 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4280                 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper,
4281                 ub_glob, st, task_dup));
4282 
4283   // Launch num_tasks tasks, assign grainsize iterations each task
4284   for (i = 0; i < num_tasks; ++i) {
4285     kmp_uint64 chunk_minus_1;
4286     if (extras == 0) {
4287       chunk_minus_1 = grainsize - 1;
4288     } else {
4289       chunk_minus_1 = grainsize;
4290       --extras; // first extras iterations get bigger chunk (grainsize+1)
4291     }
4292     upper = lower + st * chunk_minus_1;
4293     if (upper > *ub) {
4294       upper = *ub;
4295     }
4296     if (i == num_tasks - 1) {
4297       // schedule the last task, set lastprivate flag if needed
4298       if (st == 1) { // most common case
4299         KMP_DEBUG_ASSERT(upper == *ub);
4300         if (upper == ub_glob)
4301           lastpriv = 1;
4302       } else if (st > 0) { // positive loop stride
4303         KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
4304         if ((kmp_uint64)st > ub_glob - upper)
4305           lastpriv = 1;
4306       } else { // negative loop stride
4307         KMP_DEBUG_ASSERT(upper + st < *ub);
4308         if (upper - ub_glob < (kmp_uint64)(-st))
4309           lastpriv = 1;
4310       }
4311     }
4312     next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
4313     kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
4314     kmp_taskloop_bounds_t next_task_bounds =
4315         kmp_taskloop_bounds_t(next_task, task_bounds);
4316 
4317     // adjust task-specific bounds
4318     next_task_bounds.set_lb(lower);
4319     if (next_taskdata->td_flags.native) {
4320       next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
4321     } else {
4322       next_task_bounds.set_ub(upper);
4323     }
4324     if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates,
4325                            // etc.
4326       ptask_dup(next_task, task, lastpriv);
4327     KA_TRACE(40,
4328              ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4329               "upper %lld stride %lld, (offsets %p %p)\n",
4330               gtid, i, next_task, lower, upper, st,
4331               next_task_bounds.get_lower_offset(),
4332               next_task_bounds.get_upper_offset()));
4333 #if OMPT_SUPPORT
4334     __kmp_omp_taskloop_task(NULL, gtid, next_task,
4335                             codeptr_ra); // schedule new task
4336 #else
4337     __kmp_omp_task(gtid, next_task, true); // schedule new task
4338 #endif
4339     lower = upper + st; // adjust lower bound for the next iteration
4340   }
4341   // free the pattern task and exit
4342   __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
4343   // do not execute the pattern task, just do internal bookkeeping
4344   __kmp_task_finish<false>(gtid, task, current_task);
4345 }
4346 
4347 // Structure to keep taskloop parameters for auxiliary task
4348 // kept in the shareds of the task structure.
4349 typedef struct __taskloop_params {
4350   kmp_task_t *task;
4351   kmp_uint64 *lb;
4352   kmp_uint64 *ub;
4353   void *task_dup;
4354   kmp_int64 st;
4355   kmp_uint64 ub_glob;
4356   kmp_uint64 num_tasks;
4357   kmp_uint64 grainsize;
4358   kmp_uint64 extras;
4359   kmp_int64 last_chunk;
4360   kmp_uint64 tc;
4361   kmp_uint64 num_t_min;
4362 #if OMPT_SUPPORT
4363   void *codeptr_ra;
4364 #endif
4365 } __taskloop_params_t;
4366 
4367 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
4368                           kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
4369                           kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64,
4370                           kmp_uint64,
4371 #if OMPT_SUPPORT
4372                           void *,
4373 #endif
4374                           void *);
4375 
4376 // Execute part of the taskloop submitted as a task.
4377 int __kmp_taskloop_task(int gtid, void *ptask) {
4378   __taskloop_params_t *p =
4379       (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
4380   kmp_task_t *task = p->task;
4381   kmp_uint64 *lb = p->lb;
4382   kmp_uint64 *ub = p->ub;
4383   void *task_dup = p->task_dup;
4384   //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4385   kmp_int64 st = p->st;
4386   kmp_uint64 ub_glob = p->ub_glob;
4387   kmp_uint64 num_tasks = p->num_tasks;
4388   kmp_uint64 grainsize = p->grainsize;
4389   kmp_uint64 extras = p->extras;
4390   kmp_int64 last_chunk = p->last_chunk;
4391   kmp_uint64 tc = p->tc;
4392   kmp_uint64 num_t_min = p->num_t_min;
4393 #if OMPT_SUPPORT
4394   void *codeptr_ra = p->codeptr_ra;
4395 #endif
4396 #if KMP_DEBUG
4397   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4398   KMP_DEBUG_ASSERT(task != NULL);
4399   KA_TRACE(20,
4400            ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
4401             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4402             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4403             st, task_dup));
4404 #endif
4405   KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
4406   if (num_tasks > num_t_min)
4407     __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4408                          grainsize, extras, last_chunk, tc, num_t_min,
4409 #if OMPT_SUPPORT
4410                          codeptr_ra,
4411 #endif
4412                          task_dup);
4413   else
4414     __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4415                           grainsize, extras, last_chunk, tc,
4416 #if OMPT_SUPPORT
4417                           codeptr_ra,
4418 #endif
4419                           task_dup);
4420 
4421   KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
4422   return 0;
4423 }
4424 
4425 // Schedule part of the taskloop as a task,
4426 // execute the rest of the taskloop.
4427 //
4428 // loc        Source location information
4429 // gtid       Global thread ID
4430 // task       Pattern task, exposes the loop iteration range
4431 // lb         Pointer to loop lower bound in task structure
4432 // ub         Pointer to loop upper bound in task structure
4433 // st         Loop stride
4434 // ub_glob    Global upper bound (used for lastprivate check)
4435 // num_tasks  Number of tasks to execute
4436 // grainsize  Number of loop iterations per task
4437 // extras     Number of chunks with grainsize+1 iterations
4438 // last_chunk Reduction of grainsize for last task
4439 // tc         Iterations count
4440 // num_t_min  Threshold to launch tasks recursively
4441 // task_dup   Tasks duplication routine
4442 // codeptr_ra Return address for OMPT events
4443 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
4444                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4445                           kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4446                           kmp_uint64 grainsize, kmp_uint64 extras,
4447                           kmp_int64 last_chunk, kmp_uint64 tc,
4448                           kmp_uint64 num_t_min,
4449 #if OMPT_SUPPORT
4450                           void *codeptr_ra,
4451 #endif
4452                           void *task_dup) {
4453   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4454   KMP_DEBUG_ASSERT(task != NULL);
4455   KMP_DEBUG_ASSERT(num_tasks > num_t_min);
4456   KA_TRACE(20,
4457            ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
4458             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4459             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4460             st, task_dup));
4461   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4462   kmp_uint64 lower = *lb;
4463   kmp_info_t *thread = __kmp_threads[gtid];
4464   //  kmp_taskdata_t *current_task = thread->th.th_current_task;
4465   kmp_task_t *next_task;
4466   size_t lower_offset =
4467       (char *)lb - (char *)task; // remember offset of lb in the task structure
4468   size_t upper_offset =
4469       (char *)ub - (char *)task; // remember offset of ub in the task structure
4470 
4471   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4472                              (last_chunk < 0 ? last_chunk : extras));
4473   KMP_DEBUG_ASSERT(num_tasks > extras);
4474   KMP_DEBUG_ASSERT(num_tasks > 0);
4475 
4476   // split the loop in two halves
4477   kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
4478   kmp_int64 last_chunk0 = 0, last_chunk1 = 0;
4479   kmp_uint64 gr_size0 = grainsize;
4480   kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
4481   kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
4482   if (last_chunk < 0) {
4483     ext0 = ext1 = 0;
4484     last_chunk1 = last_chunk;
4485     tc0 = grainsize * n_tsk0;
4486     tc1 = tc - tc0;
4487   } else if (n_tsk0 <= extras) {
4488     gr_size0++; // integrate extras into grainsize
4489     ext0 = 0; // no extra iters in 1st half
4490     ext1 = extras - n_tsk0; // remaining extras
4491     tc0 = gr_size0 * n_tsk0;
4492     tc1 = tc - tc0;
4493   } else { // n_tsk0 > extras
4494     ext1 = 0; // no extra iters in 2nd half
4495     ext0 = extras;
4496     tc1 = grainsize * n_tsk1;
4497     tc0 = tc - tc1;
4498   }
4499   ub0 = lower + st * (tc0 - 1);
4500   lb1 = ub0 + st;
4501 
4502   // create pattern task for 2nd half of the loop
4503   next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
4504   // adjust lower bound (upper bound is not changed) for the 2nd half
4505   *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
4506   if (ptask_dup != NULL) // construct firstprivates, etc.
4507     ptask_dup(next_task, task, 0);
4508   *ub = ub0; // adjust upper bound for the 1st half
4509 
4510   // create auxiliary task for 2nd half of the loop
4511   // make sure new task has same parent task as the pattern task
4512   kmp_taskdata_t *current_task = thread->th.th_current_task;
4513   thread->th.th_current_task = taskdata->td_parent;
4514   kmp_task_t *new_task =
4515       __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
4516                             sizeof(__taskloop_params_t), &__kmp_taskloop_task);
4517   // restore current task
4518   thread->th.th_current_task = current_task;
4519   __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
4520   p->task = next_task;
4521   p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
4522   p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
4523   p->task_dup = task_dup;
4524   p->st = st;
4525   p->ub_glob = ub_glob;
4526   p->num_tasks = n_tsk1;
4527   p->grainsize = grainsize;
4528   p->extras = ext1;
4529   p->last_chunk = last_chunk1;
4530   p->tc = tc1;
4531   p->num_t_min = num_t_min;
4532 #if OMPT_SUPPORT
4533   p->codeptr_ra = codeptr_ra;
4534 #endif
4535 
4536 #if OMPT_SUPPORT
4537   // schedule new task with correct return address for OMPT events
4538   __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
4539 #else
4540   __kmp_omp_task(gtid, new_task, true); // schedule new task
4541 #endif
4542 
4543   // execute the 1st half of current subrange
4544   if (n_tsk0 > num_t_min)
4545     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
4546                          ext0, last_chunk0, tc0, num_t_min,
4547 #if OMPT_SUPPORT
4548                          codeptr_ra,
4549 #endif
4550                          task_dup);
4551   else
4552     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
4553                           gr_size0, ext0, last_chunk0, tc0,
4554 #if OMPT_SUPPORT
4555                           codeptr_ra,
4556 #endif
4557                           task_dup);
4558 
4559   KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid));
4560 }
4561 
4562 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4563                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4564                            int nogroup, int sched, kmp_uint64 grainsize,
4565                            int modifier, void *task_dup) {
4566   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4567   KMP_DEBUG_ASSERT(task != NULL);
4568   if (nogroup == 0) {
4569 #if OMPT_SUPPORT && OMPT_OPTIONAL
4570     OMPT_STORE_RETURN_ADDRESS(gtid);
4571 #endif
4572     __kmpc_taskgroup(loc, gtid);
4573   }
4574 
4575   // =========================================================================
4576   // calculate loop parameters
4577   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4578   kmp_uint64 tc;
4579   // compiler provides global bounds here
4580   kmp_uint64 lower = task_bounds.get_lb();
4581   kmp_uint64 upper = task_bounds.get_ub();
4582   kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
4583   kmp_uint64 num_tasks = 0, extras = 0;
4584   kmp_int64 last_chunk =
4585       0; // reduce grainsize of last task by last_chunk in strict mode
4586   kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
4587   kmp_info_t *thread = __kmp_threads[gtid];
4588   kmp_taskdata_t *current_task = thread->th.th_current_task;
4589 
4590   KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
4591                 "grain %llu(%d, %d), dup %p\n",
4592                 gtid, taskdata, lower, upper, st, grainsize, sched, modifier,
4593                 task_dup));
4594 
4595   // compute trip count
4596   if (st == 1) { // most common case
4597     tc = upper - lower + 1;
4598   } else if (st < 0) {
4599     tc = (lower - upper) / (-st) + 1;
4600   } else { // st > 0
4601     tc = (upper - lower) / st + 1;
4602   }
4603   if (tc == 0) {
4604     KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid));
4605     // free the pattern task and exit
4606     __kmp_task_start(gtid, task, current_task);
4607     // do not execute anything for zero-trip loop
4608     __kmp_task_finish<false>(gtid, task, current_task);
4609     return;
4610   }
4611 
4612 #if OMPT_SUPPORT && OMPT_OPTIONAL
4613   ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
4614   ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
4615   if (ompt_enabled.ompt_callback_work) {
4616     ompt_callbacks.ompt_callback(ompt_callback_work)(
4617         ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
4618         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4619   }
4620 #endif
4621 
4622   if (num_tasks_min == 0)
4623     // TODO: can we choose better default heuristic?
4624     num_tasks_min =
4625         KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
4626 
4627   // compute num_tasks/grainsize based on the input provided
4628   switch (sched) {
4629   case 0: // no schedule clause specified, we can choose the default
4630     // let's try to schedule (team_size*10) tasks
4631     grainsize = thread->th.th_team_nproc * 10;
4632     KMP_FALLTHROUGH();
4633   case 2: // num_tasks provided
4634     if (grainsize > tc) {
4635       num_tasks = tc; // too big num_tasks requested, adjust values
4636       grainsize = 1;
4637       extras = 0;
4638     } else {
4639       num_tasks = grainsize;
4640       grainsize = tc / num_tasks;
4641       extras = tc % num_tasks;
4642     }
4643     break;
4644   case 1: // grainsize provided
4645     if (grainsize > tc) {
4646       num_tasks = 1;
4647       grainsize = tc; // too big grainsize requested, adjust values
4648       extras = 0;
4649     } else {
4650       if (modifier) {
4651         num_tasks = (tc + grainsize - 1) / grainsize;
4652         last_chunk = tc - (num_tasks * grainsize);
4653         extras = 0;
4654       } else {
4655         num_tasks = tc / grainsize;
4656         // adjust grainsize for balanced distribution of iterations
4657         grainsize = tc / num_tasks;
4658         extras = tc % num_tasks;
4659       }
4660     }
4661     break;
4662   default:
4663     KMP_ASSERT2(0, "unknown scheduling of taskloop");
4664   }
4665 
4666   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4667                              (last_chunk < 0 ? last_chunk : extras));
4668   KMP_DEBUG_ASSERT(num_tasks > extras);
4669   KMP_DEBUG_ASSERT(num_tasks > 0);
4670   // =========================================================================
4671 
4672   // check if clause value first
4673   // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
4674   if (if_val == 0) { // if(0) specified, mark task as serial
4675     taskdata->td_flags.task_serial = 1;
4676     taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
4677     // always start serial tasks linearly
4678     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4679                           grainsize, extras, last_chunk, tc,
4680 #if OMPT_SUPPORT
4681                           OMPT_GET_RETURN_ADDRESS(0),
4682 #endif
4683                           task_dup);
4684     // !taskdata->td_flags.native => currently force linear spawning of tasks
4685     // for GOMP_taskloop
4686   } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
4687     KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
4688                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
4689                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
4690                   last_chunk));
4691     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4692                          grainsize, extras, last_chunk, tc, num_tasks_min,
4693 #if OMPT_SUPPORT
4694                          OMPT_GET_RETURN_ADDRESS(0),
4695 #endif
4696                          task_dup);
4697   } else {
4698     KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
4699                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
4700                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
4701                   last_chunk));
4702     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4703                           grainsize, extras, last_chunk, tc,
4704 #if OMPT_SUPPORT
4705                           OMPT_GET_RETURN_ADDRESS(0),
4706 #endif
4707                           task_dup);
4708   }
4709 
4710 #if OMPT_SUPPORT && OMPT_OPTIONAL
4711   if (ompt_enabled.ompt_callback_work) {
4712     ompt_callbacks.ompt_callback(ompt_callback_work)(
4713         ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
4714         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4715   }
4716 #endif
4717 
4718   if (nogroup == 0) {
4719 #if OMPT_SUPPORT && OMPT_OPTIONAL
4720     OMPT_STORE_RETURN_ADDRESS(gtid);
4721 #endif
4722     __kmpc_end_taskgroup(loc, gtid);
4723   }
4724   KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid));
4725 }
4726 
4727 /*!
4728 @ingroup TASKING
4729 @param loc       Source location information
4730 @param gtid      Global thread ID
4731 @param task      Task structure
4732 @param if_val    Value of the if clause
4733 @param lb        Pointer to loop lower bound in task structure
4734 @param ub        Pointer to loop upper bound in task structure
4735 @param st        Loop stride
4736 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
4737 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4738 @param grainsize Schedule value if specified
4739 @param task_dup  Tasks duplication routine
4740 
4741 Execute the taskloop construct.
4742 */
4743 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4744                      kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
4745                      int sched, kmp_uint64 grainsize, void *task_dup) {
4746   __kmp_assert_valid_gtid(gtid);
4747   KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid));
4748   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
4749                  0, task_dup);
4750   KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
4751 }
4752 
4753 /*!
4754 @ingroup TASKING
4755 @param loc       Source location information
4756 @param gtid      Global thread ID
4757 @param task      Task structure
4758 @param if_val    Value of the if clause
4759 @param lb        Pointer to loop lower bound in task structure
4760 @param ub        Pointer to loop upper bound in task structure
4761 @param st        Loop stride
4762 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
4763 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4764 @param grainsize Schedule value if specified
4765 @param modifer   Modifier 'strict' for sched, 1 if present, 0 otherwise
4766 @param task_dup  Tasks duplication routine
4767 
4768 Execute the taskloop construct.
4769 */
4770 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4771                        kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4772                        int nogroup, int sched, kmp_uint64 grainsize,
4773                        int modifier, void *task_dup) {
4774   __kmp_assert_valid_gtid(gtid);
4775   KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid));
4776   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
4777                  modifier, task_dup);
4778   KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid));
4779 }
4780