1 /* 2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_i18n.h" 15 #include "kmp_itt.h" 16 #include "kmp_stats.h" 17 #include "kmp_wait_release.h" 18 #include "kmp_taskdeps.h" 19 20 #if OMPT_SUPPORT 21 #include "ompt-specific.h" 22 #endif 23 24 #include "tsan_annotations.h" 25 26 /* forward declaration */ 27 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 28 kmp_info_t *this_thr); 29 static void __kmp_alloc_task_deque(kmp_info_t *thread, 30 kmp_thread_data_t *thread_data); 31 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 32 kmp_task_team_t *task_team); 33 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); 34 35 #ifdef BUILD_TIED_TASK_STACK 36 37 // __kmp_trace_task_stack: print the tied tasks from the task stack in order 38 // from top do bottom 39 // 40 // gtid: global thread identifier for thread containing stack 41 // thread_data: thread data for task team thread containing stack 42 // threshold: value above which the trace statement triggers 43 // location: string identifying call site of this function (for trace) 44 static void __kmp_trace_task_stack(kmp_int32 gtid, 45 kmp_thread_data_t *thread_data, 46 int threshold, char *location) { 47 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 48 kmp_taskdata_t **stack_top = task_stack->ts_top; 49 kmp_int32 entries = task_stack->ts_entries; 50 kmp_taskdata_t *tied_task; 51 52 KA_TRACE( 53 threshold, 54 ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " 55 "first_block = %p, stack_top = %p \n", 56 location, gtid, entries, task_stack->ts_first_block, stack_top)); 57 58 KMP_DEBUG_ASSERT(stack_top != NULL); 59 KMP_DEBUG_ASSERT(entries > 0); 60 61 while (entries != 0) { 62 KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); 63 // fix up ts_top if we need to pop from previous block 64 if (entries & TASK_STACK_INDEX_MASK == 0) { 65 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); 66 67 stack_block = stack_block->sb_prev; 68 stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 69 } 70 71 // finish bookkeeping 72 stack_top--; 73 entries--; 74 75 tied_task = *stack_top; 76 77 KMP_DEBUG_ASSERT(tied_task != NULL); 78 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 79 80 KA_TRACE(threshold, 81 ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " 82 "stack_top=%p, tied_task=%p\n", 83 location, gtid, entries, stack_top, tied_task)); 84 } 85 KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); 86 87 KA_TRACE(threshold, 88 ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", 89 location, gtid)); 90 } 91 92 // __kmp_init_task_stack: initialize the task stack for the first time 93 // after a thread_data structure is created. 94 // It should not be necessary to do this again (assuming the stack works). 95 // 96 // gtid: global thread identifier of calling thread 97 // thread_data: thread data for task team thread containing stack 98 static void __kmp_init_task_stack(kmp_int32 gtid, 99 kmp_thread_data_t *thread_data) { 100 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 101 kmp_stack_block_t *first_block; 102 103 // set up the first block of the stack 104 first_block = &task_stack->ts_first_block; 105 task_stack->ts_top = (kmp_taskdata_t **)first_block; 106 memset((void *)first_block, '\0', 107 TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); 108 109 // initialize the stack to be empty 110 task_stack->ts_entries = TASK_STACK_EMPTY; 111 first_block->sb_next = NULL; 112 first_block->sb_prev = NULL; 113 } 114 115 // __kmp_free_task_stack: free the task stack when thread_data is destroyed. 116 // 117 // gtid: global thread identifier for calling thread 118 // thread_data: thread info for thread containing stack 119 static void __kmp_free_task_stack(kmp_int32 gtid, 120 kmp_thread_data_t *thread_data) { 121 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 122 kmp_stack_block_t *stack_block = &task_stack->ts_first_block; 123 124 KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); 125 // free from the second block of the stack 126 while (stack_block != NULL) { 127 kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; 128 129 stack_block->sb_next = NULL; 130 stack_block->sb_prev = NULL; 131 if (stack_block != &task_stack->ts_first_block) { 132 __kmp_thread_free(thread, 133 stack_block); // free the block, if not the first 134 } 135 stack_block = next_block; 136 } 137 // initialize the stack to be empty 138 task_stack->ts_entries = 0; 139 task_stack->ts_top = NULL; 140 } 141 142 // __kmp_push_task_stack: Push the tied task onto the task stack. 143 // Grow the stack if necessary by allocating another block. 144 // 145 // gtid: global thread identifier for calling thread 146 // thread: thread info for thread containing stack 147 // tied_task: the task to push on the stack 148 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, 149 kmp_taskdata_t *tied_task) { 150 // GEH - need to consider what to do if tt_threads_data not allocated yet 151 kmp_thread_data_t *thread_data = 152 &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 153 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 154 155 if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { 156 return; // Don't push anything on stack if team or team tasks are serialized 157 } 158 159 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 160 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 161 162 KA_TRACE(20, 163 ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", 164 gtid, thread, tied_task)); 165 // Store entry 166 *(task_stack->ts_top) = tied_task; 167 168 // Do bookkeeping for next push 169 task_stack->ts_top++; 170 task_stack->ts_entries++; 171 172 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 173 // Find beginning of this task block 174 kmp_stack_block_t *stack_block = 175 (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); 176 177 // Check if we already have a block 178 if (stack_block->sb_next != 179 NULL) { // reset ts_top to beginning of next block 180 task_stack->ts_top = &stack_block->sb_next->sb_block[0]; 181 } else { // Alloc new block and link it up 182 kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( 183 thread, sizeof(kmp_stack_block_t)); 184 185 task_stack->ts_top = &new_block->sb_block[0]; 186 stack_block->sb_next = new_block; 187 new_block->sb_prev = stack_block; 188 new_block->sb_next = NULL; 189 190 KA_TRACE( 191 30, 192 ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", 193 gtid, tied_task, new_block)); 194 } 195 } 196 KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 197 tied_task)); 198 } 199 200 // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return 201 // the task, just check to make sure it matches the ending task passed in. 202 // 203 // gtid: global thread identifier for the calling thread 204 // thread: thread info structure containing stack 205 // tied_task: the task popped off the stack 206 // ending_task: the task that is ending (should match popped task) 207 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, 208 kmp_taskdata_t *ending_task) { 209 // GEH - need to consider what to do if tt_threads_data not allocated yet 210 kmp_thread_data_t *thread_data = 211 &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; 212 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 213 kmp_taskdata_t *tied_task; 214 215 if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { 216 // Don't pop anything from stack if team or team tasks are serialized 217 return; 218 } 219 220 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 221 KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); 222 223 KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, 224 thread)); 225 226 // fix up ts_top if we need to pop from previous block 227 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 228 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); 229 230 stack_block = stack_block->sb_prev; 231 task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 232 } 233 234 // finish bookkeeping 235 task_stack->ts_top--; 236 task_stack->ts_entries--; 237 238 tied_task = *(task_stack->ts_top); 239 240 KMP_DEBUG_ASSERT(tied_task != NULL); 241 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 242 KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly 243 244 KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 245 tied_task)); 246 return; 247 } 248 #endif /* BUILD_TIED_TASK_STACK */ 249 250 // returns 1 if new task is allowed to execute, 0 otherwise 251 // checks Task Scheduling constraint (if requested) and 252 // mutexinoutset dependencies if any 253 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, 254 const kmp_taskdata_t *tasknew, 255 const kmp_taskdata_t *taskcurr) { 256 if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { 257 // Check if the candidate obeys the Task Scheduling Constraints (TSC) 258 // only descendant of all deferred tied tasks can be scheduled, checking 259 // the last one is enough, as it in turn is the descendant of all others 260 kmp_taskdata_t *current = taskcurr->td_last_tied; 261 KMP_DEBUG_ASSERT(current != NULL); 262 // check if the task is not suspended on barrier 263 if (current->td_flags.tasktype == TASK_EXPLICIT || 264 current->td_taskwait_thread > 0) { // <= 0 on barrier 265 kmp_int32 level = current->td_level; 266 kmp_taskdata_t *parent = tasknew->td_parent; 267 while (parent != current && parent->td_level > level) { 268 // check generation up to the level of the current task 269 parent = parent->td_parent; 270 KMP_DEBUG_ASSERT(parent != NULL); 271 } 272 if (parent != current) 273 return false; 274 } 275 } 276 // Check mutexinoutset dependencies, acquire locks 277 kmp_depnode_t *node = tasknew->td_depnode; 278 if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { 279 for (int i = 0; i < node->dn.mtx_num_locks; ++i) { 280 KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); 281 if (__kmp_test_lock(node->dn.mtx_locks[i], gtid)) 282 continue; 283 // could not get the lock, release previous locks 284 for (int j = i - 1; j >= 0; --j) 285 __kmp_release_lock(node->dn.mtx_locks[j], gtid); 286 return false; 287 } 288 // negative num_locks means all locks acquired successfully 289 node->dn.mtx_num_locks = -node->dn.mtx_num_locks; 290 } 291 return true; 292 } 293 294 // __kmp_realloc_task_deque: 295 // Re-allocates a task deque for a particular thread, copies the content from 296 // the old deque and adjusts the necessary data structures relating to the 297 // deque. This operation must be done with the deque_lock being held 298 static void __kmp_realloc_task_deque(kmp_info_t *thread, 299 kmp_thread_data_t *thread_data) { 300 kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); 301 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); 302 kmp_int32 new_size = 2 * size; 303 304 KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " 305 "%d] for thread_data %p\n", 306 __kmp_gtid_from_thread(thread), size, new_size, thread_data)); 307 308 kmp_taskdata_t **new_deque = 309 (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); 310 311 int i, j; 312 for (i = thread_data->td.td_deque_head, j = 0; j < size; 313 i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) 314 new_deque[j] = thread_data->td.td_deque[i]; 315 316 __kmp_free(thread_data->td.td_deque); 317 318 thread_data->td.td_deque_head = 0; 319 thread_data->td.td_deque_tail = size; 320 thread_data->td.td_deque = new_deque; 321 thread_data->td.td_deque_size = new_size; 322 } 323 324 // __kmp_push_task: Add a task to the thread's deque 325 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { 326 kmp_info_t *thread = __kmp_threads[gtid]; 327 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 328 329 // We don't need to map to shadow gtid if it is already hidden helper thread 330 if (taskdata->td_flags.hidden_helper && !KMP_HIDDEN_HELPER_THREAD(gtid)) { 331 gtid = KMP_GTID_TO_SHADOW_GTID(gtid); 332 thread = __kmp_threads[gtid]; 333 } 334 335 kmp_task_team_t *task_team = thread->th.th_task_team; 336 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 337 kmp_thread_data_t *thread_data; 338 339 KA_TRACE(20, 340 ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata)); 341 342 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 343 // untied task needs to increment counter so that the task structure is not 344 // freed prematurely 345 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 346 KMP_DEBUG_USE_VAR(counter); 347 KA_TRACE( 348 20, 349 ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n", 350 gtid, counter, taskdata)); 351 } 352 353 // The first check avoids building task_team thread data if serialized 354 if (UNLIKELY(taskdata->td_flags.task_serial)) { 355 KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " 356 "TASK_NOT_PUSHED for task %p\n", 357 gtid, taskdata)); 358 return TASK_NOT_PUSHED; 359 } 360 361 // Now that serialized tasks have returned, we can assume that we are not in 362 // immediate exec mode 363 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 364 if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) { 365 __kmp_enable_tasking(task_team, thread); 366 } 367 KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); 368 KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); 369 370 // Find tasking deque specific to encountering thread 371 thread_data = &task_team->tt.tt_threads_data[tid]; 372 373 // No lock needed since only owner can allocate. If the task is hidden_helper, 374 // we don't need it either because we have initialized the dequeue for hidden 375 // helper thread data. 376 if (UNLIKELY(thread_data->td.td_deque == NULL)) { 377 __kmp_alloc_task_deque(thread, thread_data); 378 } 379 380 int locked = 0; 381 // Check if deque is full 382 if (TCR_4(thread_data->td.td_deque_ntasks) >= 383 TASK_DEQUE_SIZE(thread_data->td)) { 384 if (__kmp_enable_task_throttling && 385 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 386 thread->th.th_current_task)) { 387 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " 388 "TASK_NOT_PUSHED for task %p\n", 389 gtid, taskdata)); 390 return TASK_NOT_PUSHED; 391 } else { 392 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 393 locked = 1; 394 if (TCR_4(thread_data->td.td_deque_ntasks) >= 395 TASK_DEQUE_SIZE(thread_data->td)) { 396 // expand deque to push the task which is not allowed to execute 397 __kmp_realloc_task_deque(thread, thread_data); 398 } 399 } 400 } 401 // Lock the deque for the task push operation 402 if (!locked) { 403 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 404 // Need to recheck as we can get a proxy task from thread outside of OpenMP 405 if (TCR_4(thread_data->td.td_deque_ntasks) >= 406 TASK_DEQUE_SIZE(thread_data->td)) { 407 if (__kmp_enable_task_throttling && 408 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 409 thread->th.th_current_task)) { 410 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 411 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " 412 "returning TASK_NOT_PUSHED for task %p\n", 413 gtid, taskdata)); 414 return TASK_NOT_PUSHED; 415 } else { 416 // expand deque to push the task which is not allowed to execute 417 __kmp_realloc_task_deque(thread, thread_data); 418 } 419 } 420 } 421 // Must have room since no thread can add tasks but calling thread 422 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 423 TASK_DEQUE_SIZE(thread_data->td)); 424 425 thread_data->td.td_deque[thread_data->td.td_deque_tail] = 426 taskdata; // Push taskdata 427 // Wrap index. 428 thread_data->td.td_deque_tail = 429 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 430 TCW_4(thread_data->td.td_deque_ntasks, 431 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 432 KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self 433 KMP_FSYNC_RELEASING(taskdata); // releasing child 434 KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " 435 "task=%p ntasks=%d head=%u tail=%u\n", 436 gtid, taskdata, thread_data->td.td_deque_ntasks, 437 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 438 439 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 440 441 // Signal one worker thread to execute the task 442 if (taskdata->td_flags.hidden_helper) { 443 // Wake hidden helper threads up if they're sleeping 444 __kmp_hidden_helper_worker_thread_signal(); 445 } 446 447 return TASK_SUCCESSFULLY_PUSHED; 448 } 449 450 // __kmp_pop_current_task_from_thread: set up current task from called thread 451 // when team ends 452 // 453 // this_thr: thread structure to set current_task in. 454 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { 455 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " 456 "this_thread=%p, curtask=%p, " 457 "curtask_parent=%p\n", 458 0, this_thr, this_thr->th.th_current_task, 459 this_thr->th.th_current_task->td_parent)); 460 461 this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; 462 463 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " 464 "this_thread=%p, curtask=%p, " 465 "curtask_parent=%p\n", 466 0, this_thr, this_thr->th.th_current_task, 467 this_thr->th.th_current_task->td_parent)); 468 } 469 470 // __kmp_push_current_task_to_thread: set up current task in called thread for a 471 // new team 472 // 473 // this_thr: thread structure to set up 474 // team: team for implicit task data 475 // tid: thread within team to set up 476 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, 477 int tid) { 478 // current task of the thread is a parent of the new just created implicit 479 // tasks of new team 480 KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " 481 "curtask=%p " 482 "parent_task=%p\n", 483 tid, this_thr, this_thr->th.th_current_task, 484 team->t.t_implicit_task_taskdata[tid].td_parent)); 485 486 KMP_DEBUG_ASSERT(this_thr != NULL); 487 488 if (tid == 0) { 489 if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { 490 team->t.t_implicit_task_taskdata[0].td_parent = 491 this_thr->th.th_current_task; 492 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; 493 } 494 } else { 495 team->t.t_implicit_task_taskdata[tid].td_parent = 496 team->t.t_implicit_task_taskdata[0].td_parent; 497 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; 498 } 499 500 KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " 501 "curtask=%p " 502 "parent_task=%p\n", 503 tid, this_thr, this_thr->th.th_current_task, 504 team->t.t_implicit_task_taskdata[tid].td_parent)); 505 } 506 507 // __kmp_task_start: bookkeeping for a task starting execution 508 // 509 // GTID: global thread id of calling thread 510 // task: task starting execution 511 // current_task: task suspending 512 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, 513 kmp_taskdata_t *current_task) { 514 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 515 kmp_info_t *thread = __kmp_threads[gtid]; 516 517 KA_TRACE(10, 518 ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", 519 gtid, taskdata, current_task)); 520 521 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 522 523 // mark currently executing task as suspended 524 // TODO: GEH - make sure root team implicit task is initialized properly. 525 // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); 526 current_task->td_flags.executing = 0; 527 528 // Add task to stack if tied 529 #ifdef BUILD_TIED_TASK_STACK 530 if (taskdata->td_flags.tiedness == TASK_TIED) { 531 __kmp_push_task_stack(gtid, thread, taskdata); 532 } 533 #endif /* BUILD_TIED_TASK_STACK */ 534 535 // mark starting task as executing and as current task 536 thread->th.th_current_task = taskdata; 537 538 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || 539 taskdata->td_flags.tiedness == TASK_UNTIED); 540 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || 541 taskdata->td_flags.tiedness == TASK_UNTIED); 542 taskdata->td_flags.started = 1; 543 taskdata->td_flags.executing = 1; 544 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 545 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 546 547 // GEH TODO: shouldn't we pass some sort of location identifier here? 548 // APT: yes, we will pass location here. 549 // need to store current thread state (in a thread or taskdata structure) 550 // before setting work_state, otherwise wrong state is set after end of task 551 552 KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata)); 553 554 return; 555 } 556 557 #if OMPT_SUPPORT 558 //------------------------------------------------------------------------------ 559 // __ompt_task_init: 560 // Initialize OMPT fields maintained by a task. This will only be called after 561 // ompt_start_tool, so we already know whether ompt is enabled or not. 562 563 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) { 564 // The calls to __ompt_task_init already have the ompt_enabled condition. 565 task->ompt_task_info.task_data.value = 0; 566 task->ompt_task_info.frame.exit_frame = ompt_data_none; 567 task->ompt_task_info.frame.enter_frame = ompt_data_none; 568 task->ompt_task_info.frame.exit_frame_flags = 569 ompt_frame_runtime | ompt_frame_framepointer; 570 task->ompt_task_info.frame.enter_frame_flags = 571 ompt_frame_runtime | ompt_frame_framepointer; 572 } 573 574 // __ompt_task_start: 575 // Build and trigger task-begin event 576 static inline void __ompt_task_start(kmp_task_t *task, 577 kmp_taskdata_t *current_task, 578 kmp_int32 gtid) { 579 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 580 ompt_task_status_t status = ompt_task_switch; 581 if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { 582 status = ompt_task_yield; 583 __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; 584 } 585 /* let OMPT know that we're about to run this task */ 586 if (ompt_enabled.ompt_callback_task_schedule) { 587 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 588 &(current_task->ompt_task_info.task_data), status, 589 &(taskdata->ompt_task_info.task_data)); 590 } 591 taskdata->ompt_task_info.scheduling_parent = current_task; 592 } 593 594 // __ompt_task_finish: 595 // Build and trigger final task-schedule event 596 static inline void __ompt_task_finish(kmp_task_t *task, 597 kmp_taskdata_t *resumed_task, 598 ompt_task_status_t status) { 599 if (ompt_enabled.ompt_callback_task_schedule) { 600 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 601 if (__kmp_omp_cancellation && taskdata->td_taskgroup && 602 taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { 603 status = ompt_task_cancel; 604 } 605 606 /* let OMPT know that we're returning to the callee task */ 607 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 608 &(taskdata->ompt_task_info.task_data), status, 609 (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); 610 } 611 } 612 #endif 613 614 template <bool ompt> 615 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, 616 kmp_task_t *task, 617 void *frame_address, 618 void *return_address) { 619 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 620 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 621 622 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " 623 "current_task=%p\n", 624 gtid, loc_ref, taskdata, current_task)); 625 626 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 627 // untied task needs to increment counter so that the task structure is not 628 // freed prematurely 629 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 630 KMP_DEBUG_USE_VAR(counter); 631 KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " 632 "incremented for task %p\n", 633 gtid, counter, taskdata)); 634 } 635 636 taskdata->td_flags.task_serial = 637 1; // Execute this task immediately, not deferred. 638 __kmp_task_start(gtid, task, current_task); 639 640 #if OMPT_SUPPORT 641 if (ompt) { 642 if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { 643 current_task->ompt_task_info.frame.enter_frame.ptr = 644 taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; 645 current_task->ompt_task_info.frame.enter_frame_flags = 646 taskdata->ompt_task_info.frame.exit_frame_flags = 647 ompt_frame_application | ompt_frame_framepointer; 648 } 649 if (ompt_enabled.ompt_callback_task_create) { 650 ompt_task_info_t *parent_info = &(current_task->ompt_task_info); 651 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 652 &(parent_info->task_data), &(parent_info->frame), 653 &(taskdata->ompt_task_info.task_data), 654 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0, 655 return_address); 656 } 657 __ompt_task_start(task, current_task, gtid); 658 } 659 #endif // OMPT_SUPPORT 660 661 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid, 662 loc_ref, taskdata)); 663 } 664 665 #if OMPT_SUPPORT 666 OMPT_NOINLINE 667 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 668 kmp_task_t *task, 669 void *frame_address, 670 void *return_address) { 671 __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, 672 return_address); 673 } 674 #endif // OMPT_SUPPORT 675 676 // __kmpc_omp_task_begin_if0: report that a given serialized task has started 677 // execution 678 // 679 // loc_ref: source location information; points to beginning of task block. 680 // gtid: global thread number. 681 // task: task thunk for the started task. 682 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 683 kmp_task_t *task) { 684 #if OMPT_SUPPORT 685 if (UNLIKELY(ompt_enabled.enabled)) { 686 OMPT_STORE_RETURN_ADDRESS(gtid); 687 __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, 688 OMPT_GET_FRAME_ADDRESS(1), 689 OMPT_LOAD_RETURN_ADDRESS(gtid)); 690 return; 691 } 692 #endif 693 __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); 694 } 695 696 #ifdef TASK_UNUSED 697 // __kmpc_omp_task_begin: report that a given task has started execution 698 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 699 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { 700 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 701 702 KA_TRACE( 703 10, 704 ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", 705 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); 706 707 __kmp_task_start(gtid, task, current_task); 708 709 KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid, 710 loc_ref, KMP_TASK_TO_TASKDATA(task))); 711 return; 712 } 713 #endif // TASK_UNUSED 714 715 // __kmp_free_task: free the current task space and the space for shareds 716 // 717 // gtid: Global thread ID of calling thread 718 // taskdata: task to free 719 // thread: thread data structure of caller 720 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, 721 kmp_info_t *thread) { 722 KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid, 723 taskdata)); 724 725 // Check to make sure all flags and counters have the correct values 726 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 727 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); 728 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); 729 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 730 KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || 731 taskdata->td_flags.task_serial == 1); 732 KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); 733 734 taskdata->td_flags.freed = 1; 735 ANNOTATE_HAPPENS_BEFORE(taskdata); 736 // deallocate the taskdata and shared variable blocks associated with this task 737 #if USE_FAST_MEMORY 738 __kmp_fast_free(thread, taskdata); 739 #else /* ! USE_FAST_MEMORY */ 740 __kmp_thread_free(thread, taskdata); 741 #endif 742 KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata)); 743 } 744 745 // __kmp_free_task_and_ancestors: free the current task and ancestors without 746 // children 747 // 748 // gtid: Global thread ID of calling thread 749 // taskdata: task to free 750 // thread: thread data structure of caller 751 static void __kmp_free_task_and_ancestors(kmp_int32 gtid, 752 kmp_taskdata_t *taskdata, 753 kmp_info_t *thread) { 754 // Proxy tasks must always be allowed to free their parents 755 // because they can be run in background even in serial mode. 756 kmp_int32 team_serial = 757 (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && 758 !taskdata->td_flags.proxy; 759 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 760 761 kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 762 KMP_DEBUG_ASSERT(children >= 0); 763 764 // Now, go up the ancestor tree to see if any ancestors can now be freed. 765 while (children == 0) { 766 kmp_taskdata_t *parent_taskdata = taskdata->td_parent; 767 768 KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " 769 "and freeing itself\n", 770 gtid, taskdata)); 771 772 // --- Deallocate my ancestor task --- 773 __kmp_free_task(gtid, taskdata, thread); 774 775 taskdata = parent_taskdata; 776 777 if (team_serial) 778 return; 779 // Stop checking ancestors at implicit task instead of walking up ancestor 780 // tree to avoid premature deallocation of ancestors. 781 if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { 782 if (taskdata->td_dephash) { // do we need to cleanup dephash? 783 int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); 784 kmp_tasking_flags_t flags_old = taskdata->td_flags; 785 if (children == 0 && flags_old.complete == 1) { 786 kmp_tasking_flags_t flags_new = flags_old; 787 flags_new.complete = 0; 788 if (KMP_COMPARE_AND_STORE_ACQ32( 789 RCAST(kmp_int32 *, &taskdata->td_flags), 790 *RCAST(kmp_int32 *, &flags_old), 791 *RCAST(kmp_int32 *, &flags_new))) { 792 KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " 793 "dephash of implicit task %p\n", 794 gtid, taskdata)); 795 // cleanup dephash of finished implicit task 796 __kmp_dephash_free_entries(thread, taskdata->td_dephash); 797 } 798 } 799 } 800 return; 801 } 802 // Predecrement simulated by "- 1" calculation 803 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 804 KMP_DEBUG_ASSERT(children >= 0); 805 } 806 807 KA_TRACE( 808 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " 809 "not freeing it yet\n", 810 gtid, taskdata, children)); 811 } 812 813 // __kmp_task_finish: bookkeeping to do when a task finishes execution 814 // 815 // gtid: global thread ID for calling thread 816 // task: task to be finished 817 // resumed_task: task to be resumed. (may be NULL if task is serialized) 818 // 819 // template<ompt>: effectively ompt_enabled.enabled!=0 820 // the version with ompt=false is inlined, allowing to optimize away all ompt 821 // code in this case 822 template <bool ompt> 823 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, 824 kmp_taskdata_t *resumed_task) { 825 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 826 kmp_info_t *thread = __kmp_threads[gtid]; 827 kmp_task_team_t *task_team = 828 thread->th.th_task_team; // might be NULL for serial teams... 829 kmp_int32 children = 0; 830 831 KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " 832 "task %p\n", 833 gtid, taskdata, resumed_task)); 834 835 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 836 837 // Pop task from stack if tied 838 #ifdef BUILD_TIED_TASK_STACK 839 if (taskdata->td_flags.tiedness == TASK_TIED) { 840 __kmp_pop_task_stack(gtid, thread, taskdata); 841 } 842 #endif /* BUILD_TIED_TASK_STACK */ 843 844 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 845 // untied task needs to check the counter so that the task structure is not 846 // freed prematurely 847 kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; 848 KA_TRACE( 849 20, 850 ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n", 851 gtid, counter, taskdata)); 852 if (counter > 0) { 853 // untied task is not done, to be continued possibly by other thread, do 854 // not free it now 855 if (resumed_task == NULL) { 856 KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); 857 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 858 // task is the parent 859 } 860 thread->th.th_current_task = resumed_task; // restore current_task 861 resumed_task->td_flags.executing = 1; // resume previous task 862 KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " 863 "resuming task %p\n", 864 gtid, taskdata, resumed_task)); 865 return; 866 } 867 } 868 869 // bookkeeping for resuming task: 870 // GEH - note tasking_ser => task_serial 871 KMP_DEBUG_ASSERT( 872 (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == 873 taskdata->td_flags.task_serial); 874 if (taskdata->td_flags.task_serial) { 875 if (resumed_task == NULL) { 876 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 877 // task is the parent 878 } 879 } else { 880 KMP_DEBUG_ASSERT(resumed_task != 881 NULL); // verify that resumed task is passed as argument 882 } 883 884 /* If the tasks' destructor thunk flag has been set, we need to invoke the 885 destructor thunk that has been generated by the compiler. The code is 886 placed here, since at this point other tasks might have been released 887 hence overlapping the destructor invocations with some other work in the 888 released tasks. The OpenMP spec is not specific on when the destructors 889 are invoked, so we should be free to choose. */ 890 if (UNLIKELY(taskdata->td_flags.destructors_thunk)) { 891 kmp_routine_entry_t destr_thunk = task->data1.destructors; 892 KMP_ASSERT(destr_thunk); 893 destr_thunk(gtid, task); 894 } 895 896 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 897 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); 898 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 899 900 bool detach = false; 901 if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) { 902 if (taskdata->td_allow_completion_event.type == 903 KMP_EVENT_ALLOW_COMPLETION) { 904 // event hasn't been fulfilled yet. Try to detach task. 905 __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 906 if (taskdata->td_allow_completion_event.type == 907 KMP_EVENT_ALLOW_COMPLETION) { 908 // task finished execution 909 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 910 taskdata->td_flags.executing = 0; // suspend the finishing task 911 912 #if OMPT_SUPPORT 913 // For a detached task, which is not completed, we switch back 914 // the omp_fulfill_event signals completion 915 // locking is necessary to avoid a race with ompt_task_late_fulfill 916 if (ompt) 917 __ompt_task_finish(task, resumed_task, ompt_task_detach); 918 #endif 919 920 // no access to taskdata after this point! 921 // __kmp_fulfill_event might free taskdata at any time from now 922 923 taskdata->td_flags.proxy = TASK_PROXY; // proxify! 924 detach = true; 925 } 926 __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 927 } 928 } 929 930 if (!detach) { 931 taskdata->td_flags.complete = 1; // mark the task as completed 932 933 #if OMPT_SUPPORT 934 // This is not a detached task, we are done here 935 if (ompt) 936 __ompt_task_finish(task, resumed_task, ompt_task_complete); 937 #endif 938 939 // Only need to keep track of count if team parallel and tasking not 940 // serialized, or task is detachable and event has already been fulfilled 941 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) || 942 taskdata->td_flags.detachable == TASK_DETACHABLE || 943 taskdata->td_flags.hidden_helper) { 944 // Predecrement simulated by "- 1" calculation 945 children = 946 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 947 KMP_DEBUG_ASSERT(children >= 0); 948 if (taskdata->td_taskgroup) 949 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 950 __kmp_release_deps(gtid, taskdata); 951 } else if (task_team && task_team->tt.tt_found_proxy_tasks) { 952 // if we found proxy tasks there could exist a dependency chain 953 // with the proxy task as origin 954 __kmp_release_deps(gtid, taskdata); 955 } 956 // td_flags.executing must be marked as 0 after __kmp_release_deps has been 957 // called. Othertwise, if a task is executed immediately from the 958 // release_deps code, the flag will be reset to 1 again by this same 959 // function 960 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 961 taskdata->td_flags.executing = 0; // suspend the finishing task 962 } 963 964 KA_TRACE( 965 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", 966 gtid, taskdata, children)); 967 968 // Free this task and then ancestor tasks if they have no children. 969 // Restore th_current_task first as suggested by John: 970 // johnmc: if an asynchronous inquiry peers into the runtime system 971 // it doesn't see the freed task as the current task. 972 thread->th.th_current_task = resumed_task; 973 if (!detach) 974 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 975 976 // TODO: GEH - make sure root team implicit task is initialized properly. 977 // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); 978 resumed_task->td_flags.executing = 1; // resume previous task 979 980 KA_TRACE( 981 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", 982 gtid, taskdata, resumed_task)); 983 984 return; 985 } 986 987 template <bool ompt> 988 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, 989 kmp_int32 gtid, 990 kmp_task_t *task) { 991 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", 992 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 993 KMP_DEBUG_ASSERT(gtid >= 0); 994 // this routine will provide task to resume 995 __kmp_task_finish<ompt>(gtid, task, NULL); 996 997 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", 998 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 999 1000 #if OMPT_SUPPORT 1001 if (ompt) { 1002 ompt_frame_t *ompt_frame; 1003 __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); 1004 ompt_frame->enter_frame = ompt_data_none; 1005 ompt_frame->enter_frame_flags = 1006 ompt_frame_runtime | ompt_frame_framepointer; 1007 } 1008 #endif 1009 1010 return; 1011 } 1012 1013 #if OMPT_SUPPORT 1014 OMPT_NOINLINE 1015 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 1016 kmp_task_t *task) { 1017 __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); 1018 } 1019 #endif // OMPT_SUPPORT 1020 1021 // __kmpc_omp_task_complete_if0: report that a task has completed execution 1022 // 1023 // loc_ref: source location information; points to end of task block. 1024 // gtid: global thread number. 1025 // task: task thunk for the completed task. 1026 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 1027 kmp_task_t *task) { 1028 #if OMPT_SUPPORT 1029 if (UNLIKELY(ompt_enabled.enabled)) { 1030 __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); 1031 return; 1032 } 1033 #endif 1034 __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); 1035 } 1036 1037 #ifdef TASK_UNUSED 1038 // __kmpc_omp_task_complete: report that a task has completed execution 1039 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 1040 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 1041 kmp_task_t *task) { 1042 KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid, 1043 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1044 1045 __kmp_task_finish<false>(gtid, task, 1046 NULL); // Not sure how to find task to resume 1047 1048 KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid, 1049 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1050 return; 1051 } 1052 #endif // TASK_UNUSED 1053 1054 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit 1055 // task for a given thread 1056 // 1057 // loc_ref: reference to source location of parallel region 1058 // this_thr: thread data structure corresponding to implicit task 1059 // team: team for this_thr 1060 // tid: thread id of given thread within team 1061 // set_curr_task: TRUE if need to push current task to thread 1062 // NOTE: Routine does not set up the implicit task ICVS. This is assumed to 1063 // have already been done elsewhere. 1064 // TODO: Get better loc_ref. Value passed in may be NULL 1065 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 1066 kmp_team_t *team, int tid, int set_curr_task) { 1067 kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; 1068 1069 KF_TRACE( 1070 10, 1071 ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", 1072 tid, team, task, set_curr_task ? "TRUE" : "FALSE")); 1073 1074 task->td_task_id = KMP_GEN_TASK_ID(); 1075 task->td_team = team; 1076 // task->td_parent = NULL; // fix for CQ230101 (broken parent task info 1077 // in debugger) 1078 task->td_ident = loc_ref; 1079 task->td_taskwait_ident = NULL; 1080 task->td_taskwait_counter = 0; 1081 task->td_taskwait_thread = 0; 1082 1083 task->td_flags.tiedness = TASK_TIED; 1084 task->td_flags.tasktype = TASK_IMPLICIT; 1085 task->td_flags.proxy = TASK_FULL; 1086 1087 // All implicit tasks are executed immediately, not deferred 1088 task->td_flags.task_serial = 1; 1089 task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1090 task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1091 1092 task->td_flags.started = 1; 1093 task->td_flags.executing = 1; 1094 task->td_flags.complete = 0; 1095 task->td_flags.freed = 0; 1096 1097 task->td_depnode = NULL; 1098 task->td_last_tied = task; 1099 task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1100 1101 if (set_curr_task) { // only do this init first time thread is created 1102 KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); 1103 // Not used: don't need to deallocate implicit task 1104 KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); 1105 task->td_taskgroup = NULL; // An implicit task does not have taskgroup 1106 task->td_dephash = NULL; 1107 __kmp_push_current_task_to_thread(this_thr, team, tid); 1108 } else { 1109 KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); 1110 KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); 1111 } 1112 1113 #if OMPT_SUPPORT 1114 if (UNLIKELY(ompt_enabled.enabled)) 1115 __ompt_task_init(task, tid); 1116 #endif 1117 1118 KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid, 1119 team, task)); 1120 } 1121 1122 // __kmp_finish_implicit_task: Release resources associated to implicit tasks 1123 // at the end of parallel regions. Some resources are kept for reuse in the next 1124 // parallel region. 1125 // 1126 // thread: thread data structure corresponding to implicit task 1127 void __kmp_finish_implicit_task(kmp_info_t *thread) { 1128 kmp_taskdata_t *task = thread->th.th_current_task; 1129 if (task->td_dephash) { 1130 int children; 1131 task->td_flags.complete = 1; 1132 children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); 1133 kmp_tasking_flags_t flags_old = task->td_flags; 1134 if (children == 0 && flags_old.complete == 1) { 1135 kmp_tasking_flags_t flags_new = flags_old; 1136 flags_new.complete = 0; 1137 if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), 1138 *RCAST(kmp_int32 *, &flags_old), 1139 *RCAST(kmp_int32 *, &flags_new))) { 1140 KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " 1141 "dephash of implicit task %p\n", 1142 thread->th.th_info.ds.ds_gtid, task)); 1143 __kmp_dephash_free_entries(thread, task->td_dephash); 1144 } 1145 } 1146 } 1147 } 1148 1149 // __kmp_free_implicit_task: Release resources associated to implicit tasks 1150 // when these are destroyed regions 1151 // 1152 // thread: thread data structure corresponding to implicit task 1153 void __kmp_free_implicit_task(kmp_info_t *thread) { 1154 kmp_taskdata_t *task = thread->th.th_current_task; 1155 if (task && task->td_dephash) { 1156 __kmp_dephash_free(thread, task->td_dephash); 1157 task->td_dephash = NULL; 1158 } 1159 } 1160 1161 // Round up a size to a power of two specified by val: Used to insert padding 1162 // between structures co-allocated using a single malloc() call 1163 static size_t __kmp_round_up_to_val(size_t size, size_t val) { 1164 if (size & (val - 1)) { 1165 size &= ~(val - 1); 1166 if (size <= KMP_SIZE_T_MAX - val) { 1167 size += val; // Round up if there is no overflow. 1168 } 1169 } 1170 return size; 1171 } // __kmp_round_up_to_va 1172 1173 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task 1174 // 1175 // loc_ref: source location information 1176 // gtid: global thread number. 1177 // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' 1178 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. 1179 // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including 1180 // private vars accessed in task. 1181 // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed 1182 // in task. 1183 // task_entry: Pointer to task code entry point generated by compiler. 1184 // returns: a pointer to the allocated kmp_task_t structure (task). 1185 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1186 kmp_tasking_flags_t *flags, 1187 size_t sizeof_kmp_task_t, size_t sizeof_shareds, 1188 kmp_routine_entry_t task_entry) { 1189 kmp_task_t *task; 1190 kmp_taskdata_t *taskdata; 1191 kmp_info_t *thread = __kmp_threads[gtid]; 1192 kmp_info_t *encountering_thread = thread; 1193 kmp_team_t *team = thread->th.th_team; 1194 kmp_taskdata_t *parent_task = thread->th.th_current_task; 1195 size_t shareds_offset; 1196 1197 if (UNLIKELY(!TCR_4(__kmp_init_middle))) 1198 __kmp_middle_initialize(); 1199 1200 if (flags->hidden_helper) { 1201 if (__kmp_enable_hidden_helper) { 1202 if (!TCR_4(__kmp_init_hidden_helper)) 1203 __kmp_hidden_helper_initialize(); 1204 1205 // For a hidden helper task encountered by a regular thread, we will push 1206 // the task to the (gtid%__kmp_hidden_helper_threads_num)-th hidden helper 1207 // thread. 1208 if (!KMP_HIDDEN_HELPER_THREAD(gtid)) { 1209 thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)]; 1210 // We don't change the parent-child relation for hidden helper task as 1211 // we need that to do per-task-region synchronization. 1212 } 1213 } else { 1214 // If the hidden helper task is not enabled, reset the flag to FALSE. 1215 flags->hidden_helper = FALSE; 1216 } 1217 } 1218 1219 KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " 1220 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1221 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, 1222 sizeof_shareds, task_entry)); 1223 1224 KMP_DEBUG_ASSERT(parent_task); 1225 if (parent_task->td_flags.final) { 1226 if (flags->merged_if0) { 1227 } 1228 flags->final = 1; 1229 } 1230 1231 if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { 1232 // Untied task encountered causes the TSC algorithm to check entire deque of 1233 // the victim thread. If no untied task encountered, then checking the head 1234 // of the deque should be enough. 1235 KMP_CHECK_UPDATE( 1236 encountering_thread->th.th_task_team->tt.tt_untied_task_encountered, 1); 1237 } 1238 1239 // Detachable tasks are not proxy tasks yet but could be in the future. Doing 1240 // the tasking setup 1241 // when that happens is too late. 1242 if (UNLIKELY(flags->proxy == TASK_PROXY || 1243 flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) { 1244 if (flags->proxy == TASK_PROXY) { 1245 flags->tiedness = TASK_UNTIED; 1246 flags->merged_if0 = 1; 1247 } 1248 /* are we running in a sequential parallel or tskm_immediate_exec... we need 1249 tasking support enabled */ 1250 if ((encountering_thread->th.th_task_team) == NULL) { 1251 /* This should only happen if the team is serialized 1252 setup a task team and propagate it to the thread */ 1253 KMP_DEBUG_ASSERT(team->t.t_serialized); 1254 KA_TRACE(30, 1255 ("T#%d creating task team in __kmp_task_alloc for proxy task\n", 1256 gtid)); 1257 __kmp_task_team_setup( 1258 encountering_thread, team, 1259 1); // 1 indicates setup the current team regardless of nthreads 1260 encountering_thread->th.th_task_team = 1261 team->t.t_task_team[encountering_thread->th.th_task_state]; 1262 } 1263 kmp_task_team_t *task_team = encountering_thread->th.th_task_team; 1264 1265 /* tasking must be enabled now as the task might not be pushed */ 1266 if (!KMP_TASKING_ENABLED(task_team)) { 1267 KA_TRACE( 1268 30, 1269 ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid)); 1270 __kmp_enable_tasking(task_team, encountering_thread); 1271 kmp_int32 tid = encountering_thread->th.th_info.ds.ds_tid; 1272 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 1273 // No lock needed since only owner can allocate 1274 if (thread_data->td.td_deque == NULL) { 1275 __kmp_alloc_task_deque(encountering_thread, thread_data); 1276 } 1277 } 1278 1279 if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) && 1280 task_team->tt.tt_found_proxy_tasks == FALSE) 1281 TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); 1282 if (flags->hidden_helper && 1283 task_team->tt.tt_hidden_helper_task_encountered == FALSE) 1284 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE); 1285 } 1286 1287 // Calculate shared structure offset including padding after kmp_task_t struct 1288 // to align pointers in shared struct 1289 shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; 1290 shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *)); 1291 1292 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 1293 KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid, 1294 shareds_offset)); 1295 KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid, 1296 sizeof_shareds)); 1297 1298 // Avoid double allocation here by combining shareds with taskdata 1299 #if USE_FAST_MEMORY 1300 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate( 1301 encountering_thread, shareds_offset + sizeof_shareds); 1302 #else /* ! USE_FAST_MEMORY */ 1303 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc( 1304 encountering_thread, shareds_offset + sizeof_shareds); 1305 #endif /* USE_FAST_MEMORY */ 1306 ANNOTATE_HAPPENS_AFTER(taskdata); 1307 1308 task = KMP_TASKDATA_TO_TASK(taskdata); 1309 1310 // Make sure task & taskdata are aligned appropriately 1311 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD 1312 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); 1313 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); 1314 #else 1315 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); 1316 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); 1317 #endif 1318 if (sizeof_shareds > 0) { 1319 // Avoid double allocation here by combining shareds with taskdata 1320 task->shareds = &((char *)taskdata)[shareds_offset]; 1321 // Make sure shareds struct is aligned to pointer size 1322 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 1323 0); 1324 } else { 1325 task->shareds = NULL; 1326 } 1327 task->routine = task_entry; 1328 task->part_id = 0; // AC: Always start with 0 part id 1329 1330 taskdata->td_task_id = KMP_GEN_TASK_ID(); 1331 taskdata->td_team = thread->th.th_team; 1332 taskdata->td_alloc_thread = encountering_thread; 1333 taskdata->td_parent = parent_task; 1334 taskdata->td_level = parent_task->td_level + 1; // increment nesting level 1335 KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); 1336 taskdata->td_ident = loc_ref; 1337 taskdata->td_taskwait_ident = NULL; 1338 taskdata->td_taskwait_counter = 0; 1339 taskdata->td_taskwait_thread = 0; 1340 KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); 1341 // avoid copying icvs for proxy tasks 1342 if (flags->proxy == TASK_FULL) 1343 copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs); 1344 1345 taskdata->td_flags.tiedness = flags->tiedness; 1346 taskdata->td_flags.final = flags->final; 1347 taskdata->td_flags.merged_if0 = flags->merged_if0; 1348 taskdata->td_flags.destructors_thunk = flags->destructors_thunk; 1349 taskdata->td_flags.proxy = flags->proxy; 1350 taskdata->td_flags.detachable = flags->detachable; 1351 taskdata->td_flags.hidden_helper = flags->hidden_helper; 1352 taskdata->encountering_gtid = gtid; 1353 taskdata->td_task_team = thread->th.th_task_team; 1354 taskdata->td_size_alloc = shareds_offset + sizeof_shareds; 1355 taskdata->td_flags.tasktype = TASK_EXPLICIT; 1356 1357 // GEH - TODO: fix this to copy parent task's value of tasking_ser flag 1358 taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1359 1360 // GEH - TODO: fix this to copy parent task's value of team_serial flag 1361 taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1362 1363 // GEH - Note we serialize the task if the team is serialized to make sure 1364 // implicit parallel region tasks are not left until program termination to 1365 // execute. Also, it helps locality to execute immediately. 1366 1367 taskdata->td_flags.task_serial = 1368 (parent_task->td_flags.final || taskdata->td_flags.team_serial || 1369 taskdata->td_flags.tasking_ser || flags->merged_if0); 1370 1371 taskdata->td_flags.started = 0; 1372 taskdata->td_flags.executing = 0; 1373 taskdata->td_flags.complete = 0; 1374 taskdata->td_flags.freed = 0; 1375 1376 taskdata->td_flags.native = flags->native; 1377 1378 KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); 1379 // start at one because counts current task and children 1380 KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); 1381 taskdata->td_taskgroup = 1382 parent_task->td_taskgroup; // task inherits taskgroup from the parent task 1383 taskdata->td_dephash = NULL; 1384 taskdata->td_depnode = NULL; 1385 if (flags->tiedness == TASK_UNTIED) 1386 taskdata->td_last_tied = NULL; // will be set when the task is scheduled 1387 else 1388 taskdata->td_last_tied = taskdata; 1389 taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1390 #if OMPT_SUPPORT 1391 if (UNLIKELY(ompt_enabled.enabled)) 1392 __ompt_task_init(taskdata, gtid); 1393 #endif 1394 // Only need to keep track of child task counts if team parallel and tasking 1395 // not serialized or if it is a proxy or detachable or hidden helper task 1396 if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE || 1397 flags->hidden_helper || 1398 !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 1399 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 1400 if (parent_task->td_taskgroup) 1401 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 1402 // Only need to keep track of allocated child tasks for explicit tasks since 1403 // implicit not deallocated 1404 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { 1405 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 1406 } 1407 } 1408 1409 if (flags->hidden_helper) { 1410 taskdata->td_flags.task_serial = FALSE; 1411 // Increment the number of hidden helper tasks to be executed 1412 KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks); 1413 } 1414 1415 KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", 1416 gtid, taskdata, taskdata->td_parent)); 1417 ANNOTATE_HAPPENS_BEFORE(task); 1418 1419 return task; 1420 } 1421 1422 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1423 kmp_int32 flags, size_t sizeof_kmp_task_t, 1424 size_t sizeof_shareds, 1425 kmp_routine_entry_t task_entry) { 1426 kmp_task_t *retval; 1427 kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; 1428 __kmp_assert_valid_gtid(gtid); 1429 input_flags->native = FALSE; 1430 // __kmp_task_alloc() sets up all other runtime flags 1431 KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " 1432 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1433 gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", 1434 input_flags->proxy ? "proxy" : "", 1435 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t, 1436 sizeof_shareds, task_entry)); 1437 1438 retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t, 1439 sizeof_shareds, task_entry); 1440 1441 KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval)); 1442 1443 return retval; 1444 } 1445 1446 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1447 kmp_int32 flags, 1448 size_t sizeof_kmp_task_t, 1449 size_t sizeof_shareds, 1450 kmp_routine_entry_t task_entry, 1451 kmp_int64 device_id) { 1452 if (__kmp_enable_hidden_helper) { 1453 auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags); 1454 input_flags.hidden_helper = TRUE; 1455 } 1456 1457 return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, 1458 sizeof_shareds, task_entry); 1459 } 1460 1461 /*! 1462 @ingroup TASKING 1463 @param loc_ref location of the original task directive 1464 @param gtid Global Thread ID of encountering thread 1465 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new 1466 task'' 1467 @param naffins Number of affinity items 1468 @param affin_list List of affinity items 1469 @return Returns non-zero if registering affinity information was not successful. 1470 Returns 0 if registration was successful 1471 This entry registers the affinity information attached to a task with the task 1472 thunk structure kmp_taskdata_t. 1473 */ 1474 kmp_int32 1475 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, 1476 kmp_task_t *new_task, kmp_int32 naffins, 1477 kmp_task_affinity_info_t *affin_list) { 1478 return 0; 1479 } 1480 1481 // __kmp_invoke_task: invoke the specified task 1482 // 1483 // gtid: global thread ID of caller 1484 // task: the task to invoke 1485 // current_task: the task to resume after task invocation 1486 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, 1487 kmp_taskdata_t *current_task) { 1488 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 1489 kmp_info_t *thread; 1490 int discard = 0 /* false */; 1491 KA_TRACE( 1492 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", 1493 gtid, taskdata, current_task)); 1494 KMP_DEBUG_ASSERT(task); 1495 if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY && 1496 taskdata->td_flags.complete == 1)) { 1497 // This is a proxy task that was already completed but it needs to run 1498 // its bottom-half finish 1499 KA_TRACE( 1500 30, 1501 ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n", 1502 gtid, taskdata)); 1503 1504 __kmp_bottom_half_finish_proxy(gtid, task); 1505 1506 KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " 1507 "proxy task %p, resuming task %p\n", 1508 gtid, taskdata, current_task)); 1509 1510 return; 1511 } 1512 1513 #if OMPT_SUPPORT 1514 // For untied tasks, the first task executed only calls __kmpc_omp_task and 1515 // does not execute code. 1516 ompt_thread_info_t oldInfo; 1517 if (UNLIKELY(ompt_enabled.enabled)) { 1518 // Store the threads states and restore them after the task 1519 thread = __kmp_threads[gtid]; 1520 oldInfo = thread->th.ompt_thread_info; 1521 thread->th.ompt_thread_info.wait_id = 0; 1522 thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) 1523 ? ompt_state_work_serial 1524 : ompt_state_work_parallel; 1525 taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1526 } 1527 #endif 1528 1529 // Decreament the counter of hidden helper tasks to be executed 1530 if (taskdata->td_flags.hidden_helper) { 1531 // Hidden helper tasks can only be executed by hidden helper threads 1532 KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid)); 1533 KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks); 1534 } 1535 1536 // Proxy tasks are not handled by the runtime 1537 if (taskdata->td_flags.proxy != TASK_PROXY) { 1538 ANNOTATE_HAPPENS_AFTER(task); 1539 __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded 1540 } 1541 1542 // TODO: cancel tasks if the parallel region has also been cancelled 1543 // TODO: check if this sequence can be hoisted above __kmp_task_start 1544 // if cancellation has been enabled for this run ... 1545 if (UNLIKELY(__kmp_omp_cancellation)) { 1546 thread = __kmp_threads[gtid]; 1547 kmp_team_t *this_team = thread->th.th_team; 1548 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 1549 if ((taskgroup && taskgroup->cancel_request) || 1550 (this_team->t.t_cancel_request == cancel_parallel)) { 1551 #if OMPT_SUPPORT && OMPT_OPTIONAL 1552 ompt_data_t *task_data; 1553 if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { 1554 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 1555 ompt_callbacks.ompt_callback(ompt_callback_cancel)( 1556 task_data, 1557 ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup 1558 : ompt_cancel_parallel) | 1559 ompt_cancel_discarded_task, 1560 NULL); 1561 } 1562 #endif 1563 KMP_COUNT_BLOCK(TASK_cancelled); 1564 // this task belongs to a task group and we need to cancel it 1565 discard = 1 /* true */; 1566 } 1567 } 1568 1569 // Invoke the task routine and pass in relevant data. 1570 // Thunks generated by gcc take a different argument list. 1571 if (!discard) { 1572 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 1573 taskdata->td_last_tied = current_task->td_last_tied; 1574 KMP_DEBUG_ASSERT(taskdata->td_last_tied); 1575 } 1576 #if KMP_STATS_ENABLED 1577 KMP_COUNT_BLOCK(TASK_executed); 1578 switch (KMP_GET_THREAD_STATE()) { 1579 case FORK_JOIN_BARRIER: 1580 KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); 1581 break; 1582 case PLAIN_BARRIER: 1583 KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); 1584 break; 1585 case TASKYIELD: 1586 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); 1587 break; 1588 case TASKWAIT: 1589 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); 1590 break; 1591 case TASKGROUP: 1592 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); 1593 break; 1594 default: 1595 KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); 1596 break; 1597 } 1598 #endif // KMP_STATS_ENABLED 1599 1600 // OMPT task begin 1601 #if OMPT_SUPPORT 1602 if (UNLIKELY(ompt_enabled.enabled)) 1603 __ompt_task_start(task, current_task, gtid); 1604 #endif 1605 1606 #if OMPD_SUPPORT 1607 if (ompd_state & OMPD_ENABLE_BP) 1608 ompd_bp_task_begin(); 1609 #endif 1610 1611 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1612 kmp_uint64 cur_time; 1613 kmp_int32 kmp_itt_count_task = 1614 __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && 1615 current_task->td_flags.tasktype == TASK_IMPLICIT; 1616 if (kmp_itt_count_task) { 1617 thread = __kmp_threads[gtid]; 1618 // Time outer level explicit task on barrier for adjusting imbalance time 1619 if (thread->th.th_bar_arrive_time) 1620 cur_time = __itt_get_timestamp(); 1621 else 1622 kmp_itt_count_task = 0; // thread is not on a barrier - skip timing 1623 } 1624 KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task) 1625 #endif 1626 1627 #ifdef KMP_GOMP_COMPAT 1628 if (taskdata->td_flags.native) { 1629 ((void (*)(void *))(*(task->routine)))(task->shareds); 1630 } else 1631 #endif /* KMP_GOMP_COMPAT */ 1632 { 1633 (*(task->routine))(gtid, task); 1634 } 1635 KMP_POP_PARTITIONED_TIMER(); 1636 1637 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1638 if (kmp_itt_count_task) { 1639 // Barrier imbalance - adjust arrive time with the task duration 1640 thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); 1641 } 1642 KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed) 1643 KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent 1644 #endif 1645 } 1646 1647 #if OMPD_SUPPORT 1648 if (ompd_state & OMPD_ENABLE_BP) 1649 ompd_bp_task_end(); 1650 #endif 1651 1652 // Proxy tasks are not handled by the runtime 1653 if (taskdata->td_flags.proxy != TASK_PROXY) { 1654 ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent); 1655 #if OMPT_SUPPORT 1656 if (UNLIKELY(ompt_enabled.enabled)) { 1657 thread->th.ompt_thread_info = oldInfo; 1658 if (taskdata->td_flags.tiedness == TASK_TIED) { 1659 taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1660 } 1661 __kmp_task_finish<true>(gtid, task, current_task); 1662 } else 1663 #endif 1664 __kmp_task_finish<false>(gtid, task, current_task); 1665 } 1666 1667 KA_TRACE( 1668 30, 1669 ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n", 1670 gtid, taskdata, current_task)); 1671 return; 1672 } 1673 1674 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution 1675 // 1676 // loc_ref: location of original task pragma (ignored) 1677 // gtid: Global Thread ID of encountering thread 1678 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' 1679 // Returns: 1680 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1681 // be resumed later. 1682 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1683 // resumed later. 1684 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 1685 kmp_task_t *new_task) { 1686 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1687 1688 KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid, 1689 loc_ref, new_taskdata)); 1690 1691 #if OMPT_SUPPORT 1692 kmp_taskdata_t *parent; 1693 if (UNLIKELY(ompt_enabled.enabled)) { 1694 parent = new_taskdata->td_parent; 1695 if (ompt_enabled.ompt_callback_task_create) { 1696 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1697 &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), 1698 &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0, 1699 OMPT_GET_RETURN_ADDRESS(0)); 1700 } 1701 } 1702 #endif 1703 1704 /* Should we execute the new task or queue it? For now, let's just always try 1705 to queue it. If the queue fills up, then we'll execute it. */ 1706 1707 if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1708 { // Execute this task immediately 1709 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1710 new_taskdata->td_flags.task_serial = 1; 1711 __kmp_invoke_task(gtid, new_task, current_task); 1712 } 1713 1714 KA_TRACE( 1715 10, 1716 ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " 1717 "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", 1718 gtid, loc_ref, new_taskdata)); 1719 1720 ANNOTATE_HAPPENS_BEFORE(new_task); 1721 #if OMPT_SUPPORT 1722 if (UNLIKELY(ompt_enabled.enabled)) { 1723 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1724 } 1725 #endif 1726 return TASK_CURRENT_NOT_QUEUED; 1727 } 1728 1729 // __kmp_omp_task: Schedule a non-thread-switchable task for execution 1730 // 1731 // gtid: Global Thread ID of encountering thread 1732 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() 1733 // serialize_immediate: if TRUE then if the task is executed immediately its 1734 // execution will be serialized 1735 // Returns: 1736 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1737 // be resumed later. 1738 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1739 // resumed later. 1740 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 1741 bool serialize_immediate) { 1742 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1743 1744 /* Should we execute the new task or queue it? For now, let's just always try 1745 to queue it. If the queue fills up, then we'll execute it. */ 1746 if (new_taskdata->td_flags.proxy == TASK_PROXY || 1747 __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1748 { // Execute this task immediately 1749 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1750 if (serialize_immediate) 1751 new_taskdata->td_flags.task_serial = 1; 1752 __kmp_invoke_task(gtid, new_task, current_task); 1753 } 1754 1755 ANNOTATE_HAPPENS_BEFORE(new_task); 1756 return TASK_CURRENT_NOT_QUEUED; 1757 } 1758 1759 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a 1760 // non-thread-switchable task from the parent thread only! 1761 // 1762 // loc_ref: location of original task pragma (ignored) 1763 // gtid: Global Thread ID of encountering thread 1764 // new_task: non-thread-switchable task thunk allocated by 1765 // __kmp_omp_task_alloc() 1766 // Returns: 1767 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1768 // be resumed later. 1769 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1770 // resumed later. 1771 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 1772 kmp_task_t *new_task) { 1773 kmp_int32 res; 1774 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1775 1776 #if KMP_DEBUG || OMPT_SUPPORT 1777 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1778 #endif 1779 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1780 new_taskdata)); 1781 __kmp_assert_valid_gtid(gtid); 1782 1783 #if OMPT_SUPPORT 1784 kmp_taskdata_t *parent = NULL; 1785 if (UNLIKELY(ompt_enabled.enabled)) { 1786 if (!new_taskdata->td_flags.started) { 1787 OMPT_STORE_RETURN_ADDRESS(gtid); 1788 parent = new_taskdata->td_parent; 1789 if (!parent->ompt_task_info.frame.enter_frame.ptr) { 1790 parent->ompt_task_info.frame.enter_frame.ptr = 1791 OMPT_GET_FRAME_ADDRESS(0); 1792 } 1793 if (ompt_enabled.ompt_callback_task_create) { 1794 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1795 &(parent->ompt_task_info.task_data), 1796 &(parent->ompt_task_info.frame), 1797 &(new_taskdata->ompt_task_info.task_data), 1798 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1799 OMPT_LOAD_RETURN_ADDRESS(gtid)); 1800 } 1801 } else { 1802 // We are scheduling the continuation of an UNTIED task. 1803 // Scheduling back to the parent task. 1804 __ompt_task_finish(new_task, 1805 new_taskdata->ompt_task_info.scheduling_parent, 1806 ompt_task_switch); 1807 new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1808 } 1809 } 1810 #endif 1811 1812 res = __kmp_omp_task(gtid, new_task, true); 1813 1814 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1815 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1816 gtid, loc_ref, new_taskdata)); 1817 #if OMPT_SUPPORT 1818 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1819 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1820 } 1821 #endif 1822 return res; 1823 } 1824 1825 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule 1826 // a taskloop task with the correct OMPT return address 1827 // 1828 // loc_ref: location of original task pragma (ignored) 1829 // gtid: Global Thread ID of encountering thread 1830 // new_task: non-thread-switchable task thunk allocated by 1831 // __kmp_omp_task_alloc() 1832 // codeptr_ra: return address for OMPT callback 1833 // Returns: 1834 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1835 // be resumed later. 1836 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1837 // resumed later. 1838 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, 1839 kmp_task_t *new_task, void *codeptr_ra) { 1840 kmp_int32 res; 1841 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1842 1843 #if KMP_DEBUG || OMPT_SUPPORT 1844 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1845 #endif 1846 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1847 new_taskdata)); 1848 1849 #if OMPT_SUPPORT 1850 kmp_taskdata_t *parent = NULL; 1851 if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { 1852 parent = new_taskdata->td_parent; 1853 if (!parent->ompt_task_info.frame.enter_frame.ptr) 1854 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1855 if (ompt_enabled.ompt_callback_task_create) { 1856 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1857 &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), 1858 &(new_taskdata->ompt_task_info.task_data), 1859 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1860 codeptr_ra); 1861 } 1862 } 1863 #endif 1864 1865 res = __kmp_omp_task(gtid, new_task, true); 1866 1867 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1868 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1869 gtid, loc_ref, new_taskdata)); 1870 #if OMPT_SUPPORT 1871 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1872 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1873 } 1874 #endif 1875 return res; 1876 } 1877 1878 template <bool ompt> 1879 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, 1880 void *frame_address, 1881 void *return_address) { 1882 kmp_taskdata_t *taskdata = nullptr; 1883 kmp_info_t *thread; 1884 int thread_finished = FALSE; 1885 KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); 1886 1887 KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref)); 1888 KMP_DEBUG_ASSERT(gtid >= 0); 1889 1890 if (__kmp_tasking_mode != tskm_immediate_exec) { 1891 thread = __kmp_threads[gtid]; 1892 taskdata = thread->th.th_current_task; 1893 1894 #if OMPT_SUPPORT && OMPT_OPTIONAL 1895 ompt_data_t *my_task_data; 1896 ompt_data_t *my_parallel_data; 1897 1898 if (ompt) { 1899 my_task_data = &(taskdata->ompt_task_info.task_data); 1900 my_parallel_data = OMPT_CUR_TEAM_DATA(thread); 1901 1902 taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; 1903 1904 if (ompt_enabled.ompt_callback_sync_region) { 1905 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1906 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1907 my_task_data, return_address); 1908 } 1909 1910 if (ompt_enabled.ompt_callback_sync_region_wait) { 1911 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1912 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1913 my_task_data, return_address); 1914 } 1915 } 1916 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1917 1918 // Debugger: The taskwait is active. Store location and thread encountered the 1919 // taskwait. 1920 #if USE_ITT_BUILD 1921 // Note: These values are used by ITT events as well. 1922 #endif /* USE_ITT_BUILD */ 1923 taskdata->td_taskwait_counter += 1; 1924 taskdata->td_taskwait_ident = loc_ref; 1925 taskdata->td_taskwait_thread = gtid + 1; 1926 1927 #if USE_ITT_BUILD 1928 void *itt_sync_obj = NULL; 1929 #if USE_ITT_NOTIFY 1930 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 1931 #endif /* USE_ITT_NOTIFY */ 1932 #endif /* USE_ITT_BUILD */ 1933 1934 bool must_wait = 1935 !taskdata->td_flags.team_serial && !taskdata->td_flags.final; 1936 1937 must_wait = must_wait || (thread->th.th_task_team != NULL && 1938 thread->th.th_task_team->tt.tt_found_proxy_tasks); 1939 // If hidden helper thread is encountered, we must enable wait here. 1940 must_wait = 1941 must_wait || 1942 (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL && 1943 thread->th.th_task_team->tt.tt_hidden_helper_task_encountered); 1944 1945 if (must_wait) { 1946 kmp_flag_32<false, false> flag( 1947 RCAST(std::atomic<kmp_uint32> *, 1948 &(taskdata->td_incomplete_child_tasks)), 1949 0U); 1950 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { 1951 flag.execute_tasks(thread, gtid, FALSE, 1952 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 1953 __kmp_task_stealing_constraint); 1954 } 1955 } 1956 #if USE_ITT_BUILD 1957 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 1958 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children 1959 #endif /* USE_ITT_BUILD */ 1960 1961 // Debugger: The taskwait is completed. Location remains, but thread is 1962 // negated. 1963 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 1964 1965 #if OMPT_SUPPORT && OMPT_OPTIONAL 1966 if (ompt) { 1967 if (ompt_enabled.ompt_callback_sync_region_wait) { 1968 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1969 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1970 my_task_data, return_address); 1971 } 1972 if (ompt_enabled.ompt_callback_sync_region) { 1973 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1974 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1975 my_task_data, return_address); 1976 } 1977 taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; 1978 } 1979 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1980 1981 ANNOTATE_HAPPENS_AFTER(taskdata); 1982 } 1983 1984 KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " 1985 "returning TASK_CURRENT_NOT_QUEUED\n", 1986 gtid, taskdata)); 1987 1988 return TASK_CURRENT_NOT_QUEUED; 1989 } 1990 1991 #if OMPT_SUPPORT && OMPT_OPTIONAL 1992 OMPT_NOINLINE 1993 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, 1994 void *frame_address, 1995 void *return_address) { 1996 return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, 1997 return_address); 1998 } 1999 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 2000 2001 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are 2002 // complete 2003 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { 2004 #if OMPT_SUPPORT && OMPT_OPTIONAL 2005 if (UNLIKELY(ompt_enabled.enabled)) { 2006 OMPT_STORE_RETURN_ADDRESS(gtid); 2007 return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), 2008 OMPT_LOAD_RETURN_ADDRESS(gtid)); 2009 } 2010 #endif 2011 return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); 2012 } 2013 2014 // __kmpc_omp_taskyield: switch to a different task 2015 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { 2016 kmp_taskdata_t *taskdata = NULL; 2017 kmp_info_t *thread; 2018 int thread_finished = FALSE; 2019 2020 KMP_COUNT_BLOCK(OMP_TASKYIELD); 2021 KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); 2022 2023 KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", 2024 gtid, loc_ref, end_part)); 2025 __kmp_assert_valid_gtid(gtid); 2026 2027 if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { 2028 thread = __kmp_threads[gtid]; 2029 taskdata = thread->th.th_current_task; 2030 // Should we model this as a task wait or not? 2031 // Debugger: The taskwait is active. Store location and thread encountered the 2032 // taskwait. 2033 #if USE_ITT_BUILD 2034 // Note: These values are used by ITT events as well. 2035 #endif /* USE_ITT_BUILD */ 2036 taskdata->td_taskwait_counter += 1; 2037 taskdata->td_taskwait_ident = loc_ref; 2038 taskdata->td_taskwait_thread = gtid + 1; 2039 2040 #if USE_ITT_BUILD 2041 void *itt_sync_obj = NULL; 2042 #if USE_ITT_NOTIFY 2043 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2044 #endif /* USE_ITT_NOTIFY */ 2045 #endif /* USE_ITT_BUILD */ 2046 if (!taskdata->td_flags.team_serial) { 2047 kmp_task_team_t *task_team = thread->th.th_task_team; 2048 if (task_team != NULL) { 2049 if (KMP_TASKING_ENABLED(task_team)) { 2050 #if OMPT_SUPPORT 2051 if (UNLIKELY(ompt_enabled.enabled)) 2052 thread->th.ompt_thread_info.ompt_task_yielded = 1; 2053 #endif 2054 __kmp_execute_tasks_32( 2055 thread, gtid, (kmp_flag_32<> *)NULL, FALSE, 2056 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2057 __kmp_task_stealing_constraint); 2058 #if OMPT_SUPPORT 2059 if (UNLIKELY(ompt_enabled.enabled)) 2060 thread->th.ompt_thread_info.ompt_task_yielded = 0; 2061 #endif 2062 } 2063 } 2064 } 2065 #if USE_ITT_BUILD 2066 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2067 #endif /* USE_ITT_BUILD */ 2068 2069 // Debugger: The taskwait is completed. Location remains, but thread is 2070 // negated. 2071 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 2072 } 2073 2074 KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " 2075 "returning TASK_CURRENT_NOT_QUEUED\n", 2076 gtid, taskdata)); 2077 2078 return TASK_CURRENT_NOT_QUEUED; 2079 } 2080 2081 // Task Reduction implementation 2082 // 2083 // Note: initial implementation didn't take into account the possibility 2084 // to specify omp_orig for initializer of the UDR (user defined reduction). 2085 // Corrected implementation takes into account the omp_orig object. 2086 // Compiler is free to use old implementation if omp_orig is not specified. 2087 2088 /*! 2089 @ingroup BASIC_TYPES 2090 @{ 2091 */ 2092 2093 /*! 2094 Flags for special info per task reduction item. 2095 */ 2096 typedef struct kmp_taskred_flags { 2097 /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */ 2098 unsigned lazy_priv : 1; 2099 unsigned reserved31 : 31; 2100 } kmp_taskred_flags_t; 2101 2102 /*! 2103 Internal struct for reduction data item related info set up by compiler. 2104 */ 2105 typedef struct kmp_task_red_input { 2106 void *reduce_shar; /**< shared between tasks item to reduce into */ 2107 size_t reduce_size; /**< size of data item in bytes */ 2108 // three compiler-generated routines (init, fini are optional): 2109 void *reduce_init; /**< data initialization routine (single parameter) */ 2110 void *reduce_fini; /**< data finalization routine */ 2111 void *reduce_comb; /**< data combiner routine */ 2112 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2113 } kmp_task_red_input_t; 2114 2115 /*! 2116 Internal struct for reduction data item related info saved by the library. 2117 */ 2118 typedef struct kmp_taskred_data { 2119 void *reduce_shar; /**< shared between tasks item to reduce into */ 2120 size_t reduce_size; /**< size of data item */ 2121 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2122 void *reduce_priv; /**< array of thread specific items */ 2123 void *reduce_pend; /**< end of private data for faster comparison op */ 2124 // three compiler-generated routines (init, fini are optional): 2125 void *reduce_comb; /**< data combiner routine */ 2126 void *reduce_init; /**< data initialization routine (two parameters) */ 2127 void *reduce_fini; /**< data finalization routine */ 2128 void *reduce_orig; /**< original item (can be used in UDR initializer) */ 2129 } kmp_taskred_data_t; 2130 2131 /*! 2132 Internal struct for reduction data item related info set up by compiler. 2133 2134 New interface: added reduce_orig field to provide omp_orig for UDR initializer. 2135 */ 2136 typedef struct kmp_taskred_input { 2137 void *reduce_shar; /**< shared between tasks item to reduce into */ 2138 void *reduce_orig; /**< original reduction item used for initialization */ 2139 size_t reduce_size; /**< size of data item */ 2140 // three compiler-generated routines (init, fini are optional): 2141 void *reduce_init; /**< data initialization routine (two parameters) */ 2142 void *reduce_fini; /**< data finalization routine */ 2143 void *reduce_comb; /**< data combiner routine */ 2144 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2145 } kmp_taskred_input_t; 2146 /*! 2147 @} 2148 */ 2149 2150 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); 2151 template <> 2152 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2153 kmp_task_red_input_t &src) { 2154 item.reduce_orig = NULL; 2155 } 2156 template <> 2157 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2158 kmp_taskred_input_t &src) { 2159 if (src.reduce_orig != NULL) { 2160 item.reduce_orig = src.reduce_orig; 2161 } else { 2162 item.reduce_orig = src.reduce_shar; 2163 } // non-NULL reduce_orig means new interface used 2164 } 2165 2166 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j); 2167 template <> 2168 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2169 size_t offset) { 2170 ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); 2171 } 2172 template <> 2173 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2174 size_t offset) { 2175 ((void (*)(void *, void *))item.reduce_init)( 2176 (char *)(item.reduce_priv) + offset, item.reduce_orig); 2177 } 2178 2179 template <typename T> 2180 void *__kmp_task_reduction_init(int gtid, int num, T *data) { 2181 __kmp_assert_valid_gtid(gtid); 2182 kmp_info_t *thread = __kmp_threads[gtid]; 2183 kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; 2184 kmp_uint32 nth = thread->th.th_team_nproc; 2185 kmp_taskred_data_t *arr; 2186 2187 // check input data just in case 2188 KMP_ASSERT(tg != NULL); 2189 KMP_ASSERT(data != NULL); 2190 KMP_ASSERT(num > 0); 2191 if (nth == 1) { 2192 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n", 2193 gtid, tg)); 2194 return (void *)tg; 2195 } 2196 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n", 2197 gtid, tg, num)); 2198 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2199 thread, num * sizeof(kmp_taskred_data_t)); 2200 for (int i = 0; i < num; ++i) { 2201 size_t size = data[i].reduce_size - 1; 2202 // round the size up to cache line per thread-specific item 2203 size += CACHE_LINE - size % CACHE_LINE; 2204 KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory 2205 arr[i].reduce_shar = data[i].reduce_shar; 2206 arr[i].reduce_size = size; 2207 arr[i].flags = data[i].flags; 2208 arr[i].reduce_comb = data[i].reduce_comb; 2209 arr[i].reduce_init = data[i].reduce_init; 2210 arr[i].reduce_fini = data[i].reduce_fini; 2211 __kmp_assign_orig<T>(arr[i], data[i]); 2212 if (!arr[i].flags.lazy_priv) { 2213 // allocate cache-line aligned block and fill it with zeros 2214 arr[i].reduce_priv = __kmp_allocate(nth * size); 2215 arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; 2216 if (arr[i].reduce_init != NULL) { 2217 // initialize all thread-specific items 2218 for (size_t j = 0; j < nth; ++j) { 2219 __kmp_call_init<T>(arr[i], j * size); 2220 } 2221 } 2222 } else { 2223 // only allocate space for pointers now, 2224 // objects will be lazily allocated/initialized if/when requested 2225 // note that __kmp_allocate zeroes the allocated memory 2226 arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); 2227 } 2228 } 2229 tg->reduce_data = (void *)arr; 2230 tg->reduce_num_data = num; 2231 return (void *)tg; 2232 } 2233 2234 /*! 2235 @ingroup TASKING 2236 @param gtid Global thread ID 2237 @param num Number of data items to reduce 2238 @param data Array of data for reduction 2239 @return The taskgroup identifier 2240 2241 Initialize task reduction for the taskgroup. 2242 2243 Note: this entry supposes the optional compiler-generated initializer routine 2244 has single parameter - pointer to object to be initialized. That means 2245 the reduction either does not use omp_orig object, or the omp_orig is accessible 2246 without help of the runtime library. 2247 */ 2248 void *__kmpc_task_reduction_init(int gtid, int num, void *data) { 2249 return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data); 2250 } 2251 2252 /*! 2253 @ingroup TASKING 2254 @param gtid Global thread ID 2255 @param num Number of data items to reduce 2256 @param data Array of data for reduction 2257 @return The taskgroup identifier 2258 2259 Initialize task reduction for the taskgroup. 2260 2261 Note: this entry supposes the optional compiler-generated initializer routine 2262 has two parameters, pointer to object to be initialized and pointer to omp_orig 2263 */ 2264 void *__kmpc_taskred_init(int gtid, int num, void *data) { 2265 return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data); 2266 } 2267 2268 // Copy task reduction data (except for shared pointers). 2269 template <typename T> 2270 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, 2271 kmp_taskgroup_t *tg, void *reduce_data) { 2272 kmp_taskred_data_t *arr; 2273 KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," 2274 " from data %p\n", 2275 thr, tg, reduce_data)); 2276 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2277 thr, num * sizeof(kmp_taskred_data_t)); 2278 // threads will share private copies, thunk routines, sizes, flags, etc.: 2279 KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t)); 2280 for (int i = 0; i < num; ++i) { 2281 arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers 2282 } 2283 tg->reduce_data = (void *)arr; 2284 tg->reduce_num_data = num; 2285 } 2286 2287 /*! 2288 @ingroup TASKING 2289 @param gtid Global thread ID 2290 @param tskgrp The taskgroup ID (optional) 2291 @param data Shared location of the item 2292 @return The pointer to per-thread data 2293 2294 Get thread-specific location of data item 2295 */ 2296 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { 2297 __kmp_assert_valid_gtid(gtid); 2298 kmp_info_t *thread = __kmp_threads[gtid]; 2299 kmp_int32 nth = thread->th.th_team_nproc; 2300 if (nth == 1) 2301 return data; // nothing to do 2302 2303 kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; 2304 if (tg == NULL) 2305 tg = thread->th.th_current_task->td_taskgroup; 2306 KMP_ASSERT(tg != NULL); 2307 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data); 2308 kmp_int32 num = tg->reduce_num_data; 2309 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 2310 2311 KMP_ASSERT(data != NULL); 2312 while (tg != NULL) { 2313 for (int i = 0; i < num; ++i) { 2314 if (!arr[i].flags.lazy_priv) { 2315 if (data == arr[i].reduce_shar || 2316 (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) 2317 return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; 2318 } else { 2319 // check shared location first 2320 void **p_priv = (void **)(arr[i].reduce_priv); 2321 if (data == arr[i].reduce_shar) 2322 goto found; 2323 // check if we get some thread specific location as parameter 2324 for (int j = 0; j < nth; ++j) 2325 if (data == p_priv[j]) 2326 goto found; 2327 continue; // not found, continue search 2328 found: 2329 if (p_priv[tid] == NULL) { 2330 // allocate thread specific object lazily 2331 p_priv[tid] = __kmp_allocate(arr[i].reduce_size); 2332 if (arr[i].reduce_init != NULL) { 2333 if (arr[i].reduce_orig != NULL) { // new interface 2334 ((void (*)(void *, void *))arr[i].reduce_init)( 2335 p_priv[tid], arr[i].reduce_orig); 2336 } else { // old interface (single parameter) 2337 ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); 2338 } 2339 } 2340 } 2341 return p_priv[tid]; 2342 } 2343 } 2344 tg = tg->parent; 2345 arr = (kmp_taskred_data_t *)(tg->reduce_data); 2346 num = tg->reduce_num_data; 2347 } 2348 KMP_ASSERT2(0, "Unknown task reduction item"); 2349 return NULL; // ERROR, this line never executed 2350 } 2351 2352 // Finalize task reduction. 2353 // Called from __kmpc_end_taskgroup() 2354 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { 2355 kmp_int32 nth = th->th.th_team_nproc; 2356 KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1 2357 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; 2358 kmp_int32 num = tg->reduce_num_data; 2359 for (int i = 0; i < num; ++i) { 2360 void *sh_data = arr[i].reduce_shar; 2361 void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); 2362 void (*f_comb)(void *, void *) = 2363 (void (*)(void *, void *))(arr[i].reduce_comb); 2364 if (!arr[i].flags.lazy_priv) { 2365 void *pr_data = arr[i].reduce_priv; 2366 size_t size = arr[i].reduce_size; 2367 for (int j = 0; j < nth; ++j) { 2368 void *priv_data = (char *)pr_data + j * size; 2369 f_comb(sh_data, priv_data); // combine results 2370 if (f_fini) 2371 f_fini(priv_data); // finalize if needed 2372 } 2373 } else { 2374 void **pr_data = (void **)(arr[i].reduce_priv); 2375 for (int j = 0; j < nth; ++j) { 2376 if (pr_data[j] != NULL) { 2377 f_comb(sh_data, pr_data[j]); // combine results 2378 if (f_fini) 2379 f_fini(pr_data[j]); // finalize if needed 2380 __kmp_free(pr_data[j]); 2381 } 2382 } 2383 } 2384 __kmp_free(arr[i].reduce_priv); 2385 } 2386 __kmp_thread_free(th, arr); 2387 tg->reduce_data = NULL; 2388 tg->reduce_num_data = 0; 2389 } 2390 2391 // Cleanup task reduction data for parallel or worksharing, 2392 // do not touch task private data other threads still working with. 2393 // Called from __kmpc_end_taskgroup() 2394 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { 2395 __kmp_thread_free(th, tg->reduce_data); 2396 tg->reduce_data = NULL; 2397 tg->reduce_num_data = 0; 2398 } 2399 2400 template <typename T> 2401 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2402 int num, T *data) { 2403 __kmp_assert_valid_gtid(gtid); 2404 kmp_info_t *thr = __kmp_threads[gtid]; 2405 kmp_int32 nth = thr->th.th_team_nproc; 2406 __kmpc_taskgroup(loc, gtid); // form new taskgroup first 2407 if (nth == 1) { 2408 KA_TRACE(10, 2409 ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n", 2410 gtid, thr->th.th_current_task->td_taskgroup)); 2411 return (void *)thr->th.th_current_task->td_taskgroup; 2412 } 2413 kmp_team_t *team = thr->th.th_team; 2414 void *reduce_data; 2415 kmp_taskgroup_t *tg; 2416 reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); 2417 if (reduce_data == NULL && 2418 __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data, 2419 (void *)1)) { 2420 // single thread enters this block to initialize common reduction data 2421 KMP_DEBUG_ASSERT(reduce_data == NULL); 2422 // first initialize own data, then make a copy other threads can use 2423 tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); 2424 reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); 2425 KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t)); 2426 // fini counters should be 0 at this point 2427 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); 2428 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); 2429 KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); 2430 } else { 2431 while ( 2432 (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == 2433 (void *)1) { // wait for task reduction initialization 2434 KMP_CPU_PAUSE(); 2435 } 2436 KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here 2437 tg = thr->th.th_current_task->td_taskgroup; 2438 __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); 2439 } 2440 return tg; 2441 } 2442 2443 /*! 2444 @ingroup TASKING 2445 @param loc Source location info 2446 @param gtid Global thread ID 2447 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2448 @param num Number of data items to reduce 2449 @param data Array of data for reduction 2450 @return The taskgroup identifier 2451 2452 Initialize task reduction for a parallel or worksharing. 2453 2454 Note: this entry supposes the optional compiler-generated initializer routine 2455 has single parameter - pointer to object to be initialized. That means 2456 the reduction either does not use omp_orig object, or the omp_orig is accessible 2457 without help of the runtime library. 2458 */ 2459 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2460 int num, void *data) { 2461 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2462 (kmp_task_red_input_t *)data); 2463 } 2464 2465 /*! 2466 @ingroup TASKING 2467 @param loc Source location info 2468 @param gtid Global thread ID 2469 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2470 @param num Number of data items to reduce 2471 @param data Array of data for reduction 2472 @return The taskgroup identifier 2473 2474 Initialize task reduction for a parallel or worksharing. 2475 2476 Note: this entry supposes the optional compiler-generated initializer routine 2477 has two parameters, pointer to object to be initialized and pointer to omp_orig 2478 */ 2479 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, 2480 void *data) { 2481 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2482 (kmp_taskred_input_t *)data); 2483 } 2484 2485 /*! 2486 @ingroup TASKING 2487 @param loc Source location info 2488 @param gtid Global thread ID 2489 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2490 2491 Finalize task reduction for a parallel or worksharing. 2492 */ 2493 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { 2494 __kmpc_end_taskgroup(loc, gtid); 2495 } 2496 2497 // __kmpc_taskgroup: Start a new taskgroup 2498 void __kmpc_taskgroup(ident_t *loc, int gtid) { 2499 __kmp_assert_valid_gtid(gtid); 2500 kmp_info_t *thread = __kmp_threads[gtid]; 2501 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2502 kmp_taskgroup_t *tg_new = 2503 (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); 2504 KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new)); 2505 KMP_ATOMIC_ST_RLX(&tg_new->count, 0); 2506 KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); 2507 tg_new->parent = taskdata->td_taskgroup; 2508 tg_new->reduce_data = NULL; 2509 tg_new->reduce_num_data = 0; 2510 tg_new->gomp_data = NULL; 2511 taskdata->td_taskgroup = tg_new; 2512 2513 #if OMPT_SUPPORT && OMPT_OPTIONAL 2514 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2515 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2516 if (!codeptr) 2517 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2518 kmp_team_t *team = thread->th.th_team; 2519 ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; 2520 // FIXME: I think this is wrong for lwt! 2521 ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; 2522 2523 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2524 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2525 &(my_task_data), codeptr); 2526 } 2527 #endif 2528 } 2529 2530 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task 2531 // and its descendants are complete 2532 void __kmpc_end_taskgroup(ident_t *loc, int gtid) { 2533 __kmp_assert_valid_gtid(gtid); 2534 kmp_info_t *thread = __kmp_threads[gtid]; 2535 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2536 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 2537 int thread_finished = FALSE; 2538 2539 #if OMPT_SUPPORT && OMPT_OPTIONAL 2540 kmp_team_t *team; 2541 ompt_data_t my_task_data; 2542 ompt_data_t my_parallel_data; 2543 void *codeptr = nullptr; 2544 if (UNLIKELY(ompt_enabled.enabled)) { 2545 team = thread->th.th_team; 2546 my_task_data = taskdata->ompt_task_info.task_data; 2547 // FIXME: I think this is wrong for lwt! 2548 my_parallel_data = team->t.ompt_team_info.parallel_data; 2549 codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2550 if (!codeptr) 2551 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2552 } 2553 #endif 2554 2555 KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc)); 2556 KMP_DEBUG_ASSERT(taskgroup != NULL); 2557 KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); 2558 2559 if (__kmp_tasking_mode != tskm_immediate_exec) { 2560 // mark task as waiting not on a barrier 2561 taskdata->td_taskwait_counter += 1; 2562 taskdata->td_taskwait_ident = loc; 2563 taskdata->td_taskwait_thread = gtid + 1; 2564 #if USE_ITT_BUILD 2565 // For ITT the taskgroup wait is similar to taskwait until we need to 2566 // distinguish them 2567 void *itt_sync_obj = NULL; 2568 #if USE_ITT_NOTIFY 2569 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2570 #endif /* USE_ITT_NOTIFY */ 2571 #endif /* USE_ITT_BUILD */ 2572 2573 #if OMPT_SUPPORT && OMPT_OPTIONAL 2574 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2575 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2576 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2577 &(my_task_data), codeptr); 2578 } 2579 #endif 2580 2581 if (!taskdata->td_flags.team_serial || 2582 (thread->th.th_task_team != NULL && 2583 thread->th.th_task_team->tt.tt_found_proxy_tasks)) { 2584 kmp_flag_32<false, false> flag( 2585 RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U); 2586 while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { 2587 flag.execute_tasks(thread, gtid, FALSE, 2588 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2589 __kmp_task_stealing_constraint); 2590 } 2591 } 2592 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting 2593 2594 #if OMPT_SUPPORT && OMPT_OPTIONAL 2595 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2596 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2597 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2598 &(my_task_data), codeptr); 2599 } 2600 #endif 2601 2602 #if USE_ITT_BUILD 2603 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2604 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants 2605 #endif /* USE_ITT_BUILD */ 2606 } 2607 KMP_DEBUG_ASSERT(taskgroup->count == 0); 2608 2609 if (taskgroup->reduce_data != NULL && 2610 !taskgroup->gomp_data) { // need to reduce? 2611 int cnt; 2612 void *reduce_data; 2613 kmp_team_t *t = thread->th.th_team; 2614 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; 2615 // check if <priv> data of the first reduction variable shared for the team 2616 void *priv0 = arr[0].reduce_priv; 2617 if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && 2618 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2619 // finishing task reduction on parallel 2620 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); 2621 if (cnt == thread->th.th_team_nproc - 1) { 2622 // we are the last thread passing __kmpc_reduction_modifier_fini() 2623 // finalize task reduction: 2624 __kmp_task_reduction_fini(thread, taskgroup); 2625 // cleanup fields in the team structure: 2626 // TODO: is relaxed store enough here (whole barrier should follow)? 2627 __kmp_thread_free(thread, reduce_data); 2628 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); 2629 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); 2630 } else { 2631 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2632 // so do not finalize reduction, just clean own copy of the data 2633 __kmp_task_reduction_clean(thread, taskgroup); 2634 } 2635 } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != 2636 NULL && 2637 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2638 // finishing task reduction on worksharing 2639 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); 2640 if (cnt == thread->th.th_team_nproc - 1) { 2641 // we are the last thread passing __kmpc_reduction_modifier_fini() 2642 __kmp_task_reduction_fini(thread, taskgroup); 2643 // cleanup fields in team structure: 2644 // TODO: is relaxed store enough here (whole barrier should follow)? 2645 __kmp_thread_free(thread, reduce_data); 2646 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); 2647 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); 2648 } else { 2649 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2650 // so do not finalize reduction, just clean own copy of the data 2651 __kmp_task_reduction_clean(thread, taskgroup); 2652 } 2653 } else { 2654 // finishing task reduction on taskgroup 2655 __kmp_task_reduction_fini(thread, taskgroup); 2656 } 2657 } 2658 // Restore parent taskgroup for the current task 2659 taskdata->td_taskgroup = taskgroup->parent; 2660 __kmp_thread_free(thread, taskgroup); 2661 2662 KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", 2663 gtid, taskdata)); 2664 ANNOTATE_HAPPENS_AFTER(taskdata); 2665 2666 #if OMPT_SUPPORT && OMPT_OPTIONAL 2667 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2668 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2669 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2670 &(my_task_data), codeptr); 2671 } 2672 #endif 2673 } 2674 2675 // __kmp_remove_my_task: remove a task from my own deque 2676 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, 2677 kmp_task_team_t *task_team, 2678 kmp_int32 is_constrained) { 2679 kmp_task_t *task; 2680 kmp_taskdata_t *taskdata; 2681 kmp_thread_data_t *thread_data; 2682 kmp_uint32 tail; 2683 2684 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2685 KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != 2686 NULL); // Caller should check this condition 2687 2688 thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 2689 2690 KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", 2691 gtid, thread_data->td.td_deque_ntasks, 2692 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2693 2694 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2695 KA_TRACE(10, 2696 ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " 2697 "ntasks=%d head=%u tail=%u\n", 2698 gtid, thread_data->td.td_deque_ntasks, 2699 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2700 return NULL; 2701 } 2702 2703 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 2704 2705 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2706 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2707 KA_TRACE(10, 2708 ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " 2709 "ntasks=%d head=%u tail=%u\n", 2710 gtid, thread_data->td.td_deque_ntasks, 2711 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2712 return NULL; 2713 } 2714 2715 tail = (thread_data->td.td_deque_tail - 1) & 2716 TASK_DEQUE_MASK(thread_data->td); // Wrap index. 2717 taskdata = thread_data->td.td_deque[tail]; 2718 2719 if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata, 2720 thread->th.th_current_task)) { 2721 // The TSC does not allow to steal victim task 2722 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2723 KA_TRACE(10, 2724 ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " 2725 "ntasks=%d head=%u tail=%u\n", 2726 gtid, thread_data->td.td_deque_ntasks, 2727 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2728 return NULL; 2729 } 2730 2731 thread_data->td.td_deque_tail = tail; 2732 TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); 2733 2734 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2735 2736 KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " 2737 "ntasks=%d head=%u tail=%u\n", 2738 gtid, taskdata, thread_data->td.td_deque_ntasks, 2739 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2740 2741 task = KMP_TASKDATA_TO_TASK(taskdata); 2742 return task; 2743 } 2744 2745 // __kmp_steal_task: remove a task from another thread's deque 2746 // Assume that calling thread has already checked existence of 2747 // task_team thread_data before calling this routine. 2748 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid, 2749 kmp_task_team_t *task_team, 2750 std::atomic<kmp_int32> *unfinished_threads, 2751 int *thread_finished, 2752 kmp_int32 is_constrained) { 2753 kmp_task_t *task; 2754 kmp_taskdata_t *taskdata; 2755 kmp_taskdata_t *current; 2756 kmp_thread_data_t *victim_td, *threads_data; 2757 kmp_int32 target; 2758 kmp_int32 victim_tid; 2759 2760 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2761 2762 threads_data = task_team->tt.tt_threads_data; 2763 KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition 2764 2765 victim_tid = victim_thr->th.th_info.ds.ds_tid; 2766 victim_td = &threads_data[victim_tid]; 2767 2768 KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " 2769 "task_team=%p ntasks=%d head=%u tail=%u\n", 2770 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2771 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2772 victim_td->td.td_deque_tail)); 2773 2774 if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { 2775 KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " 2776 "task_team=%p ntasks=%d head=%u tail=%u\n", 2777 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2778 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2779 victim_td->td.td_deque_tail)); 2780 return NULL; 2781 } 2782 2783 __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock); 2784 2785 int ntasks = TCR_4(victim_td->td.td_deque_ntasks); 2786 // Check again after we acquire the lock 2787 if (ntasks == 0) { 2788 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2789 KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " 2790 "task_team=%p ntasks=%d head=%u tail=%u\n", 2791 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2792 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2793 return NULL; 2794 } 2795 2796 KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); 2797 current = __kmp_threads[gtid]->th.th_current_task; 2798 taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; 2799 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2800 // Bump head pointer and Wrap. 2801 victim_td->td.td_deque_head = 2802 (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); 2803 } else { 2804 if (!task_team->tt.tt_untied_task_encountered) { 2805 // The TSC does not allow to steal victim task 2806 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2807 KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " 2808 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2809 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2810 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2811 return NULL; 2812 } 2813 int i; 2814 // walk through victim's deque trying to steal any task 2815 target = victim_td->td.td_deque_head; 2816 taskdata = NULL; 2817 for (i = 1; i < ntasks; ++i) { 2818 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2819 taskdata = victim_td->td.td_deque[target]; 2820 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2821 break; // found victim task 2822 } else { 2823 taskdata = NULL; 2824 } 2825 } 2826 if (taskdata == NULL) { 2827 // No appropriate candidate to steal found 2828 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2829 KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " 2830 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2831 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2832 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2833 return NULL; 2834 } 2835 int prev = target; 2836 for (i = i + 1; i < ntasks; ++i) { 2837 // shift remaining tasks in the deque left by 1 2838 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2839 victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; 2840 prev = target; 2841 } 2842 KMP_DEBUG_ASSERT( 2843 victim_td->td.td_deque_tail == 2844 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); 2845 victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) 2846 } 2847 if (*thread_finished) { 2848 // We need to un-mark this victim as a finished victim. This must be done 2849 // before releasing the lock, or else other threads (starting with the 2850 // primary thread victim) might be prematurely released from the barrier!!! 2851 kmp_int32 count; 2852 2853 count = KMP_ATOMIC_INC(unfinished_threads); 2854 2855 KA_TRACE( 2856 20, 2857 ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", 2858 gtid, count + 1, task_team)); 2859 2860 *thread_finished = FALSE; 2861 } 2862 TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); 2863 2864 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2865 2866 KMP_COUNT_BLOCK(TASK_stolen); 2867 KA_TRACE(10, 2868 ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " 2869 "task_team=%p ntasks=%d head=%u tail=%u\n", 2870 gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, 2871 ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2872 2873 task = KMP_TASKDATA_TO_TASK(taskdata); 2874 return task; 2875 } 2876 2877 // __kmp_execute_tasks_template: Choose and execute tasks until either the 2878 // condition is statisfied (return true) or there are none left (return false). 2879 // 2880 // final_spin is TRUE if this is the spin at the release barrier. 2881 // thread_finished indicates whether the thread is finished executing all 2882 // the tasks it has on its deque, and is at the release barrier. 2883 // spinner is the location on which to spin. 2884 // spinner == NULL means only execute a single task and return. 2885 // checker is the value to check to terminate the spin. 2886 template <class C> 2887 static inline int __kmp_execute_tasks_template( 2888 kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, 2889 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 2890 kmp_int32 is_constrained) { 2891 kmp_task_team_t *task_team = thread->th.th_task_team; 2892 kmp_thread_data_t *threads_data; 2893 kmp_task_t *task; 2894 kmp_info_t *other_thread; 2895 kmp_taskdata_t *current_task = thread->th.th_current_task; 2896 std::atomic<kmp_int32> *unfinished_threads; 2897 kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, 2898 tid = thread->th.th_info.ds.ds_tid; 2899 2900 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2901 KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); 2902 2903 if (task_team == NULL || current_task == NULL) 2904 return FALSE; 2905 2906 KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " 2907 "*thread_finished=%d\n", 2908 gtid, final_spin, *thread_finished)); 2909 2910 thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 2911 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 2912 2913 KMP_DEBUG_ASSERT(threads_data != NULL); 2914 2915 nthreads = task_team->tt.tt_nproc; 2916 unfinished_threads = &(task_team->tt.tt_unfinished_threads); 2917 KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks || 2918 task_team->tt.tt_hidden_helper_task_encountered); 2919 KMP_DEBUG_ASSERT(*unfinished_threads >= 0); 2920 2921 while (1) { // Outer loop keeps trying to find tasks in case of single thread 2922 // getting tasks from target constructs 2923 while (1) { // Inner loop to find a task and execute it 2924 task = NULL; 2925 if (use_own_tasks) { // check on own queue first 2926 task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); 2927 } 2928 if ((task == NULL) && (nthreads > 1)) { // Steal a task 2929 int asleep = 1; 2930 use_own_tasks = 0; 2931 // Try to steal from the last place I stole from successfully. 2932 if (victim_tid == -2) { // haven't stolen anything yet 2933 victim_tid = threads_data[tid].td.td_deque_last_stolen; 2934 if (victim_tid != 2935 -1) // if we have a last stolen from victim, get the thread 2936 other_thread = threads_data[victim_tid].td.td_thr; 2937 } 2938 if (victim_tid != -1) { // found last victim 2939 asleep = 0; 2940 } else if (!new_victim) { // no recent steals and we haven't already 2941 // used a new victim; select a random thread 2942 do { // Find a different thread to steal work from. 2943 // Pick a random thread. Initial plan was to cycle through all the 2944 // threads, and only return if we tried to steal from every thread, 2945 // and failed. Arch says that's not such a great idea. 2946 victim_tid = __kmp_get_random(thread) % (nthreads - 1); 2947 if (victim_tid >= tid) { 2948 ++victim_tid; // Adjusts random distribution to exclude self 2949 } 2950 // Found a potential victim 2951 other_thread = threads_data[victim_tid].td.td_thr; 2952 // There is a slight chance that __kmp_enable_tasking() did not wake 2953 // up all threads waiting at the barrier. If victim is sleeping, 2954 // then wake it up. Since we were going to pay the cache miss 2955 // penalty for referencing another thread's kmp_info_t struct 2956 // anyway, 2957 // the check shouldn't cost too much performance at this point. In 2958 // extra barrier mode, tasks do not sleep at the separate tasking 2959 // barrier, so this isn't a problem. 2960 asleep = 0; 2961 if ((__kmp_tasking_mode == tskm_task_teams) && 2962 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && 2963 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != 2964 NULL)) { 2965 asleep = 1; 2966 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread), 2967 other_thread->th.th_sleep_loc); 2968 // A sleeping thread should not have any tasks on it's queue. 2969 // There is a slight possibility that it resumes, steals a task 2970 // from another thread, which spawns more tasks, all in the time 2971 // that it takes this thread to check => don't write an assertion 2972 // that the victim's queue is empty. Try stealing from a 2973 // different thread. 2974 } 2975 } while (asleep); 2976 } 2977 2978 if (!asleep) { 2979 // We have a victim to try to steal from 2980 task = __kmp_steal_task(other_thread, gtid, task_team, 2981 unfinished_threads, thread_finished, 2982 is_constrained); 2983 } 2984 if (task != NULL) { // set last stolen to victim 2985 if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { 2986 threads_data[tid].td.td_deque_last_stolen = victim_tid; 2987 // The pre-refactored code did not try more than 1 successful new 2988 // vicitm, unless the last one generated more local tasks; 2989 // new_victim keeps track of this 2990 new_victim = 1; 2991 } 2992 } else { // No tasks found; unset last_stolen 2993 KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); 2994 victim_tid = -2; // no successful victim found 2995 } 2996 } 2997 2998 if (task == NULL) 2999 break; // break out of tasking loop 3000 3001 // Found a task; execute it 3002 #if USE_ITT_BUILD && USE_ITT_NOTIFY 3003 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 3004 if (itt_sync_obj == NULL) { // we are at fork barrier where we could not 3005 // get the object reliably 3006 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 3007 } 3008 __kmp_itt_task_starting(itt_sync_obj); 3009 } 3010 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 3011 __kmp_invoke_task(gtid, task, current_task); 3012 #if USE_ITT_BUILD 3013 if (itt_sync_obj != NULL) 3014 __kmp_itt_task_finished(itt_sync_obj); 3015 #endif /* USE_ITT_BUILD */ 3016 // If this thread is only partway through the barrier and the condition is 3017 // met, then return now, so that the barrier gather/release pattern can 3018 // proceed. If this thread is in the last spin loop in the barrier, 3019 // waiting to be released, we know that the termination condition will not 3020 // be satisfied, so don't waste any cycles checking it. 3021 if (flag == NULL || (!final_spin && flag->done_check())) { 3022 KA_TRACE( 3023 15, 3024 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3025 gtid)); 3026 return TRUE; 3027 } 3028 if (thread->th.th_task_team == NULL) { 3029 break; 3030 } 3031 KMP_YIELD(__kmp_library == library_throughput); // Yield before next task 3032 // If execution of a stolen task results in more tasks being placed on our 3033 // run queue, reset use_own_tasks 3034 if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { 3035 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " 3036 "other tasks, restart\n", 3037 gtid)); 3038 use_own_tasks = 1; 3039 new_victim = 0; 3040 } 3041 } 3042 3043 // The task source has been exhausted. If in final spin loop of barrier, 3044 // check if termination condition is satisfied. The work queue may be empty 3045 // but there might be proxy tasks still executing. 3046 if (final_spin && 3047 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { 3048 // First, decrement the #unfinished threads, if that has not already been 3049 // done. This decrement might be to the spin location, and result in the 3050 // termination condition being satisfied. 3051 if (!*thread_finished) { 3052 kmp_int32 count; 3053 3054 count = KMP_ATOMIC_DEC(unfinished_threads) - 1; 3055 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " 3056 "unfinished_threads to %d task_team=%p\n", 3057 gtid, count, task_team)); 3058 *thread_finished = TRUE; 3059 } 3060 3061 // It is now unsafe to reference thread->th.th_team !!! 3062 // Decrementing task_team->tt.tt_unfinished_threads can allow the primary 3063 // thread to pass through the barrier, where it might reset each thread's 3064 // th.th_team field for the next parallel region. If we can steal more 3065 // work, we know that this has not happened yet. 3066 if (flag != NULL && flag->done_check()) { 3067 KA_TRACE( 3068 15, 3069 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3070 gtid)); 3071 return TRUE; 3072 } 3073 } 3074 3075 // If this thread's task team is NULL, primary thread has recognized that 3076 // there are no more tasks; bail out 3077 if (thread->th.th_task_team == NULL) { 3078 KA_TRACE(15, 3079 ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid)); 3080 return FALSE; 3081 } 3082 3083 // We could be getting tasks from target constructs; if this is the only 3084 // thread, keep trying to execute tasks from own queue 3085 if (nthreads == 1 && 3086 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks)) 3087 use_own_tasks = 1; 3088 else { 3089 KA_TRACE(15, 3090 ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid)); 3091 return FALSE; 3092 } 3093 } 3094 } 3095 3096 template <bool C, bool S> 3097 int __kmp_execute_tasks_32( 3098 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin, 3099 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3100 kmp_int32 is_constrained) { 3101 return __kmp_execute_tasks_template( 3102 thread, gtid, flag, final_spin, 3103 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3104 } 3105 3106 template <bool C, bool S> 3107 int __kmp_execute_tasks_64( 3108 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin, 3109 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3110 kmp_int32 is_constrained) { 3111 return __kmp_execute_tasks_template( 3112 thread, gtid, flag, final_spin, 3113 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3114 } 3115 3116 int __kmp_execute_tasks_oncore( 3117 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, 3118 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3119 kmp_int32 is_constrained) { 3120 return __kmp_execute_tasks_template( 3121 thread, gtid, flag, final_spin, 3122 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3123 } 3124 3125 template int 3126 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32, 3127 kmp_flag_32<false, false> *, int, 3128 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3129 3130 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32, 3131 kmp_flag_64<false, true> *, 3132 int, 3133 int *USE_ITT_BUILD_ARG(void *), 3134 kmp_int32); 3135 3136 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32, 3137 kmp_flag_64<true, false> *, 3138 int, 3139 int *USE_ITT_BUILD_ARG(void *), 3140 kmp_int32); 3141 3142 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the 3143 // next barrier so they can assist in executing enqueued tasks. 3144 // First thread in allocates the task team atomically. 3145 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 3146 kmp_info_t *this_thr) { 3147 kmp_thread_data_t *threads_data; 3148 int nthreads, i, is_init_thread; 3149 3150 KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n", 3151 __kmp_gtid_from_thread(this_thr))); 3152 3153 KMP_DEBUG_ASSERT(task_team != NULL); 3154 KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); 3155 3156 nthreads = task_team->tt.tt_nproc; 3157 KMP_DEBUG_ASSERT(nthreads > 0); 3158 KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); 3159 3160 // Allocate or increase the size of threads_data if necessary 3161 is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team); 3162 3163 if (!is_init_thread) { 3164 // Some other thread already set up the array. 3165 KA_TRACE( 3166 20, 3167 ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", 3168 __kmp_gtid_from_thread(this_thr))); 3169 return; 3170 } 3171 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3172 KMP_DEBUG_ASSERT(threads_data != NULL); 3173 3174 if (__kmp_tasking_mode == tskm_task_teams && 3175 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { 3176 // Release any threads sleeping at the barrier, so that they can steal 3177 // tasks and execute them. In extra barrier mode, tasks do not sleep 3178 // at the separate tasking barrier, so this isn't a problem. 3179 for (i = 0; i < nthreads; i++) { 3180 volatile void *sleep_loc; 3181 kmp_info_t *thread = threads_data[i].td.td_thr; 3182 3183 if (i == this_thr->th.th_info.ds.ds_tid) { 3184 continue; 3185 } 3186 // Since we haven't locked the thread's suspend mutex lock at this 3187 // point, there is a small window where a thread might be putting 3188 // itself to sleep, but hasn't set the th_sleep_loc field yet. 3189 // To work around this, __kmp_execute_tasks_template() periodically checks 3190 // see if other threads are sleeping (using the same random mechanism that 3191 // is used for task stealing) and awakens them if they are. 3192 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3193 NULL) { 3194 KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n", 3195 __kmp_gtid_from_thread(this_thr), 3196 __kmp_gtid_from_thread(thread))); 3197 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3198 } else { 3199 KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", 3200 __kmp_gtid_from_thread(this_thr), 3201 __kmp_gtid_from_thread(thread))); 3202 } 3203 } 3204 } 3205 3206 KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n", 3207 __kmp_gtid_from_thread(this_thr))); 3208 } 3209 3210 /* // TODO: Check the comment consistency 3211 * Utility routines for "task teams". A task team (kmp_task_t) is kind of 3212 * like a shadow of the kmp_team_t data struct, with a different lifetime. 3213 * After a child * thread checks into a barrier and calls __kmp_release() from 3214 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no 3215 * longer assume that the kmp_team_t structure is intact (at any moment, the 3216 * primary thread may exit the barrier code and free the team data structure, 3217 * and return the threads to the thread pool). 3218 * 3219 * This does not work with the tasking code, as the thread is still 3220 * expected to participate in the execution of any tasks that may have been 3221 * spawned my a member of the team, and the thread still needs access to all 3222 * to each thread in the team, so that it can steal work from it. 3223 * 3224 * Enter the existence of the kmp_task_team_t struct. It employs a reference 3225 * counting mechanism, and is allocated by the primary thread before calling 3226 * __kmp_<barrier_kind>_release, and then is release by the last thread to 3227 * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes 3228 * of the kmp_task_team_t structs for consecutive barriers can overlap 3229 * (and will, unless the primary thread is the last thread to exit the barrier 3230 * release phase, which is not typical). The existence of such a struct is 3231 * useful outside the context of tasking. 3232 * 3233 * We currently use the existence of the threads array as an indicator that 3234 * tasks were spawned since the last barrier. If the structure is to be 3235 * useful outside the context of tasking, then this will have to change, but 3236 * not setting the field minimizes the performance impact of tasking on 3237 * barriers, when no explicit tasks were spawned (pushed, actually). 3238 */ 3239 3240 static kmp_task_team_t *__kmp_free_task_teams = 3241 NULL; // Free list for task_team data structures 3242 // Lock for task team data structures 3243 kmp_bootstrap_lock_t __kmp_task_team_lock = 3244 KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); 3245 3246 // __kmp_alloc_task_deque: 3247 // Allocates a task deque for a particular thread, and initialize the necessary 3248 // data structures relating to the deque. This only happens once per thread 3249 // per task team since task teams are recycled. No lock is needed during 3250 // allocation since each thread allocates its own deque. 3251 static void __kmp_alloc_task_deque(kmp_info_t *thread, 3252 kmp_thread_data_t *thread_data) { 3253 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 3254 KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); 3255 3256 // Initialize last stolen task field to "none" 3257 thread_data->td.td_deque_last_stolen = -1; 3258 3259 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); 3260 KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); 3261 KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); 3262 3263 KE_TRACE( 3264 10, 3265 ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", 3266 __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); 3267 // Allocate space for task deque, and zero the deque 3268 // Cannot use __kmp_thread_calloc() because threads not around for 3269 // kmp_reap_task_team( ). 3270 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 3271 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 3272 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 3273 } 3274 3275 // __kmp_free_task_deque: 3276 // Deallocates a task deque for a particular thread. Happens at library 3277 // deallocation so don't need to reset all thread data fields. 3278 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { 3279 if (thread_data->td.td_deque != NULL) { 3280 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3281 TCW_4(thread_data->td.td_deque_ntasks, 0); 3282 __kmp_free(thread_data->td.td_deque); 3283 thread_data->td.td_deque = NULL; 3284 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3285 } 3286 3287 #ifdef BUILD_TIED_TASK_STACK 3288 // GEH: Figure out what to do here for td_susp_tied_tasks 3289 if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { 3290 __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); 3291 } 3292 #endif // BUILD_TIED_TASK_STACK 3293 } 3294 3295 // __kmp_realloc_task_threads_data: 3296 // Allocates a threads_data array for a task team, either by allocating an 3297 // initial array or enlarging an existing array. Only the first thread to get 3298 // the lock allocs or enlarges the array and re-initializes the array elements. 3299 // That thread returns "TRUE", the rest return "FALSE". 3300 // Assumes that the new array size is given by task_team -> tt.tt_nproc. 3301 // The current size is given by task_team -> tt.tt_max_threads. 3302 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 3303 kmp_task_team_t *task_team) { 3304 kmp_thread_data_t **threads_data_p; 3305 kmp_int32 nthreads, maxthreads; 3306 int is_init_thread = FALSE; 3307 3308 if (TCR_4(task_team->tt.tt_found_tasks)) { 3309 // Already reallocated and initialized. 3310 return FALSE; 3311 } 3312 3313 threads_data_p = &task_team->tt.tt_threads_data; 3314 nthreads = task_team->tt.tt_nproc; 3315 maxthreads = task_team->tt.tt_max_threads; 3316 3317 // All threads must lock when they encounter the first task of the implicit 3318 // task region to make sure threads_data fields are (re)initialized before 3319 // used. 3320 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3321 3322 if (!TCR_4(task_team->tt.tt_found_tasks)) { 3323 // first thread to enable tasking 3324 kmp_team_t *team = thread->th.th_team; 3325 int i; 3326 3327 is_init_thread = TRUE; 3328 if (maxthreads < nthreads) { 3329 3330 if (*threads_data_p != NULL) { 3331 kmp_thread_data_t *old_data = *threads_data_p; 3332 kmp_thread_data_t *new_data = NULL; 3333 3334 KE_TRACE( 3335 10, 3336 ("__kmp_realloc_task_threads_data: T#%d reallocating " 3337 "threads data for task_team %p, new_size = %d, old_size = %d\n", 3338 __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); 3339 // Reallocate threads_data to have more elements than current array 3340 // Cannot use __kmp_thread_realloc() because threads not around for 3341 // kmp_reap_task_team( ). Note all new array entries are initialized 3342 // to zero by __kmp_allocate(). 3343 new_data = (kmp_thread_data_t *)__kmp_allocate( 3344 nthreads * sizeof(kmp_thread_data_t)); 3345 // copy old data to new data 3346 KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), 3347 (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); 3348 3349 #ifdef BUILD_TIED_TASK_STACK 3350 // GEH: Figure out if this is the right thing to do 3351 for (i = maxthreads; i < nthreads; i++) { 3352 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3353 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3354 } 3355 #endif // BUILD_TIED_TASK_STACK 3356 // Install the new data and free the old data 3357 (*threads_data_p) = new_data; 3358 __kmp_free(old_data); 3359 } else { 3360 KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " 3361 "threads data for task_team %p, size = %d\n", 3362 __kmp_gtid_from_thread(thread), task_team, nthreads)); 3363 // Make the initial allocate for threads_data array, and zero entries 3364 // Cannot use __kmp_thread_calloc() because threads not around for 3365 // kmp_reap_task_team( ). 3366 ANNOTATE_IGNORE_WRITES_BEGIN(); 3367 *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( 3368 nthreads * sizeof(kmp_thread_data_t)); 3369 ANNOTATE_IGNORE_WRITES_END(); 3370 #ifdef BUILD_TIED_TASK_STACK 3371 // GEH: Figure out if this is the right thing to do 3372 for (i = 0; i < nthreads; i++) { 3373 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3374 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3375 } 3376 #endif // BUILD_TIED_TASK_STACK 3377 } 3378 task_team->tt.tt_max_threads = nthreads; 3379 } else { 3380 // If array has (more than) enough elements, go ahead and use it 3381 KMP_DEBUG_ASSERT(*threads_data_p != NULL); 3382 } 3383 3384 // initialize threads_data pointers back to thread_info structures 3385 for (i = 0; i < nthreads; i++) { 3386 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3387 thread_data->td.td_thr = team->t.t_threads[i]; 3388 3389 if (thread_data->td.td_deque_last_stolen >= nthreads) { 3390 // The last stolen field survives across teams / barrier, and the number 3391 // of threads may have changed. It's possible (likely?) that a new 3392 // parallel region will exhibit the same behavior as previous region. 3393 thread_data->td.td_deque_last_stolen = -1; 3394 } 3395 } 3396 3397 KMP_MB(); 3398 TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); 3399 } 3400 3401 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3402 return is_init_thread; 3403 } 3404 3405 // __kmp_free_task_threads_data: 3406 // Deallocates a threads_data array for a task team, including any attached 3407 // tasking deques. Only occurs at library shutdown. 3408 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { 3409 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3410 if (task_team->tt.tt_threads_data != NULL) { 3411 int i; 3412 for (i = 0; i < task_team->tt.tt_max_threads; i++) { 3413 __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]); 3414 } 3415 __kmp_free(task_team->tt.tt_threads_data); 3416 task_team->tt.tt_threads_data = NULL; 3417 } 3418 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3419 } 3420 3421 // __kmp_allocate_task_team: 3422 // Allocates a task team associated with a specific team, taking it from 3423 // the global task team free list if possible. Also initializes data 3424 // structures. 3425 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, 3426 kmp_team_t *team) { 3427 kmp_task_team_t *task_team = NULL; 3428 int nthreads; 3429 3430 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n", 3431 (thread ? __kmp_gtid_from_thread(thread) : -1), team)); 3432 3433 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3434 // Take a task team from the task team pool 3435 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3436 if (__kmp_free_task_teams != NULL) { 3437 task_team = __kmp_free_task_teams; 3438 TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); 3439 task_team->tt.tt_next = NULL; 3440 } 3441 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3442 } 3443 3444 if (task_team == NULL) { 3445 KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " 3446 "task team for team %p\n", 3447 __kmp_gtid_from_thread(thread), team)); 3448 // Allocate a new task team if one is not available. Cannot use 3449 // __kmp_thread_malloc because threads not around for kmp_reap_task_team. 3450 task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); 3451 __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock); 3452 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 3453 // suppress race conditions detection on synchronization flags in debug mode 3454 // this helps to analyze library internals eliminating false positives 3455 __itt_suppress_mark_range( 3456 __itt_suppress_range, __itt_suppress_threading_errors, 3457 &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks)); 3458 __itt_suppress_mark_range(__itt_suppress_range, 3459 __itt_suppress_threading_errors, 3460 CCAST(kmp_uint32 *, &task_team->tt.tt_active), 3461 sizeof(task_team->tt.tt_active)); 3462 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 3463 // Note: __kmp_allocate zeroes returned memory, othewise we would need: 3464 // task_team->tt.tt_threads_data = NULL; 3465 // task_team->tt.tt_max_threads = 0; 3466 // task_team->tt.tt_next = NULL; 3467 } 3468 3469 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3470 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3471 task_team->tt.tt_nproc = nthreads = team->t.t_nproc; 3472 3473 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads); 3474 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 3475 TCW_4(task_team->tt.tt_active, TRUE); 3476 3477 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " 3478 "unfinished_threads init'd to %d\n", 3479 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, 3480 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); 3481 return task_team; 3482 } 3483 3484 // __kmp_free_task_team: 3485 // Frees the task team associated with a specific thread, and adds it 3486 // to the global task team free list. 3487 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { 3488 KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n", 3489 thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); 3490 3491 // Put task team back on free list 3492 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3493 3494 KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); 3495 task_team->tt.tt_next = __kmp_free_task_teams; 3496 TCW_PTR(__kmp_free_task_teams, task_team); 3497 3498 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3499 } 3500 3501 // __kmp_reap_task_teams: 3502 // Free all the task teams on the task team free list. 3503 // Should only be done during library shutdown. 3504 // Cannot do anything that needs a thread structure or gtid since they are 3505 // already gone. 3506 void __kmp_reap_task_teams(void) { 3507 kmp_task_team_t *task_team; 3508 3509 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3510 // Free all task_teams on the free list 3511 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3512 while ((task_team = __kmp_free_task_teams) != NULL) { 3513 __kmp_free_task_teams = task_team->tt.tt_next; 3514 task_team->tt.tt_next = NULL; 3515 3516 // Free threads_data if necessary 3517 if (task_team->tt.tt_threads_data != NULL) { 3518 __kmp_free_task_threads_data(task_team); 3519 } 3520 __kmp_free(task_team); 3521 } 3522 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3523 } 3524 } 3525 3526 // __kmp_wait_to_unref_task_teams: 3527 // Some threads could still be in the fork barrier release code, possibly 3528 // trying to steal tasks. Wait for each thread to unreference its task team. 3529 void __kmp_wait_to_unref_task_teams(void) { 3530 kmp_info_t *thread; 3531 kmp_uint32 spins; 3532 int done; 3533 3534 KMP_INIT_YIELD(spins); 3535 3536 for (;;) { 3537 done = TRUE; 3538 3539 // TODO: GEH - this may be is wrong because some sync would be necessary 3540 // in case threads are added to the pool during the traversal. Need to 3541 // verify that lock for thread pool is held when calling this routine. 3542 for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; 3543 thread = thread->th.th_next_pool) { 3544 #if KMP_OS_WINDOWS 3545 DWORD exit_val; 3546 #endif 3547 if (TCR_PTR(thread->th.th_task_team) == NULL) { 3548 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", 3549 __kmp_gtid_from_thread(thread))); 3550 continue; 3551 } 3552 #if KMP_OS_WINDOWS 3553 // TODO: GEH - add this check for Linux* OS / OS X* as well? 3554 if (!__kmp_is_thread_alive(thread, &exit_val)) { 3555 thread->th.th_task_team = NULL; 3556 continue; 3557 } 3558 #endif 3559 3560 done = FALSE; // Because th_task_team pointer is not NULL for this thread 3561 3562 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " 3563 "unreference task_team\n", 3564 __kmp_gtid_from_thread(thread))); 3565 3566 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 3567 volatile void *sleep_loc; 3568 // If the thread is sleeping, awaken it. 3569 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3570 NULL) { 3571 KA_TRACE( 3572 10, 3573 ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", 3574 __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); 3575 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3576 } 3577 } 3578 } 3579 if (done) { 3580 break; 3581 } 3582 3583 // If oversubscribed or have waited a bit, yield. 3584 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 3585 } 3586 } 3587 3588 // __kmp_task_team_setup: Create a task_team for the current team, but use 3589 // an already created, unused one if it already exists. 3590 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) { 3591 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3592 3593 // If this task_team hasn't been created yet, allocate it. It will be used in 3594 // the region after the next. 3595 // If it exists, it is the current task team and shouldn't be touched yet as 3596 // it may still be in use. 3597 if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && 3598 (always || team->t.t_nproc > 1)) { 3599 team->t.t_task_team[this_thr->th.th_task_state] = 3600 __kmp_allocate_task_team(this_thr, team); 3601 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p" 3602 " for team %d at parity=%d\n", 3603 __kmp_gtid_from_thread(this_thr), 3604 team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id, 3605 this_thr->th.th_task_state)); 3606 } 3607 3608 // After threads exit the release, they will call sync, and then point to this 3609 // other task_team; make sure it is allocated and properly initialized. As 3610 // threads spin in the barrier release phase, they will continue to use the 3611 // previous task_team struct(above), until they receive the signal to stop 3612 // checking for tasks (they can't safely reference the kmp_team_t struct, 3613 // which could be reallocated by the primary thread). No task teams are formed 3614 // for serialized teams. 3615 if (team->t.t_nproc > 1) { 3616 int other_team = 1 - this_thr->th.th_task_state; 3617 KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2); 3618 if (team->t.t_task_team[other_team] == NULL) { // setup other team as well 3619 team->t.t_task_team[other_team] = 3620 __kmp_allocate_task_team(this_thr, team); 3621 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new " 3622 "task_team %p for team %d at parity=%d\n", 3623 __kmp_gtid_from_thread(this_thr), 3624 team->t.t_task_team[other_team], team->t.t_id, other_team)); 3625 } else { // Leave the old task team struct in place for the upcoming region; 3626 // adjust as needed 3627 kmp_task_team_t *task_team = team->t.t_task_team[other_team]; 3628 if (!task_team->tt.tt_active || 3629 team->t.t_nproc != task_team->tt.tt_nproc) { 3630 TCW_4(task_team->tt.tt_nproc, team->t.t_nproc); 3631 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3632 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3633 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, 3634 team->t.t_nproc); 3635 TCW_4(task_team->tt.tt_active, TRUE); 3636 } 3637 // if team size has changed, the first thread to enable tasking will 3638 // realloc threads_data if necessary 3639 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team " 3640 "%p for team %d at parity=%d\n", 3641 __kmp_gtid_from_thread(this_thr), 3642 team->t.t_task_team[other_team], team->t.t_id, other_team)); 3643 } 3644 } 3645 3646 // For regular thread, task enabling should be called when the task is going 3647 // to be pushed to a dequeue. However, for the hidden helper thread, we need 3648 // it ahead of time so that some operations can be performed without race 3649 // condition. 3650 if (this_thr == __kmp_hidden_helper_main_thread) { 3651 for (int i = 0; i < 2; ++i) { 3652 kmp_task_team_t *task_team = team->t.t_task_team[i]; 3653 if (KMP_TASKING_ENABLED(task_team)) { 3654 continue; 3655 } 3656 __kmp_enable_tasking(task_team, this_thr); 3657 for (int j = 0; j < task_team->tt.tt_nproc; ++j) { 3658 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j]; 3659 if (thread_data->td.td_deque == NULL) { 3660 __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data); 3661 } 3662 } 3663 } 3664 } 3665 } 3666 3667 // __kmp_task_team_sync: Propagation of task team data from team to threads 3668 // which happens just after the release phase of a team barrier. This may be 3669 // called by any thread, but only for teams with # threads > 1. 3670 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { 3671 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3672 3673 // Toggle the th_task_state field, to switch which task_team this thread 3674 // refers to 3675 this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state); 3676 3677 // It is now safe to propagate the task team pointer from the team struct to 3678 // the current thread. 3679 TCW_PTR(this_thr->th.th_task_team, 3680 team->t.t_task_team[this_thr->th.th_task_state]); 3681 KA_TRACE(20, 3682 ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " 3683 "%p from Team #%d (parity=%d)\n", 3684 __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, 3685 team->t.t_id, this_thr->th.th_task_state)); 3686 } 3687 3688 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the 3689 // barrier gather phase. Only called by primary thread if #threads in team > 1 3690 // or if proxy tasks were created. 3691 // 3692 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off 3693 // by passing in 0 optionally as the last argument. When wait is zero, primary 3694 // thread does not wait for unfinished_threads to reach 0. 3695 void __kmp_task_team_wait( 3696 kmp_info_t *this_thr, 3697 kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { 3698 kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; 3699 3700 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3701 KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); 3702 3703 if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { 3704 if (wait) { 3705 KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks " 3706 "(for unfinished_threads to reach 0) on task_team = %p\n", 3707 __kmp_gtid_from_thread(this_thr), task_team)); 3708 // Worker threads may have dropped through to release phase, but could 3709 // still be executing tasks. Wait here for tasks to complete. To avoid 3710 // memory contention, only primary thread checks termination condition. 3711 kmp_flag_32<false, false> flag( 3712 RCAST(std::atomic<kmp_uint32> *, 3713 &task_team->tt.tt_unfinished_threads), 3714 0U); 3715 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 3716 } 3717 // Deactivate the old task team, so that the worker threads will stop 3718 // referencing it while spinning. 3719 KA_TRACE( 3720 20, 3721 ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: " 3722 "setting active to false, setting local and team's pointer to NULL\n", 3723 __kmp_gtid_from_thread(this_thr), task_team)); 3724 KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 || 3725 task_team->tt.tt_found_proxy_tasks == TRUE); 3726 TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3727 KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); 3728 TCW_SYNC_4(task_team->tt.tt_active, FALSE); 3729 KMP_MB(); 3730 3731 TCW_PTR(this_thr->th.th_task_team, NULL); 3732 } 3733 } 3734 3735 // __kmp_tasking_barrier: 3736 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier. 3737 // Internal function to execute all tasks prior to a regular barrier or a join 3738 // barrier. It is a full barrier itself, which unfortunately turns regular 3739 // barriers into double barriers and join barriers into 1 1/2 barriers. 3740 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { 3741 std::atomic<kmp_uint32> *spin = RCAST( 3742 std::atomic<kmp_uint32> *, 3743 &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); 3744 int flag = FALSE; 3745 KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); 3746 3747 #if USE_ITT_BUILD 3748 KMP_FSYNC_SPIN_INIT(spin, NULL); 3749 #endif /* USE_ITT_BUILD */ 3750 kmp_flag_32<false, false> spin_flag(spin, 0U); 3751 while (!spin_flag.execute_tasks(thread, gtid, TRUE, 3752 &flag USE_ITT_BUILD_ARG(NULL), 0)) { 3753 #if USE_ITT_BUILD 3754 // TODO: What about itt_sync_obj?? 3755 KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); 3756 #endif /* USE_ITT_BUILD */ 3757 3758 if (TCR_4(__kmp_global.g.g_done)) { 3759 if (__kmp_global.g.g_abort) 3760 __kmp_abort_thread(); 3761 break; 3762 } 3763 KMP_YIELD(TRUE); 3764 } 3765 #if USE_ITT_BUILD 3766 KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); 3767 #endif /* USE_ITT_BUILD */ 3768 } 3769 3770 // __kmp_give_task puts a task into a given thread queue if: 3771 // - the queue for that thread was created 3772 // - there's space in that queue 3773 // Because of this, __kmp_push_task needs to check if there's space after 3774 // getting the lock 3775 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, 3776 kmp_int32 pass) { 3777 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 3778 kmp_task_team_t *task_team = taskdata->td_task_team; 3779 3780 KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", 3781 taskdata, tid)); 3782 3783 // If task_team is NULL something went really bad... 3784 KMP_DEBUG_ASSERT(task_team != NULL); 3785 3786 bool result = false; 3787 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 3788 3789 if (thread_data->td.td_deque == NULL) { 3790 // There's no queue in this thread, go find another one 3791 // We're guaranteed that at least one thread has a queue 3792 KA_TRACE(30, 3793 ("__kmp_give_task: thread %d has no queue while giving task %p.\n", 3794 tid, taskdata)); 3795 return result; 3796 } 3797 3798 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3799 TASK_DEQUE_SIZE(thread_data->td)) { 3800 KA_TRACE( 3801 30, 3802 ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", 3803 taskdata, tid)); 3804 3805 // if this deque is bigger than the pass ratio give a chance to another 3806 // thread 3807 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3808 return result; 3809 3810 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3811 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3812 TASK_DEQUE_SIZE(thread_data->td)) { 3813 // expand deque to push the task which is not allowed to execute 3814 __kmp_realloc_task_deque(thread, thread_data); 3815 } 3816 3817 } else { 3818 3819 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3820 3821 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3822 TASK_DEQUE_SIZE(thread_data->td)) { 3823 KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " 3824 "thread %d.\n", 3825 taskdata, tid)); 3826 3827 // if this deque is bigger than the pass ratio give a chance to another 3828 // thread 3829 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3830 goto release_and_exit; 3831 3832 __kmp_realloc_task_deque(thread, thread_data); 3833 } 3834 } 3835 3836 // lock is held here, and there is space in the deque 3837 3838 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 3839 // Wrap index. 3840 thread_data->td.td_deque_tail = 3841 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 3842 TCW_4(thread_data->td.td_deque_ntasks, 3843 TCR_4(thread_data->td.td_deque_ntasks) + 1); 3844 3845 result = true; 3846 KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", 3847 taskdata, tid)); 3848 3849 release_and_exit: 3850 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3851 3852 return result; 3853 } 3854 3855 /* The finish of the proxy tasks is divided in two pieces: 3856 - the top half is the one that can be done from a thread outside the team 3857 - the bottom half must be run from a thread within the team 3858 3859 In order to run the bottom half the task gets queued back into one of the 3860 threads of the team. Once the td_incomplete_child_task counter of the parent 3861 is decremented the threads can leave the barriers. So, the bottom half needs 3862 to be queued before the counter is decremented. The top half is therefore 3863 divided in two parts: 3864 - things that can be run before queuing the bottom half 3865 - things that must be run after queuing the bottom half 3866 3867 This creates a second race as the bottom half can free the task before the 3868 second top half is executed. To avoid this we use the 3869 td_incomplete_child_task of the proxy task to synchronize the top and bottom 3870 half. */ 3871 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3872 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 3873 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3874 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 3875 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 3876 3877 taskdata->td_flags.complete = 1; // mark the task as completed 3878 3879 if (taskdata->td_taskgroup) 3880 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 3881 3882 // Create an imaginary children for this task so the bottom half cannot 3883 // release the task before we have completed the second top half 3884 KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks); 3885 } 3886 3887 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3888 kmp_int32 children = 0; 3889 3890 // Predecrement simulated by "- 1" calculation 3891 children = 3892 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 3893 KMP_DEBUG_ASSERT(children >= 0); 3894 3895 // Remove the imaginary children 3896 KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks); 3897 } 3898 3899 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { 3900 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3901 kmp_info_t *thread = __kmp_threads[gtid]; 3902 3903 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3904 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 3905 1); // top half must run before bottom half 3906 3907 // We need to wait to make sure the top half is finished 3908 // Spinning here should be ok as this should happen quickly 3909 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0) 3910 ; 3911 3912 __kmp_release_deps(gtid, taskdata); 3913 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 3914 } 3915 3916 /*! 3917 @ingroup TASKING 3918 @param gtid Global Thread ID of encountering thread 3919 @param ptask Task which execution is completed 3920 3921 Execute the completion of a proxy task from a thread of that is part of the 3922 team. Run first and bottom halves directly. 3923 */ 3924 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { 3925 KMP_DEBUG_ASSERT(ptask != NULL); 3926 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3927 KA_TRACE( 3928 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", 3929 gtid, taskdata)); 3930 __kmp_assert_valid_gtid(gtid); 3931 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3932 3933 __kmp_first_top_half_finish_proxy(taskdata); 3934 __kmp_second_top_half_finish_proxy(taskdata); 3935 __kmp_bottom_half_finish_proxy(gtid, ptask); 3936 3937 KA_TRACE(10, 3938 ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", 3939 gtid, taskdata)); 3940 } 3941 3942 /*! 3943 @ingroup TASKING 3944 @param ptask Task which execution is completed 3945 3946 Execute the completion of a proxy task from a thread that could not belong to 3947 the team. 3948 */ 3949 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { 3950 KMP_DEBUG_ASSERT(ptask != NULL); 3951 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3952 3953 KA_TRACE( 3954 10, 3955 ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", 3956 taskdata)); 3957 3958 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3959 3960 __kmp_first_top_half_finish_proxy(taskdata); 3961 3962 // Enqueue task to complete bottom half completion from a thread within the 3963 // corresponding team 3964 kmp_team_t *team = taskdata->td_team; 3965 kmp_int32 nthreads = team->t.t_nproc; 3966 kmp_info_t *thread; 3967 3968 // This should be similar to start_k = __kmp_get_random( thread ) % nthreads 3969 // but we cannot use __kmp_get_random here 3970 kmp_int32 start_k = 0; 3971 kmp_int32 pass = 1; 3972 kmp_int32 k = start_k; 3973 3974 do { 3975 // For now we're just linearly trying to find a thread 3976 thread = team->t.t_threads[k]; 3977 k = (k + 1) % nthreads; 3978 3979 // we did a full pass through all the threads 3980 if (k == start_k) 3981 pass = pass << 1; 3982 3983 } while (!__kmp_give_task(thread, k, ptask, pass)); 3984 3985 __kmp_second_top_half_finish_proxy(taskdata); 3986 3987 KA_TRACE( 3988 10, 3989 ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", 3990 taskdata)); 3991 } 3992 3993 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, 3994 kmp_task_t *task) { 3995 kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); 3996 if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { 3997 td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; 3998 td->td_allow_completion_event.ed.task = task; 3999 __kmp_init_tas_lock(&td->td_allow_completion_event.lock); 4000 } 4001 return &td->td_allow_completion_event; 4002 } 4003 4004 void __kmp_fulfill_event(kmp_event_t *event) { 4005 if (event->type == KMP_EVENT_ALLOW_COMPLETION) { 4006 kmp_task_t *ptask = event->ed.task; 4007 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4008 bool detached = false; 4009 int gtid = __kmp_get_gtid(); 4010 4011 // The associated task might have completed or could be completing at this 4012 // point. 4013 // We need to take the lock to avoid races 4014 __kmp_acquire_tas_lock(&event->lock, gtid); 4015 if (taskdata->td_flags.proxy == TASK_PROXY) { 4016 detached = true; 4017 } else { 4018 #if OMPT_SUPPORT 4019 // The OMPT event must occur under mutual exclusion, 4020 // otherwise the tool might access ptask after free 4021 if (UNLIKELY(ompt_enabled.enabled)) 4022 __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill); 4023 #endif 4024 } 4025 event->type = KMP_EVENT_UNINITIALIZED; 4026 __kmp_release_tas_lock(&event->lock, gtid); 4027 4028 if (detached) { 4029 #if OMPT_SUPPORT 4030 // We free ptask afterwards and know the task is finished, 4031 // so locking is not necessary 4032 if (UNLIKELY(ompt_enabled.enabled)) 4033 __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill); 4034 #endif 4035 // If the task detached complete the proxy task 4036 if (gtid >= 0) { 4037 kmp_team_t *team = taskdata->td_team; 4038 kmp_info_t *thread = __kmp_get_thread(); 4039 if (thread->th.th_team == team) { 4040 __kmpc_proxy_task_completed(gtid, ptask); 4041 return; 4042 } 4043 } 4044 4045 // fallback 4046 __kmpc_proxy_task_completed_ooo(ptask); 4047 } 4048 } 4049 } 4050 4051 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task 4052 // for taskloop 4053 // 4054 // thread: allocating thread 4055 // task_src: pointer to source task to be duplicated 4056 // returns: a pointer to the allocated kmp_task_t structure (task). 4057 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) { 4058 kmp_task_t *task; 4059 kmp_taskdata_t *taskdata; 4060 kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); 4061 kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task 4062 size_t shareds_offset; 4063 size_t task_size; 4064 4065 KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, 4066 task_src)); 4067 KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == 4068 TASK_FULL); // it should not be proxy task 4069 KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); 4070 task_size = taskdata_src->td_size_alloc; 4071 4072 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 4073 KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, 4074 task_size)); 4075 #if USE_FAST_MEMORY 4076 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); 4077 #else 4078 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); 4079 #endif /* USE_FAST_MEMORY */ 4080 KMP_MEMCPY(taskdata, taskdata_src, task_size); 4081 4082 task = KMP_TASKDATA_TO_TASK(taskdata); 4083 4084 // Initialize new task (only specific fields not affected by memcpy) 4085 taskdata->td_task_id = KMP_GEN_TASK_ID(); 4086 if (task->shareds != NULL) { // need setup shareds pointer 4087 shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; 4088 task->shareds = &((char *)taskdata)[shareds_offset]; 4089 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 4090 0); 4091 } 4092 taskdata->td_alloc_thread = thread; 4093 taskdata->td_parent = parent_task; 4094 // task inherits the taskgroup from the parent task 4095 taskdata->td_taskgroup = parent_task->td_taskgroup; 4096 // tied task needs to initialize the td_last_tied at creation, 4097 // untied one does this when it is scheduled for execution 4098 if (taskdata->td_flags.tiedness == TASK_TIED) 4099 taskdata->td_last_tied = taskdata; 4100 4101 // Only need to keep track of child task counts if team parallel and tasking 4102 // not serialized 4103 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 4104 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 4105 if (parent_task->td_taskgroup) 4106 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 4107 // Only need to keep track of allocated child tasks for explicit tasks since 4108 // implicit not deallocated 4109 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) 4110 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 4111 } 4112 4113 KA_TRACE(20, 4114 ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n", 4115 thread, taskdata, taskdata->td_parent)); 4116 #if OMPT_SUPPORT 4117 if (UNLIKELY(ompt_enabled.enabled)) 4118 __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid); 4119 #endif 4120 return task; 4121 } 4122 4123 // Routine optionally generated by the compiler for setting the lastprivate flag 4124 // and calling needed constructors for private/firstprivate objects 4125 // (used to form taskloop tasks from pattern task) 4126 // Parameters: dest task, src task, lastprivate flag. 4127 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); 4128 4129 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); 4130 4131 // class to encapsulate manipulating loop bounds in a taskloop task. 4132 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting 4133 // the loop bound variables. 4134 class kmp_taskloop_bounds_t { 4135 kmp_task_t *task; 4136 const kmp_taskdata_t *taskdata; 4137 size_t lower_offset; 4138 size_t upper_offset; 4139 4140 public: 4141 kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) 4142 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), 4143 lower_offset((char *)lb - (char *)task), 4144 upper_offset((char *)ub - (char *)task) { 4145 KMP_DEBUG_ASSERT((char *)lb > (char *)_task); 4146 KMP_DEBUG_ASSERT((char *)ub > (char *)_task); 4147 } 4148 kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) 4149 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), 4150 lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} 4151 size_t get_lower_offset() const { return lower_offset; } 4152 size_t get_upper_offset() const { return upper_offset; } 4153 kmp_uint64 get_lb() const { 4154 kmp_int64 retval; 4155 #if defined(KMP_GOMP_COMPAT) 4156 // Intel task just returns the lower bound normally 4157 if (!taskdata->td_flags.native) { 4158 retval = *(kmp_int64 *)((char *)task + lower_offset); 4159 } else { 4160 // GOMP task has to take into account the sizeof(long) 4161 if (taskdata->td_size_loop_bounds == 4) { 4162 kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); 4163 retval = (kmp_int64)*lb; 4164 } else { 4165 kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); 4166 retval = (kmp_int64)*lb; 4167 } 4168 } 4169 #else 4170 (void)taskdata; 4171 retval = *(kmp_int64 *)((char *)task + lower_offset); 4172 #endif // defined(KMP_GOMP_COMPAT) 4173 return retval; 4174 } 4175 kmp_uint64 get_ub() const { 4176 kmp_int64 retval; 4177 #if defined(KMP_GOMP_COMPAT) 4178 // Intel task just returns the upper bound normally 4179 if (!taskdata->td_flags.native) { 4180 retval = *(kmp_int64 *)((char *)task + upper_offset); 4181 } else { 4182 // GOMP task has to take into account the sizeof(long) 4183 if (taskdata->td_size_loop_bounds == 4) { 4184 kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; 4185 retval = (kmp_int64)*ub; 4186 } else { 4187 kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; 4188 retval = (kmp_int64)*ub; 4189 } 4190 } 4191 #else 4192 retval = *(kmp_int64 *)((char *)task + upper_offset); 4193 #endif // defined(KMP_GOMP_COMPAT) 4194 return retval; 4195 } 4196 void set_lb(kmp_uint64 lb) { 4197 #if defined(KMP_GOMP_COMPAT) 4198 // Intel task just sets the lower bound normally 4199 if (!taskdata->td_flags.native) { 4200 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4201 } else { 4202 // GOMP task has to take into account the sizeof(long) 4203 if (taskdata->td_size_loop_bounds == 4) { 4204 kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); 4205 *lower = (kmp_uint32)lb; 4206 } else { 4207 kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); 4208 *lower = (kmp_uint64)lb; 4209 } 4210 } 4211 #else 4212 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4213 #endif // defined(KMP_GOMP_COMPAT) 4214 } 4215 void set_ub(kmp_uint64 ub) { 4216 #if defined(KMP_GOMP_COMPAT) 4217 // Intel task just sets the upper bound normally 4218 if (!taskdata->td_flags.native) { 4219 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4220 } else { 4221 // GOMP task has to take into account the sizeof(long) 4222 if (taskdata->td_size_loop_bounds == 4) { 4223 kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; 4224 *upper = (kmp_uint32)ub; 4225 } else { 4226 kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; 4227 *upper = (kmp_uint64)ub; 4228 } 4229 } 4230 #else 4231 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4232 #endif // defined(KMP_GOMP_COMPAT) 4233 } 4234 }; 4235 4236 // __kmp_taskloop_linear: Start tasks of the taskloop linearly 4237 // 4238 // loc Source location information 4239 // gtid Global thread ID 4240 // task Pattern task, exposes the loop iteration range 4241 // lb Pointer to loop lower bound in task structure 4242 // ub Pointer to loop upper bound in task structure 4243 // st Loop stride 4244 // ub_glob Global upper bound (used for lastprivate check) 4245 // num_tasks Number of tasks to execute 4246 // grainsize Number of loop iterations per task 4247 // extras Number of chunks with grainsize+1 iterations 4248 // last_chunk Reduction of grainsize for last task 4249 // tc Iterations count 4250 // task_dup Tasks duplication routine 4251 // codeptr_ra Return address for OMPT events 4252 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, 4253 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4254 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4255 kmp_uint64 grainsize, kmp_uint64 extras, 4256 kmp_int64 last_chunk, kmp_uint64 tc, 4257 #if OMPT_SUPPORT 4258 void *codeptr_ra, 4259 #endif 4260 void *task_dup) { 4261 KMP_COUNT_BLOCK(OMP_TASKLOOP); 4262 KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); 4263 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4264 // compiler provides global bounds here 4265 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4266 kmp_uint64 lower = task_bounds.get_lb(); 4267 kmp_uint64 upper = task_bounds.get_ub(); 4268 kmp_uint64 i; 4269 kmp_info_t *thread = __kmp_threads[gtid]; 4270 kmp_taskdata_t *current_task = thread->th.th_current_task; 4271 kmp_task_t *next_task; 4272 kmp_int32 lastpriv = 0; 4273 4274 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 4275 (last_chunk < 0 ? last_chunk : extras)); 4276 KMP_DEBUG_ASSERT(num_tasks > extras); 4277 KMP_DEBUG_ASSERT(num_tasks > 0); 4278 KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " 4279 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n", 4280 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper, 4281 ub_glob, st, task_dup)); 4282 4283 // Launch num_tasks tasks, assign grainsize iterations each task 4284 for (i = 0; i < num_tasks; ++i) { 4285 kmp_uint64 chunk_minus_1; 4286 if (extras == 0) { 4287 chunk_minus_1 = grainsize - 1; 4288 } else { 4289 chunk_minus_1 = grainsize; 4290 --extras; // first extras iterations get bigger chunk (grainsize+1) 4291 } 4292 upper = lower + st * chunk_minus_1; 4293 if (upper > *ub) { 4294 upper = *ub; 4295 } 4296 if (i == num_tasks - 1) { 4297 // schedule the last task, set lastprivate flag if needed 4298 if (st == 1) { // most common case 4299 KMP_DEBUG_ASSERT(upper == *ub); 4300 if (upper == ub_glob) 4301 lastpriv = 1; 4302 } else if (st > 0) { // positive loop stride 4303 KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); 4304 if ((kmp_uint64)st > ub_glob - upper) 4305 lastpriv = 1; 4306 } else { // negative loop stride 4307 KMP_DEBUG_ASSERT(upper + st < *ub); 4308 if (upper - ub_glob < (kmp_uint64)(-st)) 4309 lastpriv = 1; 4310 } 4311 } 4312 next_task = __kmp_task_dup_alloc(thread, task); // allocate new task 4313 kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); 4314 kmp_taskloop_bounds_t next_task_bounds = 4315 kmp_taskloop_bounds_t(next_task, task_bounds); 4316 4317 // adjust task-specific bounds 4318 next_task_bounds.set_lb(lower); 4319 if (next_taskdata->td_flags.native) { 4320 next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); 4321 } else { 4322 next_task_bounds.set_ub(upper); 4323 } 4324 if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, 4325 // etc. 4326 ptask_dup(next_task, task, lastpriv); 4327 KA_TRACE(40, 4328 ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " 4329 "upper %lld stride %lld, (offsets %p %p)\n", 4330 gtid, i, next_task, lower, upper, st, 4331 next_task_bounds.get_lower_offset(), 4332 next_task_bounds.get_upper_offset())); 4333 #if OMPT_SUPPORT 4334 __kmp_omp_taskloop_task(NULL, gtid, next_task, 4335 codeptr_ra); // schedule new task 4336 #else 4337 __kmp_omp_task(gtid, next_task, true); // schedule new task 4338 #endif 4339 lower = upper + st; // adjust lower bound for the next iteration 4340 } 4341 // free the pattern task and exit 4342 __kmp_task_start(gtid, task, current_task); // make internal bookkeeping 4343 // do not execute the pattern task, just do internal bookkeeping 4344 __kmp_task_finish<false>(gtid, task, current_task); 4345 } 4346 4347 // Structure to keep taskloop parameters for auxiliary task 4348 // kept in the shareds of the task structure. 4349 typedef struct __taskloop_params { 4350 kmp_task_t *task; 4351 kmp_uint64 *lb; 4352 kmp_uint64 *ub; 4353 void *task_dup; 4354 kmp_int64 st; 4355 kmp_uint64 ub_glob; 4356 kmp_uint64 num_tasks; 4357 kmp_uint64 grainsize; 4358 kmp_uint64 extras; 4359 kmp_int64 last_chunk; 4360 kmp_uint64 tc; 4361 kmp_uint64 num_t_min; 4362 #if OMPT_SUPPORT 4363 void *codeptr_ra; 4364 #endif 4365 } __taskloop_params_t; 4366 4367 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, 4368 kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, 4369 kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64, 4370 kmp_uint64, 4371 #if OMPT_SUPPORT 4372 void *, 4373 #endif 4374 void *); 4375 4376 // Execute part of the taskloop submitted as a task. 4377 int __kmp_taskloop_task(int gtid, void *ptask) { 4378 __taskloop_params_t *p = 4379 (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; 4380 kmp_task_t *task = p->task; 4381 kmp_uint64 *lb = p->lb; 4382 kmp_uint64 *ub = p->ub; 4383 void *task_dup = p->task_dup; 4384 // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4385 kmp_int64 st = p->st; 4386 kmp_uint64 ub_glob = p->ub_glob; 4387 kmp_uint64 num_tasks = p->num_tasks; 4388 kmp_uint64 grainsize = p->grainsize; 4389 kmp_uint64 extras = p->extras; 4390 kmp_int64 last_chunk = p->last_chunk; 4391 kmp_uint64 tc = p->tc; 4392 kmp_uint64 num_t_min = p->num_t_min; 4393 #if OMPT_SUPPORT 4394 void *codeptr_ra = p->codeptr_ra; 4395 #endif 4396 #if KMP_DEBUG 4397 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4398 KMP_DEBUG_ASSERT(task != NULL); 4399 KA_TRACE(20, 4400 ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" 4401 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4402 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4403 st, task_dup)); 4404 #endif 4405 KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); 4406 if (num_tasks > num_t_min) 4407 __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4408 grainsize, extras, last_chunk, tc, num_t_min, 4409 #if OMPT_SUPPORT 4410 codeptr_ra, 4411 #endif 4412 task_dup); 4413 else 4414 __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4415 grainsize, extras, last_chunk, tc, 4416 #if OMPT_SUPPORT 4417 codeptr_ra, 4418 #endif 4419 task_dup); 4420 4421 KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid)); 4422 return 0; 4423 } 4424 4425 // Schedule part of the taskloop as a task, 4426 // execute the rest of the taskloop. 4427 // 4428 // loc Source location information 4429 // gtid Global thread ID 4430 // task Pattern task, exposes the loop iteration range 4431 // lb Pointer to loop lower bound in task structure 4432 // ub Pointer to loop upper bound in task structure 4433 // st Loop stride 4434 // ub_glob Global upper bound (used for lastprivate check) 4435 // num_tasks Number of tasks to execute 4436 // grainsize Number of loop iterations per task 4437 // extras Number of chunks with grainsize+1 iterations 4438 // last_chunk Reduction of grainsize for last task 4439 // tc Iterations count 4440 // num_t_min Threshold to launch tasks recursively 4441 // task_dup Tasks duplication routine 4442 // codeptr_ra Return address for OMPT events 4443 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, 4444 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4445 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4446 kmp_uint64 grainsize, kmp_uint64 extras, 4447 kmp_int64 last_chunk, kmp_uint64 tc, 4448 kmp_uint64 num_t_min, 4449 #if OMPT_SUPPORT 4450 void *codeptr_ra, 4451 #endif 4452 void *task_dup) { 4453 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4454 KMP_DEBUG_ASSERT(task != NULL); 4455 KMP_DEBUG_ASSERT(num_tasks > num_t_min); 4456 KA_TRACE(20, 4457 ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" 4458 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4459 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4460 st, task_dup)); 4461 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4462 kmp_uint64 lower = *lb; 4463 kmp_info_t *thread = __kmp_threads[gtid]; 4464 // kmp_taskdata_t *current_task = thread->th.th_current_task; 4465 kmp_task_t *next_task; 4466 size_t lower_offset = 4467 (char *)lb - (char *)task; // remember offset of lb in the task structure 4468 size_t upper_offset = 4469 (char *)ub - (char *)task; // remember offset of ub in the task structure 4470 4471 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 4472 (last_chunk < 0 ? last_chunk : extras)); 4473 KMP_DEBUG_ASSERT(num_tasks > extras); 4474 KMP_DEBUG_ASSERT(num_tasks > 0); 4475 4476 // split the loop in two halves 4477 kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; 4478 kmp_int64 last_chunk0 = 0, last_chunk1 = 0; 4479 kmp_uint64 gr_size0 = grainsize; 4480 kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute 4481 kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task 4482 if (last_chunk < 0) { 4483 ext0 = ext1 = 0; 4484 last_chunk1 = last_chunk; 4485 tc0 = grainsize * n_tsk0; 4486 tc1 = tc - tc0; 4487 } else if (n_tsk0 <= extras) { 4488 gr_size0++; // integrate extras into grainsize 4489 ext0 = 0; // no extra iters in 1st half 4490 ext1 = extras - n_tsk0; // remaining extras 4491 tc0 = gr_size0 * n_tsk0; 4492 tc1 = tc - tc0; 4493 } else { // n_tsk0 > extras 4494 ext1 = 0; // no extra iters in 2nd half 4495 ext0 = extras; 4496 tc1 = grainsize * n_tsk1; 4497 tc0 = tc - tc1; 4498 } 4499 ub0 = lower + st * (tc0 - 1); 4500 lb1 = ub0 + st; 4501 4502 // create pattern task for 2nd half of the loop 4503 next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task 4504 // adjust lower bound (upper bound is not changed) for the 2nd half 4505 *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; 4506 if (ptask_dup != NULL) // construct firstprivates, etc. 4507 ptask_dup(next_task, task, 0); 4508 *ub = ub0; // adjust upper bound for the 1st half 4509 4510 // create auxiliary task for 2nd half of the loop 4511 // make sure new task has same parent task as the pattern task 4512 kmp_taskdata_t *current_task = thread->th.th_current_task; 4513 thread->th.th_current_task = taskdata->td_parent; 4514 kmp_task_t *new_task = 4515 __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *), 4516 sizeof(__taskloop_params_t), &__kmp_taskloop_task); 4517 // restore current task 4518 thread->th.th_current_task = current_task; 4519 __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; 4520 p->task = next_task; 4521 p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); 4522 p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); 4523 p->task_dup = task_dup; 4524 p->st = st; 4525 p->ub_glob = ub_glob; 4526 p->num_tasks = n_tsk1; 4527 p->grainsize = grainsize; 4528 p->extras = ext1; 4529 p->last_chunk = last_chunk1; 4530 p->tc = tc1; 4531 p->num_t_min = num_t_min; 4532 #if OMPT_SUPPORT 4533 p->codeptr_ra = codeptr_ra; 4534 #endif 4535 4536 #if OMPT_SUPPORT 4537 // schedule new task with correct return address for OMPT events 4538 __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); 4539 #else 4540 __kmp_omp_task(gtid, new_task, true); // schedule new task 4541 #endif 4542 4543 // execute the 1st half of current subrange 4544 if (n_tsk0 > num_t_min) 4545 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0, 4546 ext0, last_chunk0, tc0, num_t_min, 4547 #if OMPT_SUPPORT 4548 codeptr_ra, 4549 #endif 4550 task_dup); 4551 else 4552 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, 4553 gr_size0, ext0, last_chunk0, tc0, 4554 #if OMPT_SUPPORT 4555 codeptr_ra, 4556 #endif 4557 task_dup); 4558 4559 KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid)); 4560 } 4561 4562 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4563 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4564 int nogroup, int sched, kmp_uint64 grainsize, 4565 int modifier, void *task_dup) { 4566 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4567 KMP_DEBUG_ASSERT(task != NULL); 4568 if (nogroup == 0) { 4569 #if OMPT_SUPPORT && OMPT_OPTIONAL 4570 OMPT_STORE_RETURN_ADDRESS(gtid); 4571 #endif 4572 __kmpc_taskgroup(loc, gtid); 4573 } 4574 4575 // ========================================================================= 4576 // calculate loop parameters 4577 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4578 kmp_uint64 tc; 4579 // compiler provides global bounds here 4580 kmp_uint64 lower = task_bounds.get_lb(); 4581 kmp_uint64 upper = task_bounds.get_ub(); 4582 kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag 4583 kmp_uint64 num_tasks = 0, extras = 0; 4584 kmp_int64 last_chunk = 4585 0; // reduce grainsize of last task by last_chunk in strict mode 4586 kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; 4587 kmp_info_t *thread = __kmp_threads[gtid]; 4588 kmp_taskdata_t *current_task = thread->th.th_current_task; 4589 4590 KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " 4591 "grain %llu(%d, %d), dup %p\n", 4592 gtid, taskdata, lower, upper, st, grainsize, sched, modifier, 4593 task_dup)); 4594 4595 // compute trip count 4596 if (st == 1) { // most common case 4597 tc = upper - lower + 1; 4598 } else if (st < 0) { 4599 tc = (lower - upper) / (-st) + 1; 4600 } else { // st > 0 4601 tc = (upper - lower) / st + 1; 4602 } 4603 if (tc == 0) { 4604 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid)); 4605 // free the pattern task and exit 4606 __kmp_task_start(gtid, task, current_task); 4607 // do not execute anything for zero-trip loop 4608 __kmp_task_finish<false>(gtid, task, current_task); 4609 return; 4610 } 4611 4612 #if OMPT_SUPPORT && OMPT_OPTIONAL 4613 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 4614 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 4615 if (ompt_enabled.ompt_callback_work) { 4616 ompt_callbacks.ompt_callback(ompt_callback_work)( 4617 ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), 4618 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4619 } 4620 #endif 4621 4622 if (num_tasks_min == 0) 4623 // TODO: can we choose better default heuristic? 4624 num_tasks_min = 4625 KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); 4626 4627 // compute num_tasks/grainsize based on the input provided 4628 switch (sched) { 4629 case 0: // no schedule clause specified, we can choose the default 4630 // let's try to schedule (team_size*10) tasks 4631 grainsize = thread->th.th_team_nproc * 10; 4632 KMP_FALLTHROUGH(); 4633 case 2: // num_tasks provided 4634 if (grainsize > tc) { 4635 num_tasks = tc; // too big num_tasks requested, adjust values 4636 grainsize = 1; 4637 extras = 0; 4638 } else { 4639 num_tasks = grainsize; 4640 grainsize = tc / num_tasks; 4641 extras = tc % num_tasks; 4642 } 4643 break; 4644 case 1: // grainsize provided 4645 if (grainsize > tc) { 4646 num_tasks = 1; 4647 grainsize = tc; // too big grainsize requested, adjust values 4648 extras = 0; 4649 } else { 4650 if (modifier) { 4651 num_tasks = (tc + grainsize - 1) / grainsize; 4652 last_chunk = tc - (num_tasks * grainsize); 4653 extras = 0; 4654 } else { 4655 num_tasks = tc / grainsize; 4656 // adjust grainsize for balanced distribution of iterations 4657 grainsize = tc / num_tasks; 4658 extras = tc % num_tasks; 4659 } 4660 } 4661 break; 4662 default: 4663 KMP_ASSERT2(0, "unknown scheduling of taskloop"); 4664 } 4665 4666 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 4667 (last_chunk < 0 ? last_chunk : extras)); 4668 KMP_DEBUG_ASSERT(num_tasks > extras); 4669 KMP_DEBUG_ASSERT(num_tasks > 0); 4670 // ========================================================================= 4671 4672 // check if clause value first 4673 // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) 4674 if (if_val == 0) { // if(0) specified, mark task as serial 4675 taskdata->td_flags.task_serial = 1; 4676 taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied 4677 // always start serial tasks linearly 4678 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4679 grainsize, extras, last_chunk, tc, 4680 #if OMPT_SUPPORT 4681 OMPT_GET_RETURN_ADDRESS(0), 4682 #endif 4683 task_dup); 4684 // !taskdata->td_flags.native => currently force linear spawning of tasks 4685 // for GOMP_taskloop 4686 } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { 4687 KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" 4688 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 4689 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 4690 last_chunk)); 4691 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4692 grainsize, extras, last_chunk, tc, num_tasks_min, 4693 #if OMPT_SUPPORT 4694 OMPT_GET_RETURN_ADDRESS(0), 4695 #endif 4696 task_dup); 4697 } else { 4698 KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu" 4699 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 4700 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 4701 last_chunk)); 4702 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4703 grainsize, extras, last_chunk, tc, 4704 #if OMPT_SUPPORT 4705 OMPT_GET_RETURN_ADDRESS(0), 4706 #endif 4707 task_dup); 4708 } 4709 4710 #if OMPT_SUPPORT && OMPT_OPTIONAL 4711 if (ompt_enabled.ompt_callback_work) { 4712 ompt_callbacks.ompt_callback(ompt_callback_work)( 4713 ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), 4714 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4715 } 4716 #endif 4717 4718 if (nogroup == 0) { 4719 #if OMPT_SUPPORT && OMPT_OPTIONAL 4720 OMPT_STORE_RETURN_ADDRESS(gtid); 4721 #endif 4722 __kmpc_end_taskgroup(loc, gtid); 4723 } 4724 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid)); 4725 } 4726 4727 /*! 4728 @ingroup TASKING 4729 @param loc Source location information 4730 @param gtid Global thread ID 4731 @param task Task structure 4732 @param if_val Value of the if clause 4733 @param lb Pointer to loop lower bound in task structure 4734 @param ub Pointer to loop upper bound in task structure 4735 @param st Loop stride 4736 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 4737 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 4738 @param grainsize Schedule value if specified 4739 @param task_dup Tasks duplication routine 4740 4741 Execute the taskloop construct. 4742 */ 4743 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4744 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, 4745 int sched, kmp_uint64 grainsize, void *task_dup) { 4746 __kmp_assert_valid_gtid(gtid); 4747 KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid)); 4748 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 4749 0, task_dup); 4750 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid)); 4751 } 4752 4753 /*! 4754 @ingroup TASKING 4755 @param loc Source location information 4756 @param gtid Global thread ID 4757 @param task Task structure 4758 @param if_val Value of the if clause 4759 @param lb Pointer to loop lower bound in task structure 4760 @param ub Pointer to loop upper bound in task structure 4761 @param st Loop stride 4762 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 4763 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 4764 @param grainsize Schedule value if specified 4765 @param modifer Modifier 'strict' for sched, 1 if present, 0 otherwise 4766 @param task_dup Tasks duplication routine 4767 4768 Execute the taskloop construct. 4769 */ 4770 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4771 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4772 int nogroup, int sched, kmp_uint64 grainsize, 4773 int modifier, void *task_dup) { 4774 __kmp_assert_valid_gtid(gtid); 4775 KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid)); 4776 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 4777 modifier, task_dup); 4778 KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid)); 4779 } 4780