1 /* 2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_i18n.h" 15 #include "kmp_itt.h" 16 #include "kmp_stats.h" 17 #include "kmp_wait_release.h" 18 #include "kmp_taskdeps.h" 19 20 #if OMPT_SUPPORT 21 #include "ompt-specific.h" 22 #endif 23 24 #include "tsan_annotations.h" 25 26 /* forward declaration */ 27 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 28 kmp_info_t *this_thr); 29 static void __kmp_alloc_task_deque(kmp_info_t *thread, 30 kmp_thread_data_t *thread_data); 31 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 32 kmp_task_team_t *task_team); 33 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); 34 35 #ifdef BUILD_TIED_TASK_STACK 36 37 // __kmp_trace_task_stack: print the tied tasks from the task stack in order 38 // from top do bottom 39 // 40 // gtid: global thread identifier for thread containing stack 41 // thread_data: thread data for task team thread containing stack 42 // threshold: value above which the trace statement triggers 43 // location: string identifying call site of this function (for trace) 44 static void __kmp_trace_task_stack(kmp_int32 gtid, 45 kmp_thread_data_t *thread_data, 46 int threshold, char *location) { 47 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 48 kmp_taskdata_t **stack_top = task_stack->ts_top; 49 kmp_int32 entries = task_stack->ts_entries; 50 kmp_taskdata_t *tied_task; 51 52 KA_TRACE( 53 threshold, 54 ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " 55 "first_block = %p, stack_top = %p \n", 56 location, gtid, entries, task_stack->ts_first_block, stack_top)); 57 58 KMP_DEBUG_ASSERT(stack_top != NULL); 59 KMP_DEBUG_ASSERT(entries > 0); 60 61 while (entries != 0) { 62 KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); 63 // fix up ts_top if we need to pop from previous block 64 if (entries & TASK_STACK_INDEX_MASK == 0) { 65 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); 66 67 stack_block = stack_block->sb_prev; 68 stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 69 } 70 71 // finish bookkeeping 72 stack_top--; 73 entries--; 74 75 tied_task = *stack_top; 76 77 KMP_DEBUG_ASSERT(tied_task != NULL); 78 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 79 80 KA_TRACE(threshold, 81 ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " 82 "stack_top=%p, tied_task=%p\n", 83 location, gtid, entries, stack_top, tied_task)); 84 } 85 KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); 86 87 KA_TRACE(threshold, 88 ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", 89 location, gtid)); 90 } 91 92 // __kmp_init_task_stack: initialize the task stack for the first time 93 // after a thread_data structure is created. 94 // It should not be necessary to do this again (assuming the stack works). 95 // 96 // gtid: global thread identifier of calling thread 97 // thread_data: thread data for task team thread containing stack 98 static void __kmp_init_task_stack(kmp_int32 gtid, 99 kmp_thread_data_t *thread_data) { 100 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 101 kmp_stack_block_t *first_block; 102 103 // set up the first block of the stack 104 first_block = &task_stack->ts_first_block; 105 task_stack->ts_top = (kmp_taskdata_t **)first_block; 106 memset((void *)first_block, '\0', 107 TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); 108 109 // initialize the stack to be empty 110 task_stack->ts_entries = TASK_STACK_EMPTY; 111 first_block->sb_next = NULL; 112 first_block->sb_prev = NULL; 113 } 114 115 // __kmp_free_task_stack: free the task stack when thread_data is destroyed. 116 // 117 // gtid: global thread identifier for calling thread 118 // thread_data: thread info for thread containing stack 119 static void __kmp_free_task_stack(kmp_int32 gtid, 120 kmp_thread_data_t *thread_data) { 121 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 122 kmp_stack_block_t *stack_block = &task_stack->ts_first_block; 123 124 KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); 125 // free from the second block of the stack 126 while (stack_block != NULL) { 127 kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; 128 129 stack_block->sb_next = NULL; 130 stack_block->sb_prev = NULL; 131 if (stack_block != &task_stack->ts_first_block) { 132 __kmp_thread_free(thread, 133 stack_block); // free the block, if not the first 134 } 135 stack_block = next_block; 136 } 137 // initialize the stack to be empty 138 task_stack->ts_entries = 0; 139 task_stack->ts_top = NULL; 140 } 141 142 // __kmp_push_task_stack: Push the tied task onto the task stack. 143 // Grow the stack if necessary by allocating another block. 144 // 145 // gtid: global thread identifier for calling thread 146 // thread: thread info for thread containing stack 147 // tied_task: the task to push on the stack 148 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, 149 kmp_taskdata_t *tied_task) { 150 // GEH - need to consider what to do if tt_threads_data not allocated yet 151 kmp_thread_data_t *thread_data = 152 &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 153 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 154 155 if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { 156 return; // Don't push anything on stack if team or team tasks are serialized 157 } 158 159 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 160 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 161 162 KA_TRACE(20, 163 ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", 164 gtid, thread, tied_task)); 165 // Store entry 166 *(task_stack->ts_top) = tied_task; 167 168 // Do bookkeeping for next push 169 task_stack->ts_top++; 170 task_stack->ts_entries++; 171 172 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 173 // Find beginning of this task block 174 kmp_stack_block_t *stack_block = 175 (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); 176 177 // Check if we already have a block 178 if (stack_block->sb_next != 179 NULL) { // reset ts_top to beginning of next block 180 task_stack->ts_top = &stack_block->sb_next->sb_block[0]; 181 } else { // Alloc new block and link it up 182 kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( 183 thread, sizeof(kmp_stack_block_t)); 184 185 task_stack->ts_top = &new_block->sb_block[0]; 186 stack_block->sb_next = new_block; 187 new_block->sb_prev = stack_block; 188 new_block->sb_next = NULL; 189 190 KA_TRACE( 191 30, 192 ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", 193 gtid, tied_task, new_block)); 194 } 195 } 196 KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 197 tied_task)); 198 } 199 200 // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return 201 // the task, just check to make sure it matches the ending task passed in. 202 // 203 // gtid: global thread identifier for the calling thread 204 // thread: thread info structure containing stack 205 // tied_task: the task popped off the stack 206 // ending_task: the task that is ending (should match popped task) 207 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, 208 kmp_taskdata_t *ending_task) { 209 // GEH - need to consider what to do if tt_threads_data not allocated yet 210 kmp_thread_data_t *thread_data = 211 &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; 212 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 213 kmp_taskdata_t *tied_task; 214 215 if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { 216 // Don't pop anything from stack if team or team tasks are serialized 217 return; 218 } 219 220 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 221 KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); 222 223 KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, 224 thread)); 225 226 // fix up ts_top if we need to pop from previous block 227 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 228 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); 229 230 stack_block = stack_block->sb_prev; 231 task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 232 } 233 234 // finish bookkeeping 235 task_stack->ts_top--; 236 task_stack->ts_entries--; 237 238 tied_task = *(task_stack->ts_top); 239 240 KMP_DEBUG_ASSERT(tied_task != NULL); 241 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 242 KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly 243 244 KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 245 tied_task)); 246 return; 247 } 248 #endif /* BUILD_TIED_TASK_STACK */ 249 250 // returns 1 if new task is allowed to execute, 0 otherwise 251 // checks Task Scheduling constraint (if requested) and 252 // mutexinoutset dependencies if any 253 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, 254 const kmp_taskdata_t *tasknew, 255 const kmp_taskdata_t *taskcurr) { 256 if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { 257 // Check if the candidate obeys the Task Scheduling Constraints (TSC) 258 // only descendant of all deferred tied tasks can be scheduled, checking 259 // the last one is enough, as it in turn is the descendant of all others 260 kmp_taskdata_t *current = taskcurr->td_last_tied; 261 KMP_DEBUG_ASSERT(current != NULL); 262 // check if the task is not suspended on barrier 263 if (current->td_flags.tasktype == TASK_EXPLICIT || 264 current->td_taskwait_thread > 0) { // <= 0 on barrier 265 kmp_int32 level = current->td_level; 266 kmp_taskdata_t *parent = tasknew->td_parent; 267 while (parent != current && parent->td_level > level) { 268 // check generation up to the level of the current task 269 parent = parent->td_parent; 270 KMP_DEBUG_ASSERT(parent != NULL); 271 } 272 if (parent != current) 273 return false; 274 } 275 } 276 // Check mutexinoutset dependencies, acquire locks 277 kmp_depnode_t *node = tasknew->td_depnode; 278 if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { 279 for (int i = 0; i < node->dn.mtx_num_locks; ++i) { 280 KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); 281 if (__kmp_test_lock(node->dn.mtx_locks[i], gtid)) 282 continue; 283 // could not get the lock, release previous locks 284 for (int j = i - 1; j >= 0; --j) 285 __kmp_release_lock(node->dn.mtx_locks[j], gtid); 286 return false; 287 } 288 // negative num_locks means all locks acquired successfully 289 node->dn.mtx_num_locks = -node->dn.mtx_num_locks; 290 } 291 return true; 292 } 293 294 // __kmp_realloc_task_deque: 295 // Re-allocates a task deque for a particular thread, copies the content from 296 // the old deque and adjusts the necessary data structures relating to the 297 // deque. This operation must be done with the deque_lock being held 298 static void __kmp_realloc_task_deque(kmp_info_t *thread, 299 kmp_thread_data_t *thread_data) { 300 kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); 301 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); 302 kmp_int32 new_size = 2 * size; 303 304 KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " 305 "%d] for thread_data %p\n", 306 __kmp_gtid_from_thread(thread), size, new_size, thread_data)); 307 308 kmp_taskdata_t **new_deque = 309 (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); 310 311 int i, j; 312 for (i = thread_data->td.td_deque_head, j = 0; j < size; 313 i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) 314 new_deque[j] = thread_data->td.td_deque[i]; 315 316 __kmp_free(thread_data->td.td_deque); 317 318 thread_data->td.td_deque_head = 0; 319 thread_data->td.td_deque_tail = size; 320 thread_data->td.td_deque = new_deque; 321 thread_data->td.td_deque_size = new_size; 322 } 323 324 // __kmp_push_task: Add a task to the thread's deque 325 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { 326 kmp_info_t *thread = __kmp_threads[gtid]; 327 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 328 329 // We don't need to map to shadow gtid if it is already hidden helper thread 330 if (taskdata->td_flags.hidden_helper && !KMP_HIDDEN_HELPER_THREAD(gtid)) { 331 gtid = KMP_GTID_TO_SHADOW_GTID(gtid); 332 thread = __kmp_threads[gtid]; 333 } 334 335 kmp_task_team_t *task_team = thread->th.th_task_team; 336 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 337 kmp_thread_data_t *thread_data; 338 339 KA_TRACE(20, 340 ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata)); 341 342 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 343 // untied task needs to increment counter so that the task structure is not 344 // freed prematurely 345 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 346 KMP_DEBUG_USE_VAR(counter); 347 KA_TRACE( 348 20, 349 ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n", 350 gtid, counter, taskdata)); 351 } 352 353 // The first check avoids building task_team thread data if serialized 354 if (UNLIKELY(taskdata->td_flags.task_serial)) { 355 KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " 356 "TASK_NOT_PUSHED for task %p\n", 357 gtid, taskdata)); 358 return TASK_NOT_PUSHED; 359 } 360 361 // Now that serialized tasks have returned, we can assume that we are not in 362 // immediate exec mode 363 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 364 if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) { 365 __kmp_enable_tasking(task_team, thread); 366 } 367 KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); 368 KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); 369 370 // Find tasking deque specific to encountering thread 371 thread_data = &task_team->tt.tt_threads_data[tid]; 372 373 // No lock needed since only owner can allocate. If the task is hidden_helper, 374 // we don't need it either because we have initialized the dequeue for hidden 375 // helper thread data. 376 if (UNLIKELY(thread_data->td.td_deque == NULL)) { 377 __kmp_alloc_task_deque(thread, thread_data); 378 } 379 380 int locked = 0; 381 // Check if deque is full 382 if (TCR_4(thread_data->td.td_deque_ntasks) >= 383 TASK_DEQUE_SIZE(thread_data->td)) { 384 if (__kmp_enable_task_throttling && 385 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 386 thread->th.th_current_task)) { 387 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " 388 "TASK_NOT_PUSHED for task %p\n", 389 gtid, taskdata)); 390 return TASK_NOT_PUSHED; 391 } else { 392 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 393 locked = 1; 394 if (TCR_4(thread_data->td.td_deque_ntasks) >= 395 TASK_DEQUE_SIZE(thread_data->td)) { 396 // expand deque to push the task which is not allowed to execute 397 __kmp_realloc_task_deque(thread, thread_data); 398 } 399 } 400 } 401 // Lock the deque for the task push operation 402 if (!locked) { 403 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 404 // Need to recheck as we can get a proxy task from thread outside of OpenMP 405 if (TCR_4(thread_data->td.td_deque_ntasks) >= 406 TASK_DEQUE_SIZE(thread_data->td)) { 407 if (__kmp_enable_task_throttling && 408 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 409 thread->th.th_current_task)) { 410 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 411 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " 412 "returning TASK_NOT_PUSHED for task %p\n", 413 gtid, taskdata)); 414 return TASK_NOT_PUSHED; 415 } else { 416 // expand deque to push the task which is not allowed to execute 417 __kmp_realloc_task_deque(thread, thread_data); 418 } 419 } 420 } 421 // Must have room since no thread can add tasks but calling thread 422 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 423 TASK_DEQUE_SIZE(thread_data->td)); 424 425 thread_data->td.td_deque[thread_data->td.td_deque_tail] = 426 taskdata; // Push taskdata 427 // Wrap index. 428 thread_data->td.td_deque_tail = 429 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 430 TCW_4(thread_data->td.td_deque_ntasks, 431 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 432 KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self 433 KMP_FSYNC_RELEASING(taskdata); // releasing child 434 KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " 435 "task=%p ntasks=%d head=%u tail=%u\n", 436 gtid, taskdata, thread_data->td.td_deque_ntasks, 437 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 438 439 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 440 441 // Signal one worker thread to execute the task 442 if (taskdata->td_flags.hidden_helper) { 443 // Wake hidden helper threads up if they're sleeping 444 __kmp_hidden_helper_worker_thread_signal(); 445 } 446 447 return TASK_SUCCESSFULLY_PUSHED; 448 } 449 450 // __kmp_pop_current_task_from_thread: set up current task from called thread 451 // when team ends 452 // 453 // this_thr: thread structure to set current_task in. 454 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { 455 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " 456 "this_thread=%p, curtask=%p, " 457 "curtask_parent=%p\n", 458 0, this_thr, this_thr->th.th_current_task, 459 this_thr->th.th_current_task->td_parent)); 460 461 this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; 462 463 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " 464 "this_thread=%p, curtask=%p, " 465 "curtask_parent=%p\n", 466 0, this_thr, this_thr->th.th_current_task, 467 this_thr->th.th_current_task->td_parent)); 468 } 469 470 // __kmp_push_current_task_to_thread: set up current task in called thread for a 471 // new team 472 // 473 // this_thr: thread structure to set up 474 // team: team for implicit task data 475 // tid: thread within team to set up 476 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, 477 int tid) { 478 // current task of the thread is a parent of the new just created implicit 479 // tasks of new team 480 KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " 481 "curtask=%p " 482 "parent_task=%p\n", 483 tid, this_thr, this_thr->th.th_current_task, 484 team->t.t_implicit_task_taskdata[tid].td_parent)); 485 486 KMP_DEBUG_ASSERT(this_thr != NULL); 487 488 if (tid == 0) { 489 if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { 490 team->t.t_implicit_task_taskdata[0].td_parent = 491 this_thr->th.th_current_task; 492 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; 493 } 494 } else { 495 team->t.t_implicit_task_taskdata[tid].td_parent = 496 team->t.t_implicit_task_taskdata[0].td_parent; 497 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; 498 } 499 500 KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " 501 "curtask=%p " 502 "parent_task=%p\n", 503 tid, this_thr, this_thr->th.th_current_task, 504 team->t.t_implicit_task_taskdata[tid].td_parent)); 505 } 506 507 // __kmp_task_start: bookkeeping for a task starting execution 508 // 509 // GTID: global thread id of calling thread 510 // task: task starting execution 511 // current_task: task suspending 512 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, 513 kmp_taskdata_t *current_task) { 514 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 515 kmp_info_t *thread = __kmp_threads[gtid]; 516 517 KA_TRACE(10, 518 ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", 519 gtid, taskdata, current_task)); 520 521 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 522 523 // mark currently executing task as suspended 524 // TODO: GEH - make sure root team implicit task is initialized properly. 525 // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); 526 current_task->td_flags.executing = 0; 527 528 // Add task to stack if tied 529 #ifdef BUILD_TIED_TASK_STACK 530 if (taskdata->td_flags.tiedness == TASK_TIED) { 531 __kmp_push_task_stack(gtid, thread, taskdata); 532 } 533 #endif /* BUILD_TIED_TASK_STACK */ 534 535 // mark starting task as executing and as current task 536 thread->th.th_current_task = taskdata; 537 538 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || 539 taskdata->td_flags.tiedness == TASK_UNTIED); 540 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || 541 taskdata->td_flags.tiedness == TASK_UNTIED); 542 taskdata->td_flags.started = 1; 543 taskdata->td_flags.executing = 1; 544 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 545 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 546 547 // GEH TODO: shouldn't we pass some sort of location identifier here? 548 // APT: yes, we will pass location here. 549 // need to store current thread state (in a thread or taskdata structure) 550 // before setting work_state, otherwise wrong state is set after end of task 551 552 KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata)); 553 554 return; 555 } 556 557 #if OMPT_SUPPORT 558 //------------------------------------------------------------------------------ 559 // __ompt_task_init: 560 // Initialize OMPT fields maintained by a task. This will only be called after 561 // ompt_start_tool, so we already know whether ompt is enabled or not. 562 563 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) { 564 // The calls to __ompt_task_init already have the ompt_enabled condition. 565 task->ompt_task_info.task_data.value = 0; 566 task->ompt_task_info.frame.exit_frame = ompt_data_none; 567 task->ompt_task_info.frame.enter_frame = ompt_data_none; 568 task->ompt_task_info.frame.exit_frame_flags = 569 ompt_frame_runtime | ompt_frame_framepointer; 570 task->ompt_task_info.frame.enter_frame_flags = 571 ompt_frame_runtime | ompt_frame_framepointer; 572 } 573 574 // __ompt_task_start: 575 // Build and trigger task-begin event 576 static inline void __ompt_task_start(kmp_task_t *task, 577 kmp_taskdata_t *current_task, 578 kmp_int32 gtid) { 579 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 580 ompt_task_status_t status = ompt_task_switch; 581 if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { 582 status = ompt_task_yield; 583 __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; 584 } 585 /* let OMPT know that we're about to run this task */ 586 if (ompt_enabled.ompt_callback_task_schedule) { 587 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 588 &(current_task->ompt_task_info.task_data), status, 589 &(taskdata->ompt_task_info.task_data)); 590 } 591 taskdata->ompt_task_info.scheduling_parent = current_task; 592 } 593 594 // __ompt_task_finish: 595 // Build and trigger final task-schedule event 596 static inline void __ompt_task_finish(kmp_task_t *task, 597 kmp_taskdata_t *resumed_task, 598 ompt_task_status_t status) { 599 if (ompt_enabled.ompt_callback_task_schedule) { 600 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 601 if (__kmp_omp_cancellation && taskdata->td_taskgroup && 602 taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { 603 status = ompt_task_cancel; 604 } 605 606 /* let OMPT know that we're returning to the callee task */ 607 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 608 &(taskdata->ompt_task_info.task_data), status, 609 (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); 610 } 611 } 612 #endif 613 614 template <bool ompt> 615 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, 616 kmp_task_t *task, 617 void *frame_address, 618 void *return_address) { 619 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 620 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 621 622 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " 623 "current_task=%p\n", 624 gtid, loc_ref, taskdata, current_task)); 625 626 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 627 // untied task needs to increment counter so that the task structure is not 628 // freed prematurely 629 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 630 KMP_DEBUG_USE_VAR(counter); 631 KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " 632 "incremented for task %p\n", 633 gtid, counter, taskdata)); 634 } 635 636 taskdata->td_flags.task_serial = 637 1; // Execute this task immediately, not deferred. 638 __kmp_task_start(gtid, task, current_task); 639 640 #if OMPT_SUPPORT 641 if (ompt) { 642 if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { 643 current_task->ompt_task_info.frame.enter_frame.ptr = 644 taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; 645 current_task->ompt_task_info.frame.enter_frame_flags = 646 taskdata->ompt_task_info.frame.exit_frame_flags = 647 ompt_frame_application | ompt_frame_framepointer; 648 } 649 if (ompt_enabled.ompt_callback_task_create) { 650 ompt_task_info_t *parent_info = &(current_task->ompt_task_info); 651 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 652 &(parent_info->task_data), &(parent_info->frame), 653 &(taskdata->ompt_task_info.task_data), 654 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0, 655 return_address); 656 } 657 __ompt_task_start(task, current_task, gtid); 658 } 659 #endif // OMPT_SUPPORT 660 661 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid, 662 loc_ref, taskdata)); 663 } 664 665 #if OMPT_SUPPORT 666 OMPT_NOINLINE 667 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 668 kmp_task_t *task, 669 void *frame_address, 670 void *return_address) { 671 __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, 672 return_address); 673 } 674 #endif // OMPT_SUPPORT 675 676 // __kmpc_omp_task_begin_if0: report that a given serialized task has started 677 // execution 678 // 679 // loc_ref: source location information; points to beginning of task block. 680 // gtid: global thread number. 681 // task: task thunk for the started task. 682 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 683 kmp_task_t *task) { 684 #if OMPT_SUPPORT 685 if (UNLIKELY(ompt_enabled.enabled)) { 686 OMPT_STORE_RETURN_ADDRESS(gtid); 687 __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, 688 OMPT_GET_FRAME_ADDRESS(1), 689 OMPT_LOAD_RETURN_ADDRESS(gtid)); 690 return; 691 } 692 #endif 693 __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); 694 } 695 696 #ifdef TASK_UNUSED 697 // __kmpc_omp_task_begin: report that a given task has started execution 698 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 699 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { 700 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 701 702 KA_TRACE( 703 10, 704 ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", 705 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); 706 707 __kmp_task_start(gtid, task, current_task); 708 709 KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid, 710 loc_ref, KMP_TASK_TO_TASKDATA(task))); 711 return; 712 } 713 #endif // TASK_UNUSED 714 715 // __kmp_free_task: free the current task space and the space for shareds 716 // 717 // gtid: Global thread ID of calling thread 718 // taskdata: task to free 719 // thread: thread data structure of caller 720 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, 721 kmp_info_t *thread) { 722 KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid, 723 taskdata)); 724 725 // Check to make sure all flags and counters have the correct values 726 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 727 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); 728 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); 729 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 730 KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || 731 taskdata->td_flags.task_serial == 1); 732 KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); 733 734 taskdata->td_flags.freed = 1; 735 ANNOTATE_HAPPENS_BEFORE(taskdata); 736 // deallocate the taskdata and shared variable blocks associated with this task 737 #if USE_FAST_MEMORY 738 __kmp_fast_free(thread, taskdata); 739 #else /* ! USE_FAST_MEMORY */ 740 __kmp_thread_free(thread, taskdata); 741 #endif 742 KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata)); 743 } 744 745 // __kmp_free_task_and_ancestors: free the current task and ancestors without 746 // children 747 // 748 // gtid: Global thread ID of calling thread 749 // taskdata: task to free 750 // thread: thread data structure of caller 751 static void __kmp_free_task_and_ancestors(kmp_int32 gtid, 752 kmp_taskdata_t *taskdata, 753 kmp_info_t *thread) { 754 // Proxy tasks must always be allowed to free their parents 755 // because they can be run in background even in serial mode. 756 kmp_int32 team_serial = 757 (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && 758 !taskdata->td_flags.proxy; 759 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 760 761 kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 762 KMP_DEBUG_ASSERT(children >= 0); 763 764 // Now, go up the ancestor tree to see if any ancestors can now be freed. 765 while (children == 0) { 766 kmp_taskdata_t *parent_taskdata = taskdata->td_parent; 767 768 KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " 769 "and freeing itself\n", 770 gtid, taskdata)); 771 772 // --- Deallocate my ancestor task --- 773 __kmp_free_task(gtid, taskdata, thread); 774 775 taskdata = parent_taskdata; 776 777 if (team_serial) 778 return; 779 // Stop checking ancestors at implicit task instead of walking up ancestor 780 // tree to avoid premature deallocation of ancestors. 781 if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { 782 if (taskdata->td_dephash) { // do we need to cleanup dephash? 783 int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); 784 kmp_tasking_flags_t flags_old = taskdata->td_flags; 785 if (children == 0 && flags_old.complete == 1) { 786 kmp_tasking_flags_t flags_new = flags_old; 787 flags_new.complete = 0; 788 if (KMP_COMPARE_AND_STORE_ACQ32( 789 RCAST(kmp_int32 *, &taskdata->td_flags), 790 *RCAST(kmp_int32 *, &flags_old), 791 *RCAST(kmp_int32 *, &flags_new))) { 792 KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " 793 "dephash of implicit task %p\n", 794 gtid, taskdata)); 795 // cleanup dephash of finished implicit task 796 __kmp_dephash_free_entries(thread, taskdata->td_dephash); 797 } 798 } 799 } 800 return; 801 } 802 // Predecrement simulated by "- 1" calculation 803 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 804 KMP_DEBUG_ASSERT(children >= 0); 805 } 806 807 KA_TRACE( 808 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " 809 "not freeing it yet\n", 810 gtid, taskdata, children)); 811 } 812 813 // __kmp_task_finish: bookkeeping to do when a task finishes execution 814 // 815 // gtid: global thread ID for calling thread 816 // task: task to be finished 817 // resumed_task: task to be resumed. (may be NULL if task is serialized) 818 // 819 // template<ompt>: effectively ompt_enabled.enabled!=0 820 // the version with ompt=false is inlined, allowing to optimize away all ompt 821 // code in this case 822 template <bool ompt> 823 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, 824 kmp_taskdata_t *resumed_task) { 825 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 826 kmp_info_t *thread = __kmp_threads[gtid]; 827 kmp_task_team_t *task_team = 828 thread->th.th_task_team; // might be NULL for serial teams... 829 kmp_int32 children = 0; 830 831 KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " 832 "task %p\n", 833 gtid, taskdata, resumed_task)); 834 835 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 836 837 // Pop task from stack if tied 838 #ifdef BUILD_TIED_TASK_STACK 839 if (taskdata->td_flags.tiedness == TASK_TIED) { 840 __kmp_pop_task_stack(gtid, thread, taskdata); 841 } 842 #endif /* BUILD_TIED_TASK_STACK */ 843 844 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 845 // untied task needs to check the counter so that the task structure is not 846 // freed prematurely 847 kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; 848 KA_TRACE( 849 20, 850 ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n", 851 gtid, counter, taskdata)); 852 if (counter > 0) { 853 // untied task is not done, to be continued possibly by other thread, do 854 // not free it now 855 if (resumed_task == NULL) { 856 KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); 857 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 858 // task is the parent 859 } 860 thread->th.th_current_task = resumed_task; // restore current_task 861 resumed_task->td_flags.executing = 1; // resume previous task 862 KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " 863 "resuming task %p\n", 864 gtid, taskdata, resumed_task)); 865 return; 866 } 867 } 868 869 // bookkeeping for resuming task: 870 // GEH - note tasking_ser => task_serial 871 KMP_DEBUG_ASSERT( 872 (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == 873 taskdata->td_flags.task_serial); 874 if (taskdata->td_flags.task_serial) { 875 if (resumed_task == NULL) { 876 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 877 // task is the parent 878 } 879 } else { 880 KMP_DEBUG_ASSERT(resumed_task != 881 NULL); // verify that resumed task is passed as argument 882 } 883 884 /* If the tasks' destructor thunk flag has been set, we need to invoke the 885 destructor thunk that has been generated by the compiler. The code is 886 placed here, since at this point other tasks might have been released 887 hence overlapping the destructor invocations with some other work in the 888 released tasks. The OpenMP spec is not specific on when the destructors 889 are invoked, so we should be free to choose. */ 890 if (UNLIKELY(taskdata->td_flags.destructors_thunk)) { 891 kmp_routine_entry_t destr_thunk = task->data1.destructors; 892 KMP_ASSERT(destr_thunk); 893 destr_thunk(gtid, task); 894 } 895 896 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 897 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); 898 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 899 900 bool detach = false; 901 if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) { 902 if (taskdata->td_allow_completion_event.type == 903 KMP_EVENT_ALLOW_COMPLETION) { 904 // event hasn't been fulfilled yet. Try to detach task. 905 __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 906 if (taskdata->td_allow_completion_event.type == 907 KMP_EVENT_ALLOW_COMPLETION) { 908 // task finished execution 909 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 910 taskdata->td_flags.executing = 0; // suspend the finishing task 911 912 #if OMPT_SUPPORT 913 // For a detached task, which is not completed, we switch back 914 // the omp_fulfill_event signals completion 915 // locking is necessary to avoid a race with ompt_task_late_fulfill 916 if (ompt) 917 __ompt_task_finish(task, resumed_task, ompt_task_detach); 918 #endif 919 920 // no access to taskdata after this point! 921 // __kmp_fulfill_event might free taskdata at any time from now 922 923 taskdata->td_flags.proxy = TASK_PROXY; // proxify! 924 detach = true; 925 } 926 __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 927 } 928 } 929 930 if (!detach) { 931 taskdata->td_flags.complete = 1; // mark the task as completed 932 933 #if OMPT_SUPPORT 934 // This is not a detached task, we are done here 935 if (ompt) 936 __ompt_task_finish(task, resumed_task, ompt_task_complete); 937 #endif 938 939 // Only need to keep track of count if team parallel and tasking not 940 // serialized, or task is detachable and event has already been fulfilled 941 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) || 942 taskdata->td_flags.detachable == TASK_DETACHABLE || 943 taskdata->td_flags.hidden_helper) { 944 // Predecrement simulated by "- 1" calculation 945 children = 946 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 947 KMP_DEBUG_ASSERT(children >= 0); 948 if (taskdata->td_taskgroup) 949 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 950 __kmp_release_deps(gtid, taskdata); 951 } else if (task_team && task_team->tt.tt_found_proxy_tasks) { 952 // if we found proxy tasks there could exist a dependency chain 953 // with the proxy task as origin 954 __kmp_release_deps(gtid, taskdata); 955 } 956 // td_flags.executing must be marked as 0 after __kmp_release_deps has been 957 // called. Othertwise, if a task is executed immediately from the 958 // release_deps code, the flag will be reset to 1 again by this same 959 // function 960 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 961 taskdata->td_flags.executing = 0; // suspend the finishing task 962 } 963 964 KA_TRACE( 965 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", 966 gtid, taskdata, children)); 967 968 // Free this task and then ancestor tasks if they have no children. 969 // Restore th_current_task first as suggested by John: 970 // johnmc: if an asynchronous inquiry peers into the runtime system 971 // it doesn't see the freed task as the current task. 972 thread->th.th_current_task = resumed_task; 973 if (!detach) 974 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 975 976 // TODO: GEH - make sure root team implicit task is initialized properly. 977 // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); 978 resumed_task->td_flags.executing = 1; // resume previous task 979 980 KA_TRACE( 981 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", 982 gtid, taskdata, resumed_task)); 983 984 return; 985 } 986 987 template <bool ompt> 988 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, 989 kmp_int32 gtid, 990 kmp_task_t *task) { 991 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", 992 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 993 KMP_DEBUG_ASSERT(gtid >= 0); 994 // this routine will provide task to resume 995 __kmp_task_finish<ompt>(gtid, task, NULL); 996 997 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", 998 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 999 1000 #if OMPT_SUPPORT 1001 if (ompt) { 1002 ompt_frame_t *ompt_frame; 1003 __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); 1004 ompt_frame->enter_frame = ompt_data_none; 1005 ompt_frame->enter_frame_flags = 1006 ompt_frame_runtime | ompt_frame_framepointer; 1007 } 1008 #endif 1009 1010 return; 1011 } 1012 1013 #if OMPT_SUPPORT 1014 OMPT_NOINLINE 1015 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 1016 kmp_task_t *task) { 1017 __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); 1018 } 1019 #endif // OMPT_SUPPORT 1020 1021 // __kmpc_omp_task_complete_if0: report that a task has completed execution 1022 // 1023 // loc_ref: source location information; points to end of task block. 1024 // gtid: global thread number. 1025 // task: task thunk for the completed task. 1026 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 1027 kmp_task_t *task) { 1028 #if OMPT_SUPPORT 1029 if (UNLIKELY(ompt_enabled.enabled)) { 1030 __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); 1031 return; 1032 } 1033 #endif 1034 __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); 1035 } 1036 1037 #ifdef TASK_UNUSED 1038 // __kmpc_omp_task_complete: report that a task has completed execution 1039 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 1040 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 1041 kmp_task_t *task) { 1042 KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid, 1043 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1044 1045 __kmp_task_finish<false>(gtid, task, 1046 NULL); // Not sure how to find task to resume 1047 1048 KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid, 1049 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1050 return; 1051 } 1052 #endif // TASK_UNUSED 1053 1054 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit 1055 // task for a given thread 1056 // 1057 // loc_ref: reference to source location of parallel region 1058 // this_thr: thread data structure corresponding to implicit task 1059 // team: team for this_thr 1060 // tid: thread id of given thread within team 1061 // set_curr_task: TRUE if need to push current task to thread 1062 // NOTE: Routine does not set up the implicit task ICVS. This is assumed to 1063 // have already been done elsewhere. 1064 // TODO: Get better loc_ref. Value passed in may be NULL 1065 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 1066 kmp_team_t *team, int tid, int set_curr_task) { 1067 kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; 1068 1069 KF_TRACE( 1070 10, 1071 ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", 1072 tid, team, task, set_curr_task ? "TRUE" : "FALSE")); 1073 1074 task->td_task_id = KMP_GEN_TASK_ID(); 1075 task->td_team = team; 1076 // task->td_parent = NULL; // fix for CQ230101 (broken parent task info 1077 // in debugger) 1078 task->td_ident = loc_ref; 1079 task->td_taskwait_ident = NULL; 1080 task->td_taskwait_counter = 0; 1081 task->td_taskwait_thread = 0; 1082 1083 task->td_flags.tiedness = TASK_TIED; 1084 task->td_flags.tasktype = TASK_IMPLICIT; 1085 task->td_flags.proxy = TASK_FULL; 1086 1087 // All implicit tasks are executed immediately, not deferred 1088 task->td_flags.task_serial = 1; 1089 task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1090 task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1091 1092 task->td_flags.started = 1; 1093 task->td_flags.executing = 1; 1094 task->td_flags.complete = 0; 1095 task->td_flags.freed = 0; 1096 1097 task->td_depnode = NULL; 1098 task->td_last_tied = task; 1099 task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1100 1101 if (set_curr_task) { // only do this init first time thread is created 1102 KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); 1103 // Not used: don't need to deallocate implicit task 1104 KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); 1105 task->td_taskgroup = NULL; // An implicit task does not have taskgroup 1106 task->td_dephash = NULL; 1107 __kmp_push_current_task_to_thread(this_thr, team, tid); 1108 } else { 1109 KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); 1110 KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); 1111 } 1112 1113 #if OMPT_SUPPORT 1114 if (UNLIKELY(ompt_enabled.enabled)) 1115 __ompt_task_init(task, tid); 1116 #endif 1117 1118 KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid, 1119 team, task)); 1120 } 1121 1122 // __kmp_finish_implicit_task: Release resources associated to implicit tasks 1123 // at the end of parallel regions. Some resources are kept for reuse in the next 1124 // parallel region. 1125 // 1126 // thread: thread data structure corresponding to implicit task 1127 void __kmp_finish_implicit_task(kmp_info_t *thread) { 1128 kmp_taskdata_t *task = thread->th.th_current_task; 1129 if (task->td_dephash) { 1130 int children; 1131 task->td_flags.complete = 1; 1132 children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); 1133 kmp_tasking_flags_t flags_old = task->td_flags; 1134 if (children == 0 && flags_old.complete == 1) { 1135 kmp_tasking_flags_t flags_new = flags_old; 1136 flags_new.complete = 0; 1137 if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), 1138 *RCAST(kmp_int32 *, &flags_old), 1139 *RCAST(kmp_int32 *, &flags_new))) { 1140 KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " 1141 "dephash of implicit task %p\n", 1142 thread->th.th_info.ds.ds_gtid, task)); 1143 __kmp_dephash_free_entries(thread, task->td_dephash); 1144 } 1145 } 1146 } 1147 } 1148 1149 // __kmp_free_implicit_task: Release resources associated to implicit tasks 1150 // when these are destroyed regions 1151 // 1152 // thread: thread data structure corresponding to implicit task 1153 void __kmp_free_implicit_task(kmp_info_t *thread) { 1154 kmp_taskdata_t *task = thread->th.th_current_task; 1155 if (task && task->td_dephash) { 1156 __kmp_dephash_free(thread, task->td_dephash); 1157 task->td_dephash = NULL; 1158 } 1159 } 1160 1161 // Round up a size to a power of two specified by val: Used to insert padding 1162 // between structures co-allocated using a single malloc() call 1163 static size_t __kmp_round_up_to_val(size_t size, size_t val) { 1164 if (size & (val - 1)) { 1165 size &= ~(val - 1); 1166 if (size <= KMP_SIZE_T_MAX - val) { 1167 size += val; // Round up if there is no overflow. 1168 } 1169 } 1170 return size; 1171 } // __kmp_round_up_to_va 1172 1173 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task 1174 // 1175 // loc_ref: source location information 1176 // gtid: global thread number. 1177 // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' 1178 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. 1179 // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including 1180 // private vars accessed in task. 1181 // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed 1182 // in task. 1183 // task_entry: Pointer to task code entry point generated by compiler. 1184 // returns: a pointer to the allocated kmp_task_t structure (task). 1185 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1186 kmp_tasking_flags_t *flags, 1187 size_t sizeof_kmp_task_t, size_t sizeof_shareds, 1188 kmp_routine_entry_t task_entry) { 1189 kmp_task_t *task; 1190 kmp_taskdata_t *taskdata; 1191 kmp_info_t *thread = __kmp_threads[gtid]; 1192 kmp_info_t *encountering_thread = thread; 1193 kmp_team_t *team = thread->th.th_team; 1194 kmp_taskdata_t *parent_task = thread->th.th_current_task; 1195 size_t shareds_offset; 1196 1197 if (UNLIKELY(!TCR_4(__kmp_init_middle))) 1198 __kmp_middle_initialize(); 1199 1200 if (flags->hidden_helper) { 1201 if (__kmp_enable_hidden_helper) { 1202 if (!TCR_4(__kmp_init_hidden_helper)) 1203 __kmp_hidden_helper_initialize(); 1204 1205 // For a hidden helper task encountered by a regular thread, we will push 1206 // the task to the (gtid%__kmp_hidden_helper_threads_num)-th hidden helper 1207 // thread. 1208 if (!KMP_HIDDEN_HELPER_THREAD(gtid)) { 1209 thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)]; 1210 // We don't change the parent-child relation for hidden helper task as 1211 // we need that to do per-task-region synchronization. 1212 } 1213 } else { 1214 // If the hidden helper task is not enabled, reset the flag to FALSE. 1215 flags->hidden_helper = FALSE; 1216 } 1217 } 1218 1219 KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " 1220 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1221 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, 1222 sizeof_shareds, task_entry)); 1223 1224 if (parent_task->td_flags.final) { 1225 if (flags->merged_if0) { 1226 } 1227 flags->final = 1; 1228 } 1229 1230 if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { 1231 // Untied task encountered causes the TSC algorithm to check entire deque of 1232 // the victim thread. If no untied task encountered, then checking the head 1233 // of the deque should be enough. 1234 KMP_CHECK_UPDATE( 1235 encountering_thread->th.th_task_team->tt.tt_untied_task_encountered, 1); 1236 } 1237 1238 // Detachable tasks are not proxy tasks yet but could be in the future. Doing 1239 // the tasking setup 1240 // when that happens is too late. 1241 if (UNLIKELY(flags->proxy == TASK_PROXY || 1242 flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) { 1243 if (flags->proxy == TASK_PROXY) { 1244 flags->tiedness = TASK_UNTIED; 1245 flags->merged_if0 = 1; 1246 } 1247 /* are we running in a sequential parallel or tskm_immediate_exec... we need 1248 tasking support enabled */ 1249 if ((encountering_thread->th.th_task_team) == NULL) { 1250 /* This should only happen if the team is serialized 1251 setup a task team and propagate it to the thread */ 1252 KMP_DEBUG_ASSERT(team->t.t_serialized); 1253 KA_TRACE(30, 1254 ("T#%d creating task team in __kmp_task_alloc for proxy task\n", 1255 gtid)); 1256 __kmp_task_team_setup( 1257 encountering_thread, team, 1258 1); // 1 indicates setup the current team regardless of nthreads 1259 encountering_thread->th.th_task_team = 1260 team->t.t_task_team[encountering_thread->th.th_task_state]; 1261 } 1262 kmp_task_team_t *task_team = encountering_thread->th.th_task_team; 1263 1264 /* tasking must be enabled now as the task might not be pushed */ 1265 if (!KMP_TASKING_ENABLED(task_team)) { 1266 KA_TRACE( 1267 30, 1268 ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid)); 1269 __kmp_enable_tasking(task_team, encountering_thread); 1270 kmp_int32 tid = encountering_thread->th.th_info.ds.ds_tid; 1271 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 1272 // No lock needed since only owner can allocate 1273 if (thread_data->td.td_deque == NULL) { 1274 __kmp_alloc_task_deque(encountering_thread, thread_data); 1275 } 1276 } 1277 1278 if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) && 1279 task_team->tt.tt_found_proxy_tasks == FALSE) 1280 TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); 1281 if (flags->hidden_helper && 1282 task_team->tt.tt_hidden_helper_task_encountered == FALSE) 1283 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE); 1284 } 1285 1286 // Calculate shared structure offset including padding after kmp_task_t struct 1287 // to align pointers in shared struct 1288 shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; 1289 shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *)); 1290 1291 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 1292 KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid, 1293 shareds_offset)); 1294 KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid, 1295 sizeof_shareds)); 1296 1297 // Avoid double allocation here by combining shareds with taskdata 1298 #if USE_FAST_MEMORY 1299 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate( 1300 encountering_thread, shareds_offset + sizeof_shareds); 1301 #else /* ! USE_FAST_MEMORY */ 1302 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc( 1303 encountering_thread, shareds_offset + sizeof_shareds); 1304 #endif /* USE_FAST_MEMORY */ 1305 ANNOTATE_HAPPENS_AFTER(taskdata); 1306 1307 task = KMP_TASKDATA_TO_TASK(taskdata); 1308 1309 // Make sure task & taskdata are aligned appropriately 1310 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD 1311 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); 1312 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); 1313 #else 1314 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); 1315 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); 1316 #endif 1317 if (sizeof_shareds > 0) { 1318 // Avoid double allocation here by combining shareds with taskdata 1319 task->shareds = &((char *)taskdata)[shareds_offset]; 1320 // Make sure shareds struct is aligned to pointer size 1321 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 1322 0); 1323 } else { 1324 task->shareds = NULL; 1325 } 1326 task->routine = task_entry; 1327 task->part_id = 0; // AC: Always start with 0 part id 1328 1329 taskdata->td_task_id = KMP_GEN_TASK_ID(); 1330 taskdata->td_team = thread->th.th_team; 1331 taskdata->td_alloc_thread = encountering_thread; 1332 taskdata->td_parent = parent_task; 1333 taskdata->td_level = parent_task->td_level + 1; // increment nesting level 1334 KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); 1335 taskdata->td_ident = loc_ref; 1336 taskdata->td_taskwait_ident = NULL; 1337 taskdata->td_taskwait_counter = 0; 1338 taskdata->td_taskwait_thread = 0; 1339 KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); 1340 // avoid copying icvs for proxy tasks 1341 if (flags->proxy == TASK_FULL) 1342 copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs); 1343 1344 taskdata->td_flags.tiedness = flags->tiedness; 1345 taskdata->td_flags.final = flags->final; 1346 taskdata->td_flags.merged_if0 = flags->merged_if0; 1347 taskdata->td_flags.destructors_thunk = flags->destructors_thunk; 1348 taskdata->td_flags.proxy = flags->proxy; 1349 taskdata->td_flags.detachable = flags->detachable; 1350 taskdata->td_flags.hidden_helper = flags->hidden_helper; 1351 taskdata->encountering_gtid = gtid; 1352 taskdata->td_task_team = thread->th.th_task_team; 1353 taskdata->td_size_alloc = shareds_offset + sizeof_shareds; 1354 taskdata->td_flags.tasktype = TASK_EXPLICIT; 1355 1356 // GEH - TODO: fix this to copy parent task's value of tasking_ser flag 1357 taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1358 1359 // GEH - TODO: fix this to copy parent task's value of team_serial flag 1360 taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1361 1362 // GEH - Note we serialize the task if the team is serialized to make sure 1363 // implicit parallel region tasks are not left until program termination to 1364 // execute. Also, it helps locality to execute immediately. 1365 1366 taskdata->td_flags.task_serial = 1367 (parent_task->td_flags.final || taskdata->td_flags.team_serial || 1368 taskdata->td_flags.tasking_ser || flags->merged_if0); 1369 1370 taskdata->td_flags.started = 0; 1371 taskdata->td_flags.executing = 0; 1372 taskdata->td_flags.complete = 0; 1373 taskdata->td_flags.freed = 0; 1374 1375 taskdata->td_flags.native = flags->native; 1376 1377 KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); 1378 // start at one because counts current task and children 1379 KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); 1380 taskdata->td_taskgroup = 1381 parent_task->td_taskgroup; // task inherits taskgroup from the parent task 1382 taskdata->td_dephash = NULL; 1383 taskdata->td_depnode = NULL; 1384 if (flags->tiedness == TASK_UNTIED) 1385 taskdata->td_last_tied = NULL; // will be set when the task is scheduled 1386 else 1387 taskdata->td_last_tied = taskdata; 1388 taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1389 #if OMPT_SUPPORT 1390 if (UNLIKELY(ompt_enabled.enabled)) 1391 __ompt_task_init(taskdata, gtid); 1392 #endif 1393 // Only need to keep track of child task counts if team parallel and tasking 1394 // not serialized or if it is a proxy or detachable or hidden helper task 1395 if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE || 1396 flags->hidden_helper || 1397 !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 1398 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 1399 if (parent_task->td_taskgroup) 1400 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 1401 // Only need to keep track of allocated child tasks for explicit tasks since 1402 // implicit not deallocated 1403 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { 1404 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 1405 } 1406 } 1407 1408 if (flags->hidden_helper) { 1409 taskdata->td_flags.task_serial = FALSE; 1410 // Increment the number of hidden helper tasks to be executed 1411 KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks); 1412 } 1413 1414 KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", 1415 gtid, taskdata, taskdata->td_parent)); 1416 ANNOTATE_HAPPENS_BEFORE(task); 1417 1418 return task; 1419 } 1420 1421 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1422 kmp_int32 flags, size_t sizeof_kmp_task_t, 1423 size_t sizeof_shareds, 1424 kmp_routine_entry_t task_entry) { 1425 kmp_task_t *retval; 1426 kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; 1427 __kmp_assert_valid_gtid(gtid); 1428 input_flags->native = FALSE; 1429 // __kmp_task_alloc() sets up all other runtime flags 1430 KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " 1431 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1432 gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", 1433 input_flags->proxy ? "proxy" : "", 1434 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t, 1435 sizeof_shareds, task_entry)); 1436 1437 retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t, 1438 sizeof_shareds, task_entry); 1439 1440 KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval)); 1441 1442 return retval; 1443 } 1444 1445 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1446 kmp_int32 flags, 1447 size_t sizeof_kmp_task_t, 1448 size_t sizeof_shareds, 1449 kmp_routine_entry_t task_entry, 1450 kmp_int64 device_id) { 1451 if (__kmp_enable_hidden_helper) { 1452 auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags); 1453 input_flags.hidden_helper = TRUE; 1454 } 1455 1456 return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, 1457 sizeof_shareds, task_entry); 1458 } 1459 1460 /*! 1461 @ingroup TASKING 1462 @param loc_ref location of the original task directive 1463 @param gtid Global Thread ID of encountering thread 1464 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new 1465 task'' 1466 @param naffins Number of affinity items 1467 @param affin_list List of affinity items 1468 @return Returns non-zero if registering affinity information was not successful. 1469 Returns 0 if registration was successful 1470 This entry registers the affinity information attached to a task with the task 1471 thunk structure kmp_taskdata_t. 1472 */ 1473 kmp_int32 1474 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, 1475 kmp_task_t *new_task, kmp_int32 naffins, 1476 kmp_task_affinity_info_t *affin_list) { 1477 return 0; 1478 } 1479 1480 // __kmp_invoke_task: invoke the specified task 1481 // 1482 // gtid: global thread ID of caller 1483 // task: the task to invoke 1484 // current_task: the task to resume after task invocation 1485 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, 1486 kmp_taskdata_t *current_task) { 1487 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 1488 kmp_info_t *thread; 1489 int discard = 0 /* false */; 1490 KA_TRACE( 1491 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", 1492 gtid, taskdata, current_task)); 1493 KMP_DEBUG_ASSERT(task); 1494 if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY && 1495 taskdata->td_flags.complete == 1)) { 1496 // This is a proxy task that was already completed but it needs to run 1497 // its bottom-half finish 1498 KA_TRACE( 1499 30, 1500 ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n", 1501 gtid, taskdata)); 1502 1503 __kmp_bottom_half_finish_proxy(gtid, task); 1504 1505 KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " 1506 "proxy task %p, resuming task %p\n", 1507 gtid, taskdata, current_task)); 1508 1509 return; 1510 } 1511 1512 #if OMPT_SUPPORT 1513 // For untied tasks, the first task executed only calls __kmpc_omp_task and 1514 // does not execute code. 1515 ompt_thread_info_t oldInfo; 1516 if (UNLIKELY(ompt_enabled.enabled)) { 1517 // Store the threads states and restore them after the task 1518 thread = __kmp_threads[gtid]; 1519 oldInfo = thread->th.ompt_thread_info; 1520 thread->th.ompt_thread_info.wait_id = 0; 1521 thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) 1522 ? ompt_state_work_serial 1523 : ompt_state_work_parallel; 1524 taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1525 } 1526 #endif 1527 1528 // Decreament the counter of hidden helper tasks to be executed 1529 if (taskdata->td_flags.hidden_helper) { 1530 // Hidden helper tasks can only be executed by hidden helper threads 1531 KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid)); 1532 KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks); 1533 } 1534 1535 // Proxy tasks are not handled by the runtime 1536 if (taskdata->td_flags.proxy != TASK_PROXY) { 1537 ANNOTATE_HAPPENS_AFTER(task); 1538 __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded 1539 } 1540 1541 // TODO: cancel tasks if the parallel region has also been cancelled 1542 // TODO: check if this sequence can be hoisted above __kmp_task_start 1543 // if cancellation has been enabled for this run ... 1544 if (UNLIKELY(__kmp_omp_cancellation)) { 1545 thread = __kmp_threads[gtid]; 1546 kmp_team_t *this_team = thread->th.th_team; 1547 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 1548 if ((taskgroup && taskgroup->cancel_request) || 1549 (this_team->t.t_cancel_request == cancel_parallel)) { 1550 #if OMPT_SUPPORT && OMPT_OPTIONAL 1551 ompt_data_t *task_data; 1552 if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { 1553 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 1554 ompt_callbacks.ompt_callback(ompt_callback_cancel)( 1555 task_data, 1556 ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup 1557 : ompt_cancel_parallel) | 1558 ompt_cancel_discarded_task, 1559 NULL); 1560 } 1561 #endif 1562 KMP_COUNT_BLOCK(TASK_cancelled); 1563 // this task belongs to a task group and we need to cancel it 1564 discard = 1 /* true */; 1565 } 1566 } 1567 1568 // Invoke the task routine and pass in relevant data. 1569 // Thunks generated by gcc take a different argument list. 1570 if (!discard) { 1571 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 1572 taskdata->td_last_tied = current_task->td_last_tied; 1573 KMP_DEBUG_ASSERT(taskdata->td_last_tied); 1574 } 1575 #if KMP_STATS_ENABLED 1576 KMP_COUNT_BLOCK(TASK_executed); 1577 switch (KMP_GET_THREAD_STATE()) { 1578 case FORK_JOIN_BARRIER: 1579 KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); 1580 break; 1581 case PLAIN_BARRIER: 1582 KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); 1583 break; 1584 case TASKYIELD: 1585 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); 1586 break; 1587 case TASKWAIT: 1588 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); 1589 break; 1590 case TASKGROUP: 1591 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); 1592 break; 1593 default: 1594 KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); 1595 break; 1596 } 1597 #endif // KMP_STATS_ENABLED 1598 1599 // OMPT task begin 1600 #if OMPT_SUPPORT 1601 if (UNLIKELY(ompt_enabled.enabled)) 1602 __ompt_task_start(task, current_task, gtid); 1603 #endif 1604 1605 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1606 kmp_uint64 cur_time; 1607 kmp_int32 kmp_itt_count_task = 1608 __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && 1609 current_task->td_flags.tasktype == TASK_IMPLICIT; 1610 if (kmp_itt_count_task) { 1611 thread = __kmp_threads[gtid]; 1612 // Time outer level explicit task on barrier for adjusting imbalance time 1613 if (thread->th.th_bar_arrive_time) 1614 cur_time = __itt_get_timestamp(); 1615 else 1616 kmp_itt_count_task = 0; // thread is not on a barrier - skip timing 1617 } 1618 KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task) 1619 #endif 1620 1621 #ifdef KMP_GOMP_COMPAT 1622 if (taskdata->td_flags.native) { 1623 ((void (*)(void *))(*(task->routine)))(task->shareds); 1624 } else 1625 #endif /* KMP_GOMP_COMPAT */ 1626 { 1627 (*(task->routine))(gtid, task); 1628 } 1629 KMP_POP_PARTITIONED_TIMER(); 1630 1631 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1632 if (kmp_itt_count_task) { 1633 // Barrier imbalance - adjust arrive time with the task duration 1634 thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); 1635 } 1636 KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed) 1637 KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent 1638 #endif 1639 } 1640 1641 // Proxy tasks are not handled by the runtime 1642 if (taskdata->td_flags.proxy != TASK_PROXY) { 1643 ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent); 1644 #if OMPT_SUPPORT 1645 if (UNLIKELY(ompt_enabled.enabled)) { 1646 thread->th.ompt_thread_info = oldInfo; 1647 if (taskdata->td_flags.tiedness == TASK_TIED) { 1648 taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1649 } 1650 __kmp_task_finish<true>(gtid, task, current_task); 1651 } else 1652 #endif 1653 __kmp_task_finish<false>(gtid, task, current_task); 1654 } 1655 1656 KA_TRACE( 1657 30, 1658 ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n", 1659 gtid, taskdata, current_task)); 1660 return; 1661 } 1662 1663 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution 1664 // 1665 // loc_ref: location of original task pragma (ignored) 1666 // gtid: Global Thread ID of encountering thread 1667 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' 1668 // Returns: 1669 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1670 // be resumed later. 1671 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1672 // resumed later. 1673 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 1674 kmp_task_t *new_task) { 1675 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1676 1677 KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid, 1678 loc_ref, new_taskdata)); 1679 1680 #if OMPT_SUPPORT 1681 kmp_taskdata_t *parent; 1682 if (UNLIKELY(ompt_enabled.enabled)) { 1683 parent = new_taskdata->td_parent; 1684 if (ompt_enabled.ompt_callback_task_create) { 1685 ompt_data_t task_data = ompt_data_none; 1686 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1687 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1688 parent ? &(parent->ompt_task_info.frame) : NULL, 1689 &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0, 1690 OMPT_GET_RETURN_ADDRESS(0)); 1691 } 1692 } 1693 #endif 1694 1695 /* Should we execute the new task or queue it? For now, let's just always try 1696 to queue it. If the queue fills up, then we'll execute it. */ 1697 1698 if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1699 { // Execute this task immediately 1700 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1701 new_taskdata->td_flags.task_serial = 1; 1702 __kmp_invoke_task(gtid, new_task, current_task); 1703 } 1704 1705 KA_TRACE( 1706 10, 1707 ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " 1708 "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", 1709 gtid, loc_ref, new_taskdata)); 1710 1711 ANNOTATE_HAPPENS_BEFORE(new_task); 1712 #if OMPT_SUPPORT 1713 if (UNLIKELY(ompt_enabled.enabled)) { 1714 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1715 } 1716 #endif 1717 return TASK_CURRENT_NOT_QUEUED; 1718 } 1719 1720 // __kmp_omp_task: Schedule a non-thread-switchable task for execution 1721 // 1722 // gtid: Global Thread ID of encountering thread 1723 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() 1724 // serialize_immediate: if TRUE then if the task is executed immediately its 1725 // execution will be serialized 1726 // Returns: 1727 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1728 // be resumed later. 1729 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1730 // resumed later. 1731 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 1732 bool serialize_immediate) { 1733 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1734 1735 /* Should we execute the new task or queue it? For now, let's just always try 1736 to queue it. If the queue fills up, then we'll execute it. */ 1737 if (new_taskdata->td_flags.proxy == TASK_PROXY || 1738 __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1739 { // Execute this task immediately 1740 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1741 if (serialize_immediate) 1742 new_taskdata->td_flags.task_serial = 1; 1743 __kmp_invoke_task(gtid, new_task, current_task); 1744 } 1745 1746 ANNOTATE_HAPPENS_BEFORE(new_task); 1747 return TASK_CURRENT_NOT_QUEUED; 1748 } 1749 1750 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a 1751 // non-thread-switchable task from the parent thread only! 1752 // 1753 // loc_ref: location of original task pragma (ignored) 1754 // gtid: Global Thread ID of encountering thread 1755 // new_task: non-thread-switchable task thunk allocated by 1756 // __kmp_omp_task_alloc() 1757 // Returns: 1758 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1759 // be resumed later. 1760 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1761 // resumed later. 1762 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 1763 kmp_task_t *new_task) { 1764 kmp_int32 res; 1765 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1766 1767 #if KMP_DEBUG || OMPT_SUPPORT 1768 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1769 #endif 1770 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1771 new_taskdata)); 1772 __kmp_assert_valid_gtid(gtid); 1773 1774 #if OMPT_SUPPORT 1775 kmp_taskdata_t *parent = NULL; 1776 if (UNLIKELY(ompt_enabled.enabled)) { 1777 if (!new_taskdata->td_flags.started) { 1778 OMPT_STORE_RETURN_ADDRESS(gtid); 1779 parent = new_taskdata->td_parent; 1780 if (!parent->ompt_task_info.frame.enter_frame.ptr) { 1781 parent->ompt_task_info.frame.enter_frame.ptr = 1782 OMPT_GET_FRAME_ADDRESS(0); 1783 } 1784 if (ompt_enabled.ompt_callback_task_create) { 1785 ompt_data_t task_data = ompt_data_none; 1786 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1787 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1788 parent ? &(parent->ompt_task_info.frame) : NULL, 1789 &(new_taskdata->ompt_task_info.task_data), 1790 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1791 OMPT_LOAD_RETURN_ADDRESS(gtid)); 1792 } 1793 } else { 1794 // We are scheduling the continuation of an UNTIED task. 1795 // Scheduling back to the parent task. 1796 __ompt_task_finish(new_task, 1797 new_taskdata->ompt_task_info.scheduling_parent, 1798 ompt_task_switch); 1799 new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1800 } 1801 } 1802 #endif 1803 1804 res = __kmp_omp_task(gtid, new_task, true); 1805 1806 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1807 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1808 gtid, loc_ref, new_taskdata)); 1809 #if OMPT_SUPPORT 1810 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1811 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1812 } 1813 #endif 1814 return res; 1815 } 1816 1817 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule 1818 // a taskloop task with the correct OMPT return address 1819 // 1820 // loc_ref: location of original task pragma (ignored) 1821 // gtid: Global Thread ID of encountering thread 1822 // new_task: non-thread-switchable task thunk allocated by 1823 // __kmp_omp_task_alloc() 1824 // codeptr_ra: return address for OMPT callback 1825 // Returns: 1826 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1827 // be resumed later. 1828 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1829 // resumed later. 1830 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, 1831 kmp_task_t *new_task, void *codeptr_ra) { 1832 kmp_int32 res; 1833 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1834 1835 #if KMP_DEBUG || OMPT_SUPPORT 1836 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1837 #endif 1838 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1839 new_taskdata)); 1840 1841 #if OMPT_SUPPORT 1842 kmp_taskdata_t *parent = NULL; 1843 if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { 1844 parent = new_taskdata->td_parent; 1845 if (!parent->ompt_task_info.frame.enter_frame.ptr) 1846 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1847 if (ompt_enabled.ompt_callback_task_create) { 1848 ompt_data_t task_data = ompt_data_none; 1849 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1850 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1851 parent ? &(parent->ompt_task_info.frame) : NULL, 1852 &(new_taskdata->ompt_task_info.task_data), 1853 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1854 codeptr_ra); 1855 } 1856 } 1857 #endif 1858 1859 res = __kmp_omp_task(gtid, new_task, true); 1860 1861 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1862 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1863 gtid, loc_ref, new_taskdata)); 1864 #if OMPT_SUPPORT 1865 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1866 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1867 } 1868 #endif 1869 return res; 1870 } 1871 1872 template <bool ompt> 1873 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, 1874 void *frame_address, 1875 void *return_address) { 1876 kmp_taskdata_t *taskdata; 1877 kmp_info_t *thread; 1878 int thread_finished = FALSE; 1879 KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); 1880 1881 KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref)); 1882 KMP_DEBUG_ASSERT(gtid >= 0); 1883 1884 if (__kmp_tasking_mode != tskm_immediate_exec) { 1885 thread = __kmp_threads[gtid]; 1886 taskdata = thread->th.th_current_task; 1887 1888 #if OMPT_SUPPORT && OMPT_OPTIONAL 1889 ompt_data_t *my_task_data; 1890 ompt_data_t *my_parallel_data; 1891 1892 if (ompt) { 1893 my_task_data = &(taskdata->ompt_task_info.task_data); 1894 my_parallel_data = OMPT_CUR_TEAM_DATA(thread); 1895 1896 taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; 1897 1898 if (ompt_enabled.ompt_callback_sync_region) { 1899 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1900 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1901 my_task_data, return_address); 1902 } 1903 1904 if (ompt_enabled.ompt_callback_sync_region_wait) { 1905 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1906 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1907 my_task_data, return_address); 1908 } 1909 } 1910 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1911 1912 // Debugger: The taskwait is active. Store location and thread encountered the 1913 // taskwait. 1914 #if USE_ITT_BUILD 1915 // Note: These values are used by ITT events as well. 1916 #endif /* USE_ITT_BUILD */ 1917 taskdata->td_taskwait_counter += 1; 1918 taskdata->td_taskwait_ident = loc_ref; 1919 taskdata->td_taskwait_thread = gtid + 1; 1920 1921 #if USE_ITT_BUILD 1922 void *itt_sync_obj = NULL; 1923 #if USE_ITT_NOTIFY 1924 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 1925 #endif /* USE_ITT_NOTIFY */ 1926 #endif /* USE_ITT_BUILD */ 1927 1928 bool must_wait = 1929 !taskdata->td_flags.team_serial && !taskdata->td_flags.final; 1930 1931 must_wait = must_wait || (thread->th.th_task_team != NULL && 1932 thread->th.th_task_team->tt.tt_found_proxy_tasks); 1933 // If hidden helper thread is encountered, we must enable wait here. 1934 must_wait = 1935 must_wait || 1936 (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL && 1937 thread->th.th_task_team->tt.tt_hidden_helper_task_encountered); 1938 1939 if (must_wait) { 1940 kmp_flag_32<false, false> flag( 1941 RCAST(std::atomic<kmp_uint32> *, 1942 &(taskdata->td_incomplete_child_tasks)), 1943 0U); 1944 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { 1945 flag.execute_tasks(thread, gtid, FALSE, 1946 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 1947 __kmp_task_stealing_constraint); 1948 } 1949 } 1950 #if USE_ITT_BUILD 1951 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 1952 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children 1953 #endif /* USE_ITT_BUILD */ 1954 1955 // Debugger: The taskwait is completed. Location remains, but thread is 1956 // negated. 1957 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 1958 1959 #if OMPT_SUPPORT && OMPT_OPTIONAL 1960 if (ompt) { 1961 if (ompt_enabled.ompt_callback_sync_region_wait) { 1962 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1963 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1964 my_task_data, return_address); 1965 } 1966 if (ompt_enabled.ompt_callback_sync_region) { 1967 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1968 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1969 my_task_data, return_address); 1970 } 1971 taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; 1972 } 1973 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1974 1975 ANNOTATE_HAPPENS_AFTER(taskdata); 1976 } 1977 1978 KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " 1979 "returning TASK_CURRENT_NOT_QUEUED\n", 1980 gtid, taskdata)); 1981 1982 return TASK_CURRENT_NOT_QUEUED; 1983 } 1984 1985 #if OMPT_SUPPORT && OMPT_OPTIONAL 1986 OMPT_NOINLINE 1987 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, 1988 void *frame_address, 1989 void *return_address) { 1990 return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, 1991 return_address); 1992 } 1993 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1994 1995 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are 1996 // complete 1997 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { 1998 #if OMPT_SUPPORT && OMPT_OPTIONAL 1999 if (UNLIKELY(ompt_enabled.enabled)) { 2000 OMPT_STORE_RETURN_ADDRESS(gtid); 2001 return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), 2002 OMPT_LOAD_RETURN_ADDRESS(gtid)); 2003 } 2004 #endif 2005 return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); 2006 } 2007 2008 // __kmpc_omp_taskyield: switch to a different task 2009 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { 2010 kmp_taskdata_t *taskdata; 2011 kmp_info_t *thread; 2012 int thread_finished = FALSE; 2013 2014 KMP_COUNT_BLOCK(OMP_TASKYIELD); 2015 KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); 2016 2017 KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", 2018 gtid, loc_ref, end_part)); 2019 __kmp_assert_valid_gtid(gtid); 2020 2021 if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { 2022 thread = __kmp_threads[gtid]; 2023 taskdata = thread->th.th_current_task; 2024 // Should we model this as a task wait or not? 2025 // Debugger: The taskwait is active. Store location and thread encountered the 2026 // taskwait. 2027 #if USE_ITT_BUILD 2028 // Note: These values are used by ITT events as well. 2029 #endif /* USE_ITT_BUILD */ 2030 taskdata->td_taskwait_counter += 1; 2031 taskdata->td_taskwait_ident = loc_ref; 2032 taskdata->td_taskwait_thread = gtid + 1; 2033 2034 #if USE_ITT_BUILD 2035 void *itt_sync_obj = NULL; 2036 #if USE_ITT_NOTIFY 2037 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2038 #endif /* USE_ITT_NOTIFY */ 2039 #endif /* USE_ITT_BUILD */ 2040 if (!taskdata->td_flags.team_serial) { 2041 kmp_task_team_t *task_team = thread->th.th_task_team; 2042 if (task_team != NULL) { 2043 if (KMP_TASKING_ENABLED(task_team)) { 2044 #if OMPT_SUPPORT 2045 if (UNLIKELY(ompt_enabled.enabled)) 2046 thread->th.ompt_thread_info.ompt_task_yielded = 1; 2047 #endif 2048 __kmp_execute_tasks_32( 2049 thread, gtid, (kmp_flag_32<> *)NULL, FALSE, 2050 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2051 __kmp_task_stealing_constraint); 2052 #if OMPT_SUPPORT 2053 if (UNLIKELY(ompt_enabled.enabled)) 2054 thread->th.ompt_thread_info.ompt_task_yielded = 0; 2055 #endif 2056 } 2057 } 2058 } 2059 #if USE_ITT_BUILD 2060 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2061 #endif /* USE_ITT_BUILD */ 2062 2063 // Debugger: The taskwait is completed. Location remains, but thread is 2064 // negated. 2065 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 2066 } 2067 2068 KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " 2069 "returning TASK_CURRENT_NOT_QUEUED\n", 2070 gtid, taskdata)); 2071 2072 return TASK_CURRENT_NOT_QUEUED; 2073 } 2074 2075 // Task Reduction implementation 2076 // 2077 // Note: initial implementation didn't take into account the possibility 2078 // to specify omp_orig for initializer of the UDR (user defined reduction). 2079 // Corrected implementation takes into account the omp_orig object. 2080 // Compiler is free to use old implementation if omp_orig is not specified. 2081 2082 /*! 2083 @ingroup BASIC_TYPES 2084 @{ 2085 */ 2086 2087 /*! 2088 Flags for special info per task reduction item. 2089 */ 2090 typedef struct kmp_taskred_flags { 2091 /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */ 2092 unsigned lazy_priv : 1; 2093 unsigned reserved31 : 31; 2094 } kmp_taskred_flags_t; 2095 2096 /*! 2097 Internal struct for reduction data item related info set up by compiler. 2098 */ 2099 typedef struct kmp_task_red_input { 2100 void *reduce_shar; /**< shared between tasks item to reduce into */ 2101 size_t reduce_size; /**< size of data item in bytes */ 2102 // three compiler-generated routines (init, fini are optional): 2103 void *reduce_init; /**< data initialization routine (single parameter) */ 2104 void *reduce_fini; /**< data finalization routine */ 2105 void *reduce_comb; /**< data combiner routine */ 2106 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2107 } kmp_task_red_input_t; 2108 2109 /*! 2110 Internal struct for reduction data item related info saved by the library. 2111 */ 2112 typedef struct kmp_taskred_data { 2113 void *reduce_shar; /**< shared between tasks item to reduce into */ 2114 size_t reduce_size; /**< size of data item */ 2115 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2116 void *reduce_priv; /**< array of thread specific items */ 2117 void *reduce_pend; /**< end of private data for faster comparison op */ 2118 // three compiler-generated routines (init, fini are optional): 2119 void *reduce_comb; /**< data combiner routine */ 2120 void *reduce_init; /**< data initialization routine (two parameters) */ 2121 void *reduce_fini; /**< data finalization routine */ 2122 void *reduce_orig; /**< original item (can be used in UDR initializer) */ 2123 } kmp_taskred_data_t; 2124 2125 /*! 2126 Internal struct for reduction data item related info set up by compiler. 2127 2128 New interface: added reduce_orig field to provide omp_orig for UDR initializer. 2129 */ 2130 typedef struct kmp_taskred_input { 2131 void *reduce_shar; /**< shared between tasks item to reduce into */ 2132 void *reduce_orig; /**< original reduction item used for initialization */ 2133 size_t reduce_size; /**< size of data item */ 2134 // three compiler-generated routines (init, fini are optional): 2135 void *reduce_init; /**< data initialization routine (two parameters) */ 2136 void *reduce_fini; /**< data finalization routine */ 2137 void *reduce_comb; /**< data combiner routine */ 2138 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2139 } kmp_taskred_input_t; 2140 /*! 2141 @} 2142 */ 2143 2144 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); 2145 template <> 2146 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2147 kmp_task_red_input_t &src) { 2148 item.reduce_orig = NULL; 2149 } 2150 template <> 2151 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2152 kmp_taskred_input_t &src) { 2153 if (src.reduce_orig != NULL) { 2154 item.reduce_orig = src.reduce_orig; 2155 } else { 2156 item.reduce_orig = src.reduce_shar; 2157 } // non-NULL reduce_orig means new interface used 2158 } 2159 2160 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j); 2161 template <> 2162 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2163 size_t offset) { 2164 ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); 2165 } 2166 template <> 2167 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2168 size_t offset) { 2169 ((void (*)(void *, void *))item.reduce_init)( 2170 (char *)(item.reduce_priv) + offset, item.reduce_orig); 2171 } 2172 2173 template <typename T> 2174 void *__kmp_task_reduction_init(int gtid, int num, T *data) { 2175 __kmp_assert_valid_gtid(gtid); 2176 kmp_info_t *thread = __kmp_threads[gtid]; 2177 kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; 2178 kmp_uint32 nth = thread->th.th_team_nproc; 2179 kmp_taskred_data_t *arr; 2180 2181 // check input data just in case 2182 KMP_ASSERT(tg != NULL); 2183 KMP_ASSERT(data != NULL); 2184 KMP_ASSERT(num > 0); 2185 if (nth == 1) { 2186 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n", 2187 gtid, tg)); 2188 return (void *)tg; 2189 } 2190 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n", 2191 gtid, tg, num)); 2192 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2193 thread, num * sizeof(kmp_taskred_data_t)); 2194 for (int i = 0; i < num; ++i) { 2195 size_t size = data[i].reduce_size - 1; 2196 // round the size up to cache line per thread-specific item 2197 size += CACHE_LINE - size % CACHE_LINE; 2198 KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory 2199 arr[i].reduce_shar = data[i].reduce_shar; 2200 arr[i].reduce_size = size; 2201 arr[i].flags = data[i].flags; 2202 arr[i].reduce_comb = data[i].reduce_comb; 2203 arr[i].reduce_init = data[i].reduce_init; 2204 arr[i].reduce_fini = data[i].reduce_fini; 2205 __kmp_assign_orig<T>(arr[i], data[i]); 2206 if (!arr[i].flags.lazy_priv) { 2207 // allocate cache-line aligned block and fill it with zeros 2208 arr[i].reduce_priv = __kmp_allocate(nth * size); 2209 arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; 2210 if (arr[i].reduce_init != NULL) { 2211 // initialize all thread-specific items 2212 for (size_t j = 0; j < nth; ++j) { 2213 __kmp_call_init<T>(arr[i], j * size); 2214 } 2215 } 2216 } else { 2217 // only allocate space for pointers now, 2218 // objects will be lazily allocated/initialized if/when requested 2219 // note that __kmp_allocate zeroes the allocated memory 2220 arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); 2221 } 2222 } 2223 tg->reduce_data = (void *)arr; 2224 tg->reduce_num_data = num; 2225 return (void *)tg; 2226 } 2227 2228 /*! 2229 @ingroup TASKING 2230 @param gtid Global thread ID 2231 @param num Number of data items to reduce 2232 @param data Array of data for reduction 2233 @return The taskgroup identifier 2234 2235 Initialize task reduction for the taskgroup. 2236 2237 Note: this entry supposes the optional compiler-generated initializer routine 2238 has single parameter - pointer to object to be initialized. That means 2239 the reduction either does not use omp_orig object, or the omp_orig is accessible 2240 without help of the runtime library. 2241 */ 2242 void *__kmpc_task_reduction_init(int gtid, int num, void *data) { 2243 return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data); 2244 } 2245 2246 /*! 2247 @ingroup TASKING 2248 @param gtid Global thread ID 2249 @param num Number of data items to reduce 2250 @param data Array of data for reduction 2251 @return The taskgroup identifier 2252 2253 Initialize task reduction for the taskgroup. 2254 2255 Note: this entry supposes the optional compiler-generated initializer routine 2256 has two parameters, pointer to object to be initialized and pointer to omp_orig 2257 */ 2258 void *__kmpc_taskred_init(int gtid, int num, void *data) { 2259 return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data); 2260 } 2261 2262 // Copy task reduction data (except for shared pointers). 2263 template <typename T> 2264 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, 2265 kmp_taskgroup_t *tg, void *reduce_data) { 2266 kmp_taskred_data_t *arr; 2267 KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," 2268 " from data %p\n", 2269 thr, tg, reduce_data)); 2270 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2271 thr, num * sizeof(kmp_taskred_data_t)); 2272 // threads will share private copies, thunk routines, sizes, flags, etc.: 2273 KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t)); 2274 for (int i = 0; i < num; ++i) { 2275 arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers 2276 } 2277 tg->reduce_data = (void *)arr; 2278 tg->reduce_num_data = num; 2279 } 2280 2281 /*! 2282 @ingroup TASKING 2283 @param gtid Global thread ID 2284 @param tskgrp The taskgroup ID (optional) 2285 @param data Shared location of the item 2286 @return The pointer to per-thread data 2287 2288 Get thread-specific location of data item 2289 */ 2290 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { 2291 __kmp_assert_valid_gtid(gtid); 2292 kmp_info_t *thread = __kmp_threads[gtid]; 2293 kmp_int32 nth = thread->th.th_team_nproc; 2294 if (nth == 1) 2295 return data; // nothing to do 2296 2297 kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; 2298 if (tg == NULL) 2299 tg = thread->th.th_current_task->td_taskgroup; 2300 KMP_ASSERT(tg != NULL); 2301 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data); 2302 kmp_int32 num = tg->reduce_num_data; 2303 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 2304 2305 KMP_ASSERT(data != NULL); 2306 while (tg != NULL) { 2307 for (int i = 0; i < num; ++i) { 2308 if (!arr[i].flags.lazy_priv) { 2309 if (data == arr[i].reduce_shar || 2310 (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) 2311 return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; 2312 } else { 2313 // check shared location first 2314 void **p_priv = (void **)(arr[i].reduce_priv); 2315 if (data == arr[i].reduce_shar) 2316 goto found; 2317 // check if we get some thread specific location as parameter 2318 for (int j = 0; j < nth; ++j) 2319 if (data == p_priv[j]) 2320 goto found; 2321 continue; // not found, continue search 2322 found: 2323 if (p_priv[tid] == NULL) { 2324 // allocate thread specific object lazily 2325 p_priv[tid] = __kmp_allocate(arr[i].reduce_size); 2326 if (arr[i].reduce_init != NULL) { 2327 if (arr[i].reduce_orig != NULL) { // new interface 2328 ((void (*)(void *, void *))arr[i].reduce_init)( 2329 p_priv[tid], arr[i].reduce_orig); 2330 } else { // old interface (single parameter) 2331 ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); 2332 } 2333 } 2334 } 2335 return p_priv[tid]; 2336 } 2337 } 2338 tg = tg->parent; 2339 arr = (kmp_taskred_data_t *)(tg->reduce_data); 2340 num = tg->reduce_num_data; 2341 } 2342 KMP_ASSERT2(0, "Unknown task reduction item"); 2343 return NULL; // ERROR, this line never executed 2344 } 2345 2346 // Finalize task reduction. 2347 // Called from __kmpc_end_taskgroup() 2348 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { 2349 kmp_int32 nth = th->th.th_team_nproc; 2350 KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1 2351 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; 2352 kmp_int32 num = tg->reduce_num_data; 2353 for (int i = 0; i < num; ++i) { 2354 void *sh_data = arr[i].reduce_shar; 2355 void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); 2356 void (*f_comb)(void *, void *) = 2357 (void (*)(void *, void *))(arr[i].reduce_comb); 2358 if (!arr[i].flags.lazy_priv) { 2359 void *pr_data = arr[i].reduce_priv; 2360 size_t size = arr[i].reduce_size; 2361 for (int j = 0; j < nth; ++j) { 2362 void *priv_data = (char *)pr_data + j * size; 2363 f_comb(sh_data, priv_data); // combine results 2364 if (f_fini) 2365 f_fini(priv_data); // finalize if needed 2366 } 2367 } else { 2368 void **pr_data = (void **)(arr[i].reduce_priv); 2369 for (int j = 0; j < nth; ++j) { 2370 if (pr_data[j] != NULL) { 2371 f_comb(sh_data, pr_data[j]); // combine results 2372 if (f_fini) 2373 f_fini(pr_data[j]); // finalize if needed 2374 __kmp_free(pr_data[j]); 2375 } 2376 } 2377 } 2378 __kmp_free(arr[i].reduce_priv); 2379 } 2380 __kmp_thread_free(th, arr); 2381 tg->reduce_data = NULL; 2382 tg->reduce_num_data = 0; 2383 } 2384 2385 // Cleanup task reduction data for parallel or worksharing, 2386 // do not touch task private data other threads still working with. 2387 // Called from __kmpc_end_taskgroup() 2388 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { 2389 __kmp_thread_free(th, tg->reduce_data); 2390 tg->reduce_data = NULL; 2391 tg->reduce_num_data = 0; 2392 } 2393 2394 template <typename T> 2395 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2396 int num, T *data) { 2397 __kmp_assert_valid_gtid(gtid); 2398 kmp_info_t *thr = __kmp_threads[gtid]; 2399 kmp_int32 nth = thr->th.th_team_nproc; 2400 __kmpc_taskgroup(loc, gtid); // form new taskgroup first 2401 if (nth == 1) { 2402 KA_TRACE(10, 2403 ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n", 2404 gtid, thr->th.th_current_task->td_taskgroup)); 2405 return (void *)thr->th.th_current_task->td_taskgroup; 2406 } 2407 kmp_team_t *team = thr->th.th_team; 2408 void *reduce_data; 2409 kmp_taskgroup_t *tg; 2410 reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); 2411 if (reduce_data == NULL && 2412 __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data, 2413 (void *)1)) { 2414 // single thread enters this block to initialize common reduction data 2415 KMP_DEBUG_ASSERT(reduce_data == NULL); 2416 // first initialize own data, then make a copy other threads can use 2417 tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); 2418 reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); 2419 KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t)); 2420 // fini counters should be 0 at this point 2421 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); 2422 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); 2423 KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); 2424 } else { 2425 while ( 2426 (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == 2427 (void *)1) { // wait for task reduction initialization 2428 KMP_CPU_PAUSE(); 2429 } 2430 KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here 2431 tg = thr->th.th_current_task->td_taskgroup; 2432 __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); 2433 } 2434 return tg; 2435 } 2436 2437 /*! 2438 @ingroup TASKING 2439 @param loc Source location info 2440 @param gtid Global thread ID 2441 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2442 @param num Number of data items to reduce 2443 @param data Array of data for reduction 2444 @return The taskgroup identifier 2445 2446 Initialize task reduction for a parallel or worksharing. 2447 2448 Note: this entry supposes the optional compiler-generated initializer routine 2449 has single parameter - pointer to object to be initialized. That means 2450 the reduction either does not use omp_orig object, or the omp_orig is accessible 2451 without help of the runtime library. 2452 */ 2453 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2454 int num, void *data) { 2455 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2456 (kmp_task_red_input_t *)data); 2457 } 2458 2459 /*! 2460 @ingroup TASKING 2461 @param loc Source location info 2462 @param gtid Global thread ID 2463 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2464 @param num Number of data items to reduce 2465 @param data Array of data for reduction 2466 @return The taskgroup identifier 2467 2468 Initialize task reduction for a parallel or worksharing. 2469 2470 Note: this entry supposes the optional compiler-generated initializer routine 2471 has two parameters, pointer to object to be initialized and pointer to omp_orig 2472 */ 2473 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, 2474 void *data) { 2475 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2476 (kmp_taskred_input_t *)data); 2477 } 2478 2479 /*! 2480 @ingroup TASKING 2481 @param loc Source location info 2482 @param gtid Global thread ID 2483 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2484 2485 Finalize task reduction for a parallel or worksharing. 2486 */ 2487 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { 2488 __kmpc_end_taskgroup(loc, gtid); 2489 } 2490 2491 // __kmpc_taskgroup: Start a new taskgroup 2492 void __kmpc_taskgroup(ident_t *loc, int gtid) { 2493 __kmp_assert_valid_gtid(gtid); 2494 kmp_info_t *thread = __kmp_threads[gtid]; 2495 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2496 kmp_taskgroup_t *tg_new = 2497 (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); 2498 KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new)); 2499 KMP_ATOMIC_ST_RLX(&tg_new->count, 0); 2500 KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); 2501 tg_new->parent = taskdata->td_taskgroup; 2502 tg_new->reduce_data = NULL; 2503 tg_new->reduce_num_data = 0; 2504 taskdata->td_taskgroup = tg_new; 2505 2506 #if OMPT_SUPPORT && OMPT_OPTIONAL 2507 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2508 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2509 if (!codeptr) 2510 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2511 kmp_team_t *team = thread->th.th_team; 2512 ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; 2513 // FIXME: I think this is wrong for lwt! 2514 ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; 2515 2516 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2517 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2518 &(my_task_data), codeptr); 2519 } 2520 #endif 2521 } 2522 2523 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task 2524 // and its descendants are complete 2525 void __kmpc_end_taskgroup(ident_t *loc, int gtid) { 2526 __kmp_assert_valid_gtid(gtid); 2527 kmp_info_t *thread = __kmp_threads[gtid]; 2528 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2529 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 2530 int thread_finished = FALSE; 2531 2532 #if OMPT_SUPPORT && OMPT_OPTIONAL 2533 kmp_team_t *team; 2534 ompt_data_t my_task_data; 2535 ompt_data_t my_parallel_data; 2536 void *codeptr; 2537 if (UNLIKELY(ompt_enabled.enabled)) { 2538 team = thread->th.th_team; 2539 my_task_data = taskdata->ompt_task_info.task_data; 2540 // FIXME: I think this is wrong for lwt! 2541 my_parallel_data = team->t.ompt_team_info.parallel_data; 2542 codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2543 if (!codeptr) 2544 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2545 } 2546 #endif 2547 2548 KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc)); 2549 KMP_DEBUG_ASSERT(taskgroup != NULL); 2550 KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); 2551 2552 if (__kmp_tasking_mode != tskm_immediate_exec) { 2553 // mark task as waiting not on a barrier 2554 taskdata->td_taskwait_counter += 1; 2555 taskdata->td_taskwait_ident = loc; 2556 taskdata->td_taskwait_thread = gtid + 1; 2557 #if USE_ITT_BUILD 2558 // For ITT the taskgroup wait is similar to taskwait until we need to 2559 // distinguish them 2560 void *itt_sync_obj = NULL; 2561 #if USE_ITT_NOTIFY 2562 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2563 #endif /* USE_ITT_NOTIFY */ 2564 #endif /* USE_ITT_BUILD */ 2565 2566 #if OMPT_SUPPORT && OMPT_OPTIONAL 2567 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2568 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2569 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2570 &(my_task_data), codeptr); 2571 } 2572 #endif 2573 2574 if (!taskdata->td_flags.team_serial || 2575 (thread->th.th_task_team != NULL && 2576 thread->th.th_task_team->tt.tt_found_proxy_tasks)) { 2577 kmp_flag_32<false, false> flag( 2578 RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U); 2579 while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { 2580 flag.execute_tasks(thread, gtid, FALSE, 2581 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2582 __kmp_task_stealing_constraint); 2583 } 2584 } 2585 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting 2586 2587 #if OMPT_SUPPORT && OMPT_OPTIONAL 2588 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2589 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2590 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2591 &(my_task_data), codeptr); 2592 } 2593 #endif 2594 2595 #if USE_ITT_BUILD 2596 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2597 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants 2598 #endif /* USE_ITT_BUILD */ 2599 } 2600 KMP_DEBUG_ASSERT(taskgroup->count == 0); 2601 2602 if (taskgroup->reduce_data != NULL) { // need to reduce? 2603 int cnt; 2604 void *reduce_data; 2605 kmp_team_t *t = thread->th.th_team; 2606 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; 2607 // check if <priv> data of the first reduction variable shared for the team 2608 void *priv0 = arr[0].reduce_priv; 2609 if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && 2610 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2611 // finishing task reduction on parallel 2612 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); 2613 if (cnt == thread->th.th_team_nproc - 1) { 2614 // we are the last thread passing __kmpc_reduction_modifier_fini() 2615 // finalize task reduction: 2616 __kmp_task_reduction_fini(thread, taskgroup); 2617 // cleanup fields in the team structure: 2618 // TODO: is relaxed store enough here (whole barrier should follow)? 2619 __kmp_thread_free(thread, reduce_data); 2620 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); 2621 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); 2622 } else { 2623 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2624 // so do not finalize reduction, just clean own copy of the data 2625 __kmp_task_reduction_clean(thread, taskgroup); 2626 } 2627 } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != 2628 NULL && 2629 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2630 // finishing task reduction on worksharing 2631 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); 2632 if (cnt == thread->th.th_team_nproc - 1) { 2633 // we are the last thread passing __kmpc_reduction_modifier_fini() 2634 __kmp_task_reduction_fini(thread, taskgroup); 2635 // cleanup fields in team structure: 2636 // TODO: is relaxed store enough here (whole barrier should follow)? 2637 __kmp_thread_free(thread, reduce_data); 2638 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); 2639 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); 2640 } else { 2641 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2642 // so do not finalize reduction, just clean own copy of the data 2643 __kmp_task_reduction_clean(thread, taskgroup); 2644 } 2645 } else { 2646 // finishing task reduction on taskgroup 2647 __kmp_task_reduction_fini(thread, taskgroup); 2648 } 2649 } 2650 // Restore parent taskgroup for the current task 2651 taskdata->td_taskgroup = taskgroup->parent; 2652 __kmp_thread_free(thread, taskgroup); 2653 2654 KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", 2655 gtid, taskdata)); 2656 ANNOTATE_HAPPENS_AFTER(taskdata); 2657 2658 #if OMPT_SUPPORT && OMPT_OPTIONAL 2659 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2660 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2661 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2662 &(my_task_data), codeptr); 2663 } 2664 #endif 2665 } 2666 2667 // __kmp_remove_my_task: remove a task from my own deque 2668 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, 2669 kmp_task_team_t *task_team, 2670 kmp_int32 is_constrained) { 2671 kmp_task_t *task; 2672 kmp_taskdata_t *taskdata; 2673 kmp_thread_data_t *thread_data; 2674 kmp_uint32 tail; 2675 2676 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2677 KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != 2678 NULL); // Caller should check this condition 2679 2680 thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 2681 2682 KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", 2683 gtid, thread_data->td.td_deque_ntasks, 2684 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2685 2686 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2687 KA_TRACE(10, 2688 ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " 2689 "ntasks=%d head=%u tail=%u\n", 2690 gtid, thread_data->td.td_deque_ntasks, 2691 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2692 return NULL; 2693 } 2694 2695 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 2696 2697 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2698 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2699 KA_TRACE(10, 2700 ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " 2701 "ntasks=%d head=%u tail=%u\n", 2702 gtid, thread_data->td.td_deque_ntasks, 2703 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2704 return NULL; 2705 } 2706 2707 tail = (thread_data->td.td_deque_tail - 1) & 2708 TASK_DEQUE_MASK(thread_data->td); // Wrap index. 2709 taskdata = thread_data->td.td_deque[tail]; 2710 2711 if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata, 2712 thread->th.th_current_task)) { 2713 // The TSC does not allow to steal victim task 2714 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2715 KA_TRACE(10, 2716 ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " 2717 "ntasks=%d head=%u tail=%u\n", 2718 gtid, thread_data->td.td_deque_ntasks, 2719 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2720 return NULL; 2721 } 2722 2723 thread_data->td.td_deque_tail = tail; 2724 TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); 2725 2726 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2727 2728 KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " 2729 "ntasks=%d head=%u tail=%u\n", 2730 gtid, taskdata, thread_data->td.td_deque_ntasks, 2731 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2732 2733 task = KMP_TASKDATA_TO_TASK(taskdata); 2734 return task; 2735 } 2736 2737 // __kmp_steal_task: remove a task from another thread's deque 2738 // Assume that calling thread has already checked existence of 2739 // task_team thread_data before calling this routine. 2740 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid, 2741 kmp_task_team_t *task_team, 2742 std::atomic<kmp_int32> *unfinished_threads, 2743 int *thread_finished, 2744 kmp_int32 is_constrained) { 2745 kmp_task_t *task; 2746 kmp_taskdata_t *taskdata; 2747 kmp_taskdata_t *current; 2748 kmp_thread_data_t *victim_td, *threads_data; 2749 kmp_int32 target; 2750 kmp_int32 victim_tid; 2751 2752 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2753 2754 threads_data = task_team->tt.tt_threads_data; 2755 KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition 2756 2757 victim_tid = victim_thr->th.th_info.ds.ds_tid; 2758 victim_td = &threads_data[victim_tid]; 2759 2760 KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " 2761 "task_team=%p ntasks=%d head=%u tail=%u\n", 2762 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2763 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2764 victim_td->td.td_deque_tail)); 2765 2766 if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { 2767 KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " 2768 "task_team=%p ntasks=%d head=%u tail=%u\n", 2769 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2770 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2771 victim_td->td.td_deque_tail)); 2772 return NULL; 2773 } 2774 2775 __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock); 2776 2777 int ntasks = TCR_4(victim_td->td.td_deque_ntasks); 2778 // Check again after we acquire the lock 2779 if (ntasks == 0) { 2780 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2781 KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " 2782 "task_team=%p ntasks=%d head=%u tail=%u\n", 2783 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2784 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2785 return NULL; 2786 } 2787 2788 KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); 2789 current = __kmp_threads[gtid]->th.th_current_task; 2790 taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; 2791 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2792 // Bump head pointer and Wrap. 2793 victim_td->td.td_deque_head = 2794 (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); 2795 } else { 2796 if (!task_team->tt.tt_untied_task_encountered) { 2797 // The TSC does not allow to steal victim task 2798 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2799 KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " 2800 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2801 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2802 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2803 return NULL; 2804 } 2805 int i; 2806 // walk through victim's deque trying to steal any task 2807 target = victim_td->td.td_deque_head; 2808 taskdata = NULL; 2809 for (i = 1; i < ntasks; ++i) { 2810 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2811 taskdata = victim_td->td.td_deque[target]; 2812 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2813 break; // found victim task 2814 } else { 2815 taskdata = NULL; 2816 } 2817 } 2818 if (taskdata == NULL) { 2819 // No appropriate candidate to steal found 2820 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2821 KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " 2822 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2823 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2824 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2825 return NULL; 2826 } 2827 int prev = target; 2828 for (i = i + 1; i < ntasks; ++i) { 2829 // shift remaining tasks in the deque left by 1 2830 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2831 victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; 2832 prev = target; 2833 } 2834 KMP_DEBUG_ASSERT( 2835 victim_td->td.td_deque_tail == 2836 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); 2837 victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) 2838 } 2839 if (*thread_finished) { 2840 // We need to un-mark this victim as a finished victim. This must be done 2841 // before releasing the lock, or else other threads (starting with the 2842 // primary thread victim) might be prematurely released from the barrier!!! 2843 kmp_int32 count; 2844 2845 count = KMP_ATOMIC_INC(unfinished_threads); 2846 2847 KA_TRACE( 2848 20, 2849 ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", 2850 gtid, count + 1, task_team)); 2851 2852 *thread_finished = FALSE; 2853 } 2854 TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); 2855 2856 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2857 2858 KMP_COUNT_BLOCK(TASK_stolen); 2859 KA_TRACE(10, 2860 ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " 2861 "task_team=%p ntasks=%d head=%u tail=%u\n", 2862 gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, 2863 ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2864 2865 task = KMP_TASKDATA_TO_TASK(taskdata); 2866 return task; 2867 } 2868 2869 // __kmp_execute_tasks_template: Choose and execute tasks until either the 2870 // condition is statisfied (return true) or there are none left (return false). 2871 // 2872 // final_spin is TRUE if this is the spin at the release barrier. 2873 // thread_finished indicates whether the thread is finished executing all 2874 // the tasks it has on its deque, and is at the release barrier. 2875 // spinner is the location on which to spin. 2876 // spinner == NULL means only execute a single task and return. 2877 // checker is the value to check to terminate the spin. 2878 template <class C> 2879 static inline int __kmp_execute_tasks_template( 2880 kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, 2881 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 2882 kmp_int32 is_constrained) { 2883 kmp_task_team_t *task_team = thread->th.th_task_team; 2884 kmp_thread_data_t *threads_data; 2885 kmp_task_t *task; 2886 kmp_info_t *other_thread; 2887 kmp_taskdata_t *current_task = thread->th.th_current_task; 2888 std::atomic<kmp_int32> *unfinished_threads; 2889 kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, 2890 tid = thread->th.th_info.ds.ds_tid; 2891 2892 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2893 KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); 2894 2895 if (task_team == NULL || current_task == NULL) 2896 return FALSE; 2897 2898 KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " 2899 "*thread_finished=%d\n", 2900 gtid, final_spin, *thread_finished)); 2901 2902 thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 2903 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 2904 2905 KMP_DEBUG_ASSERT(threads_data != NULL); 2906 2907 nthreads = task_team->tt.tt_nproc; 2908 unfinished_threads = &(task_team->tt.tt_unfinished_threads); 2909 KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks || 2910 task_team->tt.tt_hidden_helper_task_encountered); 2911 KMP_DEBUG_ASSERT(*unfinished_threads >= 0); 2912 2913 while (1) { // Outer loop keeps trying to find tasks in case of single thread 2914 // getting tasks from target constructs 2915 while (1) { // Inner loop to find a task and execute it 2916 task = NULL; 2917 if (use_own_tasks) { // check on own queue first 2918 task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); 2919 } 2920 if ((task == NULL) && (nthreads > 1)) { // Steal a task 2921 int asleep = 1; 2922 use_own_tasks = 0; 2923 // Try to steal from the last place I stole from successfully. 2924 if (victim_tid == -2) { // haven't stolen anything yet 2925 victim_tid = threads_data[tid].td.td_deque_last_stolen; 2926 if (victim_tid != 2927 -1) // if we have a last stolen from victim, get the thread 2928 other_thread = threads_data[victim_tid].td.td_thr; 2929 } 2930 if (victim_tid != -1) { // found last victim 2931 asleep = 0; 2932 } else if (!new_victim) { // no recent steals and we haven't already 2933 // used a new victim; select a random thread 2934 do { // Find a different thread to steal work from. 2935 // Pick a random thread. Initial plan was to cycle through all the 2936 // threads, and only return if we tried to steal from every thread, 2937 // and failed. Arch says that's not such a great idea. 2938 victim_tid = __kmp_get_random(thread) % (nthreads - 1); 2939 if (victim_tid >= tid) { 2940 ++victim_tid; // Adjusts random distribution to exclude self 2941 } 2942 // Found a potential victim 2943 other_thread = threads_data[victim_tid].td.td_thr; 2944 // There is a slight chance that __kmp_enable_tasking() did not wake 2945 // up all threads waiting at the barrier. If victim is sleeping, 2946 // then wake it up. Since we were going to pay the cache miss 2947 // penalty for referencing another thread's kmp_info_t struct 2948 // anyway, 2949 // the check shouldn't cost too much performance at this point. In 2950 // extra barrier mode, tasks do not sleep at the separate tasking 2951 // barrier, so this isn't a problem. 2952 asleep = 0; 2953 if ((__kmp_tasking_mode == tskm_task_teams) && 2954 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && 2955 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != 2956 NULL)) { 2957 asleep = 1; 2958 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread), 2959 other_thread->th.th_sleep_loc); 2960 // A sleeping thread should not have any tasks on it's queue. 2961 // There is a slight possibility that it resumes, steals a task 2962 // from another thread, which spawns more tasks, all in the time 2963 // that it takes this thread to check => don't write an assertion 2964 // that the victim's queue is empty. Try stealing from a 2965 // different thread. 2966 } 2967 } while (asleep); 2968 } 2969 2970 if (!asleep) { 2971 // We have a victim to try to steal from 2972 task = __kmp_steal_task(other_thread, gtid, task_team, 2973 unfinished_threads, thread_finished, 2974 is_constrained); 2975 } 2976 if (task != NULL) { // set last stolen to victim 2977 if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { 2978 threads_data[tid].td.td_deque_last_stolen = victim_tid; 2979 // The pre-refactored code did not try more than 1 successful new 2980 // vicitm, unless the last one generated more local tasks; 2981 // new_victim keeps track of this 2982 new_victim = 1; 2983 } 2984 } else { // No tasks found; unset last_stolen 2985 KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); 2986 victim_tid = -2; // no successful victim found 2987 } 2988 } 2989 2990 if (task == NULL) 2991 break; // break out of tasking loop 2992 2993 // Found a task; execute it 2994 #if USE_ITT_BUILD && USE_ITT_NOTIFY 2995 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 2996 if (itt_sync_obj == NULL) { // we are at fork barrier where we could not 2997 // get the object reliably 2998 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 2999 } 3000 __kmp_itt_task_starting(itt_sync_obj); 3001 } 3002 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 3003 __kmp_invoke_task(gtid, task, current_task); 3004 #if USE_ITT_BUILD 3005 if (itt_sync_obj != NULL) 3006 __kmp_itt_task_finished(itt_sync_obj); 3007 #endif /* USE_ITT_BUILD */ 3008 // If this thread is only partway through the barrier and the condition is 3009 // met, then return now, so that the barrier gather/release pattern can 3010 // proceed. If this thread is in the last spin loop in the barrier, 3011 // waiting to be released, we know that the termination condition will not 3012 // be satisfied, so don't waste any cycles checking it. 3013 if (flag == NULL || (!final_spin && flag->done_check())) { 3014 KA_TRACE( 3015 15, 3016 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3017 gtid)); 3018 return TRUE; 3019 } 3020 if (thread->th.th_task_team == NULL) { 3021 break; 3022 } 3023 KMP_YIELD(__kmp_library == library_throughput); // Yield before next task 3024 // If execution of a stolen task results in more tasks being placed on our 3025 // run queue, reset use_own_tasks 3026 if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { 3027 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " 3028 "other tasks, restart\n", 3029 gtid)); 3030 use_own_tasks = 1; 3031 new_victim = 0; 3032 } 3033 } 3034 3035 // The task source has been exhausted. If in final spin loop of barrier, 3036 // check if termination condition is satisfied. The work queue may be empty 3037 // but there might be proxy tasks still executing. 3038 if (final_spin && 3039 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { 3040 // First, decrement the #unfinished threads, if that has not already been 3041 // done. This decrement might be to the spin location, and result in the 3042 // termination condition being satisfied. 3043 if (!*thread_finished) { 3044 kmp_int32 count; 3045 3046 count = KMP_ATOMIC_DEC(unfinished_threads) - 1; 3047 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " 3048 "unfinished_threads to %d task_team=%p\n", 3049 gtid, count, task_team)); 3050 *thread_finished = TRUE; 3051 } 3052 3053 // It is now unsafe to reference thread->th.th_team !!! 3054 // Decrementing task_team->tt.tt_unfinished_threads can allow the primary 3055 // thread to pass through the barrier, where it might reset each thread's 3056 // th.th_team field for the next parallel region. If we can steal more 3057 // work, we know that this has not happened yet. 3058 if (flag != NULL && flag->done_check()) { 3059 KA_TRACE( 3060 15, 3061 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3062 gtid)); 3063 return TRUE; 3064 } 3065 } 3066 3067 // If this thread's task team is NULL, primary thread has recognized that 3068 // there are no more tasks; bail out 3069 if (thread->th.th_task_team == NULL) { 3070 KA_TRACE(15, 3071 ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid)); 3072 return FALSE; 3073 } 3074 3075 // We could be getting tasks from target constructs; if this is the only 3076 // thread, keep trying to execute tasks from own queue 3077 if (nthreads == 1 && 3078 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks)) 3079 use_own_tasks = 1; 3080 else { 3081 KA_TRACE(15, 3082 ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid)); 3083 return FALSE; 3084 } 3085 } 3086 } 3087 3088 template <bool C, bool S> 3089 int __kmp_execute_tasks_32( 3090 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin, 3091 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3092 kmp_int32 is_constrained) { 3093 return __kmp_execute_tasks_template( 3094 thread, gtid, flag, final_spin, 3095 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3096 } 3097 3098 template <bool C, bool S> 3099 int __kmp_execute_tasks_64( 3100 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin, 3101 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3102 kmp_int32 is_constrained) { 3103 return __kmp_execute_tasks_template( 3104 thread, gtid, flag, final_spin, 3105 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3106 } 3107 3108 int __kmp_execute_tasks_oncore( 3109 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, 3110 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3111 kmp_int32 is_constrained) { 3112 return __kmp_execute_tasks_template( 3113 thread, gtid, flag, final_spin, 3114 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3115 } 3116 3117 template int 3118 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32, 3119 kmp_flag_32<false, false> *, int, 3120 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3121 3122 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32, 3123 kmp_flag_64<false, true> *, 3124 int, 3125 int *USE_ITT_BUILD_ARG(void *), 3126 kmp_int32); 3127 3128 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32, 3129 kmp_flag_64<true, false> *, 3130 int, 3131 int *USE_ITT_BUILD_ARG(void *), 3132 kmp_int32); 3133 3134 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the 3135 // next barrier so they can assist in executing enqueued tasks. 3136 // First thread in allocates the task team atomically. 3137 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 3138 kmp_info_t *this_thr) { 3139 kmp_thread_data_t *threads_data; 3140 int nthreads, i, is_init_thread; 3141 3142 KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n", 3143 __kmp_gtid_from_thread(this_thr))); 3144 3145 KMP_DEBUG_ASSERT(task_team != NULL); 3146 KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); 3147 3148 nthreads = task_team->tt.tt_nproc; 3149 KMP_DEBUG_ASSERT(nthreads > 0); 3150 KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); 3151 3152 // Allocate or increase the size of threads_data if necessary 3153 is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team); 3154 3155 if (!is_init_thread) { 3156 // Some other thread already set up the array. 3157 KA_TRACE( 3158 20, 3159 ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", 3160 __kmp_gtid_from_thread(this_thr))); 3161 return; 3162 } 3163 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3164 KMP_DEBUG_ASSERT(threads_data != NULL); 3165 3166 if (__kmp_tasking_mode == tskm_task_teams && 3167 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { 3168 // Release any threads sleeping at the barrier, so that they can steal 3169 // tasks and execute them. In extra barrier mode, tasks do not sleep 3170 // at the separate tasking barrier, so this isn't a problem. 3171 for (i = 0; i < nthreads; i++) { 3172 volatile void *sleep_loc; 3173 kmp_info_t *thread = threads_data[i].td.td_thr; 3174 3175 if (i == this_thr->th.th_info.ds.ds_tid) { 3176 continue; 3177 } 3178 // Since we haven't locked the thread's suspend mutex lock at this 3179 // point, there is a small window where a thread might be putting 3180 // itself to sleep, but hasn't set the th_sleep_loc field yet. 3181 // To work around this, __kmp_execute_tasks_template() periodically checks 3182 // see if other threads are sleeping (using the same random mechanism that 3183 // is used for task stealing) and awakens them if they are. 3184 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3185 NULL) { 3186 KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n", 3187 __kmp_gtid_from_thread(this_thr), 3188 __kmp_gtid_from_thread(thread))); 3189 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3190 } else { 3191 KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", 3192 __kmp_gtid_from_thread(this_thr), 3193 __kmp_gtid_from_thread(thread))); 3194 } 3195 } 3196 } 3197 3198 KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n", 3199 __kmp_gtid_from_thread(this_thr))); 3200 } 3201 3202 /* // TODO: Check the comment consistency 3203 * Utility routines for "task teams". A task team (kmp_task_t) is kind of 3204 * like a shadow of the kmp_team_t data struct, with a different lifetime. 3205 * After a child * thread checks into a barrier and calls __kmp_release() from 3206 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no 3207 * longer assume that the kmp_team_t structure is intact (at any moment, the 3208 * primary thread may exit the barrier code and free the team data structure, 3209 * and return the threads to the thread pool). 3210 * 3211 * This does not work with the tasking code, as the thread is still 3212 * expected to participate in the execution of any tasks that may have been 3213 * spawned my a member of the team, and the thread still needs access to all 3214 * to each thread in the team, so that it can steal work from it. 3215 * 3216 * Enter the existence of the kmp_task_team_t struct. It employs a reference 3217 * counting mechanism, and is allocated by the primary thread before calling 3218 * __kmp_<barrier_kind>_release, and then is release by the last thread to 3219 * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes 3220 * of the kmp_task_team_t structs for consecutive barriers can overlap 3221 * (and will, unless the primary thread is the last thread to exit the barrier 3222 * release phase, which is not typical). The existence of such a struct is 3223 * useful outside the context of tasking. 3224 * 3225 * We currently use the existence of the threads array as an indicator that 3226 * tasks were spawned since the last barrier. If the structure is to be 3227 * useful outside the context of tasking, then this will have to change, but 3228 * not setting the field minimizes the performance impact of tasking on 3229 * barriers, when no explicit tasks were spawned (pushed, actually). 3230 */ 3231 3232 static kmp_task_team_t *__kmp_free_task_teams = 3233 NULL; // Free list for task_team data structures 3234 // Lock for task team data structures 3235 kmp_bootstrap_lock_t __kmp_task_team_lock = 3236 KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); 3237 3238 // __kmp_alloc_task_deque: 3239 // Allocates a task deque for a particular thread, and initialize the necessary 3240 // data structures relating to the deque. This only happens once per thread 3241 // per task team since task teams are recycled. No lock is needed during 3242 // allocation since each thread allocates its own deque. 3243 static void __kmp_alloc_task_deque(kmp_info_t *thread, 3244 kmp_thread_data_t *thread_data) { 3245 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 3246 KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); 3247 3248 // Initialize last stolen task field to "none" 3249 thread_data->td.td_deque_last_stolen = -1; 3250 3251 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); 3252 KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); 3253 KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); 3254 3255 KE_TRACE( 3256 10, 3257 ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", 3258 __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); 3259 // Allocate space for task deque, and zero the deque 3260 // Cannot use __kmp_thread_calloc() because threads not around for 3261 // kmp_reap_task_team( ). 3262 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 3263 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 3264 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 3265 } 3266 3267 // __kmp_free_task_deque: 3268 // Deallocates a task deque for a particular thread. Happens at library 3269 // deallocation so don't need to reset all thread data fields. 3270 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { 3271 if (thread_data->td.td_deque != NULL) { 3272 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3273 TCW_4(thread_data->td.td_deque_ntasks, 0); 3274 __kmp_free(thread_data->td.td_deque); 3275 thread_data->td.td_deque = NULL; 3276 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3277 } 3278 3279 #ifdef BUILD_TIED_TASK_STACK 3280 // GEH: Figure out what to do here for td_susp_tied_tasks 3281 if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { 3282 __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); 3283 } 3284 #endif // BUILD_TIED_TASK_STACK 3285 } 3286 3287 // __kmp_realloc_task_threads_data: 3288 // Allocates a threads_data array for a task team, either by allocating an 3289 // initial array or enlarging an existing array. Only the first thread to get 3290 // the lock allocs or enlarges the array and re-initializes the array elements. 3291 // That thread returns "TRUE", the rest return "FALSE". 3292 // Assumes that the new array size is given by task_team -> tt.tt_nproc. 3293 // The current size is given by task_team -> tt.tt_max_threads. 3294 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 3295 kmp_task_team_t *task_team) { 3296 kmp_thread_data_t **threads_data_p; 3297 kmp_int32 nthreads, maxthreads; 3298 int is_init_thread = FALSE; 3299 3300 if (TCR_4(task_team->tt.tt_found_tasks)) { 3301 // Already reallocated and initialized. 3302 return FALSE; 3303 } 3304 3305 threads_data_p = &task_team->tt.tt_threads_data; 3306 nthreads = task_team->tt.tt_nproc; 3307 maxthreads = task_team->tt.tt_max_threads; 3308 3309 // All threads must lock when they encounter the first task of the implicit 3310 // task region to make sure threads_data fields are (re)initialized before 3311 // used. 3312 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3313 3314 if (!TCR_4(task_team->tt.tt_found_tasks)) { 3315 // first thread to enable tasking 3316 kmp_team_t *team = thread->th.th_team; 3317 int i; 3318 3319 is_init_thread = TRUE; 3320 if (maxthreads < nthreads) { 3321 3322 if (*threads_data_p != NULL) { 3323 kmp_thread_data_t *old_data = *threads_data_p; 3324 kmp_thread_data_t *new_data = NULL; 3325 3326 KE_TRACE( 3327 10, 3328 ("__kmp_realloc_task_threads_data: T#%d reallocating " 3329 "threads data for task_team %p, new_size = %d, old_size = %d\n", 3330 __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); 3331 // Reallocate threads_data to have more elements than current array 3332 // Cannot use __kmp_thread_realloc() because threads not around for 3333 // kmp_reap_task_team( ). Note all new array entries are initialized 3334 // to zero by __kmp_allocate(). 3335 new_data = (kmp_thread_data_t *)__kmp_allocate( 3336 nthreads * sizeof(kmp_thread_data_t)); 3337 // copy old data to new data 3338 KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), 3339 (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); 3340 3341 #ifdef BUILD_TIED_TASK_STACK 3342 // GEH: Figure out if this is the right thing to do 3343 for (i = maxthreads; i < nthreads; i++) { 3344 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3345 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3346 } 3347 #endif // BUILD_TIED_TASK_STACK 3348 // Install the new data and free the old data 3349 (*threads_data_p) = new_data; 3350 __kmp_free(old_data); 3351 } else { 3352 KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " 3353 "threads data for task_team %p, size = %d\n", 3354 __kmp_gtid_from_thread(thread), task_team, nthreads)); 3355 // Make the initial allocate for threads_data array, and zero entries 3356 // Cannot use __kmp_thread_calloc() because threads not around for 3357 // kmp_reap_task_team( ). 3358 ANNOTATE_IGNORE_WRITES_BEGIN(); 3359 *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( 3360 nthreads * sizeof(kmp_thread_data_t)); 3361 ANNOTATE_IGNORE_WRITES_END(); 3362 #ifdef BUILD_TIED_TASK_STACK 3363 // GEH: Figure out if this is the right thing to do 3364 for (i = 0; i < nthreads; i++) { 3365 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3366 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3367 } 3368 #endif // BUILD_TIED_TASK_STACK 3369 } 3370 task_team->tt.tt_max_threads = nthreads; 3371 } else { 3372 // If array has (more than) enough elements, go ahead and use it 3373 KMP_DEBUG_ASSERT(*threads_data_p != NULL); 3374 } 3375 3376 // initialize threads_data pointers back to thread_info structures 3377 for (i = 0; i < nthreads; i++) { 3378 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3379 thread_data->td.td_thr = team->t.t_threads[i]; 3380 3381 if (thread_data->td.td_deque_last_stolen >= nthreads) { 3382 // The last stolen field survives across teams / barrier, and the number 3383 // of threads may have changed. It's possible (likely?) that a new 3384 // parallel region will exhibit the same behavior as previous region. 3385 thread_data->td.td_deque_last_stolen = -1; 3386 } 3387 } 3388 3389 KMP_MB(); 3390 TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); 3391 } 3392 3393 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3394 return is_init_thread; 3395 } 3396 3397 // __kmp_free_task_threads_data: 3398 // Deallocates a threads_data array for a task team, including any attached 3399 // tasking deques. Only occurs at library shutdown. 3400 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { 3401 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3402 if (task_team->tt.tt_threads_data != NULL) { 3403 int i; 3404 for (i = 0; i < task_team->tt.tt_max_threads; i++) { 3405 __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]); 3406 } 3407 __kmp_free(task_team->tt.tt_threads_data); 3408 task_team->tt.tt_threads_data = NULL; 3409 } 3410 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3411 } 3412 3413 // __kmp_allocate_task_team: 3414 // Allocates a task team associated with a specific team, taking it from 3415 // the global task team free list if possible. Also initializes data 3416 // structures. 3417 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, 3418 kmp_team_t *team) { 3419 kmp_task_team_t *task_team = NULL; 3420 int nthreads; 3421 3422 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n", 3423 (thread ? __kmp_gtid_from_thread(thread) : -1), team)); 3424 3425 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3426 // Take a task team from the task team pool 3427 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3428 if (__kmp_free_task_teams != NULL) { 3429 task_team = __kmp_free_task_teams; 3430 TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); 3431 task_team->tt.tt_next = NULL; 3432 } 3433 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3434 } 3435 3436 if (task_team == NULL) { 3437 KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " 3438 "task team for team %p\n", 3439 __kmp_gtid_from_thread(thread), team)); 3440 // Allocate a new task team if one is not available. Cannot use 3441 // __kmp_thread_malloc because threads not around for kmp_reap_task_team. 3442 task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); 3443 __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock); 3444 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 3445 // suppress race conditions detection on synchronization flags in debug mode 3446 // this helps to analyze library internals eliminating false positives 3447 __itt_suppress_mark_range( 3448 __itt_suppress_range, __itt_suppress_threading_errors, 3449 &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks)); 3450 __itt_suppress_mark_range(__itt_suppress_range, 3451 __itt_suppress_threading_errors, 3452 CCAST(kmp_uint32 *, &task_team->tt.tt_active), 3453 sizeof(task_team->tt.tt_active)); 3454 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 3455 // Note: __kmp_allocate zeroes returned memory, othewise we would need: 3456 // task_team->tt.tt_threads_data = NULL; 3457 // task_team->tt.tt_max_threads = 0; 3458 // task_team->tt.tt_next = NULL; 3459 } 3460 3461 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3462 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3463 task_team->tt.tt_nproc = nthreads = team->t.t_nproc; 3464 3465 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads); 3466 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 3467 TCW_4(task_team->tt.tt_active, TRUE); 3468 3469 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " 3470 "unfinished_threads init'd to %d\n", 3471 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, 3472 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); 3473 return task_team; 3474 } 3475 3476 // __kmp_free_task_team: 3477 // Frees the task team associated with a specific thread, and adds it 3478 // to the global task team free list. 3479 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { 3480 KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n", 3481 thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); 3482 3483 // Put task team back on free list 3484 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3485 3486 KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); 3487 task_team->tt.tt_next = __kmp_free_task_teams; 3488 TCW_PTR(__kmp_free_task_teams, task_team); 3489 3490 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3491 } 3492 3493 // __kmp_reap_task_teams: 3494 // Free all the task teams on the task team free list. 3495 // Should only be done during library shutdown. 3496 // Cannot do anything that needs a thread structure or gtid since they are 3497 // already gone. 3498 void __kmp_reap_task_teams(void) { 3499 kmp_task_team_t *task_team; 3500 3501 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3502 // Free all task_teams on the free list 3503 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3504 while ((task_team = __kmp_free_task_teams) != NULL) { 3505 __kmp_free_task_teams = task_team->tt.tt_next; 3506 task_team->tt.tt_next = NULL; 3507 3508 // Free threads_data if necessary 3509 if (task_team->tt.tt_threads_data != NULL) { 3510 __kmp_free_task_threads_data(task_team); 3511 } 3512 __kmp_free(task_team); 3513 } 3514 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3515 } 3516 } 3517 3518 // __kmp_wait_to_unref_task_teams: 3519 // Some threads could still be in the fork barrier release code, possibly 3520 // trying to steal tasks. Wait for each thread to unreference its task team. 3521 void __kmp_wait_to_unref_task_teams(void) { 3522 kmp_info_t *thread; 3523 kmp_uint32 spins; 3524 int done; 3525 3526 KMP_INIT_YIELD(spins); 3527 3528 for (;;) { 3529 done = TRUE; 3530 3531 // TODO: GEH - this may be is wrong because some sync would be necessary 3532 // in case threads are added to the pool during the traversal. Need to 3533 // verify that lock for thread pool is held when calling this routine. 3534 for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; 3535 thread = thread->th.th_next_pool) { 3536 #if KMP_OS_WINDOWS 3537 DWORD exit_val; 3538 #endif 3539 if (TCR_PTR(thread->th.th_task_team) == NULL) { 3540 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", 3541 __kmp_gtid_from_thread(thread))); 3542 continue; 3543 } 3544 #if KMP_OS_WINDOWS 3545 // TODO: GEH - add this check for Linux* OS / OS X* as well? 3546 if (!__kmp_is_thread_alive(thread, &exit_val)) { 3547 thread->th.th_task_team = NULL; 3548 continue; 3549 } 3550 #endif 3551 3552 done = FALSE; // Because th_task_team pointer is not NULL for this thread 3553 3554 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " 3555 "unreference task_team\n", 3556 __kmp_gtid_from_thread(thread))); 3557 3558 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 3559 volatile void *sleep_loc; 3560 // If the thread is sleeping, awaken it. 3561 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3562 NULL) { 3563 KA_TRACE( 3564 10, 3565 ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", 3566 __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); 3567 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3568 } 3569 } 3570 } 3571 if (done) { 3572 break; 3573 } 3574 3575 // If oversubscribed or have waited a bit, yield. 3576 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 3577 } 3578 } 3579 3580 // __kmp_task_team_setup: Create a task_team for the current team, but use 3581 // an already created, unused one if it already exists. 3582 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) { 3583 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3584 3585 // If this task_team hasn't been created yet, allocate it. It will be used in 3586 // the region after the next. 3587 // If it exists, it is the current task team and shouldn't be touched yet as 3588 // it may still be in use. 3589 if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && 3590 (always || team->t.t_nproc > 1)) { 3591 team->t.t_task_team[this_thr->th.th_task_state] = 3592 __kmp_allocate_task_team(this_thr, team); 3593 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p" 3594 " for team %d at parity=%d\n", 3595 __kmp_gtid_from_thread(this_thr), 3596 team->t.t_task_team[this_thr->th.th_task_state], 3597 ((team != NULL) ? team->t.t_id : -1), 3598 this_thr->th.th_task_state)); 3599 } 3600 3601 // After threads exit the release, they will call sync, and then point to this 3602 // other task_team; make sure it is allocated and properly initialized. As 3603 // threads spin in the barrier release phase, they will continue to use the 3604 // previous task_team struct(above), until they receive the signal to stop 3605 // checking for tasks (they can't safely reference the kmp_team_t struct, 3606 // which could be reallocated by the primary thread). No task teams are formed 3607 // for serialized teams. 3608 if (team->t.t_nproc > 1) { 3609 int other_team = 1 - this_thr->th.th_task_state; 3610 if (team->t.t_task_team[other_team] == NULL) { // setup other team as well 3611 team->t.t_task_team[other_team] = 3612 __kmp_allocate_task_team(this_thr, team); 3613 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new " 3614 "task_team %p for team %d at parity=%d\n", 3615 __kmp_gtid_from_thread(this_thr), 3616 team->t.t_task_team[other_team], 3617 ((team != NULL) ? team->t.t_id : -1), other_team)); 3618 } else { // Leave the old task team struct in place for the upcoming region; 3619 // adjust as needed 3620 kmp_task_team_t *task_team = team->t.t_task_team[other_team]; 3621 if (!task_team->tt.tt_active || 3622 team->t.t_nproc != task_team->tt.tt_nproc) { 3623 TCW_4(task_team->tt.tt_nproc, team->t.t_nproc); 3624 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3625 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3626 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, 3627 team->t.t_nproc); 3628 TCW_4(task_team->tt.tt_active, TRUE); 3629 } 3630 // if team size has changed, the first thread to enable tasking will 3631 // realloc threads_data if necessary 3632 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team " 3633 "%p for team %d at parity=%d\n", 3634 __kmp_gtid_from_thread(this_thr), 3635 team->t.t_task_team[other_team], 3636 ((team != NULL) ? team->t.t_id : -1), other_team)); 3637 } 3638 } 3639 3640 // For regular thread, task enabling should be called when the task is going 3641 // to be pushed to a dequeue. However, for the hidden helper thread, we need 3642 // it ahead of time so that some operations can be performed without race 3643 // condition. 3644 if (this_thr == __kmp_hidden_helper_main_thread) { 3645 for (int i = 0; i < 2; ++i) { 3646 kmp_task_team_t *task_team = team->t.t_task_team[i]; 3647 if (KMP_TASKING_ENABLED(task_team)) { 3648 continue; 3649 } 3650 __kmp_enable_tasking(task_team, this_thr); 3651 for (int j = 0; j < task_team->tt.tt_nproc; ++j) { 3652 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j]; 3653 if (thread_data->td.td_deque == NULL) { 3654 __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data); 3655 } 3656 } 3657 } 3658 } 3659 } 3660 3661 // __kmp_task_team_sync: Propagation of task team data from team to threads 3662 // which happens just after the release phase of a team barrier. This may be 3663 // called by any thread, but only for teams with # threads > 1. 3664 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { 3665 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3666 3667 // Toggle the th_task_state field, to switch which task_team this thread 3668 // refers to 3669 this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state); 3670 3671 // It is now safe to propagate the task team pointer from the team struct to 3672 // the current thread. 3673 TCW_PTR(this_thr->th.th_task_team, 3674 team->t.t_task_team[this_thr->th.th_task_state]); 3675 KA_TRACE(20, 3676 ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " 3677 "%p from Team #%d (parity=%d)\n", 3678 __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, 3679 ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state)); 3680 } 3681 3682 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the 3683 // barrier gather phase. Only called by primary thread if #threads in team > 1 3684 // or if proxy tasks were created. 3685 // 3686 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off 3687 // by passing in 0 optionally as the last argument. When wait is zero, primary 3688 // thread does not wait for unfinished_threads to reach 0. 3689 void __kmp_task_team_wait( 3690 kmp_info_t *this_thr, 3691 kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { 3692 kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; 3693 3694 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3695 KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); 3696 3697 if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { 3698 if (wait) { 3699 KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks " 3700 "(for unfinished_threads to reach 0) on task_team = %p\n", 3701 __kmp_gtid_from_thread(this_thr), task_team)); 3702 // Worker threads may have dropped through to release phase, but could 3703 // still be executing tasks. Wait here for tasks to complete. To avoid 3704 // memory contention, only primary thread checks termination condition. 3705 kmp_flag_32<false, false> flag( 3706 RCAST(std::atomic<kmp_uint32> *, 3707 &task_team->tt.tt_unfinished_threads), 3708 0U); 3709 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 3710 } 3711 // Deactivate the old task team, so that the worker threads will stop 3712 // referencing it while spinning. 3713 KA_TRACE( 3714 20, 3715 ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: " 3716 "setting active to false, setting local and team's pointer to NULL\n", 3717 __kmp_gtid_from_thread(this_thr), task_team)); 3718 KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 || 3719 task_team->tt.tt_found_proxy_tasks == TRUE); 3720 TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3721 KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); 3722 TCW_SYNC_4(task_team->tt.tt_active, FALSE); 3723 KMP_MB(); 3724 3725 TCW_PTR(this_thr->th.th_task_team, NULL); 3726 } 3727 } 3728 3729 // __kmp_tasking_barrier: 3730 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier. 3731 // Internal function to execute all tasks prior to a regular barrier or a join 3732 // barrier. It is a full barrier itself, which unfortunately turns regular 3733 // barriers into double barriers and join barriers into 1 1/2 barriers. 3734 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { 3735 std::atomic<kmp_uint32> *spin = RCAST( 3736 std::atomic<kmp_uint32> *, 3737 &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); 3738 int flag = FALSE; 3739 KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); 3740 3741 #if USE_ITT_BUILD 3742 KMP_FSYNC_SPIN_INIT(spin, NULL); 3743 #endif /* USE_ITT_BUILD */ 3744 kmp_flag_32<false, false> spin_flag(spin, 0U); 3745 while (!spin_flag.execute_tasks(thread, gtid, TRUE, 3746 &flag USE_ITT_BUILD_ARG(NULL), 0)) { 3747 #if USE_ITT_BUILD 3748 // TODO: What about itt_sync_obj?? 3749 KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); 3750 #endif /* USE_ITT_BUILD */ 3751 3752 if (TCR_4(__kmp_global.g.g_done)) { 3753 if (__kmp_global.g.g_abort) 3754 __kmp_abort_thread(); 3755 break; 3756 } 3757 KMP_YIELD(TRUE); 3758 } 3759 #if USE_ITT_BUILD 3760 KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); 3761 #endif /* USE_ITT_BUILD */ 3762 } 3763 3764 // __kmp_give_task puts a task into a given thread queue if: 3765 // - the queue for that thread was created 3766 // - there's space in that queue 3767 // Because of this, __kmp_push_task needs to check if there's space after 3768 // getting the lock 3769 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, 3770 kmp_int32 pass) { 3771 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 3772 kmp_task_team_t *task_team = taskdata->td_task_team; 3773 3774 KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", 3775 taskdata, tid)); 3776 3777 // If task_team is NULL something went really bad... 3778 KMP_DEBUG_ASSERT(task_team != NULL); 3779 3780 bool result = false; 3781 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 3782 3783 if (thread_data->td.td_deque == NULL) { 3784 // There's no queue in this thread, go find another one 3785 // We're guaranteed that at least one thread has a queue 3786 KA_TRACE(30, 3787 ("__kmp_give_task: thread %d has no queue while giving task %p.\n", 3788 tid, taskdata)); 3789 return result; 3790 } 3791 3792 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3793 TASK_DEQUE_SIZE(thread_data->td)) { 3794 KA_TRACE( 3795 30, 3796 ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", 3797 taskdata, tid)); 3798 3799 // if this deque is bigger than the pass ratio give a chance to another 3800 // thread 3801 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3802 return result; 3803 3804 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3805 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3806 TASK_DEQUE_SIZE(thread_data->td)) { 3807 // expand deque to push the task which is not allowed to execute 3808 __kmp_realloc_task_deque(thread, thread_data); 3809 } 3810 3811 } else { 3812 3813 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3814 3815 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3816 TASK_DEQUE_SIZE(thread_data->td)) { 3817 KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " 3818 "thread %d.\n", 3819 taskdata, tid)); 3820 3821 // if this deque is bigger than the pass ratio give a chance to another 3822 // thread 3823 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3824 goto release_and_exit; 3825 3826 __kmp_realloc_task_deque(thread, thread_data); 3827 } 3828 } 3829 3830 // lock is held here, and there is space in the deque 3831 3832 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 3833 // Wrap index. 3834 thread_data->td.td_deque_tail = 3835 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 3836 TCW_4(thread_data->td.td_deque_ntasks, 3837 TCR_4(thread_data->td.td_deque_ntasks) + 1); 3838 3839 result = true; 3840 KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", 3841 taskdata, tid)); 3842 3843 release_and_exit: 3844 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3845 3846 return result; 3847 } 3848 3849 /* The finish of the proxy tasks is divided in two pieces: 3850 - the top half is the one that can be done from a thread outside the team 3851 - the bottom half must be run from a thread within the team 3852 3853 In order to run the bottom half the task gets queued back into one of the 3854 threads of the team. Once the td_incomplete_child_task counter of the parent 3855 is decremented the threads can leave the barriers. So, the bottom half needs 3856 to be queued before the counter is decremented. The top half is therefore 3857 divided in two parts: 3858 - things that can be run before queuing the bottom half 3859 - things that must be run after queuing the bottom half 3860 3861 This creates a second race as the bottom half can free the task before the 3862 second top half is executed. To avoid this we use the 3863 td_incomplete_child_task of the proxy task to synchronize the top and bottom 3864 half. */ 3865 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3866 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 3867 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3868 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 3869 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 3870 3871 taskdata->td_flags.complete = 1; // mark the task as completed 3872 3873 if (taskdata->td_taskgroup) 3874 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 3875 3876 // Create an imaginary children for this task so the bottom half cannot 3877 // release the task before we have completed the second top half 3878 KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks); 3879 } 3880 3881 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3882 kmp_int32 children = 0; 3883 3884 // Predecrement simulated by "- 1" calculation 3885 children = 3886 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 3887 KMP_DEBUG_ASSERT(children >= 0); 3888 3889 // Remove the imaginary children 3890 KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks); 3891 } 3892 3893 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { 3894 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3895 kmp_info_t *thread = __kmp_threads[gtid]; 3896 3897 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3898 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 3899 1); // top half must run before bottom half 3900 3901 // We need to wait to make sure the top half is finished 3902 // Spinning here should be ok as this should happen quickly 3903 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0) 3904 ; 3905 3906 __kmp_release_deps(gtid, taskdata); 3907 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 3908 } 3909 3910 /*! 3911 @ingroup TASKING 3912 @param gtid Global Thread ID of encountering thread 3913 @param ptask Task which execution is completed 3914 3915 Execute the completion of a proxy task from a thread of that is part of the 3916 team. Run first and bottom halves directly. 3917 */ 3918 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { 3919 KMP_DEBUG_ASSERT(ptask != NULL); 3920 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3921 KA_TRACE( 3922 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", 3923 gtid, taskdata)); 3924 __kmp_assert_valid_gtid(gtid); 3925 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3926 3927 __kmp_first_top_half_finish_proxy(taskdata); 3928 __kmp_second_top_half_finish_proxy(taskdata); 3929 __kmp_bottom_half_finish_proxy(gtid, ptask); 3930 3931 KA_TRACE(10, 3932 ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", 3933 gtid, taskdata)); 3934 } 3935 3936 /*! 3937 @ingroup TASKING 3938 @param ptask Task which execution is completed 3939 3940 Execute the completion of a proxy task from a thread that could not belong to 3941 the team. 3942 */ 3943 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { 3944 KMP_DEBUG_ASSERT(ptask != NULL); 3945 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3946 3947 KA_TRACE( 3948 10, 3949 ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", 3950 taskdata)); 3951 3952 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3953 3954 __kmp_first_top_half_finish_proxy(taskdata); 3955 3956 // Enqueue task to complete bottom half completion from a thread within the 3957 // corresponding team 3958 kmp_team_t *team = taskdata->td_team; 3959 kmp_int32 nthreads = team->t.t_nproc; 3960 kmp_info_t *thread; 3961 3962 // This should be similar to start_k = __kmp_get_random( thread ) % nthreads 3963 // but we cannot use __kmp_get_random here 3964 kmp_int32 start_k = 0; 3965 kmp_int32 pass = 1; 3966 kmp_int32 k = start_k; 3967 3968 do { 3969 // For now we're just linearly trying to find a thread 3970 thread = team->t.t_threads[k]; 3971 k = (k + 1) % nthreads; 3972 3973 // we did a full pass through all the threads 3974 if (k == start_k) 3975 pass = pass << 1; 3976 3977 } while (!__kmp_give_task(thread, k, ptask, pass)); 3978 3979 __kmp_second_top_half_finish_proxy(taskdata); 3980 3981 KA_TRACE( 3982 10, 3983 ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", 3984 taskdata)); 3985 } 3986 3987 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, 3988 kmp_task_t *task) { 3989 kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); 3990 if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { 3991 td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; 3992 td->td_allow_completion_event.ed.task = task; 3993 __kmp_init_tas_lock(&td->td_allow_completion_event.lock); 3994 } 3995 return &td->td_allow_completion_event; 3996 } 3997 3998 void __kmp_fulfill_event(kmp_event_t *event) { 3999 if (event->type == KMP_EVENT_ALLOW_COMPLETION) { 4000 kmp_task_t *ptask = event->ed.task; 4001 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4002 bool detached = false; 4003 int gtid = __kmp_get_gtid(); 4004 4005 // The associated task might have completed or could be completing at this 4006 // point. 4007 // We need to take the lock to avoid races 4008 __kmp_acquire_tas_lock(&event->lock, gtid); 4009 if (taskdata->td_flags.proxy == TASK_PROXY) { 4010 detached = true; 4011 } else { 4012 #if OMPT_SUPPORT 4013 // The OMPT event must occur under mutual exclusion, 4014 // otherwise the tool might access ptask after free 4015 if (UNLIKELY(ompt_enabled.enabled)) 4016 __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill); 4017 #endif 4018 } 4019 event->type = KMP_EVENT_UNINITIALIZED; 4020 __kmp_release_tas_lock(&event->lock, gtid); 4021 4022 if (detached) { 4023 #if OMPT_SUPPORT 4024 // We free ptask afterwards and know the task is finished, 4025 // so locking is not necessary 4026 if (UNLIKELY(ompt_enabled.enabled)) 4027 __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill); 4028 #endif 4029 // If the task detached complete the proxy task 4030 if (gtid >= 0) { 4031 kmp_team_t *team = taskdata->td_team; 4032 kmp_info_t *thread = __kmp_get_thread(); 4033 if (thread->th.th_team == team) { 4034 __kmpc_proxy_task_completed(gtid, ptask); 4035 return; 4036 } 4037 } 4038 4039 // fallback 4040 __kmpc_proxy_task_completed_ooo(ptask); 4041 } 4042 } 4043 } 4044 4045 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task 4046 // for taskloop 4047 // 4048 // thread: allocating thread 4049 // task_src: pointer to source task to be duplicated 4050 // returns: a pointer to the allocated kmp_task_t structure (task). 4051 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) { 4052 kmp_task_t *task; 4053 kmp_taskdata_t *taskdata; 4054 kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); 4055 kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task 4056 size_t shareds_offset; 4057 size_t task_size; 4058 4059 KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, 4060 task_src)); 4061 KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == 4062 TASK_FULL); // it should not be proxy task 4063 KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); 4064 task_size = taskdata_src->td_size_alloc; 4065 4066 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 4067 KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, 4068 task_size)); 4069 #if USE_FAST_MEMORY 4070 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); 4071 #else 4072 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); 4073 #endif /* USE_FAST_MEMORY */ 4074 KMP_MEMCPY(taskdata, taskdata_src, task_size); 4075 4076 task = KMP_TASKDATA_TO_TASK(taskdata); 4077 4078 // Initialize new task (only specific fields not affected by memcpy) 4079 taskdata->td_task_id = KMP_GEN_TASK_ID(); 4080 if (task->shareds != NULL) { // need setup shareds pointer 4081 shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; 4082 task->shareds = &((char *)taskdata)[shareds_offset]; 4083 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 4084 0); 4085 } 4086 taskdata->td_alloc_thread = thread; 4087 taskdata->td_parent = parent_task; 4088 // task inherits the taskgroup from the parent task 4089 taskdata->td_taskgroup = parent_task->td_taskgroup; 4090 // tied task needs to initialize the td_last_tied at creation, 4091 // untied one does this when it is scheduled for execution 4092 if (taskdata->td_flags.tiedness == TASK_TIED) 4093 taskdata->td_last_tied = taskdata; 4094 4095 // Only need to keep track of child task counts if team parallel and tasking 4096 // not serialized 4097 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 4098 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 4099 if (parent_task->td_taskgroup) 4100 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 4101 // Only need to keep track of allocated child tasks for explicit tasks since 4102 // implicit not deallocated 4103 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) 4104 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 4105 } 4106 4107 KA_TRACE(20, 4108 ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n", 4109 thread, taskdata, taskdata->td_parent)); 4110 #if OMPT_SUPPORT 4111 if (UNLIKELY(ompt_enabled.enabled)) 4112 __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid); 4113 #endif 4114 return task; 4115 } 4116 4117 // Routine optionally generated by the compiler for setting the lastprivate flag 4118 // and calling needed constructors for private/firstprivate objects 4119 // (used to form taskloop tasks from pattern task) 4120 // Parameters: dest task, src task, lastprivate flag. 4121 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); 4122 4123 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); 4124 4125 // class to encapsulate manipulating loop bounds in a taskloop task. 4126 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting 4127 // the loop bound variables. 4128 class kmp_taskloop_bounds_t { 4129 kmp_task_t *task; 4130 const kmp_taskdata_t *taskdata; 4131 size_t lower_offset; 4132 size_t upper_offset; 4133 4134 public: 4135 kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) 4136 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), 4137 lower_offset((char *)lb - (char *)task), 4138 upper_offset((char *)ub - (char *)task) { 4139 KMP_DEBUG_ASSERT((char *)lb > (char *)_task); 4140 KMP_DEBUG_ASSERT((char *)ub > (char *)_task); 4141 } 4142 kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) 4143 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), 4144 lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} 4145 size_t get_lower_offset() const { return lower_offset; } 4146 size_t get_upper_offset() const { return upper_offset; } 4147 kmp_uint64 get_lb() const { 4148 kmp_int64 retval; 4149 #if defined(KMP_GOMP_COMPAT) 4150 // Intel task just returns the lower bound normally 4151 if (!taskdata->td_flags.native) { 4152 retval = *(kmp_int64 *)((char *)task + lower_offset); 4153 } else { 4154 // GOMP task has to take into account the sizeof(long) 4155 if (taskdata->td_size_loop_bounds == 4) { 4156 kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); 4157 retval = (kmp_int64)*lb; 4158 } else { 4159 kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); 4160 retval = (kmp_int64)*lb; 4161 } 4162 } 4163 #else 4164 (void)taskdata; 4165 retval = *(kmp_int64 *)((char *)task + lower_offset); 4166 #endif // defined(KMP_GOMP_COMPAT) 4167 return retval; 4168 } 4169 kmp_uint64 get_ub() const { 4170 kmp_int64 retval; 4171 #if defined(KMP_GOMP_COMPAT) 4172 // Intel task just returns the upper bound normally 4173 if (!taskdata->td_flags.native) { 4174 retval = *(kmp_int64 *)((char *)task + upper_offset); 4175 } else { 4176 // GOMP task has to take into account the sizeof(long) 4177 if (taskdata->td_size_loop_bounds == 4) { 4178 kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; 4179 retval = (kmp_int64)*ub; 4180 } else { 4181 kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; 4182 retval = (kmp_int64)*ub; 4183 } 4184 } 4185 #else 4186 retval = *(kmp_int64 *)((char *)task + upper_offset); 4187 #endif // defined(KMP_GOMP_COMPAT) 4188 return retval; 4189 } 4190 void set_lb(kmp_uint64 lb) { 4191 #if defined(KMP_GOMP_COMPAT) 4192 // Intel task just sets the lower bound normally 4193 if (!taskdata->td_flags.native) { 4194 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4195 } else { 4196 // GOMP task has to take into account the sizeof(long) 4197 if (taskdata->td_size_loop_bounds == 4) { 4198 kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); 4199 *lower = (kmp_uint32)lb; 4200 } else { 4201 kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); 4202 *lower = (kmp_uint64)lb; 4203 } 4204 } 4205 #else 4206 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4207 #endif // defined(KMP_GOMP_COMPAT) 4208 } 4209 void set_ub(kmp_uint64 ub) { 4210 #if defined(KMP_GOMP_COMPAT) 4211 // Intel task just sets the upper bound normally 4212 if (!taskdata->td_flags.native) { 4213 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4214 } else { 4215 // GOMP task has to take into account the sizeof(long) 4216 if (taskdata->td_size_loop_bounds == 4) { 4217 kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; 4218 *upper = (kmp_uint32)ub; 4219 } else { 4220 kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; 4221 *upper = (kmp_uint64)ub; 4222 } 4223 } 4224 #else 4225 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4226 #endif // defined(KMP_GOMP_COMPAT) 4227 } 4228 }; 4229 4230 // __kmp_taskloop_linear: Start tasks of the taskloop linearly 4231 // 4232 // loc Source location information 4233 // gtid Global thread ID 4234 // task Pattern task, exposes the loop iteration range 4235 // lb Pointer to loop lower bound in task structure 4236 // ub Pointer to loop upper bound in task structure 4237 // st Loop stride 4238 // ub_glob Global upper bound (used for lastprivate check) 4239 // num_tasks Number of tasks to execute 4240 // grainsize Number of loop iterations per task 4241 // extras Number of chunks with grainsize+1 iterations 4242 // last_chunk Reduction of grainsize for last task 4243 // tc Iterations count 4244 // task_dup Tasks duplication routine 4245 // codeptr_ra Return address for OMPT events 4246 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, 4247 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4248 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4249 kmp_uint64 grainsize, kmp_uint64 extras, 4250 kmp_int64 last_chunk, kmp_uint64 tc, 4251 #if OMPT_SUPPORT 4252 void *codeptr_ra, 4253 #endif 4254 void *task_dup) { 4255 KMP_COUNT_BLOCK(OMP_TASKLOOP); 4256 KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); 4257 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4258 // compiler provides global bounds here 4259 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4260 kmp_uint64 lower = task_bounds.get_lb(); 4261 kmp_uint64 upper = task_bounds.get_ub(); 4262 kmp_uint64 i; 4263 kmp_info_t *thread = __kmp_threads[gtid]; 4264 kmp_taskdata_t *current_task = thread->th.th_current_task; 4265 kmp_task_t *next_task; 4266 kmp_int32 lastpriv = 0; 4267 4268 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 4269 (last_chunk < 0 ? last_chunk : extras)); 4270 KMP_DEBUG_ASSERT(num_tasks > extras); 4271 KMP_DEBUG_ASSERT(num_tasks > 0); 4272 KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " 4273 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n", 4274 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper, 4275 ub_glob, st, task_dup)); 4276 4277 // Launch num_tasks tasks, assign grainsize iterations each task 4278 for (i = 0; i < num_tasks; ++i) { 4279 kmp_uint64 chunk_minus_1; 4280 if (extras == 0) { 4281 chunk_minus_1 = grainsize - 1; 4282 } else { 4283 chunk_minus_1 = grainsize; 4284 --extras; // first extras iterations get bigger chunk (grainsize+1) 4285 } 4286 upper = lower + st * chunk_minus_1; 4287 if (upper > *ub) { 4288 upper = *ub; 4289 } 4290 if (i == num_tasks - 1) { 4291 // schedule the last task, set lastprivate flag if needed 4292 if (st == 1) { // most common case 4293 KMP_DEBUG_ASSERT(upper == *ub); 4294 if (upper == ub_glob) 4295 lastpriv = 1; 4296 } else if (st > 0) { // positive loop stride 4297 KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); 4298 if ((kmp_uint64)st > ub_glob - upper) 4299 lastpriv = 1; 4300 } else { // negative loop stride 4301 KMP_DEBUG_ASSERT(upper + st < *ub); 4302 if (upper - ub_glob < (kmp_uint64)(-st)) 4303 lastpriv = 1; 4304 } 4305 } 4306 next_task = __kmp_task_dup_alloc(thread, task); // allocate new task 4307 kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); 4308 kmp_taskloop_bounds_t next_task_bounds = 4309 kmp_taskloop_bounds_t(next_task, task_bounds); 4310 4311 // adjust task-specific bounds 4312 next_task_bounds.set_lb(lower); 4313 if (next_taskdata->td_flags.native) { 4314 next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); 4315 } else { 4316 next_task_bounds.set_ub(upper); 4317 } 4318 if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, 4319 // etc. 4320 ptask_dup(next_task, task, lastpriv); 4321 KA_TRACE(40, 4322 ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " 4323 "upper %lld stride %lld, (offsets %p %p)\n", 4324 gtid, i, next_task, lower, upper, st, 4325 next_task_bounds.get_lower_offset(), 4326 next_task_bounds.get_upper_offset())); 4327 #if OMPT_SUPPORT 4328 __kmp_omp_taskloop_task(NULL, gtid, next_task, 4329 codeptr_ra); // schedule new task 4330 #else 4331 __kmp_omp_task(gtid, next_task, true); // schedule new task 4332 #endif 4333 lower = upper + st; // adjust lower bound for the next iteration 4334 } 4335 // free the pattern task and exit 4336 __kmp_task_start(gtid, task, current_task); // make internal bookkeeping 4337 // do not execute the pattern task, just do internal bookkeeping 4338 __kmp_task_finish<false>(gtid, task, current_task); 4339 } 4340 4341 // Structure to keep taskloop parameters for auxiliary task 4342 // kept in the shareds of the task structure. 4343 typedef struct __taskloop_params { 4344 kmp_task_t *task; 4345 kmp_uint64 *lb; 4346 kmp_uint64 *ub; 4347 void *task_dup; 4348 kmp_int64 st; 4349 kmp_uint64 ub_glob; 4350 kmp_uint64 num_tasks; 4351 kmp_uint64 grainsize; 4352 kmp_uint64 extras; 4353 kmp_int64 last_chunk; 4354 kmp_uint64 tc; 4355 kmp_uint64 num_t_min; 4356 #if OMPT_SUPPORT 4357 void *codeptr_ra; 4358 #endif 4359 } __taskloop_params_t; 4360 4361 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, 4362 kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, 4363 kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64, 4364 kmp_uint64, 4365 #if OMPT_SUPPORT 4366 void *, 4367 #endif 4368 void *); 4369 4370 // Execute part of the taskloop submitted as a task. 4371 int __kmp_taskloop_task(int gtid, void *ptask) { 4372 __taskloop_params_t *p = 4373 (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; 4374 kmp_task_t *task = p->task; 4375 kmp_uint64 *lb = p->lb; 4376 kmp_uint64 *ub = p->ub; 4377 void *task_dup = p->task_dup; 4378 // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4379 kmp_int64 st = p->st; 4380 kmp_uint64 ub_glob = p->ub_glob; 4381 kmp_uint64 num_tasks = p->num_tasks; 4382 kmp_uint64 grainsize = p->grainsize; 4383 kmp_uint64 extras = p->extras; 4384 kmp_int64 last_chunk = p->last_chunk; 4385 kmp_uint64 tc = p->tc; 4386 kmp_uint64 num_t_min = p->num_t_min; 4387 #if OMPT_SUPPORT 4388 void *codeptr_ra = p->codeptr_ra; 4389 #endif 4390 #if KMP_DEBUG 4391 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4392 KMP_DEBUG_ASSERT(task != NULL); 4393 KA_TRACE(20, 4394 ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" 4395 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4396 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4397 st, task_dup)); 4398 #endif 4399 KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); 4400 if (num_tasks > num_t_min) 4401 __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4402 grainsize, extras, last_chunk, tc, num_t_min, 4403 #if OMPT_SUPPORT 4404 codeptr_ra, 4405 #endif 4406 task_dup); 4407 else 4408 __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4409 grainsize, extras, last_chunk, tc, 4410 #if OMPT_SUPPORT 4411 codeptr_ra, 4412 #endif 4413 task_dup); 4414 4415 KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid)); 4416 return 0; 4417 } 4418 4419 // Schedule part of the taskloop as a task, 4420 // execute the rest of the taskloop. 4421 // 4422 // loc Source location information 4423 // gtid Global thread ID 4424 // task Pattern task, exposes the loop iteration range 4425 // lb Pointer to loop lower bound in task structure 4426 // ub Pointer to loop upper bound in task structure 4427 // st Loop stride 4428 // ub_glob Global upper bound (used for lastprivate check) 4429 // num_tasks Number of tasks to execute 4430 // grainsize Number of loop iterations per task 4431 // extras Number of chunks with grainsize+1 iterations 4432 // last_chunk Reduction of grainsize for last task 4433 // tc Iterations count 4434 // num_t_min Threshold to launch tasks recursively 4435 // task_dup Tasks duplication routine 4436 // codeptr_ra Return address for OMPT events 4437 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, 4438 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4439 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4440 kmp_uint64 grainsize, kmp_uint64 extras, 4441 kmp_int64 last_chunk, kmp_uint64 tc, 4442 kmp_uint64 num_t_min, 4443 #if OMPT_SUPPORT 4444 void *codeptr_ra, 4445 #endif 4446 void *task_dup) { 4447 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4448 KMP_DEBUG_ASSERT(task != NULL); 4449 KMP_DEBUG_ASSERT(num_tasks > num_t_min); 4450 KA_TRACE(20, 4451 ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" 4452 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4453 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4454 st, task_dup)); 4455 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4456 kmp_uint64 lower = *lb; 4457 kmp_info_t *thread = __kmp_threads[gtid]; 4458 // kmp_taskdata_t *current_task = thread->th.th_current_task; 4459 kmp_task_t *next_task; 4460 size_t lower_offset = 4461 (char *)lb - (char *)task; // remember offset of lb in the task structure 4462 size_t upper_offset = 4463 (char *)ub - (char *)task; // remember offset of ub in the task structure 4464 4465 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 4466 (last_chunk < 0 ? last_chunk : extras)); 4467 KMP_DEBUG_ASSERT(num_tasks > extras); 4468 KMP_DEBUG_ASSERT(num_tasks > 0); 4469 4470 // split the loop in two halves 4471 kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; 4472 kmp_int64 last_chunk0 = 0, last_chunk1 = 0; 4473 kmp_uint64 gr_size0 = grainsize; 4474 kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute 4475 kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task 4476 if (last_chunk < 0) { 4477 ext0 = ext1 = 0; 4478 last_chunk1 = last_chunk; 4479 tc0 = grainsize * n_tsk0; 4480 tc1 = tc - tc0; 4481 } else if (n_tsk0 <= extras) { 4482 gr_size0++; // integrate extras into grainsize 4483 ext0 = 0; // no extra iters in 1st half 4484 ext1 = extras - n_tsk0; // remaining extras 4485 tc0 = gr_size0 * n_tsk0; 4486 tc1 = tc - tc0; 4487 } else { // n_tsk0 > extras 4488 ext1 = 0; // no extra iters in 2nd half 4489 ext0 = extras; 4490 tc1 = grainsize * n_tsk1; 4491 tc0 = tc - tc1; 4492 } 4493 ub0 = lower + st * (tc0 - 1); 4494 lb1 = ub0 + st; 4495 4496 // create pattern task for 2nd half of the loop 4497 next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task 4498 // adjust lower bound (upper bound is not changed) for the 2nd half 4499 *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; 4500 if (ptask_dup != NULL) // construct firstprivates, etc. 4501 ptask_dup(next_task, task, 0); 4502 *ub = ub0; // adjust upper bound for the 1st half 4503 4504 // create auxiliary task for 2nd half of the loop 4505 // make sure new task has same parent task as the pattern task 4506 kmp_taskdata_t *current_task = thread->th.th_current_task; 4507 thread->th.th_current_task = taskdata->td_parent; 4508 kmp_task_t *new_task = 4509 __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *), 4510 sizeof(__taskloop_params_t), &__kmp_taskloop_task); 4511 // restore current task 4512 thread->th.th_current_task = current_task; 4513 __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; 4514 p->task = next_task; 4515 p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); 4516 p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); 4517 p->task_dup = task_dup; 4518 p->st = st; 4519 p->ub_glob = ub_glob; 4520 p->num_tasks = n_tsk1; 4521 p->grainsize = grainsize; 4522 p->extras = ext1; 4523 p->last_chunk = last_chunk1; 4524 p->tc = tc1; 4525 p->num_t_min = num_t_min; 4526 #if OMPT_SUPPORT 4527 p->codeptr_ra = codeptr_ra; 4528 #endif 4529 4530 #if OMPT_SUPPORT 4531 // schedule new task with correct return address for OMPT events 4532 __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); 4533 #else 4534 __kmp_omp_task(gtid, new_task, true); // schedule new task 4535 #endif 4536 4537 // execute the 1st half of current subrange 4538 if (n_tsk0 > num_t_min) 4539 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0, 4540 ext0, last_chunk0, tc0, num_t_min, 4541 #if OMPT_SUPPORT 4542 codeptr_ra, 4543 #endif 4544 task_dup); 4545 else 4546 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, 4547 gr_size0, ext0, last_chunk0, tc0, 4548 #if OMPT_SUPPORT 4549 codeptr_ra, 4550 #endif 4551 task_dup); 4552 4553 KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid)); 4554 } 4555 4556 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4557 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4558 int nogroup, int sched, kmp_uint64 grainsize, 4559 int modifier, void *task_dup) { 4560 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4561 KMP_DEBUG_ASSERT(task != NULL); 4562 if (nogroup == 0) { 4563 #if OMPT_SUPPORT && OMPT_OPTIONAL 4564 OMPT_STORE_RETURN_ADDRESS(gtid); 4565 #endif 4566 __kmpc_taskgroup(loc, gtid); 4567 } 4568 4569 // ========================================================================= 4570 // calculate loop parameters 4571 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4572 kmp_uint64 tc; 4573 // compiler provides global bounds here 4574 kmp_uint64 lower = task_bounds.get_lb(); 4575 kmp_uint64 upper = task_bounds.get_ub(); 4576 kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag 4577 kmp_uint64 num_tasks = 0, extras = 0; 4578 kmp_int64 last_chunk = 4579 0; // reduce grainsize of last task by last_chunk in strict mode 4580 kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; 4581 kmp_info_t *thread = __kmp_threads[gtid]; 4582 kmp_taskdata_t *current_task = thread->th.th_current_task; 4583 4584 KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " 4585 "grain %llu(%d, %d), dup %p\n", 4586 gtid, taskdata, lower, upper, st, grainsize, sched, modifier, 4587 task_dup)); 4588 4589 // compute trip count 4590 if (st == 1) { // most common case 4591 tc = upper - lower + 1; 4592 } else if (st < 0) { 4593 tc = (lower - upper) / (-st) + 1; 4594 } else { // st > 0 4595 tc = (upper - lower) / st + 1; 4596 } 4597 if (tc == 0) { 4598 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid)); 4599 // free the pattern task and exit 4600 __kmp_task_start(gtid, task, current_task); 4601 // do not execute anything for zero-trip loop 4602 __kmp_task_finish<false>(gtid, task, current_task); 4603 return; 4604 } 4605 4606 #if OMPT_SUPPORT && OMPT_OPTIONAL 4607 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 4608 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 4609 if (ompt_enabled.ompt_callback_work) { 4610 ompt_callbacks.ompt_callback(ompt_callback_work)( 4611 ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), 4612 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4613 } 4614 #endif 4615 4616 if (num_tasks_min == 0) 4617 // TODO: can we choose better default heuristic? 4618 num_tasks_min = 4619 KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); 4620 4621 // compute num_tasks/grainsize based on the input provided 4622 switch (sched) { 4623 case 0: // no schedule clause specified, we can choose the default 4624 // let's try to schedule (team_size*10) tasks 4625 grainsize = thread->th.th_team_nproc * 10; 4626 KMP_FALLTHROUGH(); 4627 case 2: // num_tasks provided 4628 if (grainsize > tc) { 4629 num_tasks = tc; // too big num_tasks requested, adjust values 4630 grainsize = 1; 4631 extras = 0; 4632 } else { 4633 num_tasks = grainsize; 4634 grainsize = tc / num_tasks; 4635 extras = tc % num_tasks; 4636 } 4637 break; 4638 case 1: // grainsize provided 4639 if (grainsize > tc) { 4640 num_tasks = 1; 4641 grainsize = tc; // too big grainsize requested, adjust values 4642 extras = 0; 4643 } else { 4644 if (modifier) { 4645 num_tasks = (tc + grainsize - 1) / grainsize; 4646 last_chunk = tc - (num_tasks * grainsize); 4647 extras = 0; 4648 } else { 4649 num_tasks = tc / grainsize; 4650 // adjust grainsize for balanced distribution of iterations 4651 grainsize = tc / num_tasks; 4652 extras = tc % num_tasks; 4653 } 4654 } 4655 break; 4656 default: 4657 KMP_ASSERT2(0, "unknown scheduling of taskloop"); 4658 } 4659 4660 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 4661 (last_chunk < 0 ? last_chunk : extras)); 4662 KMP_DEBUG_ASSERT(num_tasks > extras); 4663 KMP_DEBUG_ASSERT(num_tasks > 0); 4664 // ========================================================================= 4665 4666 // check if clause value first 4667 // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) 4668 if (if_val == 0) { // if(0) specified, mark task as serial 4669 taskdata->td_flags.task_serial = 1; 4670 taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied 4671 // always start serial tasks linearly 4672 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4673 grainsize, extras, last_chunk, tc, 4674 #if OMPT_SUPPORT 4675 OMPT_GET_RETURN_ADDRESS(0), 4676 #endif 4677 task_dup); 4678 // !taskdata->td_flags.native => currently force linear spawning of tasks 4679 // for GOMP_taskloop 4680 } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { 4681 KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" 4682 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 4683 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 4684 last_chunk)); 4685 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4686 grainsize, extras, last_chunk, tc, num_tasks_min, 4687 #if OMPT_SUPPORT 4688 OMPT_GET_RETURN_ADDRESS(0), 4689 #endif 4690 task_dup); 4691 } else { 4692 KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu" 4693 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 4694 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 4695 last_chunk)); 4696 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4697 grainsize, extras, last_chunk, tc, 4698 #if OMPT_SUPPORT 4699 OMPT_GET_RETURN_ADDRESS(0), 4700 #endif 4701 task_dup); 4702 } 4703 4704 #if OMPT_SUPPORT && OMPT_OPTIONAL 4705 if (ompt_enabled.ompt_callback_work) { 4706 ompt_callbacks.ompt_callback(ompt_callback_work)( 4707 ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), 4708 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4709 } 4710 #endif 4711 4712 if (nogroup == 0) { 4713 #if OMPT_SUPPORT && OMPT_OPTIONAL 4714 OMPT_STORE_RETURN_ADDRESS(gtid); 4715 #endif 4716 __kmpc_end_taskgroup(loc, gtid); 4717 } 4718 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid)); 4719 } 4720 4721 /*! 4722 @ingroup TASKING 4723 @param loc Source location information 4724 @param gtid Global thread ID 4725 @param task Task structure 4726 @param if_val Value of the if clause 4727 @param lb Pointer to loop lower bound in task structure 4728 @param ub Pointer to loop upper bound in task structure 4729 @param st Loop stride 4730 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 4731 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 4732 @param grainsize Schedule value if specified 4733 @param task_dup Tasks duplication routine 4734 4735 Execute the taskloop construct. 4736 */ 4737 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4738 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, 4739 int sched, kmp_uint64 grainsize, void *task_dup) { 4740 __kmp_assert_valid_gtid(gtid); 4741 KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid)); 4742 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 4743 0, task_dup); 4744 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid)); 4745 } 4746 4747 /*! 4748 @ingroup TASKING 4749 @param loc Source location information 4750 @param gtid Global thread ID 4751 @param task Task structure 4752 @param if_val Value of the if clause 4753 @param lb Pointer to loop lower bound in task structure 4754 @param ub Pointer to loop upper bound in task structure 4755 @param st Loop stride 4756 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 4757 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 4758 @param grainsize Schedule value if specified 4759 @param modifer Modifier 'strict' for sched, 1 if present, 0 otherwise 4760 @param task_dup Tasks duplication routine 4761 4762 Execute the taskloop construct. 4763 */ 4764 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4765 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4766 int nogroup, int sched, kmp_uint64 grainsize, 4767 int modifier, void *task_dup) { 4768 __kmp_assert_valid_gtid(gtid); 4769 KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid)); 4770 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 4771 modifier, task_dup); 4772 KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid)); 4773 } 4774