1 /*
2  * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_i18n.h"
15 #include "kmp_itt.h"
16 #include "kmp_stats.h"
17 #include "kmp_wait_release.h"
18 #include "kmp_taskdeps.h"
19 
20 #if OMPT_SUPPORT
21 #include "ompt-specific.h"
22 #endif
23 
24 #include "tsan_annotations.h"
25 
26 /* forward declaration */
27 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
28                                  kmp_info_t *this_thr);
29 static void __kmp_alloc_task_deque(kmp_info_t *thread,
30                                    kmp_thread_data_t *thread_data);
31 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
32                                            kmp_task_team_t *task_team);
33 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
34 
35 #ifdef BUILD_TIED_TASK_STACK
36 
37 //  __kmp_trace_task_stack: print the tied tasks from the task stack in order
38 //  from top do bottom
39 //
40 //  gtid: global thread identifier for thread containing stack
41 //  thread_data: thread data for task team thread containing stack
42 //  threshold: value above which the trace statement triggers
43 //  location: string identifying call site of this function (for trace)
44 static void __kmp_trace_task_stack(kmp_int32 gtid,
45                                    kmp_thread_data_t *thread_data,
46                                    int threshold, char *location) {
47   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
48   kmp_taskdata_t **stack_top = task_stack->ts_top;
49   kmp_int32 entries = task_stack->ts_entries;
50   kmp_taskdata_t *tied_task;
51 
52   KA_TRACE(
53       threshold,
54       ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
55        "first_block = %p, stack_top = %p \n",
56        location, gtid, entries, task_stack->ts_first_block, stack_top));
57 
58   KMP_DEBUG_ASSERT(stack_top != NULL);
59   KMP_DEBUG_ASSERT(entries > 0);
60 
61   while (entries != 0) {
62     KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
63     // fix up ts_top if we need to pop from previous block
64     if (entries & TASK_STACK_INDEX_MASK == 0) {
65       kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
66 
67       stack_block = stack_block->sb_prev;
68       stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
69     }
70 
71     // finish bookkeeping
72     stack_top--;
73     entries--;
74 
75     tied_task = *stack_top;
76 
77     KMP_DEBUG_ASSERT(tied_task != NULL);
78     KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
79 
80     KA_TRACE(threshold,
81              ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, "
82               "stack_top=%p, tied_task=%p\n",
83               location, gtid, entries, stack_top, tied_task));
84   }
85   KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
86 
87   KA_TRACE(threshold,
88            ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
89             location, gtid));
90 }
91 
92 //  __kmp_init_task_stack: initialize the task stack for the first time
93 //  after a thread_data structure is created.
94 //  It should not be necessary to do this again (assuming the stack works).
95 //
96 //  gtid: global thread identifier of calling thread
97 //  thread_data: thread data for task team thread containing stack
98 static void __kmp_init_task_stack(kmp_int32 gtid,
99                                   kmp_thread_data_t *thread_data) {
100   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
101   kmp_stack_block_t *first_block;
102 
103   // set up the first block of the stack
104   first_block = &task_stack->ts_first_block;
105   task_stack->ts_top = (kmp_taskdata_t **)first_block;
106   memset((void *)first_block, '\0',
107          TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
108 
109   // initialize the stack to be empty
110   task_stack->ts_entries = TASK_STACK_EMPTY;
111   first_block->sb_next = NULL;
112   first_block->sb_prev = NULL;
113 }
114 
115 //  __kmp_free_task_stack: free the task stack when thread_data is destroyed.
116 //
117 //  gtid: global thread identifier for calling thread
118 //  thread_data: thread info for thread containing stack
119 static void __kmp_free_task_stack(kmp_int32 gtid,
120                                   kmp_thread_data_t *thread_data) {
121   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
122   kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
123 
124   KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
125   // free from the second block of the stack
126   while (stack_block != NULL) {
127     kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
128 
129     stack_block->sb_next = NULL;
130     stack_block->sb_prev = NULL;
131     if (stack_block != &task_stack->ts_first_block) {
132       __kmp_thread_free(thread,
133                         stack_block); // free the block, if not the first
134     }
135     stack_block = next_block;
136   }
137   // initialize the stack to be empty
138   task_stack->ts_entries = 0;
139   task_stack->ts_top = NULL;
140 }
141 
142 //  __kmp_push_task_stack: Push the tied task onto the task stack.
143 //     Grow the stack if necessary by allocating another block.
144 //
145 //  gtid: global thread identifier for calling thread
146 //  thread: thread info for thread containing stack
147 //  tied_task: the task to push on the stack
148 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
149                                   kmp_taskdata_t *tied_task) {
150   // GEH - need to consider what to do if tt_threads_data not allocated yet
151   kmp_thread_data_t *thread_data =
152       &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
153   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
154 
155   if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
156     return; // Don't push anything on stack if team or team tasks are serialized
157   }
158 
159   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
160   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
161 
162   KA_TRACE(20,
163            ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
164             gtid, thread, tied_task));
165   // Store entry
166   *(task_stack->ts_top) = tied_task;
167 
168   // Do bookkeeping for next push
169   task_stack->ts_top++;
170   task_stack->ts_entries++;
171 
172   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
173     // Find beginning of this task block
174     kmp_stack_block_t *stack_block =
175         (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
176 
177     // Check if we already have a block
178     if (stack_block->sb_next !=
179         NULL) { // reset ts_top to beginning of next block
180       task_stack->ts_top = &stack_block->sb_next->sb_block[0];
181     } else { // Alloc new block and link it up
182       kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
183           thread, sizeof(kmp_stack_block_t));
184 
185       task_stack->ts_top = &new_block->sb_block[0];
186       stack_block->sb_next = new_block;
187       new_block->sb_prev = stack_block;
188       new_block->sb_next = NULL;
189 
190       KA_TRACE(
191           30,
192           ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
193            gtid, tied_task, new_block));
194     }
195   }
196   KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
197                 tied_task));
198 }
199 
200 //  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return
201 //  the task, just check to make sure it matches the ending task passed in.
202 //
203 //  gtid: global thread identifier for the calling thread
204 //  thread: thread info structure containing stack
205 //  tied_task: the task popped off the stack
206 //  ending_task: the task that is ending (should match popped task)
207 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
208                                  kmp_taskdata_t *ending_task) {
209   // GEH - need to consider what to do if tt_threads_data not allocated yet
210   kmp_thread_data_t *thread_data =
211       &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
212   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
213   kmp_taskdata_t *tied_task;
214 
215   if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
216     // Don't pop anything from stack if team or team tasks are serialized
217     return;
218   }
219 
220   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
221   KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
222 
223   KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
224                 thread));
225 
226   // fix up ts_top if we need to pop from previous block
227   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
228     kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
229 
230     stack_block = stack_block->sb_prev;
231     task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
232   }
233 
234   // finish bookkeeping
235   task_stack->ts_top--;
236   task_stack->ts_entries--;
237 
238   tied_task = *(task_stack->ts_top);
239 
240   KMP_DEBUG_ASSERT(tied_task != NULL);
241   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
242   KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
243 
244   KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
245                 tied_task));
246   return;
247 }
248 #endif /* BUILD_TIED_TASK_STACK */
249 
250 // returns 1 if new task is allowed to execute, 0 otherwise
251 // checks Task Scheduling constraint (if requested) and
252 // mutexinoutset dependencies if any
253 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
254                                   const kmp_taskdata_t *tasknew,
255                                   const kmp_taskdata_t *taskcurr) {
256   if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
257     // Check if the candidate obeys the Task Scheduling Constraints (TSC)
258     // only descendant of all deferred tied tasks can be scheduled, checking
259     // the last one is enough, as it in turn is the descendant of all others
260     kmp_taskdata_t *current = taskcurr->td_last_tied;
261     KMP_DEBUG_ASSERT(current != NULL);
262     // check if the task is not suspended on barrier
263     if (current->td_flags.tasktype == TASK_EXPLICIT ||
264         current->td_taskwait_thread > 0) { // <= 0 on barrier
265       kmp_int32 level = current->td_level;
266       kmp_taskdata_t *parent = tasknew->td_parent;
267       while (parent != current && parent->td_level > level) {
268         // check generation up to the level of the current task
269         parent = parent->td_parent;
270         KMP_DEBUG_ASSERT(parent != NULL);
271       }
272       if (parent != current)
273         return false;
274     }
275   }
276   // Check mutexinoutset dependencies, acquire locks
277   kmp_depnode_t *node = tasknew->td_depnode;
278   if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) {
279     for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
280       KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
281       if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
282         continue;
283       // could not get the lock, release previous locks
284       for (int j = i - 1; j >= 0; --j)
285         __kmp_release_lock(node->dn.mtx_locks[j], gtid);
286       return false;
287     }
288     // negative num_locks means all locks acquired successfully
289     node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
290   }
291   return true;
292 }
293 
294 // __kmp_realloc_task_deque:
295 // Re-allocates a task deque for a particular thread, copies the content from
296 // the old deque and adjusts the necessary data structures relating to the
297 // deque. This operation must be done with the deque_lock being held
298 static void __kmp_realloc_task_deque(kmp_info_t *thread,
299                                      kmp_thread_data_t *thread_data) {
300   kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
301   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size);
302   kmp_int32 new_size = 2 * size;
303 
304   KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
305                 "%d] for thread_data %p\n",
306                 __kmp_gtid_from_thread(thread), size, new_size, thread_data));
307 
308   kmp_taskdata_t **new_deque =
309       (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
310 
311   int i, j;
312   for (i = thread_data->td.td_deque_head, j = 0; j < size;
313        i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
314     new_deque[j] = thread_data->td.td_deque[i];
315 
316   __kmp_free(thread_data->td.td_deque);
317 
318   thread_data->td.td_deque_head = 0;
319   thread_data->td.td_deque_tail = size;
320   thread_data->td.td_deque = new_deque;
321   thread_data->td.td_deque_size = new_size;
322 }
323 
324 //  __kmp_push_task: Add a task to the thread's deque
325 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
326   kmp_info_t *thread = __kmp_threads[gtid];
327   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
328 
329   if (taskdata->td_flags.hidden_helper) {
330     gtid = KMP_GTID_TO_SHADOW_GTID(gtid);
331     thread = __kmp_threads[gtid];
332   }
333 
334   kmp_task_team_t *task_team = thread->th.th_task_team;
335   kmp_int32 tid = __kmp_tid_from_gtid(gtid);
336   kmp_thread_data_t *thread_data;
337 
338   KA_TRACE(20,
339            ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
340 
341   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
342     // untied task needs to increment counter so that the task structure is not
343     // freed prematurely
344     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
345     KMP_DEBUG_USE_VAR(counter);
346     KA_TRACE(
347         20,
348         ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
349          gtid, counter, taskdata));
350   }
351 
352   // The first check avoids building task_team thread data if serialized
353   if (UNLIKELY(taskdata->td_flags.task_serial)) {
354     KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
355                   "TASK_NOT_PUSHED for task %p\n",
356                   gtid, taskdata));
357     return TASK_NOT_PUSHED;
358   }
359 
360   // Now that serialized tasks have returned, we can assume that we are not in
361   // immediate exec mode
362   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
363   if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) {
364     __kmp_enable_tasking(task_team, thread);
365   }
366   KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
367   KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
368 
369   // Find tasking deque specific to encountering thread
370   thread_data = &task_team->tt.tt_threads_data[tid];
371 
372   // No lock needed since only owner can allocate. If the task is hidden_helper,
373   // we don't need it either because we have initialized the dequeue for hidden
374   // helper thread data.
375   if (UNLIKELY(thread_data->td.td_deque == NULL)) {
376     __kmp_alloc_task_deque(thread, thread_data);
377   }
378 
379   int locked = 0;
380   // Check if deque is full
381   if (TCR_4(thread_data->td.td_deque_ntasks) >=
382       TASK_DEQUE_SIZE(thread_data->td)) {
383     if (__kmp_enable_task_throttling &&
384         __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
385                               thread->th.th_current_task)) {
386       KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
387                     "TASK_NOT_PUSHED for task %p\n",
388                     gtid, taskdata));
389       return TASK_NOT_PUSHED;
390     } else {
391       __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
392       locked = 1;
393       if (TCR_4(thread_data->td.td_deque_ntasks) >=
394           TASK_DEQUE_SIZE(thread_data->td)) {
395         // expand deque to push the task which is not allowed to execute
396         __kmp_realloc_task_deque(thread, thread_data);
397       }
398     }
399   }
400   // Lock the deque for the task push operation
401   if (!locked) {
402     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
403     // Need to recheck as we can get a proxy task from thread outside of OpenMP
404     if (TCR_4(thread_data->td.td_deque_ntasks) >=
405         TASK_DEQUE_SIZE(thread_data->td)) {
406       if (__kmp_enable_task_throttling &&
407           __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
408                                 thread->th.th_current_task)) {
409         __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
410         KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
411                       "returning TASK_NOT_PUSHED for task %p\n",
412                       gtid, taskdata));
413         return TASK_NOT_PUSHED;
414       } else {
415         // expand deque to push the task which is not allowed to execute
416         __kmp_realloc_task_deque(thread, thread_data);
417       }
418     }
419   }
420   // Must have room since no thread can add tasks but calling thread
421   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
422                    TASK_DEQUE_SIZE(thread_data->td));
423 
424   thread_data->td.td_deque[thread_data->td.td_deque_tail] =
425       taskdata; // Push taskdata
426   // Wrap index.
427   thread_data->td.td_deque_tail =
428       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
429   TCW_4(thread_data->td.td_deque_ntasks,
430         TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
431   KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
432   KMP_FSYNC_RELEASING(taskdata); // releasing child
433   KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
434                 "task=%p ntasks=%d head=%u tail=%u\n",
435                 gtid, taskdata, thread_data->td.td_deque_ntasks,
436                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
437 
438   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
439 
440   // Signal one worker thread to execute the task
441   if (taskdata->td_flags.hidden_helper) {
442     // Wake hidden helper threads up if they're sleeping
443     __kmp_hidden_helper_worker_thread_signal();
444   }
445 
446   return TASK_SUCCESSFULLY_PUSHED;
447 }
448 
449 // __kmp_pop_current_task_from_thread: set up current task from called thread
450 // when team ends
451 //
452 // this_thr: thread structure to set current_task in.
453 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
454   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
455                 "this_thread=%p, curtask=%p, "
456                 "curtask_parent=%p\n",
457                 0, this_thr, this_thr->th.th_current_task,
458                 this_thr->th.th_current_task->td_parent));
459 
460   this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
461 
462   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
463                 "this_thread=%p, curtask=%p, "
464                 "curtask_parent=%p\n",
465                 0, this_thr, this_thr->th.th_current_task,
466                 this_thr->th.th_current_task->td_parent));
467 }
468 
469 // __kmp_push_current_task_to_thread: set up current task in called thread for a
470 // new team
471 //
472 // this_thr: thread structure to set up
473 // team: team for implicit task data
474 // tid: thread within team to set up
475 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
476                                        int tid) {
477   // current task of the thread is a parent of the new just created implicit
478   // tasks of new team
479   KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
480                 "curtask=%p "
481                 "parent_task=%p\n",
482                 tid, this_thr, this_thr->th.th_current_task,
483                 team->t.t_implicit_task_taskdata[tid].td_parent));
484 
485   KMP_DEBUG_ASSERT(this_thr != NULL);
486 
487   if (tid == 0) {
488     if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
489       team->t.t_implicit_task_taskdata[0].td_parent =
490           this_thr->th.th_current_task;
491       this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
492     }
493   } else {
494     team->t.t_implicit_task_taskdata[tid].td_parent =
495         team->t.t_implicit_task_taskdata[0].td_parent;
496     this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
497   }
498 
499   KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
500                 "curtask=%p "
501                 "parent_task=%p\n",
502                 tid, this_thr, this_thr->th.th_current_task,
503                 team->t.t_implicit_task_taskdata[tid].td_parent));
504 }
505 
506 // __kmp_task_start: bookkeeping for a task starting execution
507 //
508 // GTID: global thread id of calling thread
509 // task: task starting execution
510 // current_task: task suspending
511 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
512                              kmp_taskdata_t *current_task) {
513   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
514   kmp_info_t *thread = __kmp_threads[gtid];
515 
516   KA_TRACE(10,
517            ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
518             gtid, taskdata, current_task));
519 
520   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
521 
522   // mark currently executing task as suspended
523   // TODO: GEH - make sure root team implicit task is initialized properly.
524   // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
525   current_task->td_flags.executing = 0;
526 
527 // Add task to stack if tied
528 #ifdef BUILD_TIED_TASK_STACK
529   if (taskdata->td_flags.tiedness == TASK_TIED) {
530     __kmp_push_task_stack(gtid, thread, taskdata);
531   }
532 #endif /* BUILD_TIED_TASK_STACK */
533 
534   // mark starting task as executing and as current task
535   thread->th.th_current_task = taskdata;
536 
537   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
538                    taskdata->td_flags.tiedness == TASK_UNTIED);
539   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
540                    taskdata->td_flags.tiedness == TASK_UNTIED);
541   taskdata->td_flags.started = 1;
542   taskdata->td_flags.executing = 1;
543   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
544   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
545 
546   // GEH TODO: shouldn't we pass some sort of location identifier here?
547   // APT: yes, we will pass location here.
548   // need to store current thread state (in a thread or taskdata structure)
549   // before setting work_state, otherwise wrong state is set after end of task
550 
551   KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
552 
553   return;
554 }
555 
556 #if OMPT_SUPPORT
557 //------------------------------------------------------------------------------
558 // __ompt_task_init:
559 //   Initialize OMPT fields maintained by a task. This will only be called after
560 //   ompt_start_tool, so we already know whether ompt is enabled or not.
561 
562 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
563   // The calls to __ompt_task_init already have the ompt_enabled condition.
564   task->ompt_task_info.task_data.value = 0;
565   task->ompt_task_info.frame.exit_frame = ompt_data_none;
566   task->ompt_task_info.frame.enter_frame = ompt_data_none;
567   task->ompt_task_info.frame.exit_frame_flags =
568       ompt_frame_runtime | ompt_frame_framepointer;
569   task->ompt_task_info.frame.enter_frame_flags =
570       ompt_frame_runtime | ompt_frame_framepointer;
571 }
572 
573 // __ompt_task_start:
574 //   Build and trigger task-begin event
575 static inline void __ompt_task_start(kmp_task_t *task,
576                                      kmp_taskdata_t *current_task,
577                                      kmp_int32 gtid) {
578   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
579   ompt_task_status_t status = ompt_task_switch;
580   if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
581     status = ompt_task_yield;
582     __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
583   }
584   /* let OMPT know that we're about to run this task */
585   if (ompt_enabled.ompt_callback_task_schedule) {
586     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
587         &(current_task->ompt_task_info.task_data), status,
588         &(taskdata->ompt_task_info.task_data));
589   }
590   taskdata->ompt_task_info.scheduling_parent = current_task;
591 }
592 
593 // __ompt_task_finish:
594 //   Build and trigger final task-schedule event
595 static inline void __ompt_task_finish(kmp_task_t *task,
596                                       kmp_taskdata_t *resumed_task,
597                                       ompt_task_status_t status) {
598   if (ompt_enabled.ompt_callback_task_schedule) {
599     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
600     if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
601         taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
602       status = ompt_task_cancel;
603     }
604 
605     /* let OMPT know that we're returning to the callee task */
606     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
607         &(taskdata->ompt_task_info.task_data), status,
608         (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL));
609   }
610 }
611 #endif
612 
613 template <bool ompt>
614 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
615                                                kmp_task_t *task,
616                                                void *frame_address,
617                                                void *return_address) {
618   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
619   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
620 
621   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
622                 "current_task=%p\n",
623                 gtid, loc_ref, taskdata, current_task));
624 
625   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
626     // untied task needs to increment counter so that the task structure is not
627     // freed prematurely
628     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
629     KMP_DEBUG_USE_VAR(counter);
630     KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
631                   "incremented for task %p\n",
632                   gtid, counter, taskdata));
633   }
634 
635   taskdata->td_flags.task_serial =
636       1; // Execute this task immediately, not deferred.
637   __kmp_task_start(gtid, task, current_task);
638 
639 #if OMPT_SUPPORT
640   if (ompt) {
641     if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
642       current_task->ompt_task_info.frame.enter_frame.ptr =
643           taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
644       current_task->ompt_task_info.frame.enter_frame_flags =
645           taskdata->ompt_task_info.frame.exit_frame_flags =
646               ompt_frame_application | ompt_frame_framepointer;
647     }
648     if (ompt_enabled.ompt_callback_task_create) {
649       ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
650       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
651           &(parent_info->task_data), &(parent_info->frame),
652           &(taskdata->ompt_task_info.task_data),
653           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
654           return_address);
655     }
656     __ompt_task_start(task, current_task, gtid);
657   }
658 #endif // OMPT_SUPPORT
659 
660   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
661                 loc_ref, taskdata));
662 }
663 
664 #if OMPT_SUPPORT
665 OMPT_NOINLINE
666 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
667                                            kmp_task_t *task,
668                                            void *frame_address,
669                                            void *return_address) {
670   __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
671                                            return_address);
672 }
673 #endif // OMPT_SUPPORT
674 
675 // __kmpc_omp_task_begin_if0: report that a given serialized task has started
676 // execution
677 //
678 // loc_ref: source location information; points to beginning of task block.
679 // gtid: global thread number.
680 // task: task thunk for the started task.
681 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
682                                kmp_task_t *task) {
683 #if OMPT_SUPPORT
684   if (UNLIKELY(ompt_enabled.enabled)) {
685     OMPT_STORE_RETURN_ADDRESS(gtid);
686     __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
687                                    OMPT_GET_FRAME_ADDRESS(1),
688                                    OMPT_LOAD_RETURN_ADDRESS(gtid));
689     return;
690   }
691 #endif
692   __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
693 }
694 
695 #ifdef TASK_UNUSED
696 // __kmpc_omp_task_begin: report that a given task has started execution
697 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
698 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
699   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
700 
701   KA_TRACE(
702       10,
703       ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
704        gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
705 
706   __kmp_task_start(gtid, task, current_task);
707 
708   KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
709                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
710   return;
711 }
712 #endif // TASK_UNUSED
713 
714 // __kmp_free_task: free the current task space and the space for shareds
715 //
716 // gtid: Global thread ID of calling thread
717 // taskdata: task to free
718 // thread: thread data structure of caller
719 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
720                             kmp_info_t *thread) {
721   KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
722                 taskdata));
723 
724   // Check to make sure all flags and counters have the correct values
725   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
726   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
727   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
728   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
729   KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
730                    taskdata->td_flags.task_serial == 1);
731   KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
732 
733   taskdata->td_flags.freed = 1;
734   ANNOTATE_HAPPENS_BEFORE(taskdata);
735 // deallocate the taskdata and shared variable blocks associated with this task
736 #if USE_FAST_MEMORY
737   __kmp_fast_free(thread, taskdata);
738 #else /* ! USE_FAST_MEMORY */
739   __kmp_thread_free(thread, taskdata);
740 #endif
741   KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
742 }
743 
744 // __kmp_free_task_and_ancestors: free the current task and ancestors without
745 // children
746 //
747 // gtid: Global thread ID of calling thread
748 // taskdata: task to free
749 // thread: thread data structure of caller
750 static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
751                                           kmp_taskdata_t *taskdata,
752                                           kmp_info_t *thread) {
753   // Proxy tasks must always be allowed to free their parents
754   // because they can be run in background even in serial mode.
755   kmp_int32 team_serial =
756       (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
757       !taskdata->td_flags.proxy;
758   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
759 
760   kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
761   KMP_DEBUG_ASSERT(children >= 0);
762 
763   // Now, go up the ancestor tree to see if any ancestors can now be freed.
764   while (children == 0) {
765     kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
766 
767     KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
768                   "and freeing itself\n",
769                   gtid, taskdata));
770 
771     // --- Deallocate my ancestor task ---
772     __kmp_free_task(gtid, taskdata, thread);
773 
774     taskdata = parent_taskdata;
775 
776     if (team_serial)
777       return;
778     // Stop checking ancestors at implicit task instead of walking up ancestor
779     // tree to avoid premature deallocation of ancestors.
780     if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
781       if (taskdata->td_dephash) { // do we need to cleanup dephash?
782         int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
783         kmp_tasking_flags_t flags_old = taskdata->td_flags;
784         if (children == 0 && flags_old.complete == 1) {
785           kmp_tasking_flags_t flags_new = flags_old;
786           flags_new.complete = 0;
787           if (KMP_COMPARE_AND_STORE_ACQ32(
788                   RCAST(kmp_int32 *, &taskdata->td_flags),
789                   *RCAST(kmp_int32 *, &flags_old),
790                   *RCAST(kmp_int32 *, &flags_new))) {
791             KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
792                            "dephash of implicit task %p\n",
793                            gtid, taskdata));
794             // cleanup dephash of finished implicit task
795             __kmp_dephash_free_entries(thread, taskdata->td_dephash);
796           }
797         }
798       }
799       return;
800     }
801     // Predecrement simulated by "- 1" calculation
802     children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
803     KMP_DEBUG_ASSERT(children >= 0);
804   }
805 
806   KA_TRACE(
807       20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
808            "not freeing it yet\n",
809            gtid, taskdata, children));
810 }
811 
812 // __kmp_task_finish: bookkeeping to do when a task finishes execution
813 //
814 // gtid: global thread ID for calling thread
815 // task: task to be finished
816 // resumed_task: task to be resumed.  (may be NULL if task is serialized)
817 //
818 // template<ompt>: effectively ompt_enabled.enabled!=0
819 // the version with ompt=false is inlined, allowing to optimize away all ompt
820 // code in this case
821 template <bool ompt>
822 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
823                               kmp_taskdata_t *resumed_task) {
824   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
825   kmp_info_t *thread = __kmp_threads[gtid];
826   kmp_task_team_t *task_team =
827       thread->th.th_task_team; // might be NULL for serial teams...
828   kmp_int32 children = 0;
829 
830   KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
831                 "task %p\n",
832                 gtid, taskdata, resumed_task));
833 
834   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
835 
836 // Pop task from stack if tied
837 #ifdef BUILD_TIED_TASK_STACK
838   if (taskdata->td_flags.tiedness == TASK_TIED) {
839     __kmp_pop_task_stack(gtid, thread, taskdata);
840   }
841 #endif /* BUILD_TIED_TASK_STACK */
842 
843   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
844     // untied task needs to check the counter so that the task structure is not
845     // freed prematurely
846     kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
847     KA_TRACE(
848         20,
849         ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
850          gtid, counter, taskdata));
851     if (counter > 0) {
852       // untied task is not done, to be continued possibly by other thread, do
853       // not free it now
854       if (resumed_task == NULL) {
855         KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
856         resumed_task = taskdata->td_parent; // In a serialized task, the resumed
857         // task is the parent
858       }
859       thread->th.th_current_task = resumed_task; // restore current_task
860       resumed_task->td_flags.executing = 1; // resume previous task
861       KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
862                     "resuming task %p\n",
863                     gtid, taskdata, resumed_task));
864       return;
865     }
866   }
867 
868   // bookkeeping for resuming task:
869   // GEH - note tasking_ser => task_serial
870   KMP_DEBUG_ASSERT(
871       (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
872       taskdata->td_flags.task_serial);
873   if (taskdata->td_flags.task_serial) {
874     if (resumed_task == NULL) {
875       resumed_task = taskdata->td_parent; // In a serialized task, the resumed
876       // task is the parent
877     }
878   } else {
879     KMP_DEBUG_ASSERT(resumed_task !=
880                      NULL); // verify that resumed task is passed as argument
881   }
882 
883   /* If the tasks' destructor thunk flag has been set, we need to invoke the
884      destructor thunk that has been generated by the compiler. The code is
885      placed here, since at this point other tasks might have been released
886      hence overlapping the destructor invocations with some other work in the
887      released tasks.  The OpenMP spec is not specific on when the destructors
888      are invoked, so we should be free to choose. */
889   if (UNLIKELY(taskdata->td_flags.destructors_thunk)) {
890     kmp_routine_entry_t destr_thunk = task->data1.destructors;
891     KMP_ASSERT(destr_thunk);
892     destr_thunk(gtid, task);
893   }
894 
895   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
896   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
897   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
898 
899   bool detach = false;
900   if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) {
901     if (taskdata->td_allow_completion_event.type ==
902         KMP_EVENT_ALLOW_COMPLETION) {
903       // event hasn't been fulfilled yet. Try to detach task.
904       __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
905       if (taskdata->td_allow_completion_event.type ==
906           KMP_EVENT_ALLOW_COMPLETION) {
907         // task finished execution
908         KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
909         taskdata->td_flags.executing = 0; // suspend the finishing task
910 
911 #if OMPT_SUPPORT
912         // For a detached task, which is not completed, we switch back
913         // the omp_fulfill_event signals completion
914         // locking is necessary to avoid a race with ompt_task_late_fulfill
915         if (ompt)
916           __ompt_task_finish(task, resumed_task, ompt_task_detach);
917 #endif
918 
919         // no access to taskdata after this point!
920         // __kmp_fulfill_event might free taskdata at any time from now
921 
922         taskdata->td_flags.proxy = TASK_PROXY; // proxify!
923         detach = true;
924       }
925       __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
926     }
927   }
928 
929   if (!detach) {
930     taskdata->td_flags.complete = 1; // mark the task as completed
931 
932 #if OMPT_SUPPORT
933     // This is not a detached task, we are done here
934     if (ompt)
935       __ompt_task_finish(task, resumed_task, ompt_task_complete);
936 #endif
937 
938     // Only need to keep track of count if team parallel and tasking not
939     // serialized, or task is detachable and event has already been fulfilled
940     if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) ||
941         taskdata->td_flags.detachable == TASK_DETACHABLE ||
942         taskdata->td_flags.hidden_helper) {
943       // Predecrement simulated by "- 1" calculation
944       children =
945           KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
946       KMP_DEBUG_ASSERT(children >= 0);
947       if (taskdata->td_taskgroup)
948         KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
949       __kmp_release_deps(gtid, taskdata);
950     } else if (task_team && task_team->tt.tt_found_proxy_tasks) {
951       // if we found proxy tasks there could exist a dependency chain
952       // with the proxy task as origin
953       __kmp_release_deps(gtid, taskdata);
954     }
955     // td_flags.executing must be marked as 0 after __kmp_release_deps has been
956     // called. Othertwise, if a task is executed immediately from the
957     // release_deps code, the flag will be reset to 1 again by this same
958     // function
959     KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
960     taskdata->td_flags.executing = 0; // suspend the finishing task
961   }
962 
963   KA_TRACE(
964       20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
965            gtid, taskdata, children));
966 
967   // Free this task and then ancestor tasks if they have no children.
968   // Restore th_current_task first as suggested by John:
969   // johnmc: if an asynchronous inquiry peers into the runtime system
970   // it doesn't see the freed task as the current task.
971   thread->th.th_current_task = resumed_task;
972   if (!detach)
973     __kmp_free_task_and_ancestors(gtid, taskdata, thread);
974 
975   // TODO: GEH - make sure root team implicit task is initialized properly.
976   // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
977   resumed_task->td_flags.executing = 1; // resume previous task
978 
979   KA_TRACE(
980       10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
981            gtid, taskdata, resumed_task));
982 
983   return;
984 }
985 
986 template <bool ompt>
987 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
988                                                   kmp_int32 gtid,
989                                                   kmp_task_t *task) {
990   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
991                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
992   KMP_DEBUG_ASSERT(gtid >= 0);
993   // this routine will provide task to resume
994   __kmp_task_finish<ompt>(gtid, task, NULL);
995 
996   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
997                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
998 
999 #if OMPT_SUPPORT
1000   if (ompt) {
1001     ompt_frame_t *ompt_frame;
1002     __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
1003     ompt_frame->enter_frame = ompt_data_none;
1004     ompt_frame->enter_frame_flags =
1005         ompt_frame_runtime | ompt_frame_framepointer;
1006   }
1007 #endif
1008 
1009   return;
1010 }
1011 
1012 #if OMPT_SUPPORT
1013 OMPT_NOINLINE
1014 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
1015                                        kmp_task_t *task) {
1016   __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
1017 }
1018 #endif // OMPT_SUPPORT
1019 
1020 // __kmpc_omp_task_complete_if0: report that a task has completed execution
1021 //
1022 // loc_ref: source location information; points to end of task block.
1023 // gtid: global thread number.
1024 // task: task thunk for the completed task.
1025 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
1026                                   kmp_task_t *task) {
1027 #if OMPT_SUPPORT
1028   if (UNLIKELY(ompt_enabled.enabled)) {
1029     __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
1030     return;
1031   }
1032 #endif
1033   __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
1034 }
1035 
1036 #ifdef TASK_UNUSED
1037 // __kmpc_omp_task_complete: report that a task has completed execution
1038 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
1039 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
1040                               kmp_task_t *task) {
1041   KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
1042                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1043 
1044   __kmp_task_finish<false>(gtid, task,
1045                            NULL); // Not sure how to find task to resume
1046 
1047   KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
1048                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1049   return;
1050 }
1051 #endif // TASK_UNUSED
1052 
1053 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1054 // task for a given thread
1055 //
1056 // loc_ref:  reference to source location of parallel region
1057 // this_thr:  thread data structure corresponding to implicit task
1058 // team: team for this_thr
1059 // tid: thread id of given thread within team
1060 // set_curr_task: TRUE if need to push current task to thread
1061 // NOTE: Routine does not set up the implicit task ICVS.  This is assumed to
1062 // have already been done elsewhere.
1063 // TODO: Get better loc_ref.  Value passed in may be NULL
1064 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
1065                               kmp_team_t *team, int tid, int set_curr_task) {
1066   kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
1067 
1068   KF_TRACE(
1069       10,
1070       ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1071        tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
1072 
1073   task->td_task_id = KMP_GEN_TASK_ID();
1074   task->td_team = team;
1075   //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info
1076   //    in debugger)
1077   task->td_ident = loc_ref;
1078   task->td_taskwait_ident = NULL;
1079   task->td_taskwait_counter = 0;
1080   task->td_taskwait_thread = 0;
1081 
1082   task->td_flags.tiedness = TASK_TIED;
1083   task->td_flags.tasktype = TASK_IMPLICIT;
1084   task->td_flags.proxy = TASK_FULL;
1085 
1086   // All implicit tasks are executed immediately, not deferred
1087   task->td_flags.task_serial = 1;
1088   task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1089   task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1090 
1091   task->td_flags.started = 1;
1092   task->td_flags.executing = 1;
1093   task->td_flags.complete = 0;
1094   task->td_flags.freed = 0;
1095 
1096   task->td_depnode = NULL;
1097   task->td_last_tied = task;
1098   task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1099 
1100   if (set_curr_task) { // only do this init first time thread is created
1101     KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
1102     // Not used: don't need to deallocate implicit task
1103     KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
1104     task->td_taskgroup = NULL; // An implicit task does not have taskgroup
1105     task->td_dephash = NULL;
1106     __kmp_push_current_task_to_thread(this_thr, team, tid);
1107   } else {
1108     KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
1109     KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
1110   }
1111 
1112 #if OMPT_SUPPORT
1113   if (UNLIKELY(ompt_enabled.enabled))
1114     __ompt_task_init(task, tid);
1115 #endif
1116 
1117   KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
1118                 team, task));
1119 }
1120 
1121 // __kmp_finish_implicit_task: Release resources associated to implicit tasks
1122 // at the end of parallel regions. Some resources are kept for reuse in the next
1123 // parallel region.
1124 //
1125 // thread:  thread data structure corresponding to implicit task
1126 void __kmp_finish_implicit_task(kmp_info_t *thread) {
1127   kmp_taskdata_t *task = thread->th.th_current_task;
1128   if (task->td_dephash) {
1129     int children;
1130     task->td_flags.complete = 1;
1131     children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
1132     kmp_tasking_flags_t flags_old = task->td_flags;
1133     if (children == 0 && flags_old.complete == 1) {
1134       kmp_tasking_flags_t flags_new = flags_old;
1135       flags_new.complete = 0;
1136       if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
1137                                       *RCAST(kmp_int32 *, &flags_old),
1138                                       *RCAST(kmp_int32 *, &flags_new))) {
1139         KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1140                        "dephash of implicit task %p\n",
1141                        thread->th.th_info.ds.ds_gtid, task));
1142         __kmp_dephash_free_entries(thread, task->td_dephash);
1143       }
1144     }
1145   }
1146 }
1147 
1148 // __kmp_free_implicit_task: Release resources associated to implicit tasks
1149 // when these are destroyed regions
1150 //
1151 // thread:  thread data structure corresponding to implicit task
1152 void __kmp_free_implicit_task(kmp_info_t *thread) {
1153   kmp_taskdata_t *task = thread->th.th_current_task;
1154   if (task && task->td_dephash) {
1155     __kmp_dephash_free(thread, task->td_dephash);
1156     task->td_dephash = NULL;
1157   }
1158 }
1159 
1160 // Round up a size to a power of two specified by val: Used to insert padding
1161 // between structures co-allocated using a single malloc() call
1162 static size_t __kmp_round_up_to_val(size_t size, size_t val) {
1163   if (size & (val - 1)) {
1164     size &= ~(val - 1);
1165     if (size <= KMP_SIZE_T_MAX - val) {
1166       size += val; // Round up if there is no overflow.
1167     }
1168   }
1169   return size;
1170 } // __kmp_round_up_to_va
1171 
1172 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1173 //
1174 // loc_ref: source location information
1175 // gtid: global thread number.
1176 // flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1177 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1178 // sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including
1179 // private vars accessed in task.
1180 // sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed
1181 // in task.
1182 // task_entry: Pointer to task code entry point generated by compiler.
1183 // returns: a pointer to the allocated kmp_task_t structure (task).
1184 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1185                              kmp_tasking_flags_t *flags,
1186                              size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1187                              kmp_routine_entry_t task_entry) {
1188   kmp_task_t *task;
1189   kmp_taskdata_t *taskdata;
1190   kmp_info_t *thread = __kmp_threads[gtid];
1191   kmp_info_t *encountering_thread = thread;
1192   kmp_team_t *team = thread->th.th_team;
1193   kmp_taskdata_t *parent_task = thread->th.th_current_task;
1194   size_t shareds_offset;
1195 
1196   if (UNLIKELY(!TCR_4(__kmp_init_middle)))
1197     __kmp_middle_initialize();
1198 
1199   if (flags->hidden_helper) {
1200     if (__kmp_enable_hidden_helper) {
1201       if (!TCR_4(__kmp_init_hidden_helper))
1202         __kmp_hidden_helper_initialize();
1203 
1204       // For a hidden helper task encountered by a regular thread, we will push
1205       // the task to the (gtid%__kmp_hidden_helper_threads_num)-th hidden helper
1206       // thread.
1207       if (!KMP_HIDDEN_HELPER_THREAD(gtid)) {
1208         thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)];
1209         // We don't change the parent-child relation for hidden helper task as
1210         // we need that to do per-task-region synchronization.
1211       }
1212     } else {
1213       // If the hidden helper task is not enabled, reset the flag to FALSE.
1214       flags->hidden_helper = FALSE;
1215     }
1216   }
1217 
1218   KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1219                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1220                 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
1221                 sizeof_shareds, task_entry));
1222 
1223   if (parent_task->td_flags.final) {
1224     if (flags->merged_if0) {
1225     }
1226     flags->final = 1;
1227   }
1228 
1229   if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
1230     // Untied task encountered causes the TSC algorithm to check entire deque of
1231     // the victim thread. If no untied task encountered, then checking the head
1232     // of the deque should be enough.
1233     KMP_CHECK_UPDATE(
1234         encountering_thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
1235   }
1236 
1237   // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1238   // the tasking setup
1239   // when that happens is too late.
1240   if (UNLIKELY(flags->proxy == TASK_PROXY ||
1241                flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) {
1242     if (flags->proxy == TASK_PROXY) {
1243       flags->tiedness = TASK_UNTIED;
1244       flags->merged_if0 = 1;
1245     }
1246     /* are we running in a sequential parallel or tskm_immediate_exec... we need
1247        tasking support enabled */
1248     if ((encountering_thread->th.th_task_team) == NULL) {
1249       /* This should only happen if the team is serialized
1250           setup a task team and propagate it to the thread */
1251       KMP_DEBUG_ASSERT(team->t.t_serialized);
1252       KA_TRACE(30,
1253                ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1254                 gtid));
1255       __kmp_task_team_setup(
1256           encountering_thread, team,
1257           1); // 1 indicates setup the current team regardless of nthreads
1258       encountering_thread->th.th_task_team =
1259           team->t.t_task_team[encountering_thread->th.th_task_state];
1260     }
1261     kmp_task_team_t *task_team = encountering_thread->th.th_task_team;
1262 
1263     /* tasking must be enabled now as the task might not be pushed */
1264     if (!KMP_TASKING_ENABLED(task_team)) {
1265       KA_TRACE(
1266           30,
1267           ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
1268       __kmp_enable_tasking(task_team, encountering_thread);
1269       kmp_int32 tid = encountering_thread->th.th_info.ds.ds_tid;
1270       kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
1271       // No lock needed since only owner can allocate
1272       if (thread_data->td.td_deque == NULL) {
1273         __kmp_alloc_task_deque(encountering_thread, thread_data);
1274       }
1275     }
1276 
1277     if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) &&
1278         task_team->tt.tt_found_proxy_tasks == FALSE)
1279       TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
1280     if (flags->hidden_helper &&
1281         task_team->tt.tt_hidden_helper_task_encountered == FALSE)
1282       TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE);
1283   }
1284 
1285   // Calculate shared structure offset including padding after kmp_task_t struct
1286   // to align pointers in shared struct
1287   shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
1288   shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
1289 
1290   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1291   KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
1292                 shareds_offset));
1293   KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
1294                 sizeof_shareds));
1295 
1296   // Avoid double allocation here by combining shareds with taskdata
1297 #if USE_FAST_MEMORY
1298   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(
1299       encountering_thread, shareds_offset + sizeof_shareds);
1300 #else /* ! USE_FAST_MEMORY */
1301   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(
1302       encountering_thread, shareds_offset + sizeof_shareds);
1303 #endif /* USE_FAST_MEMORY */
1304   ANNOTATE_HAPPENS_AFTER(taskdata);
1305 
1306   task = KMP_TASKDATA_TO_TASK(taskdata);
1307 
1308 // Make sure task & taskdata are aligned appropriately
1309 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
1310   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
1311   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
1312 #else
1313   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
1314   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
1315 #endif
1316   if (sizeof_shareds > 0) {
1317     // Avoid double allocation here by combining shareds with taskdata
1318     task->shareds = &((char *)taskdata)[shareds_offset];
1319     // Make sure shareds struct is aligned to pointer size
1320     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
1321                      0);
1322   } else {
1323     task->shareds = NULL;
1324   }
1325   task->routine = task_entry;
1326   task->part_id = 0; // AC: Always start with 0 part id
1327 
1328   taskdata->td_task_id = KMP_GEN_TASK_ID();
1329   taskdata->td_team = thread->th.th_team;
1330   taskdata->td_alloc_thread = encountering_thread;
1331   taskdata->td_parent = parent_task;
1332   taskdata->td_level = parent_task->td_level + 1; // increment nesting level
1333   KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
1334   taskdata->td_ident = loc_ref;
1335   taskdata->td_taskwait_ident = NULL;
1336   taskdata->td_taskwait_counter = 0;
1337   taskdata->td_taskwait_thread = 0;
1338   KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
1339   // avoid copying icvs for proxy tasks
1340   if (flags->proxy == TASK_FULL)
1341     copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
1342 
1343   taskdata->td_flags.tiedness = flags->tiedness;
1344   taskdata->td_flags.final = flags->final;
1345   taskdata->td_flags.merged_if0 = flags->merged_if0;
1346   taskdata->td_flags.destructors_thunk = flags->destructors_thunk;
1347   taskdata->td_flags.proxy = flags->proxy;
1348   taskdata->td_flags.detachable = flags->detachable;
1349   taskdata->td_flags.hidden_helper = flags->hidden_helper;
1350   taskdata->encountering_gtid = gtid;
1351   taskdata->td_task_team = thread->th.th_task_team;
1352   taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
1353   taskdata->td_flags.tasktype = TASK_EXPLICIT;
1354 
1355   // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1356   taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1357 
1358   // GEH - TODO: fix this to copy parent task's value of team_serial flag
1359   taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1360 
1361   // GEH - Note we serialize the task if the team is serialized to make sure
1362   // implicit parallel region tasks are not left until program termination to
1363   // execute. Also, it helps locality to execute immediately.
1364 
1365   taskdata->td_flags.task_serial =
1366       (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
1367        taskdata->td_flags.tasking_ser || flags->merged_if0);
1368 
1369   taskdata->td_flags.started = 0;
1370   taskdata->td_flags.executing = 0;
1371   taskdata->td_flags.complete = 0;
1372   taskdata->td_flags.freed = 0;
1373 
1374   taskdata->td_flags.native = flags->native;
1375 
1376   KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
1377   // start at one because counts current task and children
1378   KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
1379   taskdata->td_taskgroup =
1380       parent_task->td_taskgroup; // task inherits taskgroup from the parent task
1381   taskdata->td_dephash = NULL;
1382   taskdata->td_depnode = NULL;
1383   if (flags->tiedness == TASK_UNTIED)
1384     taskdata->td_last_tied = NULL; // will be set when the task is scheduled
1385   else
1386     taskdata->td_last_tied = taskdata;
1387   taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1388 #if OMPT_SUPPORT
1389   if (UNLIKELY(ompt_enabled.enabled))
1390     __ompt_task_init(taskdata, gtid);
1391 #endif
1392   // Only need to keep track of child task counts if team parallel and tasking
1393   // not serialized or if it is a proxy or detachable or hidden helper task
1394   if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE ||
1395       flags->hidden_helper ||
1396       !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
1397     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
1398     if (parent_task->td_taskgroup)
1399       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
1400     // Only need to keep track of allocated child tasks for explicit tasks since
1401     // implicit not deallocated
1402     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
1403       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
1404     }
1405   }
1406 
1407   if (flags->hidden_helper) {
1408     taskdata->td_flags.task_serial = FALSE;
1409     // Increment the number of hidden helper tasks to be executed
1410     KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks);
1411   }
1412 
1413   KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1414                 gtid, taskdata, taskdata->td_parent));
1415   ANNOTATE_HAPPENS_BEFORE(task);
1416 
1417   return task;
1418 }
1419 
1420 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1421                                   kmp_int32 flags, size_t sizeof_kmp_task_t,
1422                                   size_t sizeof_shareds,
1423                                   kmp_routine_entry_t task_entry) {
1424   kmp_task_t *retval;
1425   kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
1426   __kmp_assert_valid_gtid(gtid);
1427   input_flags->native = FALSE;
1428   // __kmp_task_alloc() sets up all other runtime flags
1429   KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1430                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1431                 gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied",
1432                 input_flags->proxy ? "proxy" : "",
1433                 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
1434                 sizeof_shareds, task_entry));
1435 
1436   retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
1437                             sizeof_shareds, task_entry);
1438 
1439   KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
1440 
1441   return retval;
1442 }
1443 
1444 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1445                                          kmp_int32 flags,
1446                                          size_t sizeof_kmp_task_t,
1447                                          size_t sizeof_shareds,
1448                                          kmp_routine_entry_t task_entry,
1449                                          kmp_int64 device_id) {
1450   if (__kmp_enable_hidden_helper) {
1451     auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags);
1452     input_flags.hidden_helper = TRUE;
1453   }
1454 
1455   return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
1456                                sizeof_shareds, task_entry);
1457 }
1458 
1459 /*!
1460 @ingroup TASKING
1461 @param loc_ref location of the original task directive
1462 @param gtid Global Thread ID of encountering thread
1463 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1464 task''
1465 @param naffins Number of affinity items
1466 @param affin_list List of affinity items
1467 @return Returns non-zero if registering affinity information was not successful.
1468  Returns 0 if registration was successful
1469 This entry registers the affinity information attached to a task with the task
1470 thunk structure kmp_taskdata_t.
1471 */
1472 kmp_int32
1473 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
1474                                   kmp_task_t *new_task, kmp_int32 naffins,
1475                                   kmp_task_affinity_info_t *affin_list) {
1476   return 0;
1477 }
1478 
1479 //  __kmp_invoke_task: invoke the specified task
1480 //
1481 // gtid: global thread ID of caller
1482 // task: the task to invoke
1483 // current_task: the task to resume after task invocation
1484 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
1485                               kmp_taskdata_t *current_task) {
1486   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1487   kmp_info_t *thread;
1488   int discard = 0 /* false */;
1489   KA_TRACE(
1490       30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1491            gtid, taskdata, current_task));
1492   KMP_DEBUG_ASSERT(task);
1493   if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY &&
1494                taskdata->td_flags.complete == 1)) {
1495     // This is a proxy task that was already completed but it needs to run
1496     // its bottom-half finish
1497     KA_TRACE(
1498         30,
1499         ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1500          gtid, taskdata));
1501 
1502     __kmp_bottom_half_finish_proxy(gtid, task);
1503 
1504     KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1505                   "proxy task %p, resuming task %p\n",
1506                   gtid, taskdata, current_task));
1507 
1508     return;
1509   }
1510 
1511 #if OMPT_SUPPORT
1512   // For untied tasks, the first task executed only calls __kmpc_omp_task and
1513   // does not execute code.
1514   ompt_thread_info_t oldInfo;
1515   if (UNLIKELY(ompt_enabled.enabled)) {
1516     // Store the threads states and restore them after the task
1517     thread = __kmp_threads[gtid];
1518     oldInfo = thread->th.ompt_thread_info;
1519     thread->th.ompt_thread_info.wait_id = 0;
1520     thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
1521                                             ? ompt_state_work_serial
1522                                             : ompt_state_work_parallel;
1523     taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1524   }
1525 #endif
1526 
1527   // Decreament the counter of hidden helper tasks to be executed
1528   if (taskdata->td_flags.hidden_helper) {
1529     // Hidden helper tasks can only be executed by hidden helper threads
1530     KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid));
1531     KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks);
1532   }
1533 
1534   // Proxy tasks are not handled by the runtime
1535   if (taskdata->td_flags.proxy != TASK_PROXY) {
1536     ANNOTATE_HAPPENS_AFTER(task);
1537     __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
1538   }
1539 
1540   // TODO: cancel tasks if the parallel region has also been cancelled
1541   // TODO: check if this sequence can be hoisted above __kmp_task_start
1542   // if cancellation has been enabled for this run ...
1543   if (UNLIKELY(__kmp_omp_cancellation)) {
1544     thread = __kmp_threads[gtid];
1545     kmp_team_t *this_team = thread->th.th_team;
1546     kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
1547     if ((taskgroup && taskgroup->cancel_request) ||
1548         (this_team->t.t_cancel_request == cancel_parallel)) {
1549 #if OMPT_SUPPORT && OMPT_OPTIONAL
1550       ompt_data_t *task_data;
1551       if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
1552         __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
1553         ompt_callbacks.ompt_callback(ompt_callback_cancel)(
1554             task_data,
1555             ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
1556                                                       : ompt_cancel_parallel) |
1557                 ompt_cancel_discarded_task,
1558             NULL);
1559       }
1560 #endif
1561       KMP_COUNT_BLOCK(TASK_cancelled);
1562       // this task belongs to a task group and we need to cancel it
1563       discard = 1 /* true */;
1564     }
1565   }
1566 
1567   // Invoke the task routine and pass in relevant data.
1568   // Thunks generated by gcc take a different argument list.
1569   if (!discard) {
1570     if (taskdata->td_flags.tiedness == TASK_UNTIED) {
1571       taskdata->td_last_tied = current_task->td_last_tied;
1572       KMP_DEBUG_ASSERT(taskdata->td_last_tied);
1573     }
1574 #if KMP_STATS_ENABLED
1575     KMP_COUNT_BLOCK(TASK_executed);
1576     switch (KMP_GET_THREAD_STATE()) {
1577     case FORK_JOIN_BARRIER:
1578       KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
1579       break;
1580     case PLAIN_BARRIER:
1581       KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
1582       break;
1583     case TASKYIELD:
1584       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
1585       break;
1586     case TASKWAIT:
1587       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
1588       break;
1589     case TASKGROUP:
1590       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
1591       break;
1592     default:
1593       KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
1594       break;
1595     }
1596 #endif // KMP_STATS_ENABLED
1597 
1598 // OMPT task begin
1599 #if OMPT_SUPPORT
1600     if (UNLIKELY(ompt_enabled.enabled))
1601       __ompt_task_start(task, current_task, gtid);
1602 #endif
1603 
1604 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1605     kmp_uint64 cur_time;
1606     kmp_int32 kmp_itt_count_task =
1607         __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
1608         current_task->td_flags.tasktype == TASK_IMPLICIT;
1609     if (kmp_itt_count_task) {
1610       thread = __kmp_threads[gtid];
1611       // Time outer level explicit task on barrier for adjusting imbalance time
1612       if (thread->th.th_bar_arrive_time)
1613         cur_time = __itt_get_timestamp();
1614       else
1615         kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
1616     }
1617     KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task)
1618 #endif
1619 
1620 #ifdef KMP_GOMP_COMPAT
1621     if (taskdata->td_flags.native) {
1622       ((void (*)(void *))(*(task->routine)))(task->shareds);
1623     } else
1624 #endif /* KMP_GOMP_COMPAT */
1625     {
1626       (*(task->routine))(gtid, task);
1627     }
1628     KMP_POP_PARTITIONED_TIMER();
1629 
1630 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1631     if (kmp_itt_count_task) {
1632       // Barrier imbalance - adjust arrive time with the task duration
1633       thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
1634     }
1635     KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed)
1636     KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent
1637 #endif
1638   }
1639 
1640   // Proxy tasks are not handled by the runtime
1641   if (taskdata->td_flags.proxy != TASK_PROXY) {
1642     ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent);
1643 #if OMPT_SUPPORT
1644     if (UNLIKELY(ompt_enabled.enabled)) {
1645       thread->th.ompt_thread_info = oldInfo;
1646       if (taskdata->td_flags.tiedness == TASK_TIED) {
1647         taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1648       }
1649       __kmp_task_finish<true>(gtid, task, current_task);
1650     } else
1651 #endif
1652       __kmp_task_finish<false>(gtid, task, current_task);
1653   }
1654 
1655   KA_TRACE(
1656       30,
1657       ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1658        gtid, taskdata, current_task));
1659   return;
1660 }
1661 
1662 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1663 //
1664 // loc_ref: location of original task pragma (ignored)
1665 // gtid: Global Thread ID of encountering thread
1666 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1667 // Returns:
1668 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1669 //    be resumed later.
1670 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1671 //    resumed later.
1672 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
1673                                 kmp_task_t *new_task) {
1674   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1675 
1676   KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
1677                 loc_ref, new_taskdata));
1678 
1679 #if OMPT_SUPPORT
1680   kmp_taskdata_t *parent;
1681   if (UNLIKELY(ompt_enabled.enabled)) {
1682     parent = new_taskdata->td_parent;
1683     if (ompt_enabled.ompt_callback_task_create) {
1684       ompt_data_t task_data = ompt_data_none;
1685       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1686           parent ? &(parent->ompt_task_info.task_data) : &task_data,
1687           parent ? &(parent->ompt_task_info.frame) : NULL,
1688           &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
1689           OMPT_GET_RETURN_ADDRESS(0));
1690     }
1691   }
1692 #endif
1693 
1694   /* Should we execute the new task or queue it? For now, let's just always try
1695      to queue it.  If the queue fills up, then we'll execute it.  */
1696 
1697   if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1698   { // Execute this task immediately
1699     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1700     new_taskdata->td_flags.task_serial = 1;
1701     __kmp_invoke_task(gtid, new_task, current_task);
1702   }
1703 
1704   KA_TRACE(
1705       10,
1706       ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
1707        "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
1708        gtid, loc_ref, new_taskdata));
1709 
1710   ANNOTATE_HAPPENS_BEFORE(new_task);
1711 #if OMPT_SUPPORT
1712   if (UNLIKELY(ompt_enabled.enabled)) {
1713     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1714   }
1715 #endif
1716   return TASK_CURRENT_NOT_QUEUED;
1717 }
1718 
1719 // __kmp_omp_task: Schedule a non-thread-switchable task for execution
1720 //
1721 // gtid: Global Thread ID of encountering thread
1722 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
1723 // serialize_immediate: if TRUE then if the task is executed immediately its
1724 // execution will be serialized
1725 // Returns:
1726 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1727 //    be resumed later.
1728 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1729 //    resumed later.
1730 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
1731                          bool serialize_immediate) {
1732   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1733 
1734   /* Should we execute the new task or queue it? For now, let's just always try
1735      to queue it.  If the queue fills up, then we'll execute it.  */
1736   if (new_taskdata->td_flags.proxy == TASK_PROXY ||
1737       __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1738   { // Execute this task immediately
1739     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1740     if (serialize_immediate)
1741       new_taskdata->td_flags.task_serial = 1;
1742     __kmp_invoke_task(gtid, new_task, current_task);
1743   }
1744 
1745   ANNOTATE_HAPPENS_BEFORE(new_task);
1746   return TASK_CURRENT_NOT_QUEUED;
1747 }
1748 
1749 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
1750 // non-thread-switchable task from the parent thread only!
1751 //
1752 // loc_ref: location of original task pragma (ignored)
1753 // gtid: Global Thread ID of encountering thread
1754 // new_task: non-thread-switchable task thunk allocated by
1755 // __kmp_omp_task_alloc()
1756 // Returns:
1757 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1758 //    be resumed later.
1759 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1760 //    resumed later.
1761 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
1762                           kmp_task_t *new_task) {
1763   kmp_int32 res;
1764   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1765 
1766 #if KMP_DEBUG || OMPT_SUPPORT
1767   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1768 #endif
1769   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1770                 new_taskdata));
1771   __kmp_assert_valid_gtid(gtid);
1772 
1773 #if OMPT_SUPPORT
1774   kmp_taskdata_t *parent = NULL;
1775   if (UNLIKELY(ompt_enabled.enabled)) {
1776     if (!new_taskdata->td_flags.started) {
1777       OMPT_STORE_RETURN_ADDRESS(gtid);
1778       parent = new_taskdata->td_parent;
1779       if (!parent->ompt_task_info.frame.enter_frame.ptr) {
1780         parent->ompt_task_info.frame.enter_frame.ptr =
1781             OMPT_GET_FRAME_ADDRESS(0);
1782       }
1783       if (ompt_enabled.ompt_callback_task_create) {
1784         ompt_data_t task_data = ompt_data_none;
1785         ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1786             parent ? &(parent->ompt_task_info.task_data) : &task_data,
1787             parent ? &(parent->ompt_task_info.frame) : NULL,
1788             &(new_taskdata->ompt_task_info.task_data),
1789             ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1790             OMPT_LOAD_RETURN_ADDRESS(gtid));
1791       }
1792     } else {
1793       // We are scheduling the continuation of an UNTIED task.
1794       // Scheduling back to the parent task.
1795       __ompt_task_finish(new_task,
1796                          new_taskdata->ompt_task_info.scheduling_parent,
1797                          ompt_task_switch);
1798       new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1799     }
1800   }
1801 #endif
1802 
1803   res = __kmp_omp_task(gtid, new_task, true);
1804 
1805   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1806                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1807                 gtid, loc_ref, new_taskdata));
1808 #if OMPT_SUPPORT
1809   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1810     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1811   }
1812 #endif
1813   return res;
1814 }
1815 
1816 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
1817 // a taskloop task with the correct OMPT return address
1818 //
1819 // loc_ref: location of original task pragma (ignored)
1820 // gtid: Global Thread ID of encountering thread
1821 // new_task: non-thread-switchable task thunk allocated by
1822 // __kmp_omp_task_alloc()
1823 // codeptr_ra: return address for OMPT callback
1824 // Returns:
1825 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1826 //    be resumed later.
1827 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1828 //    resumed later.
1829 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
1830                                   kmp_task_t *new_task, void *codeptr_ra) {
1831   kmp_int32 res;
1832   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1833 
1834 #if KMP_DEBUG || OMPT_SUPPORT
1835   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1836 #endif
1837   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1838                 new_taskdata));
1839 
1840 #if OMPT_SUPPORT
1841   kmp_taskdata_t *parent = NULL;
1842   if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
1843     parent = new_taskdata->td_parent;
1844     if (!parent->ompt_task_info.frame.enter_frame.ptr)
1845       parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1846     if (ompt_enabled.ompt_callback_task_create) {
1847       ompt_data_t task_data = ompt_data_none;
1848       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1849           parent ? &(parent->ompt_task_info.task_data) : &task_data,
1850           parent ? &(parent->ompt_task_info.frame) : NULL,
1851           &(new_taskdata->ompt_task_info.task_data),
1852           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1853           codeptr_ra);
1854     }
1855   }
1856 #endif
1857 
1858   res = __kmp_omp_task(gtid, new_task, true);
1859 
1860   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1861                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1862                 gtid, loc_ref, new_taskdata));
1863 #if OMPT_SUPPORT
1864   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1865     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1866   }
1867 #endif
1868   return res;
1869 }
1870 
1871 template <bool ompt>
1872 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
1873                                               void *frame_address,
1874                                               void *return_address) {
1875   kmp_taskdata_t *taskdata;
1876   kmp_info_t *thread;
1877   int thread_finished = FALSE;
1878   KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
1879 
1880   KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
1881   KMP_DEBUG_ASSERT(gtid >= 0);
1882 
1883   if (__kmp_tasking_mode != tskm_immediate_exec) {
1884     thread = __kmp_threads[gtid];
1885     taskdata = thread->th.th_current_task;
1886 
1887 #if OMPT_SUPPORT && OMPT_OPTIONAL
1888     ompt_data_t *my_task_data;
1889     ompt_data_t *my_parallel_data;
1890 
1891     if (ompt) {
1892       my_task_data = &(taskdata->ompt_task_info.task_data);
1893       my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
1894 
1895       taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
1896 
1897       if (ompt_enabled.ompt_callback_sync_region) {
1898         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1899             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1900             my_task_data, return_address);
1901       }
1902 
1903       if (ompt_enabled.ompt_callback_sync_region_wait) {
1904         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1905             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1906             my_task_data, return_address);
1907       }
1908     }
1909 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1910 
1911 // Debugger: The taskwait is active. Store location and thread encountered the
1912 // taskwait.
1913 #if USE_ITT_BUILD
1914 // Note: These values are used by ITT events as well.
1915 #endif /* USE_ITT_BUILD */
1916     taskdata->td_taskwait_counter += 1;
1917     taskdata->td_taskwait_ident = loc_ref;
1918     taskdata->td_taskwait_thread = gtid + 1;
1919 
1920 #if USE_ITT_BUILD
1921     void *itt_sync_obj = NULL;
1922 #if USE_ITT_NOTIFY
1923     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
1924 #endif /* USE_ITT_NOTIFY */
1925 #endif /* USE_ITT_BUILD */
1926 
1927     bool must_wait =
1928         !taskdata->td_flags.team_serial && !taskdata->td_flags.final;
1929 
1930     must_wait = must_wait || (thread->th.th_task_team != NULL &&
1931                               thread->th.th_task_team->tt.tt_found_proxy_tasks);
1932     // If hidden helper thread is encountered, we must enable wait here.
1933     must_wait =
1934         must_wait ||
1935         (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL &&
1936          thread->th.th_task_team->tt.tt_hidden_helper_task_encountered);
1937 
1938     if (must_wait) {
1939       kmp_flag_32<false, false> flag(
1940           RCAST(std::atomic<kmp_uint32> *,
1941                 &(taskdata->td_incomplete_child_tasks)),
1942           0U);
1943       while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
1944         flag.execute_tasks(thread, gtid, FALSE,
1945                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
1946                            __kmp_task_stealing_constraint);
1947       }
1948     }
1949 #if USE_ITT_BUILD
1950     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
1951     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children
1952 #endif /* USE_ITT_BUILD */
1953 
1954     // Debugger:  The taskwait is completed. Location remains, but thread is
1955     // negated.
1956     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
1957 
1958 #if OMPT_SUPPORT && OMPT_OPTIONAL
1959     if (ompt) {
1960       if (ompt_enabled.ompt_callback_sync_region_wait) {
1961         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1962             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1963             my_task_data, return_address);
1964       }
1965       if (ompt_enabled.ompt_callback_sync_region) {
1966         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1967             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1968             my_task_data, return_address);
1969       }
1970       taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
1971     }
1972 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1973 
1974     ANNOTATE_HAPPENS_AFTER(taskdata);
1975   }
1976 
1977   KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
1978                 "returning TASK_CURRENT_NOT_QUEUED\n",
1979                 gtid, taskdata));
1980 
1981   return TASK_CURRENT_NOT_QUEUED;
1982 }
1983 
1984 #if OMPT_SUPPORT && OMPT_OPTIONAL
1985 OMPT_NOINLINE
1986 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
1987                                           void *frame_address,
1988                                           void *return_address) {
1989   return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
1990                                             return_address);
1991 }
1992 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1993 
1994 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
1995 // complete
1996 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
1997 #if OMPT_SUPPORT && OMPT_OPTIONAL
1998   if (UNLIKELY(ompt_enabled.enabled)) {
1999     OMPT_STORE_RETURN_ADDRESS(gtid);
2000     return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
2001                                     OMPT_LOAD_RETURN_ADDRESS(gtid));
2002   }
2003 #endif
2004   return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
2005 }
2006 
2007 // __kmpc_omp_taskyield: switch to a different task
2008 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
2009   kmp_taskdata_t *taskdata;
2010   kmp_info_t *thread;
2011   int thread_finished = FALSE;
2012 
2013   KMP_COUNT_BLOCK(OMP_TASKYIELD);
2014   KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
2015 
2016   KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
2017                 gtid, loc_ref, end_part));
2018   __kmp_assert_valid_gtid(gtid);
2019 
2020   if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
2021     thread = __kmp_threads[gtid];
2022     taskdata = thread->th.th_current_task;
2023 // Should we model this as a task wait or not?
2024 // Debugger: The taskwait is active. Store location and thread encountered the
2025 // taskwait.
2026 #if USE_ITT_BUILD
2027 // Note: These values are used by ITT events as well.
2028 #endif /* USE_ITT_BUILD */
2029     taskdata->td_taskwait_counter += 1;
2030     taskdata->td_taskwait_ident = loc_ref;
2031     taskdata->td_taskwait_thread = gtid + 1;
2032 
2033 #if USE_ITT_BUILD
2034     void *itt_sync_obj = NULL;
2035 #if USE_ITT_NOTIFY
2036     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2037 #endif /* USE_ITT_NOTIFY */
2038 #endif /* USE_ITT_BUILD */
2039     if (!taskdata->td_flags.team_serial) {
2040       kmp_task_team_t *task_team = thread->th.th_task_team;
2041       if (task_team != NULL) {
2042         if (KMP_TASKING_ENABLED(task_team)) {
2043 #if OMPT_SUPPORT
2044           if (UNLIKELY(ompt_enabled.enabled))
2045             thread->th.ompt_thread_info.ompt_task_yielded = 1;
2046 #endif
2047           __kmp_execute_tasks_32(
2048               thread, gtid, (kmp_flag_32<> *)NULL, FALSE,
2049               &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2050               __kmp_task_stealing_constraint);
2051 #if OMPT_SUPPORT
2052           if (UNLIKELY(ompt_enabled.enabled))
2053             thread->th.ompt_thread_info.ompt_task_yielded = 0;
2054 #endif
2055         }
2056       }
2057     }
2058 #if USE_ITT_BUILD
2059     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2060 #endif /* USE_ITT_BUILD */
2061 
2062     // Debugger:  The taskwait is completed. Location remains, but thread is
2063     // negated.
2064     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
2065   }
2066 
2067   KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
2068                 "returning TASK_CURRENT_NOT_QUEUED\n",
2069                 gtid, taskdata));
2070 
2071   return TASK_CURRENT_NOT_QUEUED;
2072 }
2073 
2074 // Task Reduction implementation
2075 //
2076 // Note: initial implementation didn't take into account the possibility
2077 // to specify omp_orig for initializer of the UDR (user defined reduction).
2078 // Corrected implementation takes into account the omp_orig object.
2079 // Compiler is free to use old implementation if omp_orig is not specified.
2080 
2081 /*!
2082 @ingroup BASIC_TYPES
2083 @{
2084 */
2085 
2086 /*!
2087 Flags for special info per task reduction item.
2088 */
2089 typedef struct kmp_taskred_flags {
2090   /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */
2091   unsigned lazy_priv : 1;
2092   unsigned reserved31 : 31;
2093 } kmp_taskred_flags_t;
2094 
2095 /*!
2096 Internal struct for reduction data item related info set up by compiler.
2097 */
2098 typedef struct kmp_task_red_input {
2099   void *reduce_shar; /**< shared between tasks item to reduce into */
2100   size_t reduce_size; /**< size of data item in bytes */
2101   // three compiler-generated routines (init, fini are optional):
2102   void *reduce_init; /**< data initialization routine (single parameter) */
2103   void *reduce_fini; /**< data finalization routine */
2104   void *reduce_comb; /**< data combiner routine */
2105   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2106 } kmp_task_red_input_t;
2107 
2108 /*!
2109 Internal struct for reduction data item related info saved by the library.
2110 */
2111 typedef struct kmp_taskred_data {
2112   void *reduce_shar; /**< shared between tasks item to reduce into */
2113   size_t reduce_size; /**< size of data item */
2114   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2115   void *reduce_priv; /**< array of thread specific items */
2116   void *reduce_pend; /**< end of private data for faster comparison op */
2117   // three compiler-generated routines (init, fini are optional):
2118   void *reduce_comb; /**< data combiner routine */
2119   void *reduce_init; /**< data initialization routine (two parameters) */
2120   void *reduce_fini; /**< data finalization routine */
2121   void *reduce_orig; /**< original item (can be used in UDR initializer) */
2122 } kmp_taskred_data_t;
2123 
2124 /*!
2125 Internal struct for reduction data item related info set up by compiler.
2126 
2127 New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2128 */
2129 typedef struct kmp_taskred_input {
2130   void *reduce_shar; /**< shared between tasks item to reduce into */
2131   void *reduce_orig; /**< original reduction item used for initialization */
2132   size_t reduce_size; /**< size of data item */
2133   // three compiler-generated routines (init, fini are optional):
2134   void *reduce_init; /**< data initialization routine (two parameters) */
2135   void *reduce_fini; /**< data finalization routine */
2136   void *reduce_comb; /**< data combiner routine */
2137   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2138 } kmp_taskred_input_t;
2139 /*!
2140 @}
2141 */
2142 
2143 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
2144 template <>
2145 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2146                                              kmp_task_red_input_t &src) {
2147   item.reduce_orig = NULL;
2148 }
2149 template <>
2150 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2151                                             kmp_taskred_input_t &src) {
2152   if (src.reduce_orig != NULL) {
2153     item.reduce_orig = src.reduce_orig;
2154   } else {
2155     item.reduce_orig = src.reduce_shar;
2156   } // non-NULL reduce_orig means new interface used
2157 }
2158 
2159 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j);
2160 template <>
2161 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2162                                            size_t offset) {
2163   ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
2164 }
2165 template <>
2166 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2167                                           size_t offset) {
2168   ((void (*)(void *, void *))item.reduce_init)(
2169       (char *)(item.reduce_priv) + offset, item.reduce_orig);
2170 }
2171 
2172 template <typename T>
2173 void *__kmp_task_reduction_init(int gtid, int num, T *data) {
2174   __kmp_assert_valid_gtid(gtid);
2175   kmp_info_t *thread = __kmp_threads[gtid];
2176   kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
2177   kmp_uint32 nth = thread->th.th_team_nproc;
2178   kmp_taskred_data_t *arr;
2179 
2180   // check input data just in case
2181   KMP_ASSERT(tg != NULL);
2182   KMP_ASSERT(data != NULL);
2183   KMP_ASSERT(num > 0);
2184   if (nth == 1) {
2185     KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2186                   gtid, tg));
2187     return (void *)tg;
2188   }
2189   KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2190                 gtid, tg, num));
2191   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2192       thread, num * sizeof(kmp_taskred_data_t));
2193   for (int i = 0; i < num; ++i) {
2194     size_t size = data[i].reduce_size - 1;
2195     // round the size up to cache line per thread-specific item
2196     size += CACHE_LINE - size % CACHE_LINE;
2197     KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
2198     arr[i].reduce_shar = data[i].reduce_shar;
2199     arr[i].reduce_size = size;
2200     arr[i].flags = data[i].flags;
2201     arr[i].reduce_comb = data[i].reduce_comb;
2202     arr[i].reduce_init = data[i].reduce_init;
2203     arr[i].reduce_fini = data[i].reduce_fini;
2204     __kmp_assign_orig<T>(arr[i], data[i]);
2205     if (!arr[i].flags.lazy_priv) {
2206       // allocate cache-line aligned block and fill it with zeros
2207       arr[i].reduce_priv = __kmp_allocate(nth * size);
2208       arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
2209       if (arr[i].reduce_init != NULL) {
2210         // initialize all thread-specific items
2211         for (size_t j = 0; j < nth; ++j) {
2212           __kmp_call_init<T>(arr[i], j * size);
2213         }
2214       }
2215     } else {
2216       // only allocate space for pointers now,
2217       // objects will be lazily allocated/initialized if/when requested
2218       // note that __kmp_allocate zeroes the allocated memory
2219       arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
2220     }
2221   }
2222   tg->reduce_data = (void *)arr;
2223   tg->reduce_num_data = num;
2224   return (void *)tg;
2225 }
2226 
2227 /*!
2228 @ingroup TASKING
2229 @param gtid      Global thread ID
2230 @param num       Number of data items to reduce
2231 @param data      Array of data for reduction
2232 @return The taskgroup identifier
2233 
2234 Initialize task reduction for the taskgroup.
2235 
2236 Note: this entry supposes the optional compiler-generated initializer routine
2237 has single parameter - pointer to object to be initialized. That means
2238 the reduction either does not use omp_orig object, or the omp_orig is accessible
2239 without help of the runtime library.
2240 */
2241 void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
2242   return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
2243 }
2244 
2245 /*!
2246 @ingroup TASKING
2247 @param gtid      Global thread ID
2248 @param num       Number of data items to reduce
2249 @param data      Array of data for reduction
2250 @return The taskgroup identifier
2251 
2252 Initialize task reduction for the taskgroup.
2253 
2254 Note: this entry supposes the optional compiler-generated initializer routine
2255 has two parameters, pointer to object to be initialized and pointer to omp_orig
2256 */
2257 void *__kmpc_taskred_init(int gtid, int num, void *data) {
2258   return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
2259 }
2260 
2261 // Copy task reduction data (except for shared pointers).
2262 template <typename T>
2263 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
2264                                     kmp_taskgroup_t *tg, void *reduce_data) {
2265   kmp_taskred_data_t *arr;
2266   KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2267                 " from data %p\n",
2268                 thr, tg, reduce_data));
2269   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2270       thr, num * sizeof(kmp_taskred_data_t));
2271   // threads will share private copies, thunk routines, sizes, flags, etc.:
2272   KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
2273   for (int i = 0; i < num; ++i) {
2274     arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
2275   }
2276   tg->reduce_data = (void *)arr;
2277   tg->reduce_num_data = num;
2278 }
2279 
2280 /*!
2281 @ingroup TASKING
2282 @param gtid    Global thread ID
2283 @param tskgrp  The taskgroup ID (optional)
2284 @param data    Shared location of the item
2285 @return The pointer to per-thread data
2286 
2287 Get thread-specific location of data item
2288 */
2289 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
2290   __kmp_assert_valid_gtid(gtid);
2291   kmp_info_t *thread = __kmp_threads[gtid];
2292   kmp_int32 nth = thread->th.th_team_nproc;
2293   if (nth == 1)
2294     return data; // nothing to do
2295 
2296   kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
2297   if (tg == NULL)
2298     tg = thread->th.th_current_task->td_taskgroup;
2299   KMP_ASSERT(tg != NULL);
2300   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
2301   kmp_int32 num = tg->reduce_num_data;
2302   kmp_int32 tid = thread->th.th_info.ds.ds_tid;
2303 
2304   KMP_ASSERT(data != NULL);
2305   while (tg != NULL) {
2306     for (int i = 0; i < num; ++i) {
2307       if (!arr[i].flags.lazy_priv) {
2308         if (data == arr[i].reduce_shar ||
2309             (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
2310           return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
2311       } else {
2312         // check shared location first
2313         void **p_priv = (void **)(arr[i].reduce_priv);
2314         if (data == arr[i].reduce_shar)
2315           goto found;
2316         // check if we get some thread specific location as parameter
2317         for (int j = 0; j < nth; ++j)
2318           if (data == p_priv[j])
2319             goto found;
2320         continue; // not found, continue search
2321       found:
2322         if (p_priv[tid] == NULL) {
2323           // allocate thread specific object lazily
2324           p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
2325           if (arr[i].reduce_init != NULL) {
2326             if (arr[i].reduce_orig != NULL) { // new interface
2327               ((void (*)(void *, void *))arr[i].reduce_init)(
2328                   p_priv[tid], arr[i].reduce_orig);
2329             } else { // old interface (single parameter)
2330               ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
2331             }
2332           }
2333         }
2334         return p_priv[tid];
2335       }
2336     }
2337     tg = tg->parent;
2338     arr = (kmp_taskred_data_t *)(tg->reduce_data);
2339     num = tg->reduce_num_data;
2340   }
2341   KMP_ASSERT2(0, "Unknown task reduction item");
2342   return NULL; // ERROR, this line never executed
2343 }
2344 
2345 // Finalize task reduction.
2346 // Called from __kmpc_end_taskgroup()
2347 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
2348   kmp_int32 nth = th->th.th_team_nproc;
2349   KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1
2350   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
2351   kmp_int32 num = tg->reduce_num_data;
2352   for (int i = 0; i < num; ++i) {
2353     void *sh_data = arr[i].reduce_shar;
2354     void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
2355     void (*f_comb)(void *, void *) =
2356         (void (*)(void *, void *))(arr[i].reduce_comb);
2357     if (!arr[i].flags.lazy_priv) {
2358       void *pr_data = arr[i].reduce_priv;
2359       size_t size = arr[i].reduce_size;
2360       for (int j = 0; j < nth; ++j) {
2361         void *priv_data = (char *)pr_data + j * size;
2362         f_comb(sh_data, priv_data); // combine results
2363         if (f_fini)
2364           f_fini(priv_data); // finalize if needed
2365       }
2366     } else {
2367       void **pr_data = (void **)(arr[i].reduce_priv);
2368       for (int j = 0; j < nth; ++j) {
2369         if (pr_data[j] != NULL) {
2370           f_comb(sh_data, pr_data[j]); // combine results
2371           if (f_fini)
2372             f_fini(pr_data[j]); // finalize if needed
2373           __kmp_free(pr_data[j]);
2374         }
2375       }
2376     }
2377     __kmp_free(arr[i].reduce_priv);
2378   }
2379   __kmp_thread_free(th, arr);
2380   tg->reduce_data = NULL;
2381   tg->reduce_num_data = 0;
2382 }
2383 
2384 // Cleanup task reduction data for parallel or worksharing,
2385 // do not touch task private data other threads still working with.
2386 // Called from __kmpc_end_taskgroup()
2387 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
2388   __kmp_thread_free(th, tg->reduce_data);
2389   tg->reduce_data = NULL;
2390   tg->reduce_num_data = 0;
2391 }
2392 
2393 template <typename T>
2394 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2395                                          int num, T *data) {
2396   __kmp_assert_valid_gtid(gtid);
2397   kmp_info_t *thr = __kmp_threads[gtid];
2398   kmp_int32 nth = thr->th.th_team_nproc;
2399   __kmpc_taskgroup(loc, gtid); // form new taskgroup first
2400   if (nth == 1) {
2401     KA_TRACE(10,
2402              ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2403               gtid, thr->th.th_current_task->td_taskgroup));
2404     return (void *)thr->th.th_current_task->td_taskgroup;
2405   }
2406   kmp_team_t *team = thr->th.th_team;
2407   void *reduce_data;
2408   kmp_taskgroup_t *tg;
2409   reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
2410   if (reduce_data == NULL &&
2411       __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
2412                                  (void *)1)) {
2413     // single thread enters this block to initialize common reduction data
2414     KMP_DEBUG_ASSERT(reduce_data == NULL);
2415     // first initialize own data, then make a copy other threads can use
2416     tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
2417     reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
2418     KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
2419     // fini counters should be 0 at this point
2420     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
2421     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
2422     KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
2423   } else {
2424     while (
2425         (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
2426         (void *)1) { // wait for task reduction initialization
2427       KMP_CPU_PAUSE();
2428     }
2429     KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
2430     tg = thr->th.th_current_task->td_taskgroup;
2431     __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
2432   }
2433   return tg;
2434 }
2435 
2436 /*!
2437 @ingroup TASKING
2438 @param loc       Source location info
2439 @param gtid      Global thread ID
2440 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2441 @param num       Number of data items to reduce
2442 @param data      Array of data for reduction
2443 @return The taskgroup identifier
2444 
2445 Initialize task reduction for a parallel or worksharing.
2446 
2447 Note: this entry supposes the optional compiler-generated initializer routine
2448 has single parameter - pointer to object to be initialized. That means
2449 the reduction either does not use omp_orig object, or the omp_orig is accessible
2450 without help of the runtime library.
2451 */
2452 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2453                                           int num, void *data) {
2454   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2455                                             (kmp_task_red_input_t *)data);
2456 }
2457 
2458 /*!
2459 @ingroup TASKING
2460 @param loc       Source location info
2461 @param gtid      Global thread ID
2462 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2463 @param num       Number of data items to reduce
2464 @param data      Array of data for reduction
2465 @return The taskgroup identifier
2466 
2467 Initialize task reduction for a parallel or worksharing.
2468 
2469 Note: this entry supposes the optional compiler-generated initializer routine
2470 has two parameters, pointer to object to be initialized and pointer to omp_orig
2471 */
2472 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
2473                                    void *data) {
2474   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2475                                             (kmp_taskred_input_t *)data);
2476 }
2477 
2478 /*!
2479 @ingroup TASKING
2480 @param loc       Source location info
2481 @param gtid      Global thread ID
2482 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2483 
2484 Finalize task reduction for a parallel or worksharing.
2485 */
2486 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
2487   __kmpc_end_taskgroup(loc, gtid);
2488 }
2489 
2490 // __kmpc_taskgroup: Start a new taskgroup
2491 void __kmpc_taskgroup(ident_t *loc, int gtid) {
2492   __kmp_assert_valid_gtid(gtid);
2493   kmp_info_t *thread = __kmp_threads[gtid];
2494   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2495   kmp_taskgroup_t *tg_new =
2496       (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
2497   KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
2498   KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
2499   KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
2500   tg_new->parent = taskdata->td_taskgroup;
2501   tg_new->reduce_data = NULL;
2502   tg_new->reduce_num_data = 0;
2503   taskdata->td_taskgroup = tg_new;
2504 
2505 #if OMPT_SUPPORT && OMPT_OPTIONAL
2506   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2507     void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2508     if (!codeptr)
2509       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2510     kmp_team_t *team = thread->th.th_team;
2511     ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
2512     // FIXME: I think this is wrong for lwt!
2513     ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
2514 
2515     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2516         ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2517         &(my_task_data), codeptr);
2518   }
2519 #endif
2520 }
2521 
2522 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2523 //                       and its descendants are complete
2524 void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
2525   __kmp_assert_valid_gtid(gtid);
2526   kmp_info_t *thread = __kmp_threads[gtid];
2527   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2528   kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
2529   int thread_finished = FALSE;
2530 
2531 #if OMPT_SUPPORT && OMPT_OPTIONAL
2532   kmp_team_t *team;
2533   ompt_data_t my_task_data;
2534   ompt_data_t my_parallel_data;
2535   void *codeptr;
2536   if (UNLIKELY(ompt_enabled.enabled)) {
2537     team = thread->th.th_team;
2538     my_task_data = taskdata->ompt_task_info.task_data;
2539     // FIXME: I think this is wrong for lwt!
2540     my_parallel_data = team->t.ompt_team_info.parallel_data;
2541     codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2542     if (!codeptr)
2543       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2544   }
2545 #endif
2546 
2547   KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
2548   KMP_DEBUG_ASSERT(taskgroup != NULL);
2549   KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
2550 
2551   if (__kmp_tasking_mode != tskm_immediate_exec) {
2552     // mark task as waiting not on a barrier
2553     taskdata->td_taskwait_counter += 1;
2554     taskdata->td_taskwait_ident = loc;
2555     taskdata->td_taskwait_thread = gtid + 1;
2556 #if USE_ITT_BUILD
2557     // For ITT the taskgroup wait is similar to taskwait until we need to
2558     // distinguish them
2559     void *itt_sync_obj = NULL;
2560 #if USE_ITT_NOTIFY
2561     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2562 #endif /* USE_ITT_NOTIFY */
2563 #endif /* USE_ITT_BUILD */
2564 
2565 #if OMPT_SUPPORT && OMPT_OPTIONAL
2566     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2567       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2568           ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2569           &(my_task_data), codeptr);
2570     }
2571 #endif
2572 
2573     if (!taskdata->td_flags.team_serial ||
2574         (thread->th.th_task_team != NULL &&
2575          thread->th.th_task_team->tt.tt_found_proxy_tasks)) {
2576       kmp_flag_32<false, false> flag(
2577           RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U);
2578       while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
2579         flag.execute_tasks(thread, gtid, FALSE,
2580                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2581                            __kmp_task_stealing_constraint);
2582       }
2583     }
2584     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
2585 
2586 #if OMPT_SUPPORT && OMPT_OPTIONAL
2587     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2588       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2589           ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2590           &(my_task_data), codeptr);
2591     }
2592 #endif
2593 
2594 #if USE_ITT_BUILD
2595     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2596     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants
2597 #endif /* USE_ITT_BUILD */
2598   }
2599   KMP_DEBUG_ASSERT(taskgroup->count == 0);
2600 
2601   if (taskgroup->reduce_data != NULL) { // need to reduce?
2602     int cnt;
2603     void *reduce_data;
2604     kmp_team_t *t = thread->th.th_team;
2605     kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
2606     // check if <priv> data of the first reduction variable shared for the team
2607     void *priv0 = arr[0].reduce_priv;
2608     if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
2609         ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2610       // finishing task reduction on parallel
2611       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
2612       if (cnt == thread->th.th_team_nproc - 1) {
2613         // we are the last thread passing __kmpc_reduction_modifier_fini()
2614         // finalize task reduction:
2615         __kmp_task_reduction_fini(thread, taskgroup);
2616         // cleanup fields in the team structure:
2617         // TODO: is relaxed store enough here (whole barrier should follow)?
2618         __kmp_thread_free(thread, reduce_data);
2619         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
2620         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
2621       } else {
2622         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2623         // so do not finalize reduction, just clean own copy of the data
2624         __kmp_task_reduction_clean(thread, taskgroup);
2625       }
2626     } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
2627                    NULL &&
2628                ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2629       // finishing task reduction on worksharing
2630       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
2631       if (cnt == thread->th.th_team_nproc - 1) {
2632         // we are the last thread passing __kmpc_reduction_modifier_fini()
2633         __kmp_task_reduction_fini(thread, taskgroup);
2634         // cleanup fields in team structure:
2635         // TODO: is relaxed store enough here (whole barrier should follow)?
2636         __kmp_thread_free(thread, reduce_data);
2637         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
2638         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
2639       } else {
2640         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2641         // so do not finalize reduction, just clean own copy of the data
2642         __kmp_task_reduction_clean(thread, taskgroup);
2643       }
2644     } else {
2645       // finishing task reduction on taskgroup
2646       __kmp_task_reduction_fini(thread, taskgroup);
2647     }
2648   }
2649   // Restore parent taskgroup for the current task
2650   taskdata->td_taskgroup = taskgroup->parent;
2651   __kmp_thread_free(thread, taskgroup);
2652 
2653   KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
2654                 gtid, taskdata));
2655   ANNOTATE_HAPPENS_AFTER(taskdata);
2656 
2657 #if OMPT_SUPPORT && OMPT_OPTIONAL
2658   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2659     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2660         ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2661         &(my_task_data), codeptr);
2662   }
2663 #endif
2664 }
2665 
2666 // __kmp_remove_my_task: remove a task from my own deque
2667 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
2668                                         kmp_task_team_t *task_team,
2669                                         kmp_int32 is_constrained) {
2670   kmp_task_t *task;
2671   kmp_taskdata_t *taskdata;
2672   kmp_thread_data_t *thread_data;
2673   kmp_uint32 tail;
2674 
2675   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2676   KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
2677                    NULL); // Caller should check this condition
2678 
2679   thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
2680 
2681   KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
2682                 gtid, thread_data->td.td_deque_ntasks,
2683                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2684 
2685   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2686     KA_TRACE(10,
2687              ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
2688               "ntasks=%d head=%u tail=%u\n",
2689               gtid, thread_data->td.td_deque_ntasks,
2690               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2691     return NULL;
2692   }
2693 
2694   __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
2695 
2696   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2697     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2698     KA_TRACE(10,
2699              ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
2700               "ntasks=%d head=%u tail=%u\n",
2701               gtid, thread_data->td.td_deque_ntasks,
2702               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2703     return NULL;
2704   }
2705 
2706   tail = (thread_data->td.td_deque_tail - 1) &
2707          TASK_DEQUE_MASK(thread_data->td); // Wrap index.
2708   taskdata = thread_data->td.td_deque[tail];
2709 
2710   if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
2711                              thread->th.th_current_task)) {
2712     // The TSC does not allow to steal victim task
2713     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2714     KA_TRACE(10,
2715              ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
2716               "ntasks=%d head=%u tail=%u\n",
2717               gtid, thread_data->td.td_deque_ntasks,
2718               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2719     return NULL;
2720   }
2721 
2722   thread_data->td.td_deque_tail = tail;
2723   TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
2724 
2725   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2726 
2727   KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
2728                 "ntasks=%d head=%u tail=%u\n",
2729                 gtid, taskdata, thread_data->td.td_deque_ntasks,
2730                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2731 
2732   task = KMP_TASKDATA_TO_TASK(taskdata);
2733   return task;
2734 }
2735 
2736 // __kmp_steal_task: remove a task from another thread's deque
2737 // Assume that calling thread has already checked existence of
2738 // task_team thread_data before calling this routine.
2739 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
2740                                     kmp_task_team_t *task_team,
2741                                     std::atomic<kmp_int32> *unfinished_threads,
2742                                     int *thread_finished,
2743                                     kmp_int32 is_constrained) {
2744   kmp_task_t *task;
2745   kmp_taskdata_t *taskdata;
2746   kmp_taskdata_t *current;
2747   kmp_thread_data_t *victim_td, *threads_data;
2748   kmp_int32 target;
2749   kmp_int32 victim_tid;
2750 
2751   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2752 
2753   threads_data = task_team->tt.tt_threads_data;
2754   KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
2755 
2756   victim_tid = victim_thr->th.th_info.ds.ds_tid;
2757   victim_td = &threads_data[victim_tid];
2758 
2759   KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
2760                 "task_team=%p ntasks=%d head=%u tail=%u\n",
2761                 gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2762                 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2763                 victim_td->td.td_deque_tail));
2764 
2765   if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
2766     KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
2767                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2768                   gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2769                   victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2770                   victim_td->td.td_deque_tail));
2771     return NULL;
2772   }
2773 
2774   __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
2775 
2776   int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
2777   // Check again after we acquire the lock
2778   if (ntasks == 0) {
2779     __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2780     KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
2781                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2782                   gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2783                   victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2784     return NULL;
2785   }
2786 
2787   KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
2788   current = __kmp_threads[gtid]->th.th_current_task;
2789   taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
2790   if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2791     // Bump head pointer and Wrap.
2792     victim_td->td.td_deque_head =
2793         (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
2794   } else {
2795     if (!task_team->tt.tt_untied_task_encountered) {
2796       // The TSC does not allow to steal victim task
2797       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2798       KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
2799                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2800                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2801                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2802       return NULL;
2803     }
2804     int i;
2805     // walk through victim's deque trying to steal any task
2806     target = victim_td->td.td_deque_head;
2807     taskdata = NULL;
2808     for (i = 1; i < ntasks; ++i) {
2809       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2810       taskdata = victim_td->td.td_deque[target];
2811       if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2812         break; // found victim task
2813       } else {
2814         taskdata = NULL;
2815       }
2816     }
2817     if (taskdata == NULL) {
2818       // No appropriate candidate to steal found
2819       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2820       KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
2821                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2822                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2823                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2824       return NULL;
2825     }
2826     int prev = target;
2827     for (i = i + 1; i < ntasks; ++i) {
2828       // shift remaining tasks in the deque left by 1
2829       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2830       victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
2831       prev = target;
2832     }
2833     KMP_DEBUG_ASSERT(
2834         victim_td->td.td_deque_tail ==
2835         (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
2836     victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
2837   }
2838   if (*thread_finished) {
2839     // We need to un-mark this victim as a finished victim.  This must be done
2840     // before releasing the lock, or else other threads (starting with the
2841     // master victim) might be prematurely released from the barrier!!!
2842     kmp_int32 count;
2843 
2844     count = KMP_ATOMIC_INC(unfinished_threads);
2845 
2846     KA_TRACE(
2847         20,
2848         ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
2849          gtid, count + 1, task_team));
2850 
2851     *thread_finished = FALSE;
2852   }
2853   TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
2854 
2855   __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2856 
2857   KMP_COUNT_BLOCK(TASK_stolen);
2858   KA_TRACE(10,
2859            ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
2860             "task_team=%p ntasks=%d head=%u tail=%u\n",
2861             gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
2862             ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2863 
2864   task = KMP_TASKDATA_TO_TASK(taskdata);
2865   return task;
2866 }
2867 
2868 // __kmp_execute_tasks_template: Choose and execute tasks until either the
2869 // condition is statisfied (return true) or there are none left (return false).
2870 //
2871 // final_spin is TRUE if this is the spin at the release barrier.
2872 // thread_finished indicates whether the thread is finished executing all
2873 // the tasks it has on its deque, and is at the release barrier.
2874 // spinner is the location on which to spin.
2875 // spinner == NULL means only execute a single task and return.
2876 // checker is the value to check to terminate the spin.
2877 template <class C>
2878 static inline int __kmp_execute_tasks_template(
2879     kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
2880     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
2881     kmp_int32 is_constrained) {
2882   kmp_task_team_t *task_team = thread->th.th_task_team;
2883   kmp_thread_data_t *threads_data;
2884   kmp_task_t *task;
2885   kmp_info_t *other_thread;
2886   kmp_taskdata_t *current_task = thread->th.th_current_task;
2887   std::atomic<kmp_int32> *unfinished_threads;
2888   kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
2889                       tid = thread->th.th_info.ds.ds_tid;
2890 
2891   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2892   KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
2893 
2894   if (task_team == NULL || current_task == NULL)
2895     return FALSE;
2896 
2897   KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
2898                 "*thread_finished=%d\n",
2899                 gtid, final_spin, *thread_finished));
2900 
2901   thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
2902   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
2903 
2904   KMP_DEBUG_ASSERT(threads_data != NULL);
2905 
2906   nthreads = task_team->tt.tt_nproc;
2907   unfinished_threads = &(task_team->tt.tt_unfinished_threads);
2908   KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks ||
2909                    task_team->tt.tt_hidden_helper_task_encountered);
2910   KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
2911 
2912   while (1) { // Outer loop keeps trying to find tasks in case of single thread
2913     // getting tasks from target constructs
2914     while (1) { // Inner loop to find a task and execute it
2915       task = NULL;
2916       if (use_own_tasks) { // check on own queue first
2917         task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
2918       }
2919       if ((task == NULL) && (nthreads > 1)) { // Steal a task
2920         int asleep = 1;
2921         use_own_tasks = 0;
2922         // Try to steal from the last place I stole from successfully.
2923         if (victim_tid == -2) { // haven't stolen anything yet
2924           victim_tid = threads_data[tid].td.td_deque_last_stolen;
2925           if (victim_tid !=
2926               -1) // if we have a last stolen from victim, get the thread
2927             other_thread = threads_data[victim_tid].td.td_thr;
2928         }
2929         if (victim_tid != -1) { // found last victim
2930           asleep = 0;
2931         } else if (!new_victim) { // no recent steals and we haven't already
2932           // used a new victim; select a random thread
2933           do { // Find a different thread to steal work from.
2934             // Pick a random thread. Initial plan was to cycle through all the
2935             // threads, and only return if we tried to steal from every thread,
2936             // and failed.  Arch says that's not such a great idea.
2937             victim_tid = __kmp_get_random(thread) % (nthreads - 1);
2938             if (victim_tid >= tid) {
2939               ++victim_tid; // Adjusts random distribution to exclude self
2940             }
2941             // Found a potential victim
2942             other_thread = threads_data[victim_tid].td.td_thr;
2943             // There is a slight chance that __kmp_enable_tasking() did not wake
2944             // up all threads waiting at the barrier.  If victim is sleeping,
2945             // then wake it up. Since we were going to pay the cache miss
2946             // penalty for referencing another thread's kmp_info_t struct
2947             // anyway,
2948             // the check shouldn't cost too much performance at this point. In
2949             // extra barrier mode, tasks do not sleep at the separate tasking
2950             // barrier, so this isn't a problem.
2951             asleep = 0;
2952             if ((__kmp_tasking_mode == tskm_task_teams) &&
2953                 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
2954                 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
2955                  NULL)) {
2956               asleep = 1;
2957               __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread),
2958                                         other_thread->th.th_sleep_loc);
2959               // A sleeping thread should not have any tasks on it's queue.
2960               // There is a slight possibility that it resumes, steals a task
2961               // from another thread, which spawns more tasks, all in the time
2962               // that it takes this thread to check => don't write an assertion
2963               // that the victim's queue is empty.  Try stealing from a
2964               // different thread.
2965             }
2966           } while (asleep);
2967         }
2968 
2969         if (!asleep) {
2970           // We have a victim to try to steal from
2971           task = __kmp_steal_task(other_thread, gtid, task_team,
2972                                   unfinished_threads, thread_finished,
2973                                   is_constrained);
2974         }
2975         if (task != NULL) { // set last stolen to victim
2976           if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
2977             threads_data[tid].td.td_deque_last_stolen = victim_tid;
2978             // The pre-refactored code did not try more than 1 successful new
2979             // vicitm, unless the last one generated more local tasks;
2980             // new_victim keeps track of this
2981             new_victim = 1;
2982           }
2983         } else { // No tasks found; unset last_stolen
2984           KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
2985           victim_tid = -2; // no successful victim found
2986         }
2987       }
2988 
2989       if (task == NULL)
2990         break; // break out of tasking loop
2991 
2992 // Found a task; execute it
2993 #if USE_ITT_BUILD && USE_ITT_NOTIFY
2994       if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
2995         if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
2996           // get the object reliably
2997           itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
2998         }
2999         __kmp_itt_task_starting(itt_sync_obj);
3000       }
3001 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
3002       __kmp_invoke_task(gtid, task, current_task);
3003 #if USE_ITT_BUILD
3004       if (itt_sync_obj != NULL)
3005         __kmp_itt_task_finished(itt_sync_obj);
3006 #endif /* USE_ITT_BUILD */
3007       // If this thread is only partway through the barrier and the condition is
3008       // met, then return now, so that the barrier gather/release pattern can
3009       // proceed. If this thread is in the last spin loop in the barrier,
3010       // waiting to be released, we know that the termination condition will not
3011       // be satisfied, so don't waste any cycles checking it.
3012       if (flag == NULL || (!final_spin && flag->done_check())) {
3013         KA_TRACE(
3014             15,
3015             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3016              gtid));
3017         return TRUE;
3018       }
3019       if (thread->th.th_task_team == NULL) {
3020         break;
3021       }
3022       KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
3023       // If execution of a stolen task results in more tasks being placed on our
3024       // run queue, reset use_own_tasks
3025       if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
3026         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
3027                       "other tasks, restart\n",
3028                       gtid));
3029         use_own_tasks = 1;
3030         new_victim = 0;
3031       }
3032     }
3033 
3034     // The task source has been exhausted. If in final spin loop of barrier,
3035     // check if termination condition is satisfied. The work queue may be empty
3036     // but there might be proxy tasks still executing.
3037     if (final_spin &&
3038         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0) {
3039       // First, decrement the #unfinished threads, if that has not already been
3040       // done.  This decrement might be to the spin location, and result in the
3041       // termination condition being satisfied.
3042       if (!*thread_finished) {
3043         kmp_int32 count;
3044 
3045         count = KMP_ATOMIC_DEC(unfinished_threads) - 1;
3046         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
3047                       "unfinished_threads to %d task_team=%p\n",
3048                       gtid, count, task_team));
3049         *thread_finished = TRUE;
3050       }
3051 
3052       // It is now unsafe to reference thread->th.th_team !!!
3053       // Decrementing task_team->tt.tt_unfinished_threads can allow the master
3054       // thread to pass through the barrier, where it might reset each thread's
3055       // th.th_team field for the next parallel region. If we can steal more
3056       // work, we know that this has not happened yet.
3057       if (flag != NULL && flag->done_check()) {
3058         KA_TRACE(
3059             15,
3060             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3061              gtid));
3062         return TRUE;
3063       }
3064     }
3065 
3066     // If this thread's task team is NULL, master has recognized that there are
3067     // no more tasks; bail out
3068     if (thread->th.th_task_team == NULL) {
3069       KA_TRACE(15,
3070                ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
3071       return FALSE;
3072     }
3073 
3074     // We could be getting tasks from target constructs; if this is the only
3075     // thread, keep trying to execute tasks from own queue
3076     if (nthreads == 1 &&
3077         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks))
3078       use_own_tasks = 1;
3079     else {
3080       KA_TRACE(15,
3081                ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
3082       return FALSE;
3083     }
3084   }
3085 }
3086 
3087 template <bool C, bool S>
3088 int __kmp_execute_tasks_32(
3089     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin,
3090     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3091     kmp_int32 is_constrained) {
3092   return __kmp_execute_tasks_template(
3093       thread, gtid, flag, final_spin,
3094       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3095 }
3096 
3097 template <bool C, bool S>
3098 int __kmp_execute_tasks_64(
3099     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin,
3100     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3101     kmp_int32 is_constrained) {
3102   return __kmp_execute_tasks_template(
3103       thread, gtid, flag, final_spin,
3104       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3105 }
3106 
3107 int __kmp_execute_tasks_oncore(
3108     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
3109     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3110     kmp_int32 is_constrained) {
3111   return __kmp_execute_tasks_template(
3112       thread, gtid, flag, final_spin,
3113       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3114 }
3115 
3116 template int
3117 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32,
3118                                      kmp_flag_32<false, false> *, int,
3119                                      int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3120 
3121 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32,
3122                                                  kmp_flag_64<false, true> *,
3123                                                  int,
3124                                                  int *USE_ITT_BUILD_ARG(void *),
3125                                                  kmp_int32);
3126 
3127 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32,
3128                                                  kmp_flag_64<true, false> *,
3129                                                  int,
3130                                                  int *USE_ITT_BUILD_ARG(void *),
3131                                                  kmp_int32);
3132 
3133 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3134 // next barrier so they can assist in executing enqueued tasks.
3135 // First thread in allocates the task team atomically.
3136 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
3137                                  kmp_info_t *this_thr) {
3138   kmp_thread_data_t *threads_data;
3139   int nthreads, i, is_init_thread;
3140 
3141   KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3142                 __kmp_gtid_from_thread(this_thr)));
3143 
3144   KMP_DEBUG_ASSERT(task_team != NULL);
3145   KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
3146 
3147   nthreads = task_team->tt.tt_nproc;
3148   KMP_DEBUG_ASSERT(nthreads > 0);
3149   KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
3150 
3151   // Allocate or increase the size of threads_data if necessary
3152   is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
3153 
3154   if (!is_init_thread) {
3155     // Some other thread already set up the array.
3156     KA_TRACE(
3157         20,
3158         ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3159          __kmp_gtid_from_thread(this_thr)));
3160     return;
3161   }
3162   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3163   KMP_DEBUG_ASSERT(threads_data != NULL);
3164 
3165   if (__kmp_tasking_mode == tskm_task_teams &&
3166       (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
3167     // Release any threads sleeping at the barrier, so that they can steal
3168     // tasks and execute them.  In extra barrier mode, tasks do not sleep
3169     // at the separate tasking barrier, so this isn't a problem.
3170     for (i = 0; i < nthreads; i++) {
3171       volatile void *sleep_loc;
3172       kmp_info_t *thread = threads_data[i].td.td_thr;
3173 
3174       if (i == this_thr->th.th_info.ds.ds_tid) {
3175         continue;
3176       }
3177       // Since we haven't locked the thread's suspend mutex lock at this
3178       // point, there is a small window where a thread might be putting
3179       // itself to sleep, but hasn't set the th_sleep_loc field yet.
3180       // To work around this, __kmp_execute_tasks_template() periodically checks
3181       // see if other threads are sleeping (using the same random mechanism that
3182       // is used for task stealing) and awakens them if they are.
3183       if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3184           NULL) {
3185         KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3186                       __kmp_gtid_from_thread(this_thr),
3187                       __kmp_gtid_from_thread(thread)));
3188         __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3189       } else {
3190         KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3191                       __kmp_gtid_from_thread(this_thr),
3192                       __kmp_gtid_from_thread(thread)));
3193       }
3194     }
3195   }
3196 
3197   KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3198                 __kmp_gtid_from_thread(this_thr)));
3199 }
3200 
3201 /* // TODO: Check the comment consistency
3202  * Utility routines for "task teams".  A task team (kmp_task_t) is kind of
3203  * like a shadow of the kmp_team_t data struct, with a different lifetime.
3204  * After a child * thread checks into a barrier and calls __kmp_release() from
3205  * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3206  * longer assume that the kmp_team_t structure is intact (at any moment, the
3207  * master thread may exit the barrier code and free the team data structure,
3208  * and return the threads to the thread pool).
3209  *
3210  * This does not work with the tasking code, as the thread is still
3211  * expected to participate in the execution of any tasks that may have been
3212  * spawned my a member of the team, and the thread still needs access to all
3213  * to each thread in the team, so that it can steal work from it.
3214  *
3215  * Enter the existence of the kmp_task_team_t struct.  It employs a reference
3216  * counting mechanism, and is allocated by the master thread before calling
3217  * __kmp_<barrier_kind>_release, and then is release by the last thread to
3218  * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes
3219  * of the kmp_task_team_t structs for consecutive barriers can overlap
3220  * (and will, unless the master thread is the last thread to exit the barrier
3221  * release phase, which is not typical). The existence of such a struct is
3222  * useful outside the context of tasking.
3223  *
3224  * We currently use the existence of the threads array as an indicator that
3225  * tasks were spawned since the last barrier.  If the structure is to be
3226  * useful outside the context of tasking, then this will have to change, but
3227  * not setting the field minimizes the performance impact of tasking on
3228  * barriers, when no explicit tasks were spawned (pushed, actually).
3229  */
3230 
3231 static kmp_task_team_t *__kmp_free_task_teams =
3232     NULL; // Free list for task_team data structures
3233 // Lock for task team data structures
3234 kmp_bootstrap_lock_t __kmp_task_team_lock =
3235     KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
3236 
3237 // __kmp_alloc_task_deque:
3238 // Allocates a task deque for a particular thread, and initialize the necessary
3239 // data structures relating to the deque.  This only happens once per thread
3240 // per task team since task teams are recycled. No lock is needed during
3241 // allocation since each thread allocates its own deque.
3242 static void __kmp_alloc_task_deque(kmp_info_t *thread,
3243                                    kmp_thread_data_t *thread_data) {
3244   __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
3245   KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
3246 
3247   // Initialize last stolen task field to "none"
3248   thread_data->td.td_deque_last_stolen = -1;
3249 
3250   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
3251   KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
3252   KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
3253 
3254   KE_TRACE(
3255       10,
3256       ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3257        __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
3258   // Allocate space for task deque, and zero the deque
3259   // Cannot use __kmp_thread_calloc() because threads not around for
3260   // kmp_reap_task_team( ).
3261   thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
3262       INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
3263   thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
3264 }
3265 
3266 // __kmp_free_task_deque:
3267 // Deallocates a task deque for a particular thread. Happens at library
3268 // deallocation so don't need to reset all thread data fields.
3269 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
3270   if (thread_data->td.td_deque != NULL) {
3271     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3272     TCW_4(thread_data->td.td_deque_ntasks, 0);
3273     __kmp_free(thread_data->td.td_deque);
3274     thread_data->td.td_deque = NULL;
3275     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3276   }
3277 
3278 #ifdef BUILD_TIED_TASK_STACK
3279   // GEH: Figure out what to do here for td_susp_tied_tasks
3280   if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
3281     __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
3282   }
3283 #endif // BUILD_TIED_TASK_STACK
3284 }
3285 
3286 // __kmp_realloc_task_threads_data:
3287 // Allocates a threads_data array for a task team, either by allocating an
3288 // initial array or enlarging an existing array.  Only the first thread to get
3289 // the lock allocs or enlarges the array and re-initializes the array elements.
3290 // That thread returns "TRUE", the rest return "FALSE".
3291 // Assumes that the new array size is given by task_team -> tt.tt_nproc.
3292 // The current size is given by task_team -> tt.tt_max_threads.
3293 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
3294                                            kmp_task_team_t *task_team) {
3295   kmp_thread_data_t **threads_data_p;
3296   kmp_int32 nthreads, maxthreads;
3297   int is_init_thread = FALSE;
3298 
3299   if (TCR_4(task_team->tt.tt_found_tasks)) {
3300     // Already reallocated and initialized.
3301     return FALSE;
3302   }
3303 
3304   threads_data_p = &task_team->tt.tt_threads_data;
3305   nthreads = task_team->tt.tt_nproc;
3306   maxthreads = task_team->tt.tt_max_threads;
3307 
3308   // All threads must lock when they encounter the first task of the implicit
3309   // task region to make sure threads_data fields are (re)initialized before
3310   // used.
3311   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3312 
3313   if (!TCR_4(task_team->tt.tt_found_tasks)) {
3314     // first thread to enable tasking
3315     kmp_team_t *team = thread->th.th_team;
3316     int i;
3317 
3318     is_init_thread = TRUE;
3319     if (maxthreads < nthreads) {
3320 
3321       if (*threads_data_p != NULL) {
3322         kmp_thread_data_t *old_data = *threads_data_p;
3323         kmp_thread_data_t *new_data = NULL;
3324 
3325         KE_TRACE(
3326             10,
3327             ("__kmp_realloc_task_threads_data: T#%d reallocating "
3328              "threads data for task_team %p, new_size = %d, old_size = %d\n",
3329              __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
3330         // Reallocate threads_data to have more elements than current array
3331         // Cannot use __kmp_thread_realloc() because threads not around for
3332         // kmp_reap_task_team( ).  Note all new array entries are initialized
3333         // to zero by __kmp_allocate().
3334         new_data = (kmp_thread_data_t *)__kmp_allocate(
3335             nthreads * sizeof(kmp_thread_data_t));
3336         // copy old data to new data
3337         KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
3338                      (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
3339 
3340 #ifdef BUILD_TIED_TASK_STACK
3341         // GEH: Figure out if this is the right thing to do
3342         for (i = maxthreads; i < nthreads; i++) {
3343           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3344           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3345         }
3346 #endif // BUILD_TIED_TASK_STACK
3347        // Install the new data and free the old data
3348         (*threads_data_p) = new_data;
3349         __kmp_free(old_data);
3350       } else {
3351         KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3352                       "threads data for task_team %p, size = %d\n",
3353                       __kmp_gtid_from_thread(thread), task_team, nthreads));
3354         // Make the initial allocate for threads_data array, and zero entries
3355         // Cannot use __kmp_thread_calloc() because threads not around for
3356         // kmp_reap_task_team( ).
3357         ANNOTATE_IGNORE_WRITES_BEGIN();
3358         *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
3359             nthreads * sizeof(kmp_thread_data_t));
3360         ANNOTATE_IGNORE_WRITES_END();
3361 #ifdef BUILD_TIED_TASK_STACK
3362         // GEH: Figure out if this is the right thing to do
3363         for (i = 0; i < nthreads; i++) {
3364           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3365           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3366         }
3367 #endif // BUILD_TIED_TASK_STACK
3368       }
3369       task_team->tt.tt_max_threads = nthreads;
3370     } else {
3371       // If array has (more than) enough elements, go ahead and use it
3372       KMP_DEBUG_ASSERT(*threads_data_p != NULL);
3373     }
3374 
3375     // initialize threads_data pointers back to thread_info structures
3376     for (i = 0; i < nthreads; i++) {
3377       kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3378       thread_data->td.td_thr = team->t.t_threads[i];
3379 
3380       if (thread_data->td.td_deque_last_stolen >= nthreads) {
3381         // The last stolen field survives across teams / barrier, and the number
3382         // of threads may have changed.  It's possible (likely?) that a new
3383         // parallel region will exhibit the same behavior as previous region.
3384         thread_data->td.td_deque_last_stolen = -1;
3385       }
3386     }
3387 
3388     KMP_MB();
3389     TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
3390   }
3391 
3392   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3393   return is_init_thread;
3394 }
3395 
3396 // __kmp_free_task_threads_data:
3397 // Deallocates a threads_data array for a task team, including any attached
3398 // tasking deques.  Only occurs at library shutdown.
3399 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
3400   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3401   if (task_team->tt.tt_threads_data != NULL) {
3402     int i;
3403     for (i = 0; i < task_team->tt.tt_max_threads; i++) {
3404       __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
3405     }
3406     __kmp_free(task_team->tt.tt_threads_data);
3407     task_team->tt.tt_threads_data = NULL;
3408   }
3409   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3410 }
3411 
3412 // __kmp_allocate_task_team:
3413 // Allocates a task team associated with a specific team, taking it from
3414 // the global task team free list if possible.  Also initializes data
3415 // structures.
3416 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
3417                                                  kmp_team_t *team) {
3418   kmp_task_team_t *task_team = NULL;
3419   int nthreads;
3420 
3421   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3422                 (thread ? __kmp_gtid_from_thread(thread) : -1), team));
3423 
3424   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3425     // Take a task team from the task team pool
3426     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3427     if (__kmp_free_task_teams != NULL) {
3428       task_team = __kmp_free_task_teams;
3429       TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
3430       task_team->tt.tt_next = NULL;
3431     }
3432     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3433   }
3434 
3435   if (task_team == NULL) {
3436     KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3437                   "task team for team %p\n",
3438                   __kmp_gtid_from_thread(thread), team));
3439     // Allocate a new task team if one is not available. Cannot use
3440     // __kmp_thread_malloc because threads not around for kmp_reap_task_team.
3441     task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
3442     __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
3443 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
3444     // suppress race conditions detection on synchronization flags in debug mode
3445     // this helps to analyze library internals eliminating false positives
3446     __itt_suppress_mark_range(
3447         __itt_suppress_range, __itt_suppress_threading_errors,
3448         &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks));
3449     __itt_suppress_mark_range(__itt_suppress_range,
3450                               __itt_suppress_threading_errors,
3451                               CCAST(kmp_uint32 *, &task_team->tt.tt_active),
3452                               sizeof(task_team->tt.tt_active));
3453 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
3454     // Note: __kmp_allocate zeroes returned memory, othewise we would need:
3455     // task_team->tt.tt_threads_data = NULL;
3456     // task_team->tt.tt_max_threads = 0;
3457     // task_team->tt.tt_next = NULL;
3458   }
3459 
3460   TCW_4(task_team->tt.tt_found_tasks, FALSE);
3461   TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3462   task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
3463 
3464   KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
3465   TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3466   TCW_4(task_team->tt.tt_active, TRUE);
3467 
3468   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
3469                 "unfinished_threads init'd to %d\n",
3470                 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
3471                 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
3472   return task_team;
3473 }
3474 
3475 // __kmp_free_task_team:
3476 // Frees the task team associated with a specific thread, and adds it
3477 // to the global task team free list.
3478 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
3479   KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
3480                 thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
3481 
3482   // Put task team back on free list
3483   __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3484 
3485   KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
3486   task_team->tt.tt_next = __kmp_free_task_teams;
3487   TCW_PTR(__kmp_free_task_teams, task_team);
3488 
3489   __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3490 }
3491 
3492 // __kmp_reap_task_teams:
3493 // Free all the task teams on the task team free list.
3494 // Should only be done during library shutdown.
3495 // Cannot do anything that needs a thread structure or gtid since they are
3496 // already gone.
3497 void __kmp_reap_task_teams(void) {
3498   kmp_task_team_t *task_team;
3499 
3500   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3501     // Free all task_teams on the free list
3502     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3503     while ((task_team = __kmp_free_task_teams) != NULL) {
3504       __kmp_free_task_teams = task_team->tt.tt_next;
3505       task_team->tt.tt_next = NULL;
3506 
3507       // Free threads_data if necessary
3508       if (task_team->tt.tt_threads_data != NULL) {
3509         __kmp_free_task_threads_data(task_team);
3510       }
3511       __kmp_free(task_team);
3512     }
3513     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3514   }
3515 }
3516 
3517 // __kmp_wait_to_unref_task_teams:
3518 // Some threads could still be in the fork barrier release code, possibly
3519 // trying to steal tasks.  Wait for each thread to unreference its task team.
3520 void __kmp_wait_to_unref_task_teams(void) {
3521   kmp_info_t *thread;
3522   kmp_uint32 spins;
3523   int done;
3524 
3525   KMP_INIT_YIELD(spins);
3526 
3527   for (;;) {
3528     done = TRUE;
3529 
3530     // TODO: GEH - this may be is wrong because some sync would be necessary
3531     // in case threads are added to the pool during the traversal. Need to
3532     // verify that lock for thread pool is held when calling this routine.
3533     for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
3534          thread = thread->th.th_next_pool) {
3535 #if KMP_OS_WINDOWS
3536       DWORD exit_val;
3537 #endif
3538       if (TCR_PTR(thread->th.th_task_team) == NULL) {
3539         KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
3540                       __kmp_gtid_from_thread(thread)));
3541         continue;
3542       }
3543 #if KMP_OS_WINDOWS
3544       // TODO: GEH - add this check for Linux* OS / OS X* as well?
3545       if (!__kmp_is_thread_alive(thread, &exit_val)) {
3546         thread->th.th_task_team = NULL;
3547         continue;
3548       }
3549 #endif
3550 
3551       done = FALSE; // Because th_task_team pointer is not NULL for this thread
3552 
3553       KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
3554                     "unreference task_team\n",
3555                     __kmp_gtid_from_thread(thread)));
3556 
3557       if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
3558         volatile void *sleep_loc;
3559         // If the thread is sleeping, awaken it.
3560         if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3561             NULL) {
3562           KA_TRACE(
3563               10,
3564               ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
3565                __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
3566           __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3567         }
3568       }
3569     }
3570     if (done) {
3571       break;
3572     }
3573 
3574     // If oversubscribed or have waited a bit, yield.
3575     KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
3576   }
3577 }
3578 
3579 // __kmp_task_team_setup:  Create a task_team for the current team, but use
3580 // an already created, unused one if it already exists.
3581 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
3582   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3583 
3584   // If this task_team hasn't been created yet, allocate it. It will be used in
3585   // the region after the next.
3586   // If it exists, it is the current task team and shouldn't be touched yet as
3587   // it may still be in use.
3588   if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
3589       (always || team->t.t_nproc > 1)) {
3590     team->t.t_task_team[this_thr->th.th_task_state] =
3591         __kmp_allocate_task_team(this_thr, team);
3592     KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p "
3593                   "for team %d at parity=%d\n",
3594                   __kmp_gtid_from_thread(this_thr),
3595                   team->t.t_task_team[this_thr->th.th_task_state],
3596                   ((team != NULL) ? team->t.t_id : -1),
3597                   this_thr->th.th_task_state));
3598   }
3599 
3600   // After threads exit the release, they will call sync, and then point to this
3601   // other task_team; make sure it is allocated and properly initialized. As
3602   // threads spin in the barrier release phase, they will continue to use the
3603   // previous task_team struct(above), until they receive the signal to stop
3604   // checking for tasks (they can't safely reference the kmp_team_t struct,
3605   // which could be reallocated by the master thread). No task teams are formed
3606   // for serialized teams.
3607   if (team->t.t_nproc > 1) {
3608     int other_team = 1 - this_thr->th.th_task_state;
3609     if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
3610       team->t.t_task_team[other_team] =
3611           __kmp_allocate_task_team(this_thr, team);
3612       KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new "
3613                     "task_team %p for team %d at parity=%d\n",
3614                     __kmp_gtid_from_thread(this_thr),
3615                     team->t.t_task_team[other_team],
3616                     ((team != NULL) ? team->t.t_id : -1), other_team));
3617     } else { // Leave the old task team struct in place for the upcoming region;
3618       // adjust as needed
3619       kmp_task_team_t *task_team = team->t.t_task_team[other_team];
3620       if (!task_team->tt.tt_active ||
3621           team->t.t_nproc != task_team->tt.tt_nproc) {
3622         TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
3623         TCW_4(task_team->tt.tt_found_tasks, FALSE);
3624         TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3625         KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
3626                           team->t.t_nproc);
3627         TCW_4(task_team->tt.tt_active, TRUE);
3628       }
3629       // if team size has changed, the first thread to enable tasking will
3630       // realloc threads_data if necessary
3631       KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team "
3632                     "%p for team %d at parity=%d\n",
3633                     __kmp_gtid_from_thread(this_thr),
3634                     team->t.t_task_team[other_team],
3635                     ((team != NULL) ? team->t.t_id : -1), other_team));
3636     }
3637   }
3638 
3639   // For regular thread, task enabling should be called when the task is going
3640   // to be pushed to a dequeue. However, for the hidden helper thread, we need
3641   // it ahead of time so that some operations can be performed without race
3642   // condition.
3643   if (this_thr == __kmp_hidden_helper_main_thread) {
3644     for (int i = 0; i < 2; ++i) {
3645       kmp_task_team_t *task_team = team->t.t_task_team[i];
3646       if (KMP_TASKING_ENABLED(task_team)) {
3647         continue;
3648       }
3649       __kmp_enable_tasking(task_team, this_thr);
3650       for (int j = 0; j < task_team->tt.tt_nproc; ++j) {
3651         kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j];
3652         if (thread_data->td.td_deque == NULL) {
3653           __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data);
3654         }
3655       }
3656     }
3657   }
3658 }
3659 
3660 // __kmp_task_team_sync: Propagation of task team data from team to threads
3661 // which happens just after the release phase of a team barrier.  This may be
3662 // called by any thread, but only for teams with # threads > 1.
3663 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
3664   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3665 
3666   // Toggle the th_task_state field, to switch which task_team this thread
3667   // refers to
3668   this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state);
3669 
3670   // It is now safe to propagate the task team pointer from the team struct to
3671   // the current thread.
3672   TCW_PTR(this_thr->th.th_task_team,
3673           team->t.t_task_team[this_thr->th.th_task_state]);
3674   KA_TRACE(20,
3675            ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
3676             "%p from Team #%d (parity=%d)\n",
3677             __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
3678             ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state));
3679 }
3680 
3681 // __kmp_task_team_wait: Master thread waits for outstanding tasks after the
3682 // barrier gather phase. Only called by master thread if #threads in team > 1 or
3683 // if proxy tasks were created.
3684 //
3685 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
3686 // by passing in 0 optionally as the last argument. When wait is zero, master
3687 // thread does not wait for unfinished_threads to reach 0.
3688 void __kmp_task_team_wait(
3689     kmp_info_t *this_thr,
3690     kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
3691   kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
3692 
3693   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3694   KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
3695 
3696   if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
3697     if (wait) {
3698       KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks "
3699                     "(for unfinished_threads to reach 0) on task_team = %p\n",
3700                     __kmp_gtid_from_thread(this_thr), task_team));
3701       // Worker threads may have dropped through to release phase, but could
3702       // still be executing tasks. Wait here for tasks to complete. To avoid
3703       // memory contention, only master thread checks termination condition.
3704       kmp_flag_32<false, false> flag(
3705           RCAST(std::atomic<kmp_uint32> *,
3706                 &task_team->tt.tt_unfinished_threads),
3707           0U);
3708       flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
3709     }
3710     // Deactivate the old task team, so that the worker threads will stop
3711     // referencing it while spinning.
3712     KA_TRACE(
3713         20,
3714         ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: "
3715          "setting active to false, setting local and team's pointer to NULL\n",
3716          __kmp_gtid_from_thread(this_thr), task_team));
3717     KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
3718                      task_team->tt.tt_found_proxy_tasks == TRUE);
3719     TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3720     KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
3721     TCW_SYNC_4(task_team->tt.tt_active, FALSE);
3722     KMP_MB();
3723 
3724     TCW_PTR(this_thr->th.th_task_team, NULL);
3725   }
3726 }
3727 
3728 // __kmp_tasking_barrier:
3729 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier.
3730 // Internal function to execute all tasks prior to a regular barrier or a join
3731 // barrier. It is a full barrier itself, which unfortunately turns regular
3732 // barriers into double barriers and join barriers into 1 1/2 barriers.
3733 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
3734   std::atomic<kmp_uint32> *spin = RCAST(
3735       std::atomic<kmp_uint32> *,
3736       &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
3737   int flag = FALSE;
3738   KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
3739 
3740 #if USE_ITT_BUILD
3741   KMP_FSYNC_SPIN_INIT(spin, NULL);
3742 #endif /* USE_ITT_BUILD */
3743   kmp_flag_32<false, false> spin_flag(spin, 0U);
3744   while (!spin_flag.execute_tasks(thread, gtid, TRUE,
3745                                   &flag USE_ITT_BUILD_ARG(NULL), 0)) {
3746 #if USE_ITT_BUILD
3747     // TODO: What about itt_sync_obj??
3748     KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
3749 #endif /* USE_ITT_BUILD */
3750 
3751     if (TCR_4(__kmp_global.g.g_done)) {
3752       if (__kmp_global.g.g_abort)
3753         __kmp_abort_thread();
3754       break;
3755     }
3756     KMP_YIELD(TRUE);
3757   }
3758 #if USE_ITT_BUILD
3759   KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
3760 #endif /* USE_ITT_BUILD */
3761 }
3762 
3763 // __kmp_give_task puts a task into a given thread queue if:
3764 //  - the queue for that thread was created
3765 //  - there's space in that queue
3766 // Because of this, __kmp_push_task needs to check if there's space after
3767 // getting the lock
3768 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
3769                             kmp_int32 pass) {
3770   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
3771   kmp_task_team_t *task_team = taskdata->td_task_team;
3772 
3773   KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
3774                 taskdata, tid));
3775 
3776   // If task_team is NULL something went really bad...
3777   KMP_DEBUG_ASSERT(task_team != NULL);
3778 
3779   bool result = false;
3780   kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
3781 
3782   if (thread_data->td.td_deque == NULL) {
3783     // There's no queue in this thread, go find another one
3784     // We're guaranteed that at least one thread has a queue
3785     KA_TRACE(30,
3786              ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
3787               tid, taskdata));
3788     return result;
3789   }
3790 
3791   if (TCR_4(thread_data->td.td_deque_ntasks) >=
3792       TASK_DEQUE_SIZE(thread_data->td)) {
3793     KA_TRACE(
3794         30,
3795         ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
3796          taskdata, tid));
3797 
3798     // if this deque is bigger than the pass ratio give a chance to another
3799     // thread
3800     if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3801       return result;
3802 
3803     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3804     if (TCR_4(thread_data->td.td_deque_ntasks) >=
3805         TASK_DEQUE_SIZE(thread_data->td)) {
3806       // expand deque to push the task which is not allowed to execute
3807       __kmp_realloc_task_deque(thread, thread_data);
3808     }
3809 
3810   } else {
3811 
3812     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3813 
3814     if (TCR_4(thread_data->td.td_deque_ntasks) >=
3815         TASK_DEQUE_SIZE(thread_data->td)) {
3816       KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
3817                     "thread %d.\n",
3818                     taskdata, tid));
3819 
3820       // if this deque is bigger than the pass ratio give a chance to another
3821       // thread
3822       if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3823         goto release_and_exit;
3824 
3825       __kmp_realloc_task_deque(thread, thread_data);
3826     }
3827   }
3828 
3829   // lock is held here, and there is space in the deque
3830 
3831   thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
3832   // Wrap index.
3833   thread_data->td.td_deque_tail =
3834       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
3835   TCW_4(thread_data->td.td_deque_ntasks,
3836         TCR_4(thread_data->td.td_deque_ntasks) + 1);
3837 
3838   result = true;
3839   KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
3840                 taskdata, tid));
3841 
3842 release_and_exit:
3843   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3844 
3845   return result;
3846 }
3847 
3848 /* The finish of the proxy tasks is divided in two pieces:
3849     - the top half is the one that can be done from a thread outside the team
3850     - the bottom half must be run from a thread within the team
3851 
3852    In order to run the bottom half the task gets queued back into one of the
3853    threads of the team. Once the td_incomplete_child_task counter of the parent
3854    is decremented the threads can leave the barriers. So, the bottom half needs
3855    to be queued before the counter is decremented. The top half is therefore
3856    divided in two parts:
3857     - things that can be run before queuing the bottom half
3858     - things that must be run after queuing the bottom half
3859 
3860    This creates a second race as the bottom half can free the task before the
3861    second top half is executed. To avoid this we use the
3862    td_incomplete_child_task of the proxy task to synchronize the top and bottom
3863    half. */
3864 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3865   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
3866   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3867   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
3868   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
3869 
3870   taskdata->td_flags.complete = 1; // mark the task as completed
3871 
3872   if (taskdata->td_taskgroup)
3873     KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
3874 
3875   // Create an imaginary children for this task so the bottom half cannot
3876   // release the task before we have completed the second top half
3877   KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks);
3878 }
3879 
3880 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3881   kmp_int32 children = 0;
3882 
3883   // Predecrement simulated by "- 1" calculation
3884   children =
3885       KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
3886   KMP_DEBUG_ASSERT(children >= 0);
3887 
3888   // Remove the imaginary children
3889   KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks);
3890 }
3891 
3892 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
3893   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3894   kmp_info_t *thread = __kmp_threads[gtid];
3895 
3896   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3897   KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
3898                    1); // top half must run before bottom half
3899 
3900   // We need to wait to make sure the top half is finished
3901   // Spinning here should be ok as this should happen quickly
3902   while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0)
3903     ;
3904 
3905   __kmp_release_deps(gtid, taskdata);
3906   __kmp_free_task_and_ancestors(gtid, taskdata, thread);
3907 }
3908 
3909 /*!
3910 @ingroup TASKING
3911 @param gtid Global Thread ID of encountering thread
3912 @param ptask Task which execution is completed
3913 
3914 Execute the completion of a proxy task from a thread of that is part of the
3915 team. Run first and bottom halves directly.
3916 */
3917 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
3918   KMP_DEBUG_ASSERT(ptask != NULL);
3919   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3920   KA_TRACE(
3921       10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
3922            gtid, taskdata));
3923   __kmp_assert_valid_gtid(gtid);
3924   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3925 
3926   __kmp_first_top_half_finish_proxy(taskdata);
3927   __kmp_second_top_half_finish_proxy(taskdata);
3928   __kmp_bottom_half_finish_proxy(gtid, ptask);
3929 
3930   KA_TRACE(10,
3931            ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
3932             gtid, taskdata));
3933 }
3934 
3935 /*!
3936 @ingroup TASKING
3937 @param ptask Task which execution is completed
3938 
3939 Execute the completion of a proxy task from a thread that could not belong to
3940 the team.
3941 */
3942 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
3943   KMP_DEBUG_ASSERT(ptask != NULL);
3944   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3945 
3946   KA_TRACE(
3947       10,
3948       ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
3949        taskdata));
3950 
3951   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3952 
3953   __kmp_first_top_half_finish_proxy(taskdata);
3954 
3955   // Enqueue task to complete bottom half completion from a thread within the
3956   // corresponding team
3957   kmp_team_t *team = taskdata->td_team;
3958   kmp_int32 nthreads = team->t.t_nproc;
3959   kmp_info_t *thread;
3960 
3961   // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
3962   // but we cannot use __kmp_get_random here
3963   kmp_int32 start_k = 0;
3964   kmp_int32 pass = 1;
3965   kmp_int32 k = start_k;
3966 
3967   do {
3968     // For now we're just linearly trying to find a thread
3969     thread = team->t.t_threads[k];
3970     k = (k + 1) % nthreads;
3971 
3972     // we did a full pass through all the threads
3973     if (k == start_k)
3974       pass = pass << 1;
3975 
3976   } while (!__kmp_give_task(thread, k, ptask, pass));
3977 
3978   __kmp_second_top_half_finish_proxy(taskdata);
3979 
3980   KA_TRACE(
3981       10,
3982       ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
3983        taskdata));
3984 }
3985 
3986 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
3987                                                 kmp_task_t *task) {
3988   kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
3989   if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
3990     td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
3991     td->td_allow_completion_event.ed.task = task;
3992     __kmp_init_tas_lock(&td->td_allow_completion_event.lock);
3993   }
3994   return &td->td_allow_completion_event;
3995 }
3996 
3997 void __kmp_fulfill_event(kmp_event_t *event) {
3998   if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
3999     kmp_task_t *ptask = event->ed.task;
4000     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4001     bool detached = false;
4002     int gtid = __kmp_get_gtid();
4003 
4004     // The associated task might have completed or could be completing at this
4005     // point.
4006     // We need to take the lock to avoid races
4007     __kmp_acquire_tas_lock(&event->lock, gtid);
4008     if (taskdata->td_flags.proxy == TASK_PROXY) {
4009       detached = true;
4010     } else {
4011 #if OMPT_SUPPORT
4012       // The OMPT event must occur under mutual exclusion,
4013       // otherwise the tool might access ptask after free
4014       if (UNLIKELY(ompt_enabled.enabled))
4015         __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill);
4016 #endif
4017     }
4018     event->type = KMP_EVENT_UNINITIALIZED;
4019     __kmp_release_tas_lock(&event->lock, gtid);
4020 
4021     if (detached) {
4022 #if OMPT_SUPPORT
4023       // We free ptask afterwards and know the task is finished,
4024       // so locking is not necessary
4025       if (UNLIKELY(ompt_enabled.enabled))
4026         __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill);
4027 #endif
4028       // If the task detached complete the proxy task
4029       if (gtid >= 0) {
4030         kmp_team_t *team = taskdata->td_team;
4031         kmp_info_t *thread = __kmp_get_thread();
4032         if (thread->th.th_team == team) {
4033           __kmpc_proxy_task_completed(gtid, ptask);
4034           return;
4035         }
4036       }
4037 
4038       // fallback
4039       __kmpc_proxy_task_completed_ooo(ptask);
4040     }
4041   }
4042 }
4043 
4044 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
4045 // for taskloop
4046 //
4047 // thread:   allocating thread
4048 // task_src: pointer to source task to be duplicated
4049 // returns:  a pointer to the allocated kmp_task_t structure (task).
4050 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) {
4051   kmp_task_t *task;
4052   kmp_taskdata_t *taskdata;
4053   kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
4054   kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task
4055   size_t shareds_offset;
4056   size_t task_size;
4057 
4058   KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
4059                 task_src));
4060   KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
4061                    TASK_FULL); // it should not be proxy task
4062   KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
4063   task_size = taskdata_src->td_size_alloc;
4064 
4065   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
4066   KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
4067                 task_size));
4068 #if USE_FAST_MEMORY
4069   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
4070 #else
4071   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
4072 #endif /* USE_FAST_MEMORY */
4073   KMP_MEMCPY(taskdata, taskdata_src, task_size);
4074 
4075   task = KMP_TASKDATA_TO_TASK(taskdata);
4076 
4077   // Initialize new task (only specific fields not affected by memcpy)
4078   taskdata->td_task_id = KMP_GEN_TASK_ID();
4079   if (task->shareds != NULL) { // need setup shareds pointer
4080     shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
4081     task->shareds = &((char *)taskdata)[shareds_offset];
4082     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
4083                      0);
4084   }
4085   taskdata->td_alloc_thread = thread;
4086   taskdata->td_parent = parent_task;
4087   // task inherits the taskgroup from the parent task
4088   taskdata->td_taskgroup = parent_task->td_taskgroup;
4089   // tied task needs to initialize the td_last_tied at creation,
4090   // untied one does this when it is scheduled for execution
4091   if (taskdata->td_flags.tiedness == TASK_TIED)
4092     taskdata->td_last_tied = taskdata;
4093 
4094   // Only need to keep track of child task counts if team parallel and tasking
4095   // not serialized
4096   if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
4097     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
4098     if (parent_task->td_taskgroup)
4099       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
4100     // Only need to keep track of allocated child tasks for explicit tasks since
4101     // implicit not deallocated
4102     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
4103       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
4104   }
4105 
4106   KA_TRACE(20,
4107            ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
4108             thread, taskdata, taskdata->td_parent));
4109 #if OMPT_SUPPORT
4110   if (UNLIKELY(ompt_enabled.enabled))
4111     __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
4112 #endif
4113   return task;
4114 }
4115 
4116 // Routine optionally generated by the compiler for setting the lastprivate flag
4117 // and calling needed constructors for private/firstprivate objects
4118 // (used to form taskloop tasks from pattern task)
4119 // Parameters: dest task, src task, lastprivate flag.
4120 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
4121 
4122 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
4123 
4124 // class to encapsulate manipulating loop bounds in a taskloop task.
4125 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting
4126 // the loop bound variables.
4127 class kmp_taskloop_bounds_t {
4128   kmp_task_t *task;
4129   const kmp_taskdata_t *taskdata;
4130   size_t lower_offset;
4131   size_t upper_offset;
4132 
4133 public:
4134   kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
4135       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
4136         lower_offset((char *)lb - (char *)task),
4137         upper_offset((char *)ub - (char *)task) {
4138     KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
4139     KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
4140   }
4141   kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
4142       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
4143         lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
4144   size_t get_lower_offset() const { return lower_offset; }
4145   size_t get_upper_offset() const { return upper_offset; }
4146   kmp_uint64 get_lb() const {
4147     kmp_int64 retval;
4148 #if defined(KMP_GOMP_COMPAT)
4149     // Intel task just returns the lower bound normally
4150     if (!taskdata->td_flags.native) {
4151       retval = *(kmp_int64 *)((char *)task + lower_offset);
4152     } else {
4153       // GOMP task has to take into account the sizeof(long)
4154       if (taskdata->td_size_loop_bounds == 4) {
4155         kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
4156         retval = (kmp_int64)*lb;
4157       } else {
4158         kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
4159         retval = (kmp_int64)*lb;
4160       }
4161     }
4162 #else
4163     (void)taskdata;
4164     retval = *(kmp_int64 *)((char *)task + lower_offset);
4165 #endif // defined(KMP_GOMP_COMPAT)
4166     return retval;
4167   }
4168   kmp_uint64 get_ub() const {
4169     kmp_int64 retval;
4170 #if defined(KMP_GOMP_COMPAT)
4171     // Intel task just returns the upper bound normally
4172     if (!taskdata->td_flags.native) {
4173       retval = *(kmp_int64 *)((char *)task + upper_offset);
4174     } else {
4175       // GOMP task has to take into account the sizeof(long)
4176       if (taskdata->td_size_loop_bounds == 4) {
4177         kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
4178         retval = (kmp_int64)*ub;
4179       } else {
4180         kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
4181         retval = (kmp_int64)*ub;
4182       }
4183     }
4184 #else
4185     retval = *(kmp_int64 *)((char *)task + upper_offset);
4186 #endif // defined(KMP_GOMP_COMPAT)
4187     return retval;
4188   }
4189   void set_lb(kmp_uint64 lb) {
4190 #if defined(KMP_GOMP_COMPAT)
4191     // Intel task just sets the lower bound normally
4192     if (!taskdata->td_flags.native) {
4193       *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4194     } else {
4195       // GOMP task has to take into account the sizeof(long)
4196       if (taskdata->td_size_loop_bounds == 4) {
4197         kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
4198         *lower = (kmp_uint32)lb;
4199       } else {
4200         kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
4201         *lower = (kmp_uint64)lb;
4202       }
4203     }
4204 #else
4205     *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4206 #endif // defined(KMP_GOMP_COMPAT)
4207   }
4208   void set_ub(kmp_uint64 ub) {
4209 #if defined(KMP_GOMP_COMPAT)
4210     // Intel task just sets the upper bound normally
4211     if (!taskdata->td_flags.native) {
4212       *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4213     } else {
4214       // GOMP task has to take into account the sizeof(long)
4215       if (taskdata->td_size_loop_bounds == 4) {
4216         kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
4217         *upper = (kmp_uint32)ub;
4218       } else {
4219         kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
4220         *upper = (kmp_uint64)ub;
4221       }
4222     }
4223 #else
4224     *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4225 #endif // defined(KMP_GOMP_COMPAT)
4226   }
4227 };
4228 
4229 // __kmp_taskloop_linear: Start tasks of the taskloop linearly
4230 //
4231 // loc        Source location information
4232 // gtid       Global thread ID
4233 // task       Pattern task, exposes the loop iteration range
4234 // lb         Pointer to loop lower bound in task structure
4235 // ub         Pointer to loop upper bound in task structure
4236 // st         Loop stride
4237 // ub_glob    Global upper bound (used for lastprivate check)
4238 // num_tasks  Number of tasks to execute
4239 // grainsize  Number of loop iterations per task
4240 // extras     Number of chunks with grainsize+1 iterations
4241 // last_chunk Reduction of grainsize for last task
4242 // tc         Iterations count
4243 // task_dup   Tasks duplication routine
4244 // codeptr_ra Return address for OMPT events
4245 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
4246                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4247                            kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4248                            kmp_uint64 grainsize, kmp_uint64 extras,
4249                            kmp_int64 last_chunk, kmp_uint64 tc,
4250 #if OMPT_SUPPORT
4251                            void *codeptr_ra,
4252 #endif
4253                            void *task_dup) {
4254   KMP_COUNT_BLOCK(OMP_TASKLOOP);
4255   KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
4256   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4257   // compiler provides global bounds here
4258   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4259   kmp_uint64 lower = task_bounds.get_lb();
4260   kmp_uint64 upper = task_bounds.get_ub();
4261   kmp_uint64 i;
4262   kmp_info_t *thread = __kmp_threads[gtid];
4263   kmp_taskdata_t *current_task = thread->th.th_current_task;
4264   kmp_task_t *next_task;
4265   kmp_int32 lastpriv = 0;
4266 
4267   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4268                              (last_chunk < 0 ? last_chunk : extras));
4269   KMP_DEBUG_ASSERT(num_tasks > extras);
4270   KMP_DEBUG_ASSERT(num_tasks > 0);
4271   KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4272                 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4273                 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper,
4274                 ub_glob, st, task_dup));
4275 
4276   // Launch num_tasks tasks, assign grainsize iterations each task
4277   for (i = 0; i < num_tasks; ++i) {
4278     kmp_uint64 chunk_minus_1;
4279     if (extras == 0) {
4280       chunk_minus_1 = grainsize - 1;
4281     } else {
4282       chunk_minus_1 = grainsize;
4283       --extras; // first extras iterations get bigger chunk (grainsize+1)
4284     }
4285     upper = lower + st * chunk_minus_1;
4286     if (upper > *ub) {
4287       upper = *ub;
4288     }
4289     if (i == num_tasks - 1) {
4290       // schedule the last task, set lastprivate flag if needed
4291       if (st == 1) { // most common case
4292         KMP_DEBUG_ASSERT(upper == *ub);
4293         if (upper == ub_glob)
4294           lastpriv = 1;
4295       } else if (st > 0) { // positive loop stride
4296         KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
4297         if ((kmp_uint64)st > ub_glob - upper)
4298           lastpriv = 1;
4299       } else { // negative loop stride
4300         KMP_DEBUG_ASSERT(upper + st < *ub);
4301         if (upper - ub_glob < (kmp_uint64)(-st))
4302           lastpriv = 1;
4303       }
4304     }
4305     next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
4306     kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
4307     kmp_taskloop_bounds_t next_task_bounds =
4308         kmp_taskloop_bounds_t(next_task, task_bounds);
4309 
4310     // adjust task-specific bounds
4311     next_task_bounds.set_lb(lower);
4312     if (next_taskdata->td_flags.native) {
4313       next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
4314     } else {
4315       next_task_bounds.set_ub(upper);
4316     }
4317     if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates,
4318                            // etc.
4319       ptask_dup(next_task, task, lastpriv);
4320     KA_TRACE(40,
4321              ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4322               "upper %lld stride %lld, (offsets %p %p)\n",
4323               gtid, i, next_task, lower, upper, st,
4324               next_task_bounds.get_lower_offset(),
4325               next_task_bounds.get_upper_offset()));
4326 #if OMPT_SUPPORT
4327     __kmp_omp_taskloop_task(NULL, gtid, next_task,
4328                             codeptr_ra); // schedule new task
4329 #else
4330     __kmp_omp_task(gtid, next_task, true); // schedule new task
4331 #endif
4332     lower = upper + st; // adjust lower bound for the next iteration
4333   }
4334   // free the pattern task and exit
4335   __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
4336   // do not execute the pattern task, just do internal bookkeeping
4337   __kmp_task_finish<false>(gtid, task, current_task);
4338 }
4339 
4340 // Structure to keep taskloop parameters for auxiliary task
4341 // kept in the shareds of the task structure.
4342 typedef struct __taskloop_params {
4343   kmp_task_t *task;
4344   kmp_uint64 *lb;
4345   kmp_uint64 *ub;
4346   void *task_dup;
4347   kmp_int64 st;
4348   kmp_uint64 ub_glob;
4349   kmp_uint64 num_tasks;
4350   kmp_uint64 grainsize;
4351   kmp_uint64 extras;
4352   kmp_int64 last_chunk;
4353   kmp_uint64 tc;
4354   kmp_uint64 num_t_min;
4355 #if OMPT_SUPPORT
4356   void *codeptr_ra;
4357 #endif
4358 } __taskloop_params_t;
4359 
4360 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
4361                           kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
4362                           kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64,
4363                           kmp_uint64,
4364 #if OMPT_SUPPORT
4365                           void *,
4366 #endif
4367                           void *);
4368 
4369 // Execute part of the taskloop submitted as a task.
4370 int __kmp_taskloop_task(int gtid, void *ptask) {
4371   __taskloop_params_t *p =
4372       (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
4373   kmp_task_t *task = p->task;
4374   kmp_uint64 *lb = p->lb;
4375   kmp_uint64 *ub = p->ub;
4376   void *task_dup = p->task_dup;
4377   //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4378   kmp_int64 st = p->st;
4379   kmp_uint64 ub_glob = p->ub_glob;
4380   kmp_uint64 num_tasks = p->num_tasks;
4381   kmp_uint64 grainsize = p->grainsize;
4382   kmp_uint64 extras = p->extras;
4383   kmp_int64 last_chunk = p->last_chunk;
4384   kmp_uint64 tc = p->tc;
4385   kmp_uint64 num_t_min = p->num_t_min;
4386 #if OMPT_SUPPORT
4387   void *codeptr_ra = p->codeptr_ra;
4388 #endif
4389 #if KMP_DEBUG
4390   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4391   KMP_DEBUG_ASSERT(task != NULL);
4392   KA_TRACE(20,
4393            ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
4394             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4395             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4396             st, task_dup));
4397 #endif
4398   KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
4399   if (num_tasks > num_t_min)
4400     __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4401                          grainsize, extras, last_chunk, tc, num_t_min,
4402 #if OMPT_SUPPORT
4403                          codeptr_ra,
4404 #endif
4405                          task_dup);
4406   else
4407     __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4408                           grainsize, extras, last_chunk, tc,
4409 #if OMPT_SUPPORT
4410                           codeptr_ra,
4411 #endif
4412                           task_dup);
4413 
4414   KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
4415   return 0;
4416 }
4417 
4418 // Schedule part of the taskloop as a task,
4419 // execute the rest of the taskloop.
4420 //
4421 // loc        Source location information
4422 // gtid       Global thread ID
4423 // task       Pattern task, exposes the loop iteration range
4424 // lb         Pointer to loop lower bound in task structure
4425 // ub         Pointer to loop upper bound in task structure
4426 // st         Loop stride
4427 // ub_glob    Global upper bound (used for lastprivate check)
4428 // num_tasks  Number of tasks to execute
4429 // grainsize  Number of loop iterations per task
4430 // extras     Number of chunks with grainsize+1 iterations
4431 // last_chunk Reduction of grainsize for last task
4432 // tc         Iterations count
4433 // num_t_min  Threshold to launch tasks recursively
4434 // task_dup   Tasks duplication routine
4435 // codeptr_ra Return address for OMPT events
4436 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
4437                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4438                           kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4439                           kmp_uint64 grainsize, kmp_uint64 extras,
4440                           kmp_int64 last_chunk, kmp_uint64 tc,
4441                           kmp_uint64 num_t_min,
4442 #if OMPT_SUPPORT
4443                           void *codeptr_ra,
4444 #endif
4445                           void *task_dup) {
4446   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4447   KMP_DEBUG_ASSERT(task != NULL);
4448   KMP_DEBUG_ASSERT(num_tasks > num_t_min);
4449   KA_TRACE(20,
4450            ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
4451             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4452             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4453             st, task_dup));
4454   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4455   kmp_uint64 lower = *lb;
4456   kmp_info_t *thread = __kmp_threads[gtid];
4457   //  kmp_taskdata_t *current_task = thread->th.th_current_task;
4458   kmp_task_t *next_task;
4459   size_t lower_offset =
4460       (char *)lb - (char *)task; // remember offset of lb in the task structure
4461   size_t upper_offset =
4462       (char *)ub - (char *)task; // remember offset of ub in the task structure
4463 
4464   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4465                              (last_chunk < 0 ? last_chunk : extras));
4466   KMP_DEBUG_ASSERT(num_tasks > extras);
4467   KMP_DEBUG_ASSERT(num_tasks > 0);
4468 
4469   // split the loop in two halves
4470   kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
4471   kmp_int64 last_chunk0 = 0, last_chunk1 = 0;
4472   kmp_uint64 gr_size0 = grainsize;
4473   kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
4474   kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
4475   if (last_chunk < 0) {
4476     ext0 = ext1 = 0;
4477     last_chunk1 = last_chunk;
4478     tc0 = grainsize * n_tsk0;
4479     tc1 = tc - tc0;
4480   } else if (n_tsk0 <= extras) {
4481     gr_size0++; // integrate extras into grainsize
4482     ext0 = 0; // no extra iters in 1st half
4483     ext1 = extras - n_tsk0; // remaining extras
4484     tc0 = gr_size0 * n_tsk0;
4485     tc1 = tc - tc0;
4486   } else { // n_tsk0 > extras
4487     ext1 = 0; // no extra iters in 2nd half
4488     ext0 = extras;
4489     tc1 = grainsize * n_tsk1;
4490     tc0 = tc - tc1;
4491   }
4492   ub0 = lower + st * (tc0 - 1);
4493   lb1 = ub0 + st;
4494 
4495   // create pattern task for 2nd half of the loop
4496   next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
4497   // adjust lower bound (upper bound is not changed) for the 2nd half
4498   *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
4499   if (ptask_dup != NULL) // construct firstprivates, etc.
4500     ptask_dup(next_task, task, 0);
4501   *ub = ub0; // adjust upper bound for the 1st half
4502 
4503   // create auxiliary task for 2nd half of the loop
4504   // make sure new task has same parent task as the pattern task
4505   kmp_taskdata_t *current_task = thread->th.th_current_task;
4506   thread->th.th_current_task = taskdata->td_parent;
4507   kmp_task_t *new_task =
4508       __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
4509                             sizeof(__taskloop_params_t), &__kmp_taskloop_task);
4510   // restore current task
4511   thread->th.th_current_task = current_task;
4512   __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
4513   p->task = next_task;
4514   p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
4515   p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
4516   p->task_dup = task_dup;
4517   p->st = st;
4518   p->ub_glob = ub_glob;
4519   p->num_tasks = n_tsk1;
4520   p->grainsize = grainsize;
4521   p->extras = ext1;
4522   p->last_chunk = last_chunk1;
4523   p->tc = tc1;
4524   p->num_t_min = num_t_min;
4525 #if OMPT_SUPPORT
4526   p->codeptr_ra = codeptr_ra;
4527 #endif
4528 
4529 #if OMPT_SUPPORT
4530   // schedule new task with correct return address for OMPT events
4531   __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
4532 #else
4533   __kmp_omp_task(gtid, new_task, true); // schedule new task
4534 #endif
4535 
4536   // execute the 1st half of current subrange
4537   if (n_tsk0 > num_t_min)
4538     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
4539                          ext0, last_chunk0, tc0, num_t_min,
4540 #if OMPT_SUPPORT
4541                          codeptr_ra,
4542 #endif
4543                          task_dup);
4544   else
4545     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
4546                           gr_size0, ext0, last_chunk0, tc0,
4547 #if OMPT_SUPPORT
4548                           codeptr_ra,
4549 #endif
4550                           task_dup);
4551 
4552   KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid));
4553 }
4554 
4555 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4556                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4557                            int nogroup, int sched, kmp_uint64 grainsize,
4558                            int modifier, void *task_dup) {
4559   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4560   KMP_DEBUG_ASSERT(task != NULL);
4561   if (nogroup == 0) {
4562 #if OMPT_SUPPORT && OMPT_OPTIONAL
4563     OMPT_STORE_RETURN_ADDRESS(gtid);
4564 #endif
4565     __kmpc_taskgroup(loc, gtid);
4566   }
4567 
4568   // =========================================================================
4569   // calculate loop parameters
4570   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4571   kmp_uint64 tc;
4572   // compiler provides global bounds here
4573   kmp_uint64 lower = task_bounds.get_lb();
4574   kmp_uint64 upper = task_bounds.get_ub();
4575   kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
4576   kmp_uint64 num_tasks = 0, extras = 0;
4577   kmp_int64 last_chunk =
4578       0; // reduce grainsize of last task by last_chunk in strict mode
4579   kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
4580   kmp_info_t *thread = __kmp_threads[gtid];
4581   kmp_taskdata_t *current_task = thread->th.th_current_task;
4582 
4583   KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
4584                 "grain %llu(%d, %d), dup %p\n",
4585                 gtid, taskdata, lower, upper, st, grainsize, sched, modifier,
4586                 task_dup));
4587 
4588   // compute trip count
4589   if (st == 1) { // most common case
4590     tc = upper - lower + 1;
4591   } else if (st < 0) {
4592     tc = (lower - upper) / (-st) + 1;
4593   } else { // st > 0
4594     tc = (upper - lower) / st + 1;
4595   }
4596   if (tc == 0) {
4597     KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid));
4598     // free the pattern task and exit
4599     __kmp_task_start(gtid, task, current_task);
4600     // do not execute anything for zero-trip loop
4601     __kmp_task_finish<false>(gtid, task, current_task);
4602     return;
4603   }
4604 
4605 #if OMPT_SUPPORT && OMPT_OPTIONAL
4606   ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
4607   ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
4608   if (ompt_enabled.ompt_callback_work) {
4609     ompt_callbacks.ompt_callback(ompt_callback_work)(
4610         ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
4611         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4612   }
4613 #endif
4614 
4615   if (num_tasks_min == 0)
4616     // TODO: can we choose better default heuristic?
4617     num_tasks_min =
4618         KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
4619 
4620   // compute num_tasks/grainsize based on the input provided
4621   switch (sched) {
4622   case 0: // no schedule clause specified, we can choose the default
4623     // let's try to schedule (team_size*10) tasks
4624     grainsize = thread->th.th_team_nproc * 10;
4625     KMP_FALLTHROUGH();
4626   case 2: // num_tasks provided
4627     if (grainsize > tc) {
4628       num_tasks = tc; // too big num_tasks requested, adjust values
4629       grainsize = 1;
4630       extras = 0;
4631     } else {
4632       num_tasks = grainsize;
4633       grainsize = tc / num_tasks;
4634       extras = tc % num_tasks;
4635     }
4636     break;
4637   case 1: // grainsize provided
4638     if (grainsize > tc) {
4639       num_tasks = 1;
4640       grainsize = tc; // too big grainsize requested, adjust values
4641       extras = 0;
4642     } else {
4643       if (modifier) {
4644         num_tasks = (tc + grainsize - 1) / grainsize;
4645         last_chunk = tc - (num_tasks * grainsize);
4646         extras = 0;
4647       } else {
4648         num_tasks = tc / grainsize;
4649         // adjust grainsize for balanced distribution of iterations
4650         grainsize = tc / num_tasks;
4651         extras = tc % num_tasks;
4652       }
4653     }
4654     break;
4655   default:
4656     KMP_ASSERT2(0, "unknown scheduling of taskloop");
4657   }
4658 
4659   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4660                              (last_chunk < 0 ? last_chunk : extras));
4661   KMP_DEBUG_ASSERT(num_tasks > extras);
4662   KMP_DEBUG_ASSERT(num_tasks > 0);
4663   // =========================================================================
4664 
4665   // check if clause value first
4666   // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
4667   if (if_val == 0) { // if(0) specified, mark task as serial
4668     taskdata->td_flags.task_serial = 1;
4669     taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
4670     // always start serial tasks linearly
4671     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4672                           grainsize, extras, last_chunk, tc,
4673 #if OMPT_SUPPORT
4674                           OMPT_GET_RETURN_ADDRESS(0),
4675 #endif
4676                           task_dup);
4677     // !taskdata->td_flags.native => currently force linear spawning of tasks
4678     // for GOMP_taskloop
4679   } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
4680     KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
4681                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
4682                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
4683                   last_chunk));
4684     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4685                          grainsize, extras, last_chunk, tc, num_tasks_min,
4686 #if OMPT_SUPPORT
4687                          OMPT_GET_RETURN_ADDRESS(0),
4688 #endif
4689                          task_dup);
4690   } else {
4691     KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
4692                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
4693                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
4694                   last_chunk));
4695     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4696                           grainsize, extras, last_chunk, tc,
4697 #if OMPT_SUPPORT
4698                           OMPT_GET_RETURN_ADDRESS(0),
4699 #endif
4700                           task_dup);
4701   }
4702 
4703 #if OMPT_SUPPORT && OMPT_OPTIONAL
4704   if (ompt_enabled.ompt_callback_work) {
4705     ompt_callbacks.ompt_callback(ompt_callback_work)(
4706         ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
4707         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4708   }
4709 #endif
4710 
4711   if (nogroup == 0) {
4712 #if OMPT_SUPPORT && OMPT_OPTIONAL
4713     OMPT_STORE_RETURN_ADDRESS(gtid);
4714 #endif
4715     __kmpc_end_taskgroup(loc, gtid);
4716   }
4717   KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid));
4718 }
4719 
4720 /*!
4721 @ingroup TASKING
4722 @param loc       Source location information
4723 @param gtid      Global thread ID
4724 @param task      Task structure
4725 @param if_val    Value of the if clause
4726 @param lb        Pointer to loop lower bound in task structure
4727 @param ub        Pointer to loop upper bound in task structure
4728 @param st        Loop stride
4729 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
4730 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4731 @param grainsize Schedule value if specified
4732 @param task_dup  Tasks duplication routine
4733 
4734 Execute the taskloop construct.
4735 */
4736 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4737                      kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
4738                      int sched, kmp_uint64 grainsize, void *task_dup) {
4739   __kmp_assert_valid_gtid(gtid);
4740   KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid));
4741   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
4742                  0, task_dup);
4743   KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
4744 }
4745 
4746 /*!
4747 @ingroup TASKING
4748 @param loc       Source location information
4749 @param gtid      Global thread ID
4750 @param task      Task structure
4751 @param if_val    Value of the if clause
4752 @param lb        Pointer to loop lower bound in task structure
4753 @param ub        Pointer to loop upper bound in task structure
4754 @param st        Loop stride
4755 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
4756 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4757 @param grainsize Schedule value if specified
4758 @param modifer   Modifier 'strict' for sched, 1 if present, 0 otherwise
4759 @param task_dup  Tasks duplication routine
4760 
4761 Execute the taskloop construct.
4762 */
4763 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4764                        kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4765                        int nogroup, int sched, kmp_uint64 grainsize,
4766                        int modifier, void *task_dup) {
4767   __kmp_assert_valid_gtid(gtid);
4768   KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid));
4769   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
4770                  modifier, task_dup);
4771   KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid));
4772 }
4773