1 /* 2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_i18n.h" 15 #include "kmp_itt.h" 16 #include "kmp_stats.h" 17 #include "kmp_wait_release.h" 18 #include "kmp_taskdeps.h" 19 20 #if OMPT_SUPPORT 21 #include "ompt-specific.h" 22 #endif 23 24 #include "tsan_annotations.h" 25 26 /* forward declaration */ 27 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 28 kmp_info_t *this_thr); 29 static void __kmp_alloc_task_deque(kmp_info_t *thread, 30 kmp_thread_data_t *thread_data); 31 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 32 kmp_task_team_t *task_team); 33 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); 34 35 #ifdef BUILD_TIED_TASK_STACK 36 37 // __kmp_trace_task_stack: print the tied tasks from the task stack in order 38 // from top do bottom 39 // 40 // gtid: global thread identifier for thread containing stack 41 // thread_data: thread data for task team thread containing stack 42 // threshold: value above which the trace statement triggers 43 // location: string identifying call site of this function (for trace) 44 static void __kmp_trace_task_stack(kmp_int32 gtid, 45 kmp_thread_data_t *thread_data, 46 int threshold, char *location) { 47 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 48 kmp_taskdata_t **stack_top = task_stack->ts_top; 49 kmp_int32 entries = task_stack->ts_entries; 50 kmp_taskdata_t *tied_task; 51 52 KA_TRACE( 53 threshold, 54 ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " 55 "first_block = %p, stack_top = %p \n", 56 location, gtid, entries, task_stack->ts_first_block, stack_top)); 57 58 KMP_DEBUG_ASSERT(stack_top != NULL); 59 KMP_DEBUG_ASSERT(entries > 0); 60 61 while (entries != 0) { 62 KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); 63 // fix up ts_top if we need to pop from previous block 64 if (entries & TASK_STACK_INDEX_MASK == 0) { 65 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); 66 67 stack_block = stack_block->sb_prev; 68 stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 69 } 70 71 // finish bookkeeping 72 stack_top--; 73 entries--; 74 75 tied_task = *stack_top; 76 77 KMP_DEBUG_ASSERT(tied_task != NULL); 78 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 79 80 KA_TRACE(threshold, 81 ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " 82 "stack_top=%p, tied_task=%p\n", 83 location, gtid, entries, stack_top, tied_task)); 84 } 85 KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); 86 87 KA_TRACE(threshold, 88 ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", 89 location, gtid)); 90 } 91 92 // __kmp_init_task_stack: initialize the task stack for the first time 93 // after a thread_data structure is created. 94 // It should not be necessary to do this again (assuming the stack works). 95 // 96 // gtid: global thread identifier of calling thread 97 // thread_data: thread data for task team thread containing stack 98 static void __kmp_init_task_stack(kmp_int32 gtid, 99 kmp_thread_data_t *thread_data) { 100 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 101 kmp_stack_block_t *first_block; 102 103 // set up the first block of the stack 104 first_block = &task_stack->ts_first_block; 105 task_stack->ts_top = (kmp_taskdata_t **)first_block; 106 memset((void *)first_block, '\0', 107 TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); 108 109 // initialize the stack to be empty 110 task_stack->ts_entries = TASK_STACK_EMPTY; 111 first_block->sb_next = NULL; 112 first_block->sb_prev = NULL; 113 } 114 115 // __kmp_free_task_stack: free the task stack when thread_data is destroyed. 116 // 117 // gtid: global thread identifier for calling thread 118 // thread_data: thread info for thread containing stack 119 static void __kmp_free_task_stack(kmp_int32 gtid, 120 kmp_thread_data_t *thread_data) { 121 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 122 kmp_stack_block_t *stack_block = &task_stack->ts_first_block; 123 124 KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); 125 // free from the second block of the stack 126 while (stack_block != NULL) { 127 kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; 128 129 stack_block->sb_next = NULL; 130 stack_block->sb_prev = NULL; 131 if (stack_block != &task_stack->ts_first_block) { 132 __kmp_thread_free(thread, 133 stack_block); // free the block, if not the first 134 } 135 stack_block = next_block; 136 } 137 // initialize the stack to be empty 138 task_stack->ts_entries = 0; 139 task_stack->ts_top = NULL; 140 } 141 142 // __kmp_push_task_stack: Push the tied task onto the task stack. 143 // Grow the stack if necessary by allocating another block. 144 // 145 // gtid: global thread identifier for calling thread 146 // thread: thread info for thread containing stack 147 // tied_task: the task to push on the stack 148 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, 149 kmp_taskdata_t *tied_task) { 150 // GEH - need to consider what to do if tt_threads_data not allocated yet 151 kmp_thread_data_t *thread_data = 152 &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 153 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 154 155 if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { 156 return; // Don't push anything on stack if team or team tasks are serialized 157 } 158 159 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 160 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 161 162 KA_TRACE(20, 163 ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", 164 gtid, thread, tied_task)); 165 // Store entry 166 *(task_stack->ts_top) = tied_task; 167 168 // Do bookkeeping for next push 169 task_stack->ts_top++; 170 task_stack->ts_entries++; 171 172 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 173 // Find beginning of this task block 174 kmp_stack_block_t *stack_block = 175 (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); 176 177 // Check if we already have a block 178 if (stack_block->sb_next != 179 NULL) { // reset ts_top to beginning of next block 180 task_stack->ts_top = &stack_block->sb_next->sb_block[0]; 181 } else { // Alloc new block and link it up 182 kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( 183 thread, sizeof(kmp_stack_block_t)); 184 185 task_stack->ts_top = &new_block->sb_block[0]; 186 stack_block->sb_next = new_block; 187 new_block->sb_prev = stack_block; 188 new_block->sb_next = NULL; 189 190 KA_TRACE( 191 30, 192 ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", 193 gtid, tied_task, new_block)); 194 } 195 } 196 KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 197 tied_task)); 198 } 199 200 // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return 201 // the task, just check to make sure it matches the ending task passed in. 202 // 203 // gtid: global thread identifier for the calling thread 204 // thread: thread info structure containing stack 205 // tied_task: the task popped off the stack 206 // ending_task: the task that is ending (should match popped task) 207 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, 208 kmp_taskdata_t *ending_task) { 209 // GEH - need to consider what to do if tt_threads_data not allocated yet 210 kmp_thread_data_t *thread_data = 211 &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; 212 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 213 kmp_taskdata_t *tied_task; 214 215 if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { 216 // Don't pop anything from stack if team or team tasks are serialized 217 return; 218 } 219 220 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 221 KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); 222 223 KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, 224 thread)); 225 226 // fix up ts_top if we need to pop from previous block 227 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 228 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); 229 230 stack_block = stack_block->sb_prev; 231 task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 232 } 233 234 // finish bookkeeping 235 task_stack->ts_top--; 236 task_stack->ts_entries--; 237 238 tied_task = *(task_stack->ts_top); 239 240 KMP_DEBUG_ASSERT(tied_task != NULL); 241 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 242 KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly 243 244 KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 245 tied_task)); 246 return; 247 } 248 #endif /* BUILD_TIED_TASK_STACK */ 249 250 // returns 1 if new task is allowed to execute, 0 otherwise 251 // checks Task Scheduling constraint (if requested) and 252 // mutexinoutset dependencies if any 253 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, 254 const kmp_taskdata_t *tasknew, 255 const kmp_taskdata_t *taskcurr) { 256 if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { 257 // Check if the candidate obeys the Task Scheduling Constraints (TSC) 258 // only descendant of all deferred tied tasks can be scheduled, checking 259 // the last one is enough, as it in turn is the descendant of all others 260 kmp_taskdata_t *current = taskcurr->td_last_tied; 261 KMP_DEBUG_ASSERT(current != NULL); 262 // check if the task is not suspended on barrier 263 if (current->td_flags.tasktype == TASK_EXPLICIT || 264 current->td_taskwait_thread > 0) { // <= 0 on barrier 265 kmp_int32 level = current->td_level; 266 kmp_taskdata_t *parent = tasknew->td_parent; 267 while (parent != current && parent->td_level > level) { 268 // check generation up to the level of the current task 269 parent = parent->td_parent; 270 KMP_DEBUG_ASSERT(parent != NULL); 271 } 272 if (parent != current) 273 return false; 274 } 275 } 276 // Check mutexinoutset dependencies, acquire locks 277 kmp_depnode_t *node = tasknew->td_depnode; 278 if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { 279 for (int i = 0; i < node->dn.mtx_num_locks; ++i) { 280 KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); 281 if (__kmp_test_lock(node->dn.mtx_locks[i], gtid)) 282 continue; 283 // could not get the lock, release previous locks 284 for (int j = i - 1; j >= 0; --j) 285 __kmp_release_lock(node->dn.mtx_locks[j], gtid); 286 return false; 287 } 288 // negative num_locks means all locks acquired successfully 289 node->dn.mtx_num_locks = -node->dn.mtx_num_locks; 290 } 291 return true; 292 } 293 294 // __kmp_realloc_task_deque: 295 // Re-allocates a task deque for a particular thread, copies the content from 296 // the old deque and adjusts the necessary data structures relating to the 297 // deque. This operation must be done with the deque_lock being held 298 static void __kmp_realloc_task_deque(kmp_info_t *thread, 299 kmp_thread_data_t *thread_data) { 300 kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); 301 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); 302 kmp_int32 new_size = 2 * size; 303 304 KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " 305 "%d] for thread_data %p\n", 306 __kmp_gtid_from_thread(thread), size, new_size, thread_data)); 307 308 kmp_taskdata_t **new_deque = 309 (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); 310 311 int i, j; 312 for (i = thread_data->td.td_deque_head, j = 0; j < size; 313 i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) 314 new_deque[j] = thread_data->td.td_deque[i]; 315 316 __kmp_free(thread_data->td.td_deque); 317 318 thread_data->td.td_deque_head = 0; 319 thread_data->td.td_deque_tail = size; 320 thread_data->td.td_deque = new_deque; 321 thread_data->td.td_deque_size = new_size; 322 } 323 324 // __kmp_push_task: Add a task to the thread's deque 325 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { 326 kmp_info_t *thread = __kmp_threads[gtid]; 327 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 328 kmp_task_team_t *task_team = thread->th.th_task_team; 329 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 330 kmp_thread_data_t *thread_data; 331 332 KA_TRACE(20, 333 ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata)); 334 335 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 336 // untied task needs to increment counter so that the task structure is not 337 // freed prematurely 338 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 339 KMP_DEBUG_USE_VAR(counter); 340 KA_TRACE( 341 20, 342 ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n", 343 gtid, counter, taskdata)); 344 } 345 346 // The first check avoids building task_team thread data if serialized 347 if (UNLIKELY(taskdata->td_flags.task_serial)) { 348 KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " 349 "TASK_NOT_PUSHED for task %p\n", 350 gtid, taskdata)); 351 return TASK_NOT_PUSHED; 352 } 353 354 // Now that serialized tasks have returned, we can assume that we are not in 355 // immediate exec mode 356 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 357 if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) { 358 __kmp_enable_tasking(task_team, thread); 359 } 360 KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); 361 KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); 362 363 // Find tasking deque specific to encountering thread 364 thread_data = &task_team->tt.tt_threads_data[tid]; 365 366 // No lock needed since only owner can allocate 367 if (UNLIKELY(thread_data->td.td_deque == NULL)) { 368 __kmp_alloc_task_deque(thread, thread_data); 369 } 370 371 int locked = 0; 372 // Check if deque is full 373 if (TCR_4(thread_data->td.td_deque_ntasks) >= 374 TASK_DEQUE_SIZE(thread_data->td)) { 375 if (__kmp_enable_task_throttling && 376 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 377 thread->th.th_current_task)) { 378 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " 379 "TASK_NOT_PUSHED for task %p\n", 380 gtid, taskdata)); 381 return TASK_NOT_PUSHED; 382 } else { 383 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 384 locked = 1; 385 if (TCR_4(thread_data->td.td_deque_ntasks) >= 386 TASK_DEQUE_SIZE(thread_data->td)) { 387 // expand deque to push the task which is not allowed to execute 388 __kmp_realloc_task_deque(thread, thread_data); 389 } 390 } 391 } 392 // Lock the deque for the task push operation 393 if (!locked) { 394 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 395 // Need to recheck as we can get a proxy task from thread outside of OpenMP 396 if (TCR_4(thread_data->td.td_deque_ntasks) >= 397 TASK_DEQUE_SIZE(thread_data->td)) { 398 if (__kmp_enable_task_throttling && 399 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 400 thread->th.th_current_task)) { 401 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 402 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " 403 "returning TASK_NOT_PUSHED for task %p\n", 404 gtid, taskdata)); 405 return TASK_NOT_PUSHED; 406 } else { 407 // expand deque to push the task which is not allowed to execute 408 __kmp_realloc_task_deque(thread, thread_data); 409 } 410 } 411 } 412 // Must have room since no thread can add tasks but calling thread 413 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 414 TASK_DEQUE_SIZE(thread_data->td)); 415 416 thread_data->td.td_deque[thread_data->td.td_deque_tail] = 417 taskdata; // Push taskdata 418 // Wrap index. 419 thread_data->td.td_deque_tail = 420 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 421 TCW_4(thread_data->td.td_deque_ntasks, 422 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 423 KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self 424 KMP_FSYNC_RELEASING(taskdata); // releasing child 425 KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " 426 "task=%p ntasks=%d head=%u tail=%u\n", 427 gtid, taskdata, thread_data->td.td_deque_ntasks, 428 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 429 430 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 431 432 return TASK_SUCCESSFULLY_PUSHED; 433 } 434 435 // __kmp_pop_current_task_from_thread: set up current task from called thread 436 // when team ends 437 // 438 // this_thr: thread structure to set current_task in. 439 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { 440 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " 441 "this_thread=%p, curtask=%p, " 442 "curtask_parent=%p\n", 443 0, this_thr, this_thr->th.th_current_task, 444 this_thr->th.th_current_task->td_parent)); 445 446 this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; 447 448 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " 449 "this_thread=%p, curtask=%p, " 450 "curtask_parent=%p\n", 451 0, this_thr, this_thr->th.th_current_task, 452 this_thr->th.th_current_task->td_parent)); 453 } 454 455 // __kmp_push_current_task_to_thread: set up current task in called thread for a 456 // new team 457 // 458 // this_thr: thread structure to set up 459 // team: team for implicit task data 460 // tid: thread within team to set up 461 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, 462 int tid) { 463 // current task of the thread is a parent of the new just created implicit 464 // tasks of new team 465 KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " 466 "curtask=%p " 467 "parent_task=%p\n", 468 tid, this_thr, this_thr->th.th_current_task, 469 team->t.t_implicit_task_taskdata[tid].td_parent)); 470 471 KMP_DEBUG_ASSERT(this_thr != NULL); 472 473 if (tid == 0) { 474 if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { 475 team->t.t_implicit_task_taskdata[0].td_parent = 476 this_thr->th.th_current_task; 477 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; 478 } 479 } else { 480 team->t.t_implicit_task_taskdata[tid].td_parent = 481 team->t.t_implicit_task_taskdata[0].td_parent; 482 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; 483 } 484 485 KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " 486 "curtask=%p " 487 "parent_task=%p\n", 488 tid, this_thr, this_thr->th.th_current_task, 489 team->t.t_implicit_task_taskdata[tid].td_parent)); 490 } 491 492 // __kmp_task_start: bookkeeping for a task starting execution 493 // 494 // GTID: global thread id of calling thread 495 // task: task starting execution 496 // current_task: task suspending 497 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, 498 kmp_taskdata_t *current_task) { 499 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 500 kmp_info_t *thread = __kmp_threads[gtid]; 501 502 KA_TRACE(10, 503 ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", 504 gtid, taskdata, current_task)); 505 506 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 507 508 // mark currently executing task as suspended 509 // TODO: GEH - make sure root team implicit task is initialized properly. 510 // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); 511 current_task->td_flags.executing = 0; 512 513 // Add task to stack if tied 514 #ifdef BUILD_TIED_TASK_STACK 515 if (taskdata->td_flags.tiedness == TASK_TIED) { 516 __kmp_push_task_stack(gtid, thread, taskdata); 517 } 518 #endif /* BUILD_TIED_TASK_STACK */ 519 520 // mark starting task as executing and as current task 521 thread->th.th_current_task = taskdata; 522 523 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || 524 taskdata->td_flags.tiedness == TASK_UNTIED); 525 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || 526 taskdata->td_flags.tiedness == TASK_UNTIED); 527 taskdata->td_flags.started = 1; 528 taskdata->td_flags.executing = 1; 529 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 530 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 531 532 // GEH TODO: shouldn't we pass some sort of location identifier here? 533 // APT: yes, we will pass location here. 534 // need to store current thread state (in a thread or taskdata structure) 535 // before setting work_state, otherwise wrong state is set after end of task 536 537 KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata)); 538 539 return; 540 } 541 542 #if OMPT_SUPPORT 543 //------------------------------------------------------------------------------ 544 // __ompt_task_init: 545 // Initialize OMPT fields maintained by a task. This will only be called after 546 // ompt_start_tool, so we already know whether ompt is enabled or not. 547 548 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) { 549 // The calls to __ompt_task_init already have the ompt_enabled condition. 550 task->ompt_task_info.task_data.value = 0; 551 task->ompt_task_info.frame.exit_frame = ompt_data_none; 552 task->ompt_task_info.frame.enter_frame = ompt_data_none; 553 task->ompt_task_info.frame.exit_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 554 task->ompt_task_info.frame.enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 555 } 556 557 // __ompt_task_start: 558 // Build and trigger task-begin event 559 static inline void __ompt_task_start(kmp_task_t *task, 560 kmp_taskdata_t *current_task, 561 kmp_int32 gtid) { 562 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 563 ompt_task_status_t status = ompt_task_switch; 564 if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { 565 status = ompt_task_yield; 566 __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; 567 } 568 /* let OMPT know that we're about to run this task */ 569 if (ompt_enabled.ompt_callback_task_schedule) { 570 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 571 &(current_task->ompt_task_info.task_data), status, 572 &(taskdata->ompt_task_info.task_data)); 573 } 574 taskdata->ompt_task_info.scheduling_parent = current_task; 575 } 576 577 // __ompt_task_finish: 578 // Build and trigger final task-schedule event 579 static inline void __ompt_task_finish(kmp_task_t *task, 580 kmp_taskdata_t *resumed_task, 581 ompt_task_status_t status) { 582 if (ompt_enabled.ompt_callback_task_schedule) { 583 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 584 if (__kmp_omp_cancellation && taskdata->td_taskgroup && 585 taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { 586 status = ompt_task_cancel; 587 } 588 589 /* let OMPT know that we're returning to the callee task */ 590 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 591 &(taskdata->ompt_task_info.task_data), status, 592 (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); 593 } 594 } 595 #endif 596 597 template <bool ompt> 598 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, 599 kmp_task_t *task, 600 void *frame_address, 601 void *return_address) { 602 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 603 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 604 605 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " 606 "current_task=%p\n", 607 gtid, loc_ref, taskdata, current_task)); 608 609 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 610 // untied task needs to increment counter so that the task structure is not 611 // freed prematurely 612 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 613 KMP_DEBUG_USE_VAR(counter); 614 KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " 615 "incremented for task %p\n", 616 gtid, counter, taskdata)); 617 } 618 619 taskdata->td_flags.task_serial = 620 1; // Execute this task immediately, not deferred. 621 __kmp_task_start(gtid, task, current_task); 622 623 #if OMPT_SUPPORT 624 if (ompt) { 625 if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { 626 current_task->ompt_task_info.frame.enter_frame.ptr = 627 taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; 628 current_task->ompt_task_info.frame.enter_frame_flags = 629 taskdata->ompt_task_info.frame.exit_frame_flags = ompt_frame_application | ompt_frame_framepointer; 630 } 631 if (ompt_enabled.ompt_callback_task_create) { 632 ompt_task_info_t *parent_info = &(current_task->ompt_task_info); 633 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 634 &(parent_info->task_data), &(parent_info->frame), 635 &(taskdata->ompt_task_info.task_data), 636 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0, 637 return_address); 638 } 639 __ompt_task_start(task, current_task, gtid); 640 } 641 #endif // OMPT_SUPPORT 642 643 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid, 644 loc_ref, taskdata)); 645 } 646 647 #if OMPT_SUPPORT 648 OMPT_NOINLINE 649 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 650 kmp_task_t *task, 651 void *frame_address, 652 void *return_address) { 653 __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, 654 return_address); 655 } 656 #endif // OMPT_SUPPORT 657 658 // __kmpc_omp_task_begin_if0: report that a given serialized task has started 659 // execution 660 // 661 // loc_ref: source location information; points to beginning of task block. 662 // gtid: global thread number. 663 // task: task thunk for the started task. 664 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 665 kmp_task_t *task) { 666 #if OMPT_SUPPORT 667 if (UNLIKELY(ompt_enabled.enabled)) { 668 OMPT_STORE_RETURN_ADDRESS(gtid); 669 __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, 670 OMPT_GET_FRAME_ADDRESS(1), 671 OMPT_LOAD_RETURN_ADDRESS(gtid)); 672 return; 673 } 674 #endif 675 __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); 676 } 677 678 #ifdef TASK_UNUSED 679 // __kmpc_omp_task_begin: report that a given task has started execution 680 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 681 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { 682 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 683 684 KA_TRACE( 685 10, 686 ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", 687 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); 688 689 __kmp_task_start(gtid, task, current_task); 690 691 KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid, 692 loc_ref, KMP_TASK_TO_TASKDATA(task))); 693 return; 694 } 695 #endif // TASK_UNUSED 696 697 // __kmp_free_task: free the current task space and the space for shareds 698 // 699 // gtid: Global thread ID of calling thread 700 // taskdata: task to free 701 // thread: thread data structure of caller 702 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, 703 kmp_info_t *thread) { 704 KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid, 705 taskdata)); 706 707 // Check to make sure all flags and counters have the correct values 708 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 709 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); 710 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); 711 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 712 KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || 713 taskdata->td_flags.task_serial == 1); 714 KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); 715 716 taskdata->td_flags.freed = 1; 717 ANNOTATE_HAPPENS_BEFORE(taskdata); 718 // deallocate the taskdata and shared variable blocks associated with this task 719 #if USE_FAST_MEMORY 720 __kmp_fast_free(thread, taskdata); 721 #else /* ! USE_FAST_MEMORY */ 722 __kmp_thread_free(thread, taskdata); 723 #endif 724 725 KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata)); 726 } 727 728 // __kmp_free_task_and_ancestors: free the current task and ancestors without 729 // children 730 // 731 // gtid: Global thread ID of calling thread 732 // taskdata: task to free 733 // thread: thread data structure of caller 734 static void __kmp_free_task_and_ancestors(kmp_int32 gtid, 735 kmp_taskdata_t *taskdata, 736 kmp_info_t *thread) { 737 // Proxy tasks must always be allowed to free their parents 738 // because they can be run in background even in serial mode. 739 kmp_int32 team_serial = 740 (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && 741 !taskdata->td_flags.proxy; 742 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 743 744 kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 745 KMP_DEBUG_ASSERT(children >= 0); 746 747 // Now, go up the ancestor tree to see if any ancestors can now be freed. 748 while (children == 0) { 749 kmp_taskdata_t *parent_taskdata = taskdata->td_parent; 750 751 KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " 752 "and freeing itself\n", 753 gtid, taskdata)); 754 755 // --- Deallocate my ancestor task --- 756 __kmp_free_task(gtid, taskdata, thread); 757 758 taskdata = parent_taskdata; 759 760 if (team_serial) 761 return; 762 // Stop checking ancestors at implicit task instead of walking up ancestor 763 // tree to avoid premature deallocation of ancestors. 764 if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { 765 if (taskdata->td_dephash) { // do we need to cleanup dephash? 766 int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); 767 kmp_tasking_flags_t flags_old = taskdata->td_flags; 768 if (children == 0 && flags_old.complete == 1) { 769 kmp_tasking_flags_t flags_new = flags_old; 770 flags_new.complete = 0; 771 if (KMP_COMPARE_AND_STORE_ACQ32( 772 RCAST(kmp_int32 *, &taskdata->td_flags), 773 *RCAST(kmp_int32 *, &flags_old), 774 *RCAST(kmp_int32 *, &flags_new))) { 775 KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " 776 "dephash of implicit task %p\n", 777 gtid, taskdata)); 778 // cleanup dephash of finished implicit task 779 __kmp_dephash_free_entries(thread, taskdata->td_dephash); 780 } 781 } 782 } 783 return; 784 } 785 // Predecrement simulated by "- 1" calculation 786 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 787 KMP_DEBUG_ASSERT(children >= 0); 788 } 789 790 KA_TRACE( 791 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " 792 "not freeing it yet\n", 793 gtid, taskdata, children)); 794 } 795 796 // __kmp_task_finish: bookkeeping to do when a task finishes execution 797 // 798 // gtid: global thread ID for calling thread 799 // task: task to be finished 800 // resumed_task: task to be resumed. (may be NULL if task is serialized) 801 // 802 // template<ompt>: effectively ompt_enabled.enabled!=0 803 // the version with ompt=false is inlined, allowing to optimize away all ompt 804 // code in this case 805 template <bool ompt> 806 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, 807 kmp_taskdata_t *resumed_task) { 808 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 809 kmp_info_t *thread = __kmp_threads[gtid]; 810 kmp_task_team_t *task_team = 811 thread->th.th_task_team; // might be NULL for serial teams... 812 kmp_int32 children = 0; 813 814 KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " 815 "task %p\n", 816 gtid, taskdata, resumed_task)); 817 818 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 819 820 // Pop task from stack if tied 821 #ifdef BUILD_TIED_TASK_STACK 822 if (taskdata->td_flags.tiedness == TASK_TIED) { 823 __kmp_pop_task_stack(gtid, thread, taskdata); 824 } 825 #endif /* BUILD_TIED_TASK_STACK */ 826 827 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 828 // untied task needs to check the counter so that the task structure is not 829 // freed prematurely 830 kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; 831 KA_TRACE( 832 20, 833 ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n", 834 gtid, counter, taskdata)); 835 if (counter > 0) { 836 // untied task is not done, to be continued possibly by other thread, do 837 // not free it now 838 if (resumed_task == NULL) { 839 KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); 840 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 841 // task is the parent 842 } 843 thread->th.th_current_task = resumed_task; // restore current_task 844 resumed_task->td_flags.executing = 1; // resume previous task 845 KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " 846 "resuming task %p\n", 847 gtid, taskdata, resumed_task)); 848 return; 849 } 850 } 851 852 // bookkeeping for resuming task: 853 // GEH - note tasking_ser => task_serial 854 KMP_DEBUG_ASSERT( 855 (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == 856 taskdata->td_flags.task_serial); 857 if (taskdata->td_flags.task_serial) { 858 if (resumed_task == NULL) { 859 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 860 // task is the parent 861 } 862 } else { 863 KMP_DEBUG_ASSERT(resumed_task != 864 NULL); // verify that resumed task is passed as argument 865 } 866 867 /* If the tasks' destructor thunk flag has been set, we need to invoke the 868 destructor thunk that has been generated by the compiler. The code is 869 placed here, since at this point other tasks might have been released 870 hence overlapping the destructor invocations with some other work in the 871 released tasks. The OpenMP spec is not specific on when the destructors 872 are invoked, so we should be free to choose. */ 873 if (taskdata->td_flags.destructors_thunk) { 874 kmp_routine_entry_t destr_thunk = task->data1.destructors; 875 KMP_ASSERT(destr_thunk); 876 destr_thunk(gtid, task); 877 } 878 879 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 880 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); 881 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 882 883 bool detach = false; 884 if (taskdata->td_flags.detachable == TASK_DETACHABLE) { 885 if (taskdata->td_allow_completion_event.type == 886 KMP_EVENT_ALLOW_COMPLETION) { 887 // event hasn't been fulfilled yet. Try to detach task. 888 __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 889 if (taskdata->td_allow_completion_event.type == 890 KMP_EVENT_ALLOW_COMPLETION) { 891 // task finished execution 892 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 893 taskdata->td_flags.executing = 0; // suspend the finishing task 894 895 #if OMPT_SUPPORT 896 // For a detached task, which is not completed, we switch back 897 // the omp_fulfill_event signals completion 898 // locking is necessary to avoid a race with ompt_task_late_fulfill 899 if (ompt) 900 __ompt_task_finish(task, resumed_task, ompt_task_detach); 901 #endif 902 903 // no access to taskdata after this point! 904 // __kmp_fulfill_event might free taskdata at any time from now 905 906 taskdata->td_flags.proxy = TASK_PROXY; // proxify! 907 detach = true; 908 } 909 __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 910 } 911 } 912 913 if (!detach) { 914 taskdata->td_flags.complete = 1; // mark the task as completed 915 916 #if OMPT_SUPPORT 917 // This is not a detached task, we are done here 918 if (ompt) 919 __ompt_task_finish(task, resumed_task, ompt_task_complete); 920 #endif 921 922 // Only need to keep track of count if team parallel and tasking not 923 // serialized, or task is detachable and event has already been fulfilled 924 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) || 925 taskdata->td_flags.detachable == TASK_DETACHABLE) { 926 // Predecrement simulated by "- 1" calculation 927 children = 928 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 929 KMP_DEBUG_ASSERT(children >= 0); 930 if (taskdata->td_taskgroup) 931 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 932 __kmp_release_deps(gtid, taskdata); 933 } else if (task_team && task_team->tt.tt_found_proxy_tasks) { 934 // if we found proxy tasks there could exist a dependency chain 935 // with the proxy task as origin 936 __kmp_release_deps(gtid, taskdata); 937 } 938 // td_flags.executing must be marked as 0 after __kmp_release_deps has been 939 // called. Othertwise, if a task is executed immediately from the 940 // release_deps code, the flag will be reset to 1 again by this same 941 // function 942 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 943 taskdata->td_flags.executing = 0; // suspend the finishing task 944 } 945 946 947 KA_TRACE( 948 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", 949 gtid, taskdata, children)); 950 951 // Free this task and then ancestor tasks if they have no children. 952 // Restore th_current_task first as suggested by John: 953 // johnmc: if an asynchronous inquiry peers into the runtime system 954 // it doesn't see the freed task as the current task. 955 thread->th.th_current_task = resumed_task; 956 if (!detach) 957 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 958 959 // TODO: GEH - make sure root team implicit task is initialized properly. 960 // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); 961 resumed_task->td_flags.executing = 1; // resume previous task 962 963 KA_TRACE( 964 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", 965 gtid, taskdata, resumed_task)); 966 967 return; 968 } 969 970 template <bool ompt> 971 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, 972 kmp_int32 gtid, 973 kmp_task_t *task) { 974 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", 975 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 976 __kmp_assert_valid_gtid(gtid); 977 // this routine will provide task to resume 978 __kmp_task_finish<ompt>(gtid, task, NULL); 979 980 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", 981 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 982 983 #if OMPT_SUPPORT 984 if (ompt) { 985 ompt_frame_t *ompt_frame; 986 __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); 987 ompt_frame->enter_frame = ompt_data_none; 988 ompt_frame->enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 989 } 990 #endif 991 992 return; 993 } 994 995 #if OMPT_SUPPORT 996 OMPT_NOINLINE 997 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 998 kmp_task_t *task) { 999 __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); 1000 } 1001 #endif // OMPT_SUPPORT 1002 1003 // __kmpc_omp_task_complete_if0: report that a task has completed execution 1004 // 1005 // loc_ref: source location information; points to end of task block. 1006 // gtid: global thread number. 1007 // task: task thunk for the completed task. 1008 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 1009 kmp_task_t *task) { 1010 #if OMPT_SUPPORT 1011 if (UNLIKELY(ompt_enabled.enabled)) { 1012 __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); 1013 return; 1014 } 1015 #endif 1016 __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); 1017 } 1018 1019 #ifdef TASK_UNUSED 1020 // __kmpc_omp_task_complete: report that a task has completed execution 1021 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 1022 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 1023 kmp_task_t *task) { 1024 KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid, 1025 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1026 1027 __kmp_task_finish<false>(gtid, task, 1028 NULL); // Not sure how to find task to resume 1029 1030 KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid, 1031 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1032 return; 1033 } 1034 #endif // TASK_UNUSED 1035 1036 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit 1037 // task for a given thread 1038 // 1039 // loc_ref: reference to source location of parallel region 1040 // this_thr: thread data structure corresponding to implicit task 1041 // team: team for this_thr 1042 // tid: thread id of given thread within team 1043 // set_curr_task: TRUE if need to push current task to thread 1044 // NOTE: Routine does not set up the implicit task ICVS. This is assumed to 1045 // have already been done elsewhere. 1046 // TODO: Get better loc_ref. Value passed in may be NULL 1047 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 1048 kmp_team_t *team, int tid, int set_curr_task) { 1049 kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; 1050 1051 KF_TRACE( 1052 10, 1053 ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", 1054 tid, team, task, set_curr_task ? "TRUE" : "FALSE")); 1055 1056 task->td_task_id = KMP_GEN_TASK_ID(); 1057 task->td_team = team; 1058 // task->td_parent = NULL; // fix for CQ230101 (broken parent task info 1059 // in debugger) 1060 task->td_ident = loc_ref; 1061 task->td_taskwait_ident = NULL; 1062 task->td_taskwait_counter = 0; 1063 task->td_taskwait_thread = 0; 1064 1065 task->td_flags.tiedness = TASK_TIED; 1066 task->td_flags.tasktype = TASK_IMPLICIT; 1067 task->td_flags.proxy = TASK_FULL; 1068 1069 // All implicit tasks are executed immediately, not deferred 1070 task->td_flags.task_serial = 1; 1071 task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1072 task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1073 1074 task->td_flags.started = 1; 1075 task->td_flags.executing = 1; 1076 task->td_flags.complete = 0; 1077 task->td_flags.freed = 0; 1078 1079 task->td_depnode = NULL; 1080 task->td_last_tied = task; 1081 task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1082 1083 if (set_curr_task) { // only do this init first time thread is created 1084 KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); 1085 // Not used: don't need to deallocate implicit task 1086 KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); 1087 task->td_taskgroup = NULL; // An implicit task does not have taskgroup 1088 task->td_dephash = NULL; 1089 __kmp_push_current_task_to_thread(this_thr, team, tid); 1090 } else { 1091 KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); 1092 KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); 1093 } 1094 1095 #if OMPT_SUPPORT 1096 if (UNLIKELY(ompt_enabled.enabled)) 1097 __ompt_task_init(task, tid); 1098 #endif 1099 1100 KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid, 1101 team, task)); 1102 } 1103 1104 // __kmp_finish_implicit_task: Release resources associated to implicit tasks 1105 // at the end of parallel regions. Some resources are kept for reuse in the next 1106 // parallel region. 1107 // 1108 // thread: thread data structure corresponding to implicit task 1109 void __kmp_finish_implicit_task(kmp_info_t *thread) { 1110 kmp_taskdata_t *task = thread->th.th_current_task; 1111 if (task->td_dephash) { 1112 int children; 1113 task->td_flags.complete = 1; 1114 children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); 1115 kmp_tasking_flags_t flags_old = task->td_flags; 1116 if (children == 0 && flags_old.complete == 1) { 1117 kmp_tasking_flags_t flags_new = flags_old; 1118 flags_new.complete = 0; 1119 if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), 1120 *RCAST(kmp_int32 *, &flags_old), 1121 *RCAST(kmp_int32 *, &flags_new))) { 1122 KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " 1123 "dephash of implicit task %p\n", 1124 thread->th.th_info.ds.ds_gtid, task)); 1125 __kmp_dephash_free_entries(thread, task->td_dephash); 1126 } 1127 } 1128 } 1129 } 1130 1131 // __kmp_free_implicit_task: Release resources associated to implicit tasks 1132 // when these are destroyed regions 1133 // 1134 // thread: thread data structure corresponding to implicit task 1135 void __kmp_free_implicit_task(kmp_info_t *thread) { 1136 kmp_taskdata_t *task = thread->th.th_current_task; 1137 if (task && task->td_dephash) { 1138 __kmp_dephash_free(thread, task->td_dephash); 1139 task->td_dephash = NULL; 1140 } 1141 } 1142 1143 // Round up a size to a power of two specified by val: Used to insert padding 1144 // between structures co-allocated using a single malloc() call 1145 static size_t __kmp_round_up_to_val(size_t size, size_t val) { 1146 if (size & (val - 1)) { 1147 size &= ~(val - 1); 1148 if (size <= KMP_SIZE_T_MAX - val) { 1149 size += val; // Round up if there is no overflow. 1150 } 1151 } 1152 return size; 1153 } // __kmp_round_up_to_va 1154 1155 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task 1156 // 1157 // loc_ref: source location information 1158 // gtid: global thread number. 1159 // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' 1160 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. 1161 // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including 1162 // private vars accessed in task. 1163 // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed 1164 // in task. 1165 // task_entry: Pointer to task code entry point generated by compiler. 1166 // returns: a pointer to the allocated kmp_task_t structure (task). 1167 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1168 kmp_tasking_flags_t *flags, 1169 size_t sizeof_kmp_task_t, size_t sizeof_shareds, 1170 kmp_routine_entry_t task_entry) { 1171 kmp_task_t *task; 1172 kmp_taskdata_t *taskdata; 1173 kmp_info_t *thread = __kmp_threads[gtid]; 1174 kmp_team_t *team = thread->th.th_team; 1175 kmp_taskdata_t *parent_task = thread->th.th_current_task; 1176 size_t shareds_offset; 1177 1178 if (UNLIKELY(!TCR_4(__kmp_init_middle))) 1179 __kmp_middle_initialize(); 1180 1181 KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " 1182 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1183 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, 1184 sizeof_shareds, task_entry)); 1185 1186 if (parent_task->td_flags.final) { 1187 if (flags->merged_if0) { 1188 } 1189 flags->final = 1; 1190 } 1191 if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { 1192 // Untied task encountered causes the TSC algorithm to check entire deque of 1193 // the victim thread. If no untied task encountered, then checking the head 1194 // of the deque should be enough. 1195 KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1); 1196 } 1197 1198 // Detachable tasks are not proxy tasks yet but could be in the future. Doing 1199 // the tasking setup 1200 // when that happens is too late. 1201 if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) { 1202 if (flags->proxy == TASK_PROXY) { 1203 flags->tiedness = TASK_UNTIED; 1204 flags->merged_if0 = 1; 1205 } 1206 /* are we running in a sequential parallel or tskm_immediate_exec... we need 1207 tasking support enabled */ 1208 if ((thread->th.th_task_team) == NULL) { 1209 /* This should only happen if the team is serialized 1210 setup a task team and propagate it to the thread */ 1211 KMP_DEBUG_ASSERT(team->t.t_serialized); 1212 KA_TRACE(30, 1213 ("T#%d creating task team in __kmp_task_alloc for proxy task\n", 1214 gtid)); 1215 __kmp_task_team_setup( 1216 thread, team, 1217 1); // 1 indicates setup the current team regardless of nthreads 1218 thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state]; 1219 } 1220 kmp_task_team_t *task_team = thread->th.th_task_team; 1221 1222 /* tasking must be enabled now as the task might not be pushed */ 1223 if (!KMP_TASKING_ENABLED(task_team)) { 1224 KA_TRACE( 1225 30, 1226 ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid)); 1227 __kmp_enable_tasking(task_team, thread); 1228 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 1229 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 1230 // No lock needed since only owner can allocate 1231 if (thread_data->td.td_deque == NULL) { 1232 __kmp_alloc_task_deque(thread, thread_data); 1233 } 1234 } 1235 1236 if (task_team->tt.tt_found_proxy_tasks == FALSE) 1237 TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); 1238 } 1239 1240 // Calculate shared structure offset including padding after kmp_task_t struct 1241 // to align pointers in shared struct 1242 shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; 1243 shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *)); 1244 1245 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 1246 KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid, 1247 shareds_offset)); 1248 KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid, 1249 sizeof_shareds)); 1250 1251 // Avoid double allocation here by combining shareds with taskdata 1252 #if USE_FAST_MEMORY 1253 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset + 1254 sizeof_shareds); 1255 #else /* ! USE_FAST_MEMORY */ 1256 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset + 1257 sizeof_shareds); 1258 #endif /* USE_FAST_MEMORY */ 1259 ANNOTATE_HAPPENS_AFTER(taskdata); 1260 1261 task = KMP_TASKDATA_TO_TASK(taskdata); 1262 1263 // Make sure task & taskdata are aligned appropriately 1264 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD 1265 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); 1266 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); 1267 #else 1268 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); 1269 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); 1270 #endif 1271 if (sizeof_shareds > 0) { 1272 // Avoid double allocation here by combining shareds with taskdata 1273 task->shareds = &((char *)taskdata)[shareds_offset]; 1274 // Make sure shareds struct is aligned to pointer size 1275 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 1276 0); 1277 } else { 1278 task->shareds = NULL; 1279 } 1280 task->routine = task_entry; 1281 task->part_id = 0; // AC: Always start with 0 part id 1282 1283 taskdata->td_task_id = KMP_GEN_TASK_ID(); 1284 taskdata->td_team = team; 1285 taskdata->td_alloc_thread = thread; 1286 taskdata->td_parent = parent_task; 1287 taskdata->td_level = parent_task->td_level + 1; // increment nesting level 1288 KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); 1289 taskdata->td_ident = loc_ref; 1290 taskdata->td_taskwait_ident = NULL; 1291 taskdata->td_taskwait_counter = 0; 1292 taskdata->td_taskwait_thread = 0; 1293 KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); 1294 // avoid copying icvs for proxy tasks 1295 if (flags->proxy == TASK_FULL) 1296 copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs); 1297 1298 taskdata->td_flags.tiedness = flags->tiedness; 1299 taskdata->td_flags.final = flags->final; 1300 taskdata->td_flags.merged_if0 = flags->merged_if0; 1301 taskdata->td_flags.destructors_thunk = flags->destructors_thunk; 1302 taskdata->td_flags.proxy = flags->proxy; 1303 taskdata->td_flags.detachable = flags->detachable; 1304 taskdata->td_task_team = thread->th.th_task_team; 1305 taskdata->td_size_alloc = shareds_offset + sizeof_shareds; 1306 taskdata->td_flags.tasktype = TASK_EXPLICIT; 1307 1308 // GEH - TODO: fix this to copy parent task's value of tasking_ser flag 1309 taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1310 1311 // GEH - TODO: fix this to copy parent task's value of team_serial flag 1312 taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1313 1314 // GEH - Note we serialize the task if the team is serialized to make sure 1315 // implicit parallel region tasks are not left until program termination to 1316 // execute. Also, it helps locality to execute immediately. 1317 1318 taskdata->td_flags.task_serial = 1319 (parent_task->td_flags.final || taskdata->td_flags.team_serial || 1320 taskdata->td_flags.tasking_ser || flags->merged_if0); 1321 1322 taskdata->td_flags.started = 0; 1323 taskdata->td_flags.executing = 0; 1324 taskdata->td_flags.complete = 0; 1325 taskdata->td_flags.freed = 0; 1326 1327 taskdata->td_flags.native = flags->native; 1328 1329 KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); 1330 // start at one because counts current task and children 1331 KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); 1332 taskdata->td_taskgroup = 1333 parent_task->td_taskgroup; // task inherits taskgroup from the parent task 1334 taskdata->td_dephash = NULL; 1335 taskdata->td_depnode = NULL; 1336 if (flags->tiedness == TASK_UNTIED) 1337 taskdata->td_last_tied = NULL; // will be set when the task is scheduled 1338 else 1339 taskdata->td_last_tied = taskdata; 1340 taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1341 #if OMPT_SUPPORT 1342 if (UNLIKELY(ompt_enabled.enabled)) 1343 __ompt_task_init(taskdata, gtid); 1344 #endif 1345 // Only need to keep track of child task counts if team parallel and tasking not 1346 // serialized or if it is a proxy or detachable task 1347 if (flags->proxy == TASK_PROXY || 1348 flags->detachable == TASK_DETACHABLE || 1349 !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) 1350 { 1351 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 1352 if (parent_task->td_taskgroup) 1353 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 1354 // Only need to keep track of allocated child tasks for explicit tasks since 1355 // implicit not deallocated 1356 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { 1357 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 1358 } 1359 } 1360 1361 KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", 1362 gtid, taskdata, taskdata->td_parent)); 1363 ANNOTATE_HAPPENS_BEFORE(task); 1364 1365 return task; 1366 } 1367 1368 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1369 kmp_int32 flags, size_t sizeof_kmp_task_t, 1370 size_t sizeof_shareds, 1371 kmp_routine_entry_t task_entry) { 1372 kmp_task_t *retval; 1373 kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; 1374 __kmp_assert_valid_gtid(gtid); 1375 input_flags->native = FALSE; 1376 // __kmp_task_alloc() sets up all other runtime flags 1377 KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " 1378 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1379 gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", 1380 input_flags->proxy ? "proxy" : "", 1381 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t, 1382 sizeof_shareds, task_entry)); 1383 1384 retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t, 1385 sizeof_shareds, task_entry); 1386 1387 KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval)); 1388 1389 return retval; 1390 } 1391 1392 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1393 kmp_int32 flags, 1394 size_t sizeof_kmp_task_t, 1395 size_t sizeof_shareds, 1396 kmp_routine_entry_t task_entry, 1397 kmp_int64 device_id) { 1398 return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, 1399 sizeof_shareds, task_entry); 1400 } 1401 1402 /*! 1403 @ingroup TASKING 1404 @param loc_ref location of the original task directive 1405 @param gtid Global Thread ID of encountering thread 1406 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new 1407 task'' 1408 @param naffins Number of affinity items 1409 @param affin_list List of affinity items 1410 @return Returns non-zero if registering affinity information was not successful. 1411 Returns 0 if registration was successful 1412 This entry registers the affinity information attached to a task with the task 1413 thunk structure kmp_taskdata_t. 1414 */ 1415 kmp_int32 1416 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, 1417 kmp_task_t *new_task, kmp_int32 naffins, 1418 kmp_task_affinity_info_t *affin_list) { 1419 return 0; 1420 } 1421 1422 // __kmp_invoke_task: invoke the specified task 1423 // 1424 // gtid: global thread ID of caller 1425 // task: the task to invoke 1426 // current_task: the task to resume after task invocation 1427 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, 1428 kmp_taskdata_t *current_task) { 1429 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 1430 kmp_info_t *thread; 1431 int discard = 0 /* false */; 1432 KA_TRACE( 1433 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", 1434 gtid, taskdata, current_task)); 1435 KMP_DEBUG_ASSERT(task); 1436 if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY && 1437 taskdata->td_flags.complete == 1)) { 1438 // This is a proxy task that was already completed but it needs to run 1439 // its bottom-half finish 1440 KA_TRACE( 1441 30, 1442 ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n", 1443 gtid, taskdata)); 1444 1445 __kmp_bottom_half_finish_proxy(gtid, task); 1446 1447 KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " 1448 "proxy task %p, resuming task %p\n", 1449 gtid, taskdata, current_task)); 1450 1451 return; 1452 } 1453 1454 #if OMPT_SUPPORT 1455 // For untied tasks, the first task executed only calls __kmpc_omp_task and 1456 // does not execute code. 1457 ompt_thread_info_t oldInfo; 1458 if (UNLIKELY(ompt_enabled.enabled)) { 1459 // Store the threads states and restore them after the task 1460 thread = __kmp_threads[gtid]; 1461 oldInfo = thread->th.ompt_thread_info; 1462 thread->th.ompt_thread_info.wait_id = 0; 1463 thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) 1464 ? ompt_state_work_serial 1465 : ompt_state_work_parallel; 1466 taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1467 } 1468 #endif 1469 1470 // Proxy tasks are not handled by the runtime 1471 if (taskdata->td_flags.proxy != TASK_PROXY) { 1472 ANNOTATE_HAPPENS_AFTER(task); 1473 __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded 1474 } 1475 1476 // TODO: cancel tasks if the parallel region has also been cancelled 1477 // TODO: check if this sequence can be hoisted above __kmp_task_start 1478 // if cancellation has been enabled for this run ... 1479 if (UNLIKELY(__kmp_omp_cancellation)) { 1480 thread = __kmp_threads[gtid]; 1481 kmp_team_t *this_team = thread->th.th_team; 1482 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 1483 if ((taskgroup && taskgroup->cancel_request) || 1484 (this_team->t.t_cancel_request == cancel_parallel)) { 1485 #if OMPT_SUPPORT && OMPT_OPTIONAL 1486 ompt_data_t *task_data; 1487 if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { 1488 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 1489 ompt_callbacks.ompt_callback(ompt_callback_cancel)( 1490 task_data, 1491 ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup 1492 : ompt_cancel_parallel) | 1493 ompt_cancel_discarded_task, 1494 NULL); 1495 } 1496 #endif 1497 KMP_COUNT_BLOCK(TASK_cancelled); 1498 // this task belongs to a task group and we need to cancel it 1499 discard = 1 /* true */; 1500 } 1501 } 1502 1503 // Invoke the task routine and pass in relevant data. 1504 // Thunks generated by gcc take a different argument list. 1505 if (!discard) { 1506 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 1507 taskdata->td_last_tied = current_task->td_last_tied; 1508 KMP_DEBUG_ASSERT(taskdata->td_last_tied); 1509 } 1510 #if KMP_STATS_ENABLED 1511 KMP_COUNT_BLOCK(TASK_executed); 1512 switch (KMP_GET_THREAD_STATE()) { 1513 case FORK_JOIN_BARRIER: 1514 KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); 1515 break; 1516 case PLAIN_BARRIER: 1517 KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); 1518 break; 1519 case TASKYIELD: 1520 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); 1521 break; 1522 case TASKWAIT: 1523 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); 1524 break; 1525 case TASKGROUP: 1526 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); 1527 break; 1528 default: 1529 KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); 1530 break; 1531 } 1532 #endif // KMP_STATS_ENABLED 1533 1534 // OMPT task begin 1535 #if OMPT_SUPPORT 1536 if (UNLIKELY(ompt_enabled.enabled)) 1537 __ompt_task_start(task, current_task, gtid); 1538 #endif 1539 1540 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1541 kmp_uint64 cur_time; 1542 kmp_int32 kmp_itt_count_task = 1543 __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && 1544 current_task->td_flags.tasktype == TASK_IMPLICIT; 1545 if (kmp_itt_count_task) { 1546 thread = __kmp_threads[gtid]; 1547 // Time outer level explicit task on barrier for adjusting imbalance time 1548 if (thread->th.th_bar_arrive_time) 1549 cur_time = __itt_get_timestamp(); 1550 else 1551 kmp_itt_count_task = 0; // thread is not on a barrier - skip timing 1552 } 1553 KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task) 1554 #endif 1555 1556 #ifdef KMP_GOMP_COMPAT 1557 if (taskdata->td_flags.native) { 1558 ((void (*)(void *))(*(task->routine)))(task->shareds); 1559 } else 1560 #endif /* KMP_GOMP_COMPAT */ 1561 { 1562 (*(task->routine))(gtid, task); 1563 } 1564 KMP_POP_PARTITIONED_TIMER(); 1565 1566 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1567 if (kmp_itt_count_task) { 1568 // Barrier imbalance - adjust arrive time with the task duration 1569 thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); 1570 } 1571 KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed) 1572 KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent 1573 #endif 1574 1575 } 1576 1577 // Proxy tasks are not handled by the runtime 1578 if (taskdata->td_flags.proxy != TASK_PROXY) { 1579 ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent); 1580 #if OMPT_SUPPORT 1581 if (UNLIKELY(ompt_enabled.enabled)) { 1582 thread->th.ompt_thread_info = oldInfo; 1583 if (taskdata->td_flags.tiedness == TASK_TIED) { 1584 taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1585 } 1586 __kmp_task_finish<true>(gtid, task, current_task); 1587 } else 1588 #endif 1589 __kmp_task_finish<false>(gtid, task, current_task); 1590 } 1591 1592 KA_TRACE( 1593 30, 1594 ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n", 1595 gtid, taskdata, current_task)); 1596 return; 1597 } 1598 1599 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution 1600 // 1601 // loc_ref: location of original task pragma (ignored) 1602 // gtid: Global Thread ID of encountering thread 1603 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' 1604 // Returns: 1605 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1606 // be resumed later. 1607 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1608 // resumed later. 1609 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 1610 kmp_task_t *new_task) { 1611 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1612 1613 KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid, 1614 loc_ref, new_taskdata)); 1615 1616 #if OMPT_SUPPORT 1617 kmp_taskdata_t *parent; 1618 if (UNLIKELY(ompt_enabled.enabled)) { 1619 parent = new_taskdata->td_parent; 1620 if (ompt_enabled.ompt_callback_task_create) { 1621 ompt_data_t task_data = ompt_data_none; 1622 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1623 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1624 parent ? &(parent->ompt_task_info.frame) : NULL, 1625 &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0, 1626 OMPT_GET_RETURN_ADDRESS(0)); 1627 } 1628 } 1629 #endif 1630 1631 /* Should we execute the new task or queue it? For now, let's just always try 1632 to queue it. If the queue fills up, then we'll execute it. */ 1633 1634 if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1635 { // Execute this task immediately 1636 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1637 new_taskdata->td_flags.task_serial = 1; 1638 __kmp_invoke_task(gtid, new_task, current_task); 1639 } 1640 1641 KA_TRACE( 1642 10, 1643 ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " 1644 "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", 1645 gtid, loc_ref, new_taskdata)); 1646 1647 ANNOTATE_HAPPENS_BEFORE(new_task); 1648 #if OMPT_SUPPORT 1649 if (UNLIKELY(ompt_enabled.enabled)) { 1650 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1651 } 1652 #endif 1653 return TASK_CURRENT_NOT_QUEUED; 1654 } 1655 1656 // __kmp_omp_task: Schedule a non-thread-switchable task for execution 1657 // 1658 // gtid: Global Thread ID of encountering thread 1659 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() 1660 // serialize_immediate: if TRUE then if the task is executed immediately its 1661 // execution will be serialized 1662 // Returns: 1663 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1664 // be resumed later. 1665 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1666 // resumed later. 1667 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 1668 bool serialize_immediate) { 1669 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1670 1671 /* Should we execute the new task or queue it? For now, let's just always try 1672 to queue it. If the queue fills up, then we'll execute it. */ 1673 if (new_taskdata->td_flags.proxy == TASK_PROXY || 1674 __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1675 { // Execute this task immediately 1676 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1677 if (serialize_immediate) 1678 new_taskdata->td_flags.task_serial = 1; 1679 __kmp_invoke_task(gtid, new_task, current_task); 1680 } 1681 1682 ANNOTATE_HAPPENS_BEFORE(new_task); 1683 return TASK_CURRENT_NOT_QUEUED; 1684 } 1685 1686 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a 1687 // non-thread-switchable task from the parent thread only! 1688 // 1689 // loc_ref: location of original task pragma (ignored) 1690 // gtid: Global Thread ID of encountering thread 1691 // new_task: non-thread-switchable task thunk allocated by 1692 // __kmp_omp_task_alloc() 1693 // Returns: 1694 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1695 // be resumed later. 1696 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1697 // resumed later. 1698 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 1699 kmp_task_t *new_task) { 1700 kmp_int32 res; 1701 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1702 1703 #if KMP_DEBUG || OMPT_SUPPORT 1704 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1705 #endif 1706 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1707 new_taskdata)); 1708 __kmp_assert_valid_gtid(gtid); 1709 1710 #if OMPT_SUPPORT 1711 kmp_taskdata_t *parent = NULL; 1712 if (UNLIKELY(ompt_enabled.enabled)) { 1713 if (!new_taskdata->td_flags.started) { 1714 OMPT_STORE_RETURN_ADDRESS(gtid); 1715 parent = new_taskdata->td_parent; 1716 if (!parent->ompt_task_info.frame.enter_frame.ptr) { 1717 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1718 } 1719 if (ompt_enabled.ompt_callback_task_create) { 1720 ompt_data_t task_data = ompt_data_none; 1721 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1722 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1723 parent ? &(parent->ompt_task_info.frame) : NULL, 1724 &(new_taskdata->ompt_task_info.task_data), 1725 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1726 OMPT_LOAD_RETURN_ADDRESS(gtid)); 1727 } 1728 } else { 1729 // We are scheduling the continuation of an UNTIED task. 1730 // Scheduling back to the parent task. 1731 __ompt_task_finish(new_task, 1732 new_taskdata->ompt_task_info.scheduling_parent, 1733 ompt_task_switch); 1734 new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1735 } 1736 } 1737 #endif 1738 1739 res = __kmp_omp_task(gtid, new_task, true); 1740 1741 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1742 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1743 gtid, loc_ref, new_taskdata)); 1744 #if OMPT_SUPPORT 1745 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1746 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1747 } 1748 #endif 1749 return res; 1750 } 1751 1752 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule 1753 // a taskloop task with the correct OMPT return address 1754 // 1755 // loc_ref: location of original task pragma (ignored) 1756 // gtid: Global Thread ID of encountering thread 1757 // new_task: non-thread-switchable task thunk allocated by 1758 // __kmp_omp_task_alloc() 1759 // codeptr_ra: return address for OMPT callback 1760 // Returns: 1761 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1762 // be resumed later. 1763 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1764 // resumed later. 1765 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, 1766 kmp_task_t *new_task, void *codeptr_ra) { 1767 kmp_int32 res; 1768 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1769 1770 #if KMP_DEBUG || OMPT_SUPPORT 1771 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1772 #endif 1773 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1774 new_taskdata)); 1775 1776 #if OMPT_SUPPORT 1777 kmp_taskdata_t *parent = NULL; 1778 if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { 1779 parent = new_taskdata->td_parent; 1780 if (!parent->ompt_task_info.frame.enter_frame.ptr) 1781 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1782 if (ompt_enabled.ompt_callback_task_create) { 1783 ompt_data_t task_data = ompt_data_none; 1784 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1785 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1786 parent ? &(parent->ompt_task_info.frame) : NULL, 1787 &(new_taskdata->ompt_task_info.task_data), 1788 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1789 codeptr_ra); 1790 } 1791 } 1792 #endif 1793 1794 res = __kmp_omp_task(gtid, new_task, true); 1795 1796 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1797 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1798 gtid, loc_ref, new_taskdata)); 1799 #if OMPT_SUPPORT 1800 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1801 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1802 } 1803 #endif 1804 return res; 1805 } 1806 1807 template <bool ompt> 1808 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, 1809 void *frame_address, 1810 void *return_address) { 1811 kmp_taskdata_t *taskdata; 1812 kmp_info_t *thread; 1813 int thread_finished = FALSE; 1814 KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); 1815 1816 KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref)); 1817 __kmp_assert_valid_gtid(gtid); 1818 1819 if (__kmp_tasking_mode != tskm_immediate_exec) { 1820 thread = __kmp_threads[gtid]; 1821 taskdata = thread->th.th_current_task; 1822 1823 #if OMPT_SUPPORT && OMPT_OPTIONAL 1824 ompt_data_t *my_task_data; 1825 ompt_data_t *my_parallel_data; 1826 1827 if (ompt) { 1828 my_task_data = &(taskdata->ompt_task_info.task_data); 1829 my_parallel_data = OMPT_CUR_TEAM_DATA(thread); 1830 1831 taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; 1832 1833 if (ompt_enabled.ompt_callback_sync_region) { 1834 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1835 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1836 my_task_data, return_address); 1837 } 1838 1839 if (ompt_enabled.ompt_callback_sync_region_wait) { 1840 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1841 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1842 my_task_data, return_address); 1843 } 1844 } 1845 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1846 1847 // Debugger: The taskwait is active. Store location and thread encountered the 1848 // taskwait. 1849 #if USE_ITT_BUILD 1850 // Note: These values are used by ITT events as well. 1851 #endif /* USE_ITT_BUILD */ 1852 taskdata->td_taskwait_counter += 1; 1853 taskdata->td_taskwait_ident = loc_ref; 1854 taskdata->td_taskwait_thread = gtid + 1; 1855 1856 #if USE_ITT_BUILD 1857 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 1858 if (UNLIKELY(itt_sync_obj != NULL)) 1859 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 1860 #endif /* USE_ITT_BUILD */ 1861 1862 bool must_wait = 1863 !taskdata->td_flags.team_serial && !taskdata->td_flags.final; 1864 1865 must_wait = must_wait || (thread->th.th_task_team != NULL && 1866 thread->th.th_task_team->tt.tt_found_proxy_tasks); 1867 if (must_wait) { 1868 kmp_flag_32<false, false> flag( 1869 RCAST(std::atomic<kmp_uint32> *, 1870 &(taskdata->td_incomplete_child_tasks)), 1871 0U); 1872 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { 1873 flag.execute_tasks(thread, gtid, FALSE, 1874 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 1875 __kmp_task_stealing_constraint); 1876 } 1877 } 1878 #if USE_ITT_BUILD 1879 if (UNLIKELY(itt_sync_obj != NULL)) 1880 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 1881 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children 1882 #endif /* USE_ITT_BUILD */ 1883 1884 // Debugger: The taskwait is completed. Location remains, but thread is 1885 // negated. 1886 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 1887 1888 #if OMPT_SUPPORT && OMPT_OPTIONAL 1889 if (ompt) { 1890 if (ompt_enabled.ompt_callback_sync_region_wait) { 1891 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1892 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1893 my_task_data, return_address); 1894 } 1895 if (ompt_enabled.ompt_callback_sync_region) { 1896 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1897 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1898 my_task_data, return_address); 1899 } 1900 taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; 1901 } 1902 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1903 1904 ANNOTATE_HAPPENS_AFTER(taskdata); 1905 } 1906 1907 KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " 1908 "returning TASK_CURRENT_NOT_QUEUED\n", 1909 gtid, taskdata)); 1910 1911 return TASK_CURRENT_NOT_QUEUED; 1912 } 1913 1914 #if OMPT_SUPPORT && OMPT_OPTIONAL 1915 OMPT_NOINLINE 1916 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, 1917 void *frame_address, 1918 void *return_address) { 1919 return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, 1920 return_address); 1921 } 1922 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1923 1924 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are 1925 // complete 1926 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { 1927 #if OMPT_SUPPORT && OMPT_OPTIONAL 1928 if (UNLIKELY(ompt_enabled.enabled)) { 1929 OMPT_STORE_RETURN_ADDRESS(gtid); 1930 return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), 1931 OMPT_LOAD_RETURN_ADDRESS(gtid)); 1932 } 1933 #endif 1934 return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); 1935 } 1936 1937 // __kmpc_omp_taskyield: switch to a different task 1938 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { 1939 kmp_taskdata_t *taskdata; 1940 kmp_info_t *thread; 1941 int thread_finished = FALSE; 1942 1943 KMP_COUNT_BLOCK(OMP_TASKYIELD); 1944 KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); 1945 1946 KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", 1947 gtid, loc_ref, end_part)); 1948 __kmp_assert_valid_gtid(gtid); 1949 1950 if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { 1951 thread = __kmp_threads[gtid]; 1952 taskdata = thread->th.th_current_task; 1953 // Should we model this as a task wait or not? 1954 // Debugger: The taskwait is active. Store location and thread encountered the 1955 // taskwait. 1956 #if USE_ITT_BUILD 1957 // Note: These values are used by ITT events as well. 1958 #endif /* USE_ITT_BUILD */ 1959 taskdata->td_taskwait_counter += 1; 1960 taskdata->td_taskwait_ident = loc_ref; 1961 taskdata->td_taskwait_thread = gtid + 1; 1962 1963 #if USE_ITT_BUILD 1964 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 1965 if (UNLIKELY(itt_sync_obj != NULL)) 1966 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 1967 #endif /* USE_ITT_BUILD */ 1968 if (!taskdata->td_flags.team_serial) { 1969 kmp_task_team_t *task_team = thread->th.th_task_team; 1970 if (task_team != NULL) { 1971 if (KMP_TASKING_ENABLED(task_team)) { 1972 #if OMPT_SUPPORT 1973 if (UNLIKELY(ompt_enabled.enabled)) 1974 thread->th.ompt_thread_info.ompt_task_yielded = 1; 1975 #endif 1976 __kmp_execute_tasks_32( 1977 thread, gtid, (kmp_flag_32<> *)NULL, FALSE, 1978 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 1979 __kmp_task_stealing_constraint); 1980 #if OMPT_SUPPORT 1981 if (UNLIKELY(ompt_enabled.enabled)) 1982 thread->th.ompt_thread_info.ompt_task_yielded = 0; 1983 #endif 1984 } 1985 } 1986 } 1987 #if USE_ITT_BUILD 1988 if (UNLIKELY(itt_sync_obj != NULL)) 1989 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 1990 #endif /* USE_ITT_BUILD */ 1991 1992 // Debugger: The taskwait is completed. Location remains, but thread is 1993 // negated. 1994 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 1995 } 1996 1997 KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " 1998 "returning TASK_CURRENT_NOT_QUEUED\n", 1999 gtid, taskdata)); 2000 2001 return TASK_CURRENT_NOT_QUEUED; 2002 } 2003 2004 // Task Reduction implementation 2005 // 2006 // Note: initial implementation didn't take into account the possibility 2007 // to specify omp_orig for initializer of the UDR (user defined reduction). 2008 // Corrected implementation takes into account the omp_orig object. 2009 // Compiler is free to use old implementation if omp_orig is not specified. 2010 2011 /*! 2012 @ingroup BASIC_TYPES 2013 @{ 2014 */ 2015 2016 /*! 2017 Flags for special info per task reduction item. 2018 */ 2019 typedef struct kmp_taskred_flags { 2020 /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */ 2021 unsigned lazy_priv : 1; 2022 unsigned reserved31 : 31; 2023 } kmp_taskred_flags_t; 2024 2025 /*! 2026 Internal struct for reduction data item related info set up by compiler. 2027 */ 2028 typedef struct kmp_task_red_input { 2029 void *reduce_shar; /**< shared between tasks item to reduce into */ 2030 size_t reduce_size; /**< size of data item in bytes */ 2031 // three compiler-generated routines (init, fini are optional): 2032 void *reduce_init; /**< data initialization routine (single parameter) */ 2033 void *reduce_fini; /**< data finalization routine */ 2034 void *reduce_comb; /**< data combiner routine */ 2035 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2036 } kmp_task_red_input_t; 2037 2038 /*! 2039 Internal struct for reduction data item related info saved by the library. 2040 */ 2041 typedef struct kmp_taskred_data { 2042 void *reduce_shar; /**< shared between tasks item to reduce into */ 2043 size_t reduce_size; /**< size of data item */ 2044 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2045 void *reduce_priv; /**< array of thread specific items */ 2046 void *reduce_pend; /**< end of private data for faster comparison op */ 2047 // three compiler-generated routines (init, fini are optional): 2048 void *reduce_comb; /**< data combiner routine */ 2049 void *reduce_init; /**< data initialization routine (two parameters) */ 2050 void *reduce_fini; /**< data finalization routine */ 2051 void *reduce_orig; /**< original item (can be used in UDR initializer) */ 2052 } kmp_taskred_data_t; 2053 2054 /*! 2055 Internal struct for reduction data item related info set up by compiler. 2056 2057 New interface: added reduce_orig field to provide omp_orig for UDR initializer. 2058 */ 2059 typedef struct kmp_taskred_input { 2060 void *reduce_shar; /**< shared between tasks item to reduce into */ 2061 void *reduce_orig; /**< original reduction item used for initialization */ 2062 size_t reduce_size; /**< size of data item */ 2063 // three compiler-generated routines (init, fini are optional): 2064 void *reduce_init; /**< data initialization routine (two parameters) */ 2065 void *reduce_fini; /**< data finalization routine */ 2066 void *reduce_comb; /**< data combiner routine */ 2067 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2068 } kmp_taskred_input_t; 2069 /*! 2070 @} 2071 */ 2072 2073 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); 2074 template <> 2075 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2076 kmp_task_red_input_t &src) { 2077 item.reduce_orig = NULL; 2078 } 2079 template <> 2080 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2081 kmp_taskred_input_t &src) { 2082 if (src.reduce_orig != NULL) { 2083 item.reduce_orig = src.reduce_orig; 2084 } else { 2085 item.reduce_orig = src.reduce_shar; 2086 } // non-NULL reduce_orig means new interface used 2087 } 2088 2089 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, int j); 2090 template <> 2091 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2092 int offset) { 2093 ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); 2094 } 2095 template <> 2096 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2097 int offset) { 2098 ((void (*)(void *, void *))item.reduce_init)( 2099 (char *)(item.reduce_priv) + offset, item.reduce_orig); 2100 } 2101 2102 template <typename T> 2103 void *__kmp_task_reduction_init(int gtid, int num, T *data) { 2104 __kmp_assert_valid_gtid(gtid); 2105 kmp_info_t *thread = __kmp_threads[gtid]; 2106 kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; 2107 kmp_int32 nth = thread->th.th_team_nproc; 2108 kmp_taskred_data_t *arr; 2109 2110 // check input data just in case 2111 KMP_ASSERT(tg != NULL); 2112 KMP_ASSERT(data != NULL); 2113 KMP_ASSERT(num > 0); 2114 if (nth == 1) { 2115 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n", 2116 gtid, tg)); 2117 return (void *)tg; 2118 } 2119 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n", 2120 gtid, tg, num)); 2121 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2122 thread, num * sizeof(kmp_taskred_data_t)); 2123 for (int i = 0; i < num; ++i) { 2124 size_t size = data[i].reduce_size - 1; 2125 // round the size up to cache line per thread-specific item 2126 size += CACHE_LINE - size % CACHE_LINE; 2127 KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory 2128 arr[i].reduce_shar = data[i].reduce_shar; 2129 arr[i].reduce_size = size; 2130 arr[i].flags = data[i].flags; 2131 arr[i].reduce_comb = data[i].reduce_comb; 2132 arr[i].reduce_init = data[i].reduce_init; 2133 arr[i].reduce_fini = data[i].reduce_fini; 2134 __kmp_assign_orig<T>(arr[i], data[i]); 2135 if (!arr[i].flags.lazy_priv) { 2136 // allocate cache-line aligned block and fill it with zeros 2137 arr[i].reduce_priv = __kmp_allocate(nth * size); 2138 arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; 2139 if (arr[i].reduce_init != NULL) { 2140 // initialize all thread-specific items 2141 for (int j = 0; j < nth; ++j) { 2142 __kmp_call_init<T>(arr[i], j * size); 2143 } 2144 } 2145 } else { 2146 // only allocate space for pointers now, 2147 // objects will be lazily allocated/initialized if/when requested 2148 // note that __kmp_allocate zeroes the allocated memory 2149 arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); 2150 } 2151 } 2152 tg->reduce_data = (void *)arr; 2153 tg->reduce_num_data = num; 2154 return (void *)tg; 2155 } 2156 2157 /*! 2158 @ingroup TASKING 2159 @param gtid Global thread ID 2160 @param num Number of data items to reduce 2161 @param data Array of data for reduction 2162 @return The taskgroup identifier 2163 2164 Initialize task reduction for the taskgroup. 2165 2166 Note: this entry supposes the optional compiler-generated initializer routine 2167 has single parameter - pointer to object to be initialized. That means 2168 the reduction either does not use omp_orig object, or the omp_orig is accessible 2169 without help of the runtime library. 2170 */ 2171 void *__kmpc_task_reduction_init(int gtid, int num, void *data) { 2172 return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data); 2173 } 2174 2175 /*! 2176 @ingroup TASKING 2177 @param gtid Global thread ID 2178 @param num Number of data items to reduce 2179 @param data Array of data for reduction 2180 @return The taskgroup identifier 2181 2182 Initialize task reduction for the taskgroup. 2183 2184 Note: this entry supposes the optional compiler-generated initializer routine 2185 has two parameters, pointer to object to be initialized and pointer to omp_orig 2186 */ 2187 void *__kmpc_taskred_init(int gtid, int num, void *data) { 2188 return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data); 2189 } 2190 2191 // Copy task reduction data (except for shared pointers). 2192 template <typename T> 2193 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, 2194 kmp_taskgroup_t *tg, void *reduce_data) { 2195 kmp_taskred_data_t *arr; 2196 KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," 2197 " from data %p\n", 2198 thr, tg, reduce_data)); 2199 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2200 thr, num * sizeof(kmp_taskred_data_t)); 2201 // threads will share private copies, thunk routines, sizes, flags, etc.: 2202 KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t)); 2203 for (int i = 0; i < num; ++i) { 2204 arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers 2205 } 2206 tg->reduce_data = (void *)arr; 2207 tg->reduce_num_data = num; 2208 } 2209 2210 /*! 2211 @ingroup TASKING 2212 @param gtid Global thread ID 2213 @param tskgrp The taskgroup ID (optional) 2214 @param data Shared location of the item 2215 @return The pointer to per-thread data 2216 2217 Get thread-specific location of data item 2218 */ 2219 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { 2220 __kmp_assert_valid_gtid(gtid); 2221 kmp_info_t *thread = __kmp_threads[gtid]; 2222 kmp_int32 nth = thread->th.th_team_nproc; 2223 if (nth == 1) 2224 return data; // nothing to do 2225 2226 kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; 2227 if (tg == NULL) 2228 tg = thread->th.th_current_task->td_taskgroup; 2229 KMP_ASSERT(tg != NULL); 2230 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data); 2231 kmp_int32 num = tg->reduce_num_data; 2232 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 2233 2234 KMP_ASSERT(data != NULL); 2235 while (tg != NULL) { 2236 for (int i = 0; i < num; ++i) { 2237 if (!arr[i].flags.lazy_priv) { 2238 if (data == arr[i].reduce_shar || 2239 (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) 2240 return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; 2241 } else { 2242 // check shared location first 2243 void **p_priv = (void **)(arr[i].reduce_priv); 2244 if (data == arr[i].reduce_shar) 2245 goto found; 2246 // check if we get some thread specific location as parameter 2247 for (int j = 0; j < nth; ++j) 2248 if (data == p_priv[j]) 2249 goto found; 2250 continue; // not found, continue search 2251 found: 2252 if (p_priv[tid] == NULL) { 2253 // allocate thread specific object lazily 2254 p_priv[tid] = __kmp_allocate(arr[i].reduce_size); 2255 if (arr[i].reduce_init != NULL) { 2256 if (arr[i].reduce_orig != NULL) { // new interface 2257 ((void (*)(void *, void *))arr[i].reduce_init)( 2258 p_priv[tid], arr[i].reduce_orig); 2259 } else { // old interface (single parameter) 2260 ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); 2261 } 2262 } 2263 } 2264 return p_priv[tid]; 2265 } 2266 } 2267 tg = tg->parent; 2268 arr = (kmp_taskred_data_t *)(tg->reduce_data); 2269 num = tg->reduce_num_data; 2270 } 2271 KMP_ASSERT2(0, "Unknown task reduction item"); 2272 return NULL; // ERROR, this line never executed 2273 } 2274 2275 // Finalize task reduction. 2276 // Called from __kmpc_end_taskgroup() 2277 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { 2278 kmp_int32 nth = th->th.th_team_nproc; 2279 KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1 2280 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; 2281 kmp_int32 num = tg->reduce_num_data; 2282 for (int i = 0; i < num; ++i) { 2283 void *sh_data = arr[i].reduce_shar; 2284 void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); 2285 void (*f_comb)(void *, void *) = 2286 (void (*)(void *, void *))(arr[i].reduce_comb); 2287 if (!arr[i].flags.lazy_priv) { 2288 void *pr_data = arr[i].reduce_priv; 2289 size_t size = arr[i].reduce_size; 2290 for (int j = 0; j < nth; ++j) { 2291 void *priv_data = (char *)pr_data + j * size; 2292 f_comb(sh_data, priv_data); // combine results 2293 if (f_fini) 2294 f_fini(priv_data); // finalize if needed 2295 } 2296 } else { 2297 void **pr_data = (void **)(arr[i].reduce_priv); 2298 for (int j = 0; j < nth; ++j) { 2299 if (pr_data[j] != NULL) { 2300 f_comb(sh_data, pr_data[j]); // combine results 2301 if (f_fini) 2302 f_fini(pr_data[j]); // finalize if needed 2303 __kmp_free(pr_data[j]); 2304 } 2305 } 2306 } 2307 __kmp_free(arr[i].reduce_priv); 2308 } 2309 __kmp_thread_free(th, arr); 2310 tg->reduce_data = NULL; 2311 tg->reduce_num_data = 0; 2312 } 2313 2314 // Cleanup task reduction data for parallel or worksharing, 2315 // do not touch task private data other threads still working with. 2316 // Called from __kmpc_end_taskgroup() 2317 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { 2318 __kmp_thread_free(th, tg->reduce_data); 2319 tg->reduce_data = NULL; 2320 tg->reduce_num_data = 0; 2321 } 2322 2323 template <typename T> 2324 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2325 int num, T *data) { 2326 __kmp_assert_valid_gtid(gtid); 2327 kmp_info_t *thr = __kmp_threads[gtid]; 2328 kmp_int32 nth = thr->th.th_team_nproc; 2329 __kmpc_taskgroup(loc, gtid); // form new taskgroup first 2330 if (nth == 1) { 2331 KA_TRACE(10, 2332 ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n", 2333 gtid, thr->th.th_current_task->td_taskgroup)); 2334 return (void *)thr->th.th_current_task->td_taskgroup; 2335 } 2336 kmp_team_t *team = thr->th.th_team; 2337 void *reduce_data; 2338 kmp_taskgroup_t *tg; 2339 reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); 2340 if (reduce_data == NULL && 2341 __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data, 2342 (void *)1)) { 2343 // single thread enters this block to initialize common reduction data 2344 KMP_DEBUG_ASSERT(reduce_data == NULL); 2345 // first initialize own data, then make a copy other threads can use 2346 tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); 2347 reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); 2348 KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t)); 2349 // fini counters should be 0 at this point 2350 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); 2351 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); 2352 KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); 2353 } else { 2354 while ( 2355 (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == 2356 (void *)1) { // wait for task reduction initialization 2357 KMP_CPU_PAUSE(); 2358 } 2359 KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here 2360 tg = thr->th.th_current_task->td_taskgroup; 2361 __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); 2362 } 2363 return tg; 2364 } 2365 2366 /*! 2367 @ingroup TASKING 2368 @param loc Source location info 2369 @param gtid Global thread ID 2370 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2371 @param num Number of data items to reduce 2372 @param data Array of data for reduction 2373 @return The taskgroup identifier 2374 2375 Initialize task reduction for a parallel or worksharing. 2376 2377 Note: this entry supposes the optional compiler-generated initializer routine 2378 has single parameter - pointer to object to be initialized. That means 2379 the reduction either does not use omp_orig object, or the omp_orig is accessible 2380 without help of the runtime library. 2381 */ 2382 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2383 int num, void *data) { 2384 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2385 (kmp_task_red_input_t *)data); 2386 } 2387 2388 /*! 2389 @ingroup TASKING 2390 @param loc Source location info 2391 @param gtid Global thread ID 2392 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2393 @param num Number of data items to reduce 2394 @param data Array of data for reduction 2395 @return The taskgroup identifier 2396 2397 Initialize task reduction for a parallel or worksharing. 2398 2399 Note: this entry supposes the optional compiler-generated initializer routine 2400 has two parameters, pointer to object to be initialized and pointer to omp_orig 2401 */ 2402 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, 2403 void *data) { 2404 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2405 (kmp_taskred_input_t *)data); 2406 } 2407 2408 /*! 2409 @ingroup TASKING 2410 @param loc Source location info 2411 @param gtid Global thread ID 2412 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2413 2414 Finalize task reduction for a parallel or worksharing. 2415 */ 2416 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { 2417 __kmpc_end_taskgroup(loc, gtid); 2418 } 2419 2420 // __kmpc_taskgroup: Start a new taskgroup 2421 void __kmpc_taskgroup(ident_t *loc, int gtid) { 2422 __kmp_assert_valid_gtid(gtid); 2423 kmp_info_t *thread = __kmp_threads[gtid]; 2424 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2425 kmp_taskgroup_t *tg_new = 2426 (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); 2427 KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new)); 2428 KMP_ATOMIC_ST_RLX(&tg_new->count, 0); 2429 KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); 2430 tg_new->parent = taskdata->td_taskgroup; 2431 tg_new->reduce_data = NULL; 2432 tg_new->reduce_num_data = 0; 2433 taskdata->td_taskgroup = tg_new; 2434 2435 #if OMPT_SUPPORT && OMPT_OPTIONAL 2436 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2437 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2438 if (!codeptr) 2439 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2440 kmp_team_t *team = thread->th.th_team; 2441 ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; 2442 // FIXME: I think this is wrong for lwt! 2443 ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; 2444 2445 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2446 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2447 &(my_task_data), codeptr); 2448 } 2449 #endif 2450 } 2451 2452 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task 2453 // and its descendants are complete 2454 void __kmpc_end_taskgroup(ident_t *loc, int gtid) { 2455 __kmp_assert_valid_gtid(gtid); 2456 kmp_info_t *thread = __kmp_threads[gtid]; 2457 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2458 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 2459 int thread_finished = FALSE; 2460 2461 #if OMPT_SUPPORT && OMPT_OPTIONAL 2462 kmp_team_t *team; 2463 ompt_data_t my_task_data; 2464 ompt_data_t my_parallel_data; 2465 void *codeptr; 2466 if (UNLIKELY(ompt_enabled.enabled)) { 2467 team = thread->th.th_team; 2468 my_task_data = taskdata->ompt_task_info.task_data; 2469 // FIXME: I think this is wrong for lwt! 2470 my_parallel_data = team->t.ompt_team_info.parallel_data; 2471 codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2472 if (!codeptr) 2473 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2474 } 2475 #endif 2476 2477 KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc)); 2478 KMP_DEBUG_ASSERT(taskgroup != NULL); 2479 KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); 2480 2481 if (__kmp_tasking_mode != tskm_immediate_exec) { 2482 // mark task as waiting not on a barrier 2483 taskdata->td_taskwait_counter += 1; 2484 taskdata->td_taskwait_ident = loc; 2485 taskdata->td_taskwait_thread = gtid + 1; 2486 #if USE_ITT_BUILD 2487 // For ITT the taskgroup wait is similar to taskwait until we need to 2488 // distinguish them 2489 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 2490 if (UNLIKELY(itt_sync_obj != NULL)) 2491 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 2492 #endif /* USE_ITT_BUILD */ 2493 2494 #if OMPT_SUPPORT && OMPT_OPTIONAL 2495 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2496 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2497 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2498 &(my_task_data), codeptr); 2499 } 2500 #endif 2501 2502 if (!taskdata->td_flags.team_serial || 2503 (thread->th.th_task_team != NULL && 2504 thread->th.th_task_team->tt.tt_found_proxy_tasks)) { 2505 kmp_flag_32<false, false> flag( 2506 RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U); 2507 while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { 2508 flag.execute_tasks(thread, gtid, FALSE, 2509 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2510 __kmp_task_stealing_constraint); 2511 } 2512 } 2513 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting 2514 2515 #if OMPT_SUPPORT && OMPT_OPTIONAL 2516 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2517 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2518 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2519 &(my_task_data), codeptr); 2520 } 2521 #endif 2522 2523 #if USE_ITT_BUILD 2524 if (UNLIKELY(itt_sync_obj != NULL)) 2525 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 2526 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants 2527 #endif /* USE_ITT_BUILD */ 2528 } 2529 KMP_DEBUG_ASSERT(taskgroup->count == 0); 2530 2531 if (taskgroup->reduce_data != NULL) { // need to reduce? 2532 int cnt; 2533 void *reduce_data; 2534 kmp_team_t *t = thread->th.th_team; 2535 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; 2536 // check if <priv> data of the first reduction variable shared for the team 2537 void *priv0 = arr[0].reduce_priv; 2538 if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && 2539 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2540 // finishing task reduction on parallel 2541 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); 2542 if (cnt == thread->th.th_team_nproc - 1) { 2543 // we are the last thread passing __kmpc_reduction_modifier_fini() 2544 // finalize task reduction: 2545 __kmp_task_reduction_fini(thread, taskgroup); 2546 // cleanup fields in the team structure: 2547 // TODO: is relaxed store enough here (whole barrier should follow)? 2548 __kmp_thread_free(thread, reduce_data); 2549 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); 2550 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); 2551 } else { 2552 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2553 // so do not finalize reduction, just clean own copy of the data 2554 __kmp_task_reduction_clean(thread, taskgroup); 2555 } 2556 } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != 2557 NULL && 2558 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2559 // finishing task reduction on worksharing 2560 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); 2561 if (cnt == thread->th.th_team_nproc - 1) { 2562 // we are the last thread passing __kmpc_reduction_modifier_fini() 2563 __kmp_task_reduction_fini(thread, taskgroup); 2564 // cleanup fields in team structure: 2565 // TODO: is relaxed store enough here (whole barrier should follow)? 2566 __kmp_thread_free(thread, reduce_data); 2567 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); 2568 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); 2569 } else { 2570 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2571 // so do not finalize reduction, just clean own copy of the data 2572 __kmp_task_reduction_clean(thread, taskgroup); 2573 } 2574 } else { 2575 // finishing task reduction on taskgroup 2576 __kmp_task_reduction_fini(thread, taskgroup); 2577 } 2578 } 2579 // Restore parent taskgroup for the current task 2580 taskdata->td_taskgroup = taskgroup->parent; 2581 __kmp_thread_free(thread, taskgroup); 2582 2583 KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", 2584 gtid, taskdata)); 2585 ANNOTATE_HAPPENS_AFTER(taskdata); 2586 2587 #if OMPT_SUPPORT && OMPT_OPTIONAL 2588 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2589 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2590 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2591 &(my_task_data), codeptr); 2592 } 2593 #endif 2594 } 2595 2596 // __kmp_remove_my_task: remove a task from my own deque 2597 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, 2598 kmp_task_team_t *task_team, 2599 kmp_int32 is_constrained) { 2600 kmp_task_t *task; 2601 kmp_taskdata_t *taskdata; 2602 kmp_thread_data_t *thread_data; 2603 kmp_uint32 tail; 2604 2605 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2606 KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != 2607 NULL); // Caller should check this condition 2608 2609 thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 2610 2611 KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", 2612 gtid, thread_data->td.td_deque_ntasks, 2613 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2614 2615 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2616 KA_TRACE(10, 2617 ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " 2618 "ntasks=%d head=%u tail=%u\n", 2619 gtid, thread_data->td.td_deque_ntasks, 2620 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2621 return NULL; 2622 } 2623 2624 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 2625 2626 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2627 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2628 KA_TRACE(10, 2629 ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " 2630 "ntasks=%d head=%u tail=%u\n", 2631 gtid, thread_data->td.td_deque_ntasks, 2632 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2633 return NULL; 2634 } 2635 2636 tail = (thread_data->td.td_deque_tail - 1) & 2637 TASK_DEQUE_MASK(thread_data->td); // Wrap index. 2638 taskdata = thread_data->td.td_deque[tail]; 2639 2640 if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata, 2641 thread->th.th_current_task)) { 2642 // The TSC does not allow to steal victim task 2643 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2644 KA_TRACE(10, 2645 ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " 2646 "ntasks=%d head=%u tail=%u\n", 2647 gtid, thread_data->td.td_deque_ntasks, 2648 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2649 return NULL; 2650 } 2651 2652 thread_data->td.td_deque_tail = tail; 2653 TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); 2654 2655 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2656 2657 KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " 2658 "ntasks=%d head=%u tail=%u\n", 2659 gtid, taskdata, thread_data->td.td_deque_ntasks, 2660 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2661 2662 task = KMP_TASKDATA_TO_TASK(taskdata); 2663 return task; 2664 } 2665 2666 // __kmp_steal_task: remove a task from another thread's deque 2667 // Assume that calling thread has already checked existence of 2668 // task_team thread_data before calling this routine. 2669 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid, 2670 kmp_task_team_t *task_team, 2671 std::atomic<kmp_int32> *unfinished_threads, 2672 int *thread_finished, 2673 kmp_int32 is_constrained) { 2674 kmp_task_t *task; 2675 kmp_taskdata_t *taskdata; 2676 kmp_taskdata_t *current; 2677 kmp_thread_data_t *victim_td, *threads_data; 2678 kmp_int32 target; 2679 kmp_int32 victim_tid; 2680 2681 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2682 2683 threads_data = task_team->tt.tt_threads_data; 2684 KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition 2685 2686 victim_tid = victim_thr->th.th_info.ds.ds_tid; 2687 victim_td = &threads_data[victim_tid]; 2688 2689 KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " 2690 "task_team=%p ntasks=%d head=%u tail=%u\n", 2691 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2692 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2693 victim_td->td.td_deque_tail)); 2694 2695 if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { 2696 KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " 2697 "task_team=%p ntasks=%d head=%u tail=%u\n", 2698 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2699 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2700 victim_td->td.td_deque_tail)); 2701 return NULL; 2702 } 2703 2704 __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock); 2705 2706 int ntasks = TCR_4(victim_td->td.td_deque_ntasks); 2707 // Check again after we acquire the lock 2708 if (ntasks == 0) { 2709 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2710 KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " 2711 "task_team=%p ntasks=%d head=%u tail=%u\n", 2712 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2713 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2714 return NULL; 2715 } 2716 2717 KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); 2718 current = __kmp_threads[gtid]->th.th_current_task; 2719 taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; 2720 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2721 // Bump head pointer and Wrap. 2722 victim_td->td.td_deque_head = 2723 (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); 2724 } else { 2725 if (!task_team->tt.tt_untied_task_encountered) { 2726 // The TSC does not allow to steal victim task 2727 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2728 KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " 2729 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2730 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2731 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2732 return NULL; 2733 } 2734 int i; 2735 // walk through victim's deque trying to steal any task 2736 target = victim_td->td.td_deque_head; 2737 taskdata = NULL; 2738 for (i = 1; i < ntasks; ++i) { 2739 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2740 taskdata = victim_td->td.td_deque[target]; 2741 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2742 break; // found victim task 2743 } else { 2744 taskdata = NULL; 2745 } 2746 } 2747 if (taskdata == NULL) { 2748 // No appropriate candidate to steal found 2749 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2750 KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " 2751 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2752 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2753 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2754 return NULL; 2755 } 2756 int prev = target; 2757 for (i = i + 1; i < ntasks; ++i) { 2758 // shift remaining tasks in the deque left by 1 2759 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2760 victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; 2761 prev = target; 2762 } 2763 KMP_DEBUG_ASSERT( 2764 victim_td->td.td_deque_tail == 2765 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); 2766 victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) 2767 } 2768 if (*thread_finished) { 2769 // We need to un-mark this victim as a finished victim. This must be done 2770 // before releasing the lock, or else other threads (starting with the 2771 // master victim) might be prematurely released from the barrier!!! 2772 kmp_int32 count; 2773 2774 count = KMP_ATOMIC_INC(unfinished_threads); 2775 2776 KA_TRACE( 2777 20, 2778 ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", 2779 gtid, count + 1, task_team)); 2780 2781 *thread_finished = FALSE; 2782 } 2783 TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); 2784 2785 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2786 2787 KMP_COUNT_BLOCK(TASK_stolen); 2788 KA_TRACE(10, 2789 ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " 2790 "task_team=%p ntasks=%d head=%u tail=%u\n", 2791 gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, 2792 ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2793 2794 task = KMP_TASKDATA_TO_TASK(taskdata); 2795 return task; 2796 } 2797 2798 // __kmp_execute_tasks_template: Choose and execute tasks until either the 2799 // condition is statisfied (return true) or there are none left (return false). 2800 // 2801 // final_spin is TRUE if this is the spin at the release barrier. 2802 // thread_finished indicates whether the thread is finished executing all 2803 // the tasks it has on its deque, and is at the release barrier. 2804 // spinner is the location on which to spin. 2805 // spinner == NULL means only execute a single task and return. 2806 // checker is the value to check to terminate the spin. 2807 template <class C> 2808 static inline int __kmp_execute_tasks_template( 2809 kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, 2810 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 2811 kmp_int32 is_constrained) { 2812 kmp_task_team_t *task_team = thread->th.th_task_team; 2813 kmp_thread_data_t *threads_data; 2814 kmp_task_t *task; 2815 kmp_info_t *other_thread; 2816 kmp_taskdata_t *current_task = thread->th.th_current_task; 2817 std::atomic<kmp_int32> *unfinished_threads; 2818 kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, 2819 tid = thread->th.th_info.ds.ds_tid; 2820 2821 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2822 KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); 2823 2824 if (task_team == NULL || current_task == NULL) 2825 return FALSE; 2826 2827 KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " 2828 "*thread_finished=%d\n", 2829 gtid, final_spin, *thread_finished)); 2830 2831 thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 2832 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 2833 KMP_DEBUG_ASSERT(threads_data != NULL); 2834 2835 nthreads = task_team->tt.tt_nproc; 2836 unfinished_threads = &(task_team->tt.tt_unfinished_threads); 2837 KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks); 2838 KMP_DEBUG_ASSERT(*unfinished_threads >= 0); 2839 2840 while (1) { // Outer loop keeps trying to find tasks in case of single thread 2841 // getting tasks from target constructs 2842 while (1) { // Inner loop to find a task and execute it 2843 task = NULL; 2844 if (use_own_tasks) { // check on own queue first 2845 task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); 2846 } 2847 if ((task == NULL) && (nthreads > 1)) { // Steal a task 2848 int asleep = 1; 2849 use_own_tasks = 0; 2850 // Try to steal from the last place I stole from successfully. 2851 if (victim_tid == -2) { // haven't stolen anything yet 2852 victim_tid = threads_data[tid].td.td_deque_last_stolen; 2853 if (victim_tid != 2854 -1) // if we have a last stolen from victim, get the thread 2855 other_thread = threads_data[victim_tid].td.td_thr; 2856 } 2857 if (victim_tid != -1) { // found last victim 2858 asleep = 0; 2859 } else if (!new_victim) { // no recent steals and we haven't already 2860 // used a new victim; select a random thread 2861 do { // Find a different thread to steal work from. 2862 // Pick a random thread. Initial plan was to cycle through all the 2863 // threads, and only return if we tried to steal from every thread, 2864 // and failed. Arch says that's not such a great idea. 2865 victim_tid = __kmp_get_random(thread) % (nthreads - 1); 2866 if (victim_tid >= tid) { 2867 ++victim_tid; // Adjusts random distribution to exclude self 2868 } 2869 // Found a potential victim 2870 other_thread = threads_data[victim_tid].td.td_thr; 2871 // There is a slight chance that __kmp_enable_tasking() did not wake 2872 // up all threads waiting at the barrier. If victim is sleeping, 2873 // then wake it up. Since we were going to pay the cache miss 2874 // penalty for referencing another thread's kmp_info_t struct 2875 // anyway, 2876 // the check shouldn't cost too much performance at this point. In 2877 // extra barrier mode, tasks do not sleep at the separate tasking 2878 // barrier, so this isn't a problem. 2879 asleep = 0; 2880 if ((__kmp_tasking_mode == tskm_task_teams) && 2881 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && 2882 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != 2883 NULL)) { 2884 asleep = 1; 2885 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread), 2886 other_thread->th.th_sleep_loc); 2887 // A sleeping thread should not have any tasks on it's queue. 2888 // There is a slight possibility that it resumes, steals a task 2889 // from another thread, which spawns more tasks, all in the time 2890 // that it takes this thread to check => don't write an assertion 2891 // that the victim's queue is empty. Try stealing from a 2892 // different thread. 2893 } 2894 } while (asleep); 2895 } 2896 2897 if (!asleep) { 2898 // We have a victim to try to steal from 2899 task = __kmp_steal_task(other_thread, gtid, task_team, 2900 unfinished_threads, thread_finished, 2901 is_constrained); 2902 } 2903 if (task != NULL) { // set last stolen to victim 2904 if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { 2905 threads_data[tid].td.td_deque_last_stolen = victim_tid; 2906 // The pre-refactored code did not try more than 1 successful new 2907 // vicitm, unless the last one generated more local tasks; 2908 // new_victim keeps track of this 2909 new_victim = 1; 2910 } 2911 } else { // No tasks found; unset last_stolen 2912 KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); 2913 victim_tid = -2; // no successful victim found 2914 } 2915 } 2916 2917 if (task == NULL) // break out of tasking loop 2918 break; 2919 2920 // Found a task; execute it 2921 #if USE_ITT_BUILD && USE_ITT_NOTIFY 2922 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 2923 if (itt_sync_obj == NULL) { // we are at fork barrier where we could not 2924 // get the object reliably 2925 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 2926 } 2927 __kmp_itt_task_starting(itt_sync_obj); 2928 } 2929 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 2930 __kmp_invoke_task(gtid, task, current_task); 2931 #if USE_ITT_BUILD 2932 if (itt_sync_obj != NULL) 2933 __kmp_itt_task_finished(itt_sync_obj); 2934 #endif /* USE_ITT_BUILD */ 2935 // If this thread is only partway through the barrier and the condition is 2936 // met, then return now, so that the barrier gather/release pattern can 2937 // proceed. If this thread is in the last spin loop in the barrier, 2938 // waiting to be released, we know that the termination condition will not 2939 // be satisfied, so don't waste any cycles checking it. 2940 if (flag == NULL || (!final_spin && flag->done_check())) { 2941 KA_TRACE( 2942 15, 2943 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 2944 gtid)); 2945 return TRUE; 2946 } 2947 if (thread->th.th_task_team == NULL) { 2948 break; 2949 } 2950 KMP_YIELD(__kmp_library == library_throughput); // Yield before next task 2951 // If execution of a stolen task results in more tasks being placed on our 2952 // run queue, reset use_own_tasks 2953 if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { 2954 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " 2955 "other tasks, restart\n", 2956 gtid)); 2957 use_own_tasks = 1; 2958 new_victim = 0; 2959 } 2960 } 2961 2962 // The task source has been exhausted. If in final spin loop of barrier, 2963 // check if termination condition is satisfied. The work queue may be empty 2964 // but there might be proxy tasks still executing. 2965 if (final_spin && 2966 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { 2967 // First, decrement the #unfinished threads, if that has not already been 2968 // done. This decrement might be to the spin location, and result in the 2969 // termination condition being satisfied. 2970 if (!*thread_finished) { 2971 kmp_int32 count; 2972 2973 count = KMP_ATOMIC_DEC(unfinished_threads) - 1; 2974 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " 2975 "unfinished_threads to %d task_team=%p\n", 2976 gtid, count, task_team)); 2977 *thread_finished = TRUE; 2978 } 2979 2980 // It is now unsafe to reference thread->th.th_team !!! 2981 // Decrementing task_team->tt.tt_unfinished_threads can allow the master 2982 // thread to pass through the barrier, where it might reset each thread's 2983 // th.th_team field for the next parallel region. If we can steal more 2984 // work, we know that this has not happened yet. 2985 if (flag != NULL && flag->done_check()) { 2986 KA_TRACE( 2987 15, 2988 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 2989 gtid)); 2990 return TRUE; 2991 } 2992 } 2993 2994 // If this thread's task team is NULL, master has recognized that there are 2995 // no more tasks; bail out 2996 if (thread->th.th_task_team == NULL) { 2997 KA_TRACE(15, 2998 ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid)); 2999 return FALSE; 3000 } 3001 3002 // We could be getting tasks from target constructs; if this is the only 3003 // thread, keep trying to execute tasks from own queue 3004 if (nthreads == 1) 3005 use_own_tasks = 1; 3006 else { 3007 KA_TRACE(15, 3008 ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid)); 3009 return FALSE; 3010 } 3011 } 3012 } 3013 3014 template <bool C, bool S> 3015 int __kmp_execute_tasks_32( 3016 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin, 3017 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3018 kmp_int32 is_constrained) { 3019 return __kmp_execute_tasks_template( 3020 thread, gtid, flag, final_spin, 3021 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3022 } 3023 3024 template <bool C, bool S> 3025 int __kmp_execute_tasks_64( 3026 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin, 3027 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3028 kmp_int32 is_constrained) { 3029 return __kmp_execute_tasks_template( 3030 thread, gtid, flag, final_spin, 3031 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3032 } 3033 3034 int __kmp_execute_tasks_oncore( 3035 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, 3036 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3037 kmp_int32 is_constrained) { 3038 return __kmp_execute_tasks_template( 3039 thread, gtid, flag, final_spin, 3040 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3041 } 3042 3043 template int 3044 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32, 3045 kmp_flag_32<false, false> *, int, 3046 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3047 3048 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32, 3049 kmp_flag_64<false, true> *, 3050 int, 3051 int *USE_ITT_BUILD_ARG(void *), 3052 kmp_int32); 3053 3054 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32, 3055 kmp_flag_64<true, false> *, 3056 int, 3057 int *USE_ITT_BUILD_ARG(void *), 3058 kmp_int32); 3059 3060 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the 3061 // next barrier so they can assist in executing enqueued tasks. 3062 // First thread in allocates the task team atomically. 3063 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 3064 kmp_info_t *this_thr) { 3065 kmp_thread_data_t *threads_data; 3066 int nthreads, i, is_init_thread; 3067 3068 KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n", 3069 __kmp_gtid_from_thread(this_thr))); 3070 3071 KMP_DEBUG_ASSERT(task_team != NULL); 3072 KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); 3073 3074 nthreads = task_team->tt.tt_nproc; 3075 KMP_DEBUG_ASSERT(nthreads > 0); 3076 KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); 3077 3078 // Allocate or increase the size of threads_data if necessary 3079 is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team); 3080 3081 if (!is_init_thread) { 3082 // Some other thread already set up the array. 3083 KA_TRACE( 3084 20, 3085 ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", 3086 __kmp_gtid_from_thread(this_thr))); 3087 return; 3088 } 3089 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3090 KMP_DEBUG_ASSERT(threads_data != NULL); 3091 3092 if (__kmp_tasking_mode == tskm_task_teams && 3093 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { 3094 // Release any threads sleeping at the barrier, so that they can steal 3095 // tasks and execute them. In extra barrier mode, tasks do not sleep 3096 // at the separate tasking barrier, so this isn't a problem. 3097 for (i = 0; i < nthreads; i++) { 3098 volatile void *sleep_loc; 3099 kmp_info_t *thread = threads_data[i].td.td_thr; 3100 3101 if (i == this_thr->th.th_info.ds.ds_tid) { 3102 continue; 3103 } 3104 // Since we haven't locked the thread's suspend mutex lock at this 3105 // point, there is a small window where a thread might be putting 3106 // itself to sleep, but hasn't set the th_sleep_loc field yet. 3107 // To work around this, __kmp_execute_tasks_template() periodically checks 3108 // see if other threads are sleeping (using the same random mechanism that 3109 // is used for task stealing) and awakens them if they are. 3110 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3111 NULL) { 3112 KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n", 3113 __kmp_gtid_from_thread(this_thr), 3114 __kmp_gtid_from_thread(thread))); 3115 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3116 } else { 3117 KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", 3118 __kmp_gtid_from_thread(this_thr), 3119 __kmp_gtid_from_thread(thread))); 3120 } 3121 } 3122 } 3123 3124 KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n", 3125 __kmp_gtid_from_thread(this_thr))); 3126 } 3127 3128 /* // TODO: Check the comment consistency 3129 * Utility routines for "task teams". A task team (kmp_task_t) is kind of 3130 * like a shadow of the kmp_team_t data struct, with a different lifetime. 3131 * After a child * thread checks into a barrier and calls __kmp_release() from 3132 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no 3133 * longer assume that the kmp_team_t structure is intact (at any moment, the 3134 * master thread may exit the barrier code and free the team data structure, 3135 * and return the threads to the thread pool). 3136 * 3137 * This does not work with the tasking code, as the thread is still 3138 * expected to participate in the execution of any tasks that may have been 3139 * spawned my a member of the team, and the thread still needs access to all 3140 * to each thread in the team, so that it can steal work from it. 3141 * 3142 * Enter the existence of the kmp_task_team_t struct. It employs a reference 3143 * counting mechanism, and is allocated by the master thread before calling 3144 * __kmp_<barrier_kind>_release, and then is release by the last thread to 3145 * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes 3146 * of the kmp_task_team_t structs for consecutive barriers can overlap 3147 * (and will, unless the master thread is the last thread to exit the barrier 3148 * release phase, which is not typical). The existence of such a struct is 3149 * useful outside the context of tasking. 3150 * 3151 * We currently use the existence of the threads array as an indicator that 3152 * tasks were spawned since the last barrier. If the structure is to be 3153 * useful outside the context of tasking, then this will have to change, but 3154 * not setting the field minimizes the performance impact of tasking on 3155 * barriers, when no explicit tasks were spawned (pushed, actually). 3156 */ 3157 3158 static kmp_task_team_t *__kmp_free_task_teams = 3159 NULL; // Free list for task_team data structures 3160 // Lock for task team data structures 3161 kmp_bootstrap_lock_t __kmp_task_team_lock = 3162 KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); 3163 3164 // __kmp_alloc_task_deque: 3165 // Allocates a task deque for a particular thread, and initialize the necessary 3166 // data structures relating to the deque. This only happens once per thread 3167 // per task team since task teams are recycled. No lock is needed during 3168 // allocation since each thread allocates its own deque. 3169 static void __kmp_alloc_task_deque(kmp_info_t *thread, 3170 kmp_thread_data_t *thread_data) { 3171 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 3172 KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); 3173 3174 // Initialize last stolen task field to "none" 3175 thread_data->td.td_deque_last_stolen = -1; 3176 3177 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); 3178 KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); 3179 KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); 3180 3181 KE_TRACE( 3182 10, 3183 ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", 3184 __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); 3185 // Allocate space for task deque, and zero the deque 3186 // Cannot use __kmp_thread_calloc() because threads not around for 3187 // kmp_reap_task_team( ). 3188 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 3189 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 3190 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 3191 } 3192 3193 // __kmp_free_task_deque: 3194 // Deallocates a task deque for a particular thread. Happens at library 3195 // deallocation so don't need to reset all thread data fields. 3196 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { 3197 if (thread_data->td.td_deque != NULL) { 3198 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3199 TCW_4(thread_data->td.td_deque_ntasks, 0); 3200 __kmp_free(thread_data->td.td_deque); 3201 thread_data->td.td_deque = NULL; 3202 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3203 } 3204 3205 #ifdef BUILD_TIED_TASK_STACK 3206 // GEH: Figure out what to do here for td_susp_tied_tasks 3207 if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { 3208 __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); 3209 } 3210 #endif // BUILD_TIED_TASK_STACK 3211 } 3212 3213 // __kmp_realloc_task_threads_data: 3214 // Allocates a threads_data array for a task team, either by allocating an 3215 // initial array or enlarging an existing array. Only the first thread to get 3216 // the lock allocs or enlarges the array and re-initializes the array elements. 3217 // That thread returns "TRUE", the rest return "FALSE". 3218 // Assumes that the new array size is given by task_team -> tt.tt_nproc. 3219 // The current size is given by task_team -> tt.tt_max_threads. 3220 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 3221 kmp_task_team_t *task_team) { 3222 kmp_thread_data_t **threads_data_p; 3223 kmp_int32 nthreads, maxthreads; 3224 int is_init_thread = FALSE; 3225 3226 if (TCR_4(task_team->tt.tt_found_tasks)) { 3227 // Already reallocated and initialized. 3228 return FALSE; 3229 } 3230 3231 threads_data_p = &task_team->tt.tt_threads_data; 3232 nthreads = task_team->tt.tt_nproc; 3233 maxthreads = task_team->tt.tt_max_threads; 3234 3235 // All threads must lock when they encounter the first task of the implicit 3236 // task region to make sure threads_data fields are (re)initialized before 3237 // used. 3238 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3239 3240 if (!TCR_4(task_team->tt.tt_found_tasks)) { 3241 // first thread to enable tasking 3242 kmp_team_t *team = thread->th.th_team; 3243 int i; 3244 3245 is_init_thread = TRUE; 3246 if (maxthreads < nthreads) { 3247 3248 if (*threads_data_p != NULL) { 3249 kmp_thread_data_t *old_data = *threads_data_p; 3250 kmp_thread_data_t *new_data = NULL; 3251 3252 KE_TRACE( 3253 10, 3254 ("__kmp_realloc_task_threads_data: T#%d reallocating " 3255 "threads data for task_team %p, new_size = %d, old_size = %d\n", 3256 __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); 3257 // Reallocate threads_data to have more elements than current array 3258 // Cannot use __kmp_thread_realloc() because threads not around for 3259 // kmp_reap_task_team( ). Note all new array entries are initialized 3260 // to zero by __kmp_allocate(). 3261 new_data = (kmp_thread_data_t *)__kmp_allocate( 3262 nthreads * sizeof(kmp_thread_data_t)); 3263 // copy old data to new data 3264 KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), 3265 (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); 3266 3267 #ifdef BUILD_TIED_TASK_STACK 3268 // GEH: Figure out if this is the right thing to do 3269 for (i = maxthreads; i < nthreads; i++) { 3270 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3271 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3272 } 3273 #endif // BUILD_TIED_TASK_STACK 3274 // Install the new data and free the old data 3275 (*threads_data_p) = new_data; 3276 __kmp_free(old_data); 3277 } else { 3278 KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " 3279 "threads data for task_team %p, size = %d\n", 3280 __kmp_gtid_from_thread(thread), task_team, nthreads)); 3281 // Make the initial allocate for threads_data array, and zero entries 3282 // Cannot use __kmp_thread_calloc() because threads not around for 3283 // kmp_reap_task_team( ). 3284 ANNOTATE_IGNORE_WRITES_BEGIN(); 3285 *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( 3286 nthreads * sizeof(kmp_thread_data_t)); 3287 ANNOTATE_IGNORE_WRITES_END(); 3288 #ifdef BUILD_TIED_TASK_STACK 3289 // GEH: Figure out if this is the right thing to do 3290 for (i = 0; i < nthreads; i++) { 3291 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3292 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3293 } 3294 #endif // BUILD_TIED_TASK_STACK 3295 } 3296 task_team->tt.tt_max_threads = nthreads; 3297 } else { 3298 // If array has (more than) enough elements, go ahead and use it 3299 KMP_DEBUG_ASSERT(*threads_data_p != NULL); 3300 } 3301 3302 // initialize threads_data pointers back to thread_info structures 3303 for (i = 0; i < nthreads; i++) { 3304 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3305 thread_data->td.td_thr = team->t.t_threads[i]; 3306 3307 if (thread_data->td.td_deque_last_stolen >= nthreads) { 3308 // The last stolen field survives across teams / barrier, and the number 3309 // of threads may have changed. It's possible (likely?) that a new 3310 // parallel region will exhibit the same behavior as previous region. 3311 thread_data->td.td_deque_last_stolen = -1; 3312 } 3313 } 3314 3315 KMP_MB(); 3316 TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); 3317 } 3318 3319 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3320 return is_init_thread; 3321 } 3322 3323 // __kmp_free_task_threads_data: 3324 // Deallocates a threads_data array for a task team, including any attached 3325 // tasking deques. Only occurs at library shutdown. 3326 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { 3327 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3328 if (task_team->tt.tt_threads_data != NULL) { 3329 int i; 3330 for (i = 0; i < task_team->tt.tt_max_threads; i++) { 3331 __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]); 3332 } 3333 __kmp_free(task_team->tt.tt_threads_data); 3334 task_team->tt.tt_threads_data = NULL; 3335 } 3336 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3337 } 3338 3339 // __kmp_allocate_task_team: 3340 // Allocates a task team associated with a specific team, taking it from 3341 // the global task team free list if possible. Also initializes data 3342 // structures. 3343 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, 3344 kmp_team_t *team) { 3345 kmp_task_team_t *task_team = NULL; 3346 int nthreads; 3347 3348 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n", 3349 (thread ? __kmp_gtid_from_thread(thread) : -1), team)); 3350 3351 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3352 // Take a task team from the task team pool 3353 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3354 if (__kmp_free_task_teams != NULL) { 3355 task_team = __kmp_free_task_teams; 3356 TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); 3357 task_team->tt.tt_next = NULL; 3358 } 3359 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3360 } 3361 3362 if (task_team == NULL) { 3363 KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " 3364 "task team for team %p\n", 3365 __kmp_gtid_from_thread(thread), team)); 3366 // Allocate a new task team if one is not available. Cannot use 3367 // __kmp_thread_malloc because threads not around for kmp_reap_task_team. 3368 task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); 3369 __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock); 3370 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 3371 // suppress race conditions detection on synchronization flags in debug mode 3372 // this helps to analyze library internals eliminating false positives 3373 __itt_suppress_mark_range( 3374 __itt_suppress_range, __itt_suppress_threading_errors, 3375 &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks)); 3376 __itt_suppress_mark_range(__itt_suppress_range, 3377 __itt_suppress_threading_errors, 3378 CCAST(kmp_uint32 *, &task_team->tt.tt_active), 3379 sizeof(task_team->tt.tt_active)); 3380 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 3381 // Note: __kmp_allocate zeroes returned memory, othewise we would need: 3382 // task_team->tt.tt_threads_data = NULL; 3383 // task_team->tt.tt_max_threads = 0; 3384 // task_team->tt.tt_next = NULL; 3385 } 3386 3387 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3388 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3389 task_team->tt.tt_nproc = nthreads = team->t.t_nproc; 3390 3391 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads); 3392 TCW_4(task_team->tt.tt_active, TRUE); 3393 3394 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " 3395 "unfinished_threads init'd to %d\n", 3396 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, 3397 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); 3398 return task_team; 3399 } 3400 3401 // __kmp_free_task_team: 3402 // Frees the task team associated with a specific thread, and adds it 3403 // to the global task team free list. 3404 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { 3405 KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n", 3406 thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); 3407 3408 // Put task team back on free list 3409 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3410 3411 KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); 3412 task_team->tt.tt_next = __kmp_free_task_teams; 3413 TCW_PTR(__kmp_free_task_teams, task_team); 3414 3415 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3416 } 3417 3418 // __kmp_reap_task_teams: 3419 // Free all the task teams on the task team free list. 3420 // Should only be done during library shutdown. 3421 // Cannot do anything that needs a thread structure or gtid since they are 3422 // already gone. 3423 void __kmp_reap_task_teams(void) { 3424 kmp_task_team_t *task_team; 3425 3426 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3427 // Free all task_teams on the free list 3428 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3429 while ((task_team = __kmp_free_task_teams) != NULL) { 3430 __kmp_free_task_teams = task_team->tt.tt_next; 3431 task_team->tt.tt_next = NULL; 3432 3433 // Free threads_data if necessary 3434 if (task_team->tt.tt_threads_data != NULL) { 3435 __kmp_free_task_threads_data(task_team); 3436 } 3437 __kmp_free(task_team); 3438 } 3439 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3440 } 3441 } 3442 3443 // __kmp_wait_to_unref_task_teams: 3444 // Some threads could still be in the fork barrier release code, possibly 3445 // trying to steal tasks. Wait for each thread to unreference its task team. 3446 void __kmp_wait_to_unref_task_teams(void) { 3447 kmp_info_t *thread; 3448 kmp_uint32 spins; 3449 int done; 3450 3451 KMP_INIT_YIELD(spins); 3452 3453 for (;;) { 3454 done = TRUE; 3455 3456 // TODO: GEH - this may be is wrong because some sync would be necessary 3457 // in case threads are added to the pool during the traversal. Need to 3458 // verify that lock for thread pool is held when calling this routine. 3459 for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; 3460 thread = thread->th.th_next_pool) { 3461 #if KMP_OS_WINDOWS 3462 DWORD exit_val; 3463 #endif 3464 if (TCR_PTR(thread->th.th_task_team) == NULL) { 3465 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", 3466 __kmp_gtid_from_thread(thread))); 3467 continue; 3468 } 3469 #if KMP_OS_WINDOWS 3470 // TODO: GEH - add this check for Linux* OS / OS X* as well? 3471 if (!__kmp_is_thread_alive(thread, &exit_val)) { 3472 thread->th.th_task_team = NULL; 3473 continue; 3474 } 3475 #endif 3476 3477 done = FALSE; // Because th_task_team pointer is not NULL for this thread 3478 3479 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " 3480 "unreference task_team\n", 3481 __kmp_gtid_from_thread(thread))); 3482 3483 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 3484 volatile void *sleep_loc; 3485 // If the thread is sleeping, awaken it. 3486 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3487 NULL) { 3488 KA_TRACE( 3489 10, 3490 ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", 3491 __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); 3492 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3493 } 3494 } 3495 } 3496 if (done) { 3497 break; 3498 } 3499 3500 // If oversubscribed or have waited a bit, yield. 3501 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 3502 } 3503 } 3504 3505 // __kmp_task_team_setup: Create a task_team for the current team, but use 3506 // an already created, unused one if it already exists. 3507 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) { 3508 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3509 3510 // If this task_team hasn't been created yet, allocate it. It will be used in 3511 // the region after the next. 3512 // If it exists, it is the current task team and shouldn't be touched yet as 3513 // it may still be in use. 3514 if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && 3515 (always || team->t.t_nproc > 1)) { 3516 team->t.t_task_team[this_thr->th.th_task_state] = 3517 __kmp_allocate_task_team(this_thr, team); 3518 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p " 3519 "for team %d at parity=%d\n", 3520 __kmp_gtid_from_thread(this_thr), 3521 team->t.t_task_team[this_thr->th.th_task_state], 3522 ((team != NULL) ? team->t.t_id : -1), 3523 this_thr->th.th_task_state)); 3524 } 3525 3526 // After threads exit the release, they will call sync, and then point to this 3527 // other task_team; make sure it is allocated and properly initialized. As 3528 // threads spin in the barrier release phase, they will continue to use the 3529 // previous task_team struct(above), until they receive the signal to stop 3530 // checking for tasks (they can't safely reference the kmp_team_t struct, 3531 // which could be reallocated by the master thread). No task teams are formed 3532 // for serialized teams. 3533 if (team->t.t_nproc > 1) { 3534 int other_team = 1 - this_thr->th.th_task_state; 3535 if (team->t.t_task_team[other_team] == NULL) { // setup other team as well 3536 team->t.t_task_team[other_team] = 3537 __kmp_allocate_task_team(this_thr, team); 3538 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new " 3539 "task_team %p for team %d at parity=%d\n", 3540 __kmp_gtid_from_thread(this_thr), 3541 team->t.t_task_team[other_team], 3542 ((team != NULL) ? team->t.t_id : -1), other_team)); 3543 } else { // Leave the old task team struct in place for the upcoming region; 3544 // adjust as needed 3545 kmp_task_team_t *task_team = team->t.t_task_team[other_team]; 3546 if (!task_team->tt.tt_active || 3547 team->t.t_nproc != task_team->tt.tt_nproc) { 3548 TCW_4(task_team->tt.tt_nproc, team->t.t_nproc); 3549 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3550 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3551 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, 3552 team->t.t_nproc); 3553 TCW_4(task_team->tt.tt_active, TRUE); 3554 } 3555 // if team size has changed, the first thread to enable tasking will 3556 // realloc threads_data if necessary 3557 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team " 3558 "%p for team %d at parity=%d\n", 3559 __kmp_gtid_from_thread(this_thr), 3560 team->t.t_task_team[other_team], 3561 ((team != NULL) ? team->t.t_id : -1), other_team)); 3562 } 3563 } 3564 } 3565 3566 // __kmp_task_team_sync: Propagation of task team data from team to threads 3567 // which happens just after the release phase of a team barrier. This may be 3568 // called by any thread, but only for teams with # threads > 1. 3569 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { 3570 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3571 3572 // Toggle the th_task_state field, to switch which task_team this thread 3573 // refers to 3574 this_thr->th.th_task_state = 1 - this_thr->th.th_task_state; 3575 // It is now safe to propagate the task team pointer from the team struct to 3576 // the current thread. 3577 TCW_PTR(this_thr->th.th_task_team, 3578 team->t.t_task_team[this_thr->th.th_task_state]); 3579 KA_TRACE(20, 3580 ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " 3581 "%p from Team #%d (parity=%d)\n", 3582 __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, 3583 ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state)); 3584 } 3585 3586 // __kmp_task_team_wait: Master thread waits for outstanding tasks after the 3587 // barrier gather phase. Only called by master thread if #threads in team > 1 or 3588 // if proxy tasks were created. 3589 // 3590 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off 3591 // by passing in 0 optionally as the last argument. When wait is zero, master 3592 // thread does not wait for unfinished_threads to reach 0. 3593 void __kmp_task_team_wait( 3594 kmp_info_t *this_thr, 3595 kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { 3596 kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; 3597 3598 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3599 KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); 3600 3601 if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { 3602 if (wait) { 3603 KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks " 3604 "(for unfinished_threads to reach 0) on task_team = %p\n", 3605 __kmp_gtid_from_thread(this_thr), task_team)); 3606 // Worker threads may have dropped through to release phase, but could 3607 // still be executing tasks. Wait here for tasks to complete. To avoid 3608 // memory contention, only master thread checks termination condition. 3609 kmp_flag_32<false, false> flag( 3610 RCAST(std::atomic<kmp_uint32> *, 3611 &task_team->tt.tt_unfinished_threads), 3612 0U); 3613 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 3614 } 3615 // Deactivate the old task team, so that the worker threads will stop 3616 // referencing it while spinning. 3617 KA_TRACE( 3618 20, 3619 ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: " 3620 "setting active to false, setting local and team's pointer to NULL\n", 3621 __kmp_gtid_from_thread(this_thr), task_team)); 3622 KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 || 3623 task_team->tt.tt_found_proxy_tasks == TRUE); 3624 TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3625 KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); 3626 TCW_SYNC_4(task_team->tt.tt_active, FALSE); 3627 KMP_MB(); 3628 3629 TCW_PTR(this_thr->th.th_task_team, NULL); 3630 } 3631 } 3632 3633 // __kmp_tasking_barrier: 3634 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier. 3635 // Internal function to execute all tasks prior to a regular barrier or a join 3636 // barrier. It is a full barrier itself, which unfortunately turns regular 3637 // barriers into double barriers and join barriers into 1 1/2 barriers. 3638 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { 3639 std::atomic<kmp_uint32> *spin = RCAST( 3640 std::atomic<kmp_uint32> *, 3641 &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); 3642 int flag = FALSE; 3643 KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); 3644 3645 #if USE_ITT_BUILD 3646 KMP_FSYNC_SPIN_INIT(spin, NULL); 3647 #endif /* USE_ITT_BUILD */ 3648 kmp_flag_32<false, false> spin_flag(spin, 0U); 3649 while (!spin_flag.execute_tasks(thread, gtid, TRUE, 3650 &flag USE_ITT_BUILD_ARG(NULL), 0)) { 3651 #if USE_ITT_BUILD 3652 // TODO: What about itt_sync_obj?? 3653 KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); 3654 #endif /* USE_ITT_BUILD */ 3655 3656 if (TCR_4(__kmp_global.g.g_done)) { 3657 if (__kmp_global.g.g_abort) 3658 __kmp_abort_thread(); 3659 break; 3660 } 3661 KMP_YIELD(TRUE); 3662 } 3663 #if USE_ITT_BUILD 3664 KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); 3665 #endif /* USE_ITT_BUILD */ 3666 } 3667 3668 // __kmp_give_task puts a task into a given thread queue if: 3669 // - the queue for that thread was created 3670 // - there's space in that queue 3671 // Because of this, __kmp_push_task needs to check if there's space after 3672 // getting the lock 3673 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, 3674 kmp_int32 pass) { 3675 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 3676 kmp_task_team_t *task_team = taskdata->td_task_team; 3677 3678 KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", 3679 taskdata, tid)); 3680 3681 // If task_team is NULL something went really bad... 3682 KMP_DEBUG_ASSERT(task_team != NULL); 3683 3684 bool result = false; 3685 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 3686 3687 if (thread_data->td.td_deque == NULL) { 3688 // There's no queue in this thread, go find another one 3689 // We're guaranteed that at least one thread has a queue 3690 KA_TRACE(30, 3691 ("__kmp_give_task: thread %d has no queue while giving task %p.\n", 3692 tid, taskdata)); 3693 return result; 3694 } 3695 3696 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3697 TASK_DEQUE_SIZE(thread_data->td)) { 3698 KA_TRACE( 3699 30, 3700 ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", 3701 taskdata, tid)); 3702 3703 // if this deque is bigger than the pass ratio give a chance to another 3704 // thread 3705 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3706 return result; 3707 3708 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3709 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3710 TASK_DEQUE_SIZE(thread_data->td)) { 3711 // expand deque to push the task which is not allowed to execute 3712 __kmp_realloc_task_deque(thread, thread_data); 3713 } 3714 3715 } else { 3716 3717 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3718 3719 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3720 TASK_DEQUE_SIZE(thread_data->td)) { 3721 KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " 3722 "thread %d.\n", 3723 taskdata, tid)); 3724 3725 // if this deque is bigger than the pass ratio give a chance to another 3726 // thread 3727 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3728 goto release_and_exit; 3729 3730 __kmp_realloc_task_deque(thread, thread_data); 3731 } 3732 } 3733 3734 // lock is held here, and there is space in the deque 3735 3736 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 3737 // Wrap index. 3738 thread_data->td.td_deque_tail = 3739 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 3740 TCW_4(thread_data->td.td_deque_ntasks, 3741 TCR_4(thread_data->td.td_deque_ntasks) + 1); 3742 3743 result = true; 3744 KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", 3745 taskdata, tid)); 3746 3747 release_and_exit: 3748 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3749 3750 return result; 3751 } 3752 3753 /* The finish of the proxy tasks is divided in two pieces: 3754 - the top half is the one that can be done from a thread outside the team 3755 - the bottom half must be run from a thread within the team 3756 3757 In order to run the bottom half the task gets queued back into one of the 3758 threads of the team. Once the td_incomplete_child_task counter of the parent 3759 is decremented the threads can leave the barriers. So, the bottom half needs 3760 to be queued before the counter is decremented. The top half is therefore 3761 divided in two parts: 3762 - things that can be run before queuing the bottom half 3763 - things that must be run after queuing the bottom half 3764 3765 This creates a second race as the bottom half can free the task before the 3766 second top half is executed. To avoid this we use the 3767 td_incomplete_child_task of the proxy task to synchronize the top and bottom 3768 half. */ 3769 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3770 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 3771 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3772 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 3773 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 3774 3775 taskdata->td_flags.complete = 1; // mark the task as completed 3776 3777 if (taskdata->td_taskgroup) 3778 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 3779 3780 // Create an imaginary children for this task so the bottom half cannot 3781 // release the task before we have completed the second top half 3782 KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks); 3783 } 3784 3785 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3786 kmp_int32 children = 0; 3787 3788 // Predecrement simulated by "- 1" calculation 3789 children = 3790 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 3791 KMP_DEBUG_ASSERT(children >= 0); 3792 3793 // Remove the imaginary children 3794 KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks); 3795 } 3796 3797 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { 3798 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3799 kmp_info_t *thread = __kmp_threads[gtid]; 3800 3801 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3802 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 3803 1); // top half must run before bottom half 3804 3805 // We need to wait to make sure the top half is finished 3806 // Spinning here should be ok as this should happen quickly 3807 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0) 3808 ; 3809 3810 __kmp_release_deps(gtid, taskdata); 3811 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 3812 } 3813 3814 /*! 3815 @ingroup TASKING 3816 @param gtid Global Thread ID of encountering thread 3817 @param ptask Task which execution is completed 3818 3819 Execute the completion of a proxy task from a thread of that is part of the 3820 team. Run first and bottom halves directly. 3821 */ 3822 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { 3823 KMP_DEBUG_ASSERT(ptask != NULL); 3824 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3825 KA_TRACE( 3826 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", 3827 gtid, taskdata)); 3828 __kmp_assert_valid_gtid(gtid); 3829 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3830 3831 __kmp_first_top_half_finish_proxy(taskdata); 3832 __kmp_second_top_half_finish_proxy(taskdata); 3833 __kmp_bottom_half_finish_proxy(gtid, ptask); 3834 3835 KA_TRACE(10, 3836 ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", 3837 gtid, taskdata)); 3838 } 3839 3840 /*! 3841 @ingroup TASKING 3842 @param ptask Task which execution is completed 3843 3844 Execute the completion of a proxy task from a thread that could not belong to 3845 the team. 3846 */ 3847 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { 3848 KMP_DEBUG_ASSERT(ptask != NULL); 3849 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3850 3851 KA_TRACE( 3852 10, 3853 ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", 3854 taskdata)); 3855 3856 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3857 3858 __kmp_first_top_half_finish_proxy(taskdata); 3859 3860 // Enqueue task to complete bottom half completion from a thread within the 3861 // corresponding team 3862 kmp_team_t *team = taskdata->td_team; 3863 kmp_int32 nthreads = team->t.t_nproc; 3864 kmp_info_t *thread; 3865 3866 // This should be similar to start_k = __kmp_get_random( thread ) % nthreads 3867 // but we cannot use __kmp_get_random here 3868 kmp_int32 start_k = 0; 3869 kmp_int32 pass = 1; 3870 kmp_int32 k = start_k; 3871 3872 do { 3873 // For now we're just linearly trying to find a thread 3874 thread = team->t.t_threads[k]; 3875 k = (k + 1) % nthreads; 3876 3877 // we did a full pass through all the threads 3878 if (k == start_k) 3879 pass = pass << 1; 3880 3881 } while (!__kmp_give_task(thread, k, ptask, pass)); 3882 3883 __kmp_second_top_half_finish_proxy(taskdata); 3884 3885 KA_TRACE( 3886 10, 3887 ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", 3888 taskdata)); 3889 } 3890 3891 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, 3892 kmp_task_t *task) { 3893 kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); 3894 if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { 3895 td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; 3896 td->td_allow_completion_event.ed.task = task; 3897 __kmp_init_tas_lock(&td->td_allow_completion_event.lock); 3898 } 3899 return &td->td_allow_completion_event; 3900 } 3901 3902 void __kmp_fulfill_event(kmp_event_t *event) { 3903 if (event->type == KMP_EVENT_ALLOW_COMPLETION) { 3904 kmp_task_t *ptask = event->ed.task; 3905 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3906 bool detached = false; 3907 int gtid = __kmp_get_gtid(); 3908 3909 // The associated task might have completed or could be completing at this 3910 // point. 3911 // We need to take the lock to avoid races 3912 __kmp_acquire_tas_lock(&event->lock, gtid); 3913 if (taskdata->td_flags.proxy == TASK_PROXY) { 3914 detached = true; 3915 } else { 3916 #if OMPT_SUPPORT 3917 // The OMPT event must occur under mutual exclusion, 3918 // otherwise the tool might access ptask after free 3919 if (UNLIKELY(ompt_enabled.enabled)) 3920 __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill); 3921 #endif 3922 } 3923 event->type = KMP_EVENT_UNINITIALIZED; 3924 __kmp_release_tas_lock(&event->lock, gtid); 3925 3926 if (detached) { 3927 #if OMPT_SUPPORT 3928 // We free ptask afterwards and know the task is finished, 3929 // so locking is not necessary 3930 if (UNLIKELY(ompt_enabled.enabled)) 3931 __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill); 3932 #endif 3933 // If the task detached complete the proxy task 3934 if (gtid >= 0) { 3935 kmp_team_t *team = taskdata->td_team; 3936 kmp_info_t *thread = __kmp_get_thread(); 3937 if (thread->th.th_team == team) { 3938 __kmpc_proxy_task_completed(gtid, ptask); 3939 return; 3940 } 3941 } 3942 3943 // fallback 3944 __kmpc_proxy_task_completed_ooo(ptask); 3945 } 3946 } 3947 } 3948 3949 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task 3950 // for taskloop 3951 // 3952 // thread: allocating thread 3953 // task_src: pointer to source task to be duplicated 3954 // returns: a pointer to the allocated kmp_task_t structure (task). 3955 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) { 3956 kmp_task_t *task; 3957 kmp_taskdata_t *taskdata; 3958 kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); 3959 kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task 3960 size_t shareds_offset; 3961 size_t task_size; 3962 3963 KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, 3964 task_src)); 3965 KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == 3966 TASK_FULL); // it should not be proxy task 3967 KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); 3968 task_size = taskdata_src->td_size_alloc; 3969 3970 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 3971 KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, 3972 task_size)); 3973 #if USE_FAST_MEMORY 3974 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); 3975 #else 3976 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); 3977 #endif /* USE_FAST_MEMORY */ 3978 KMP_MEMCPY(taskdata, taskdata_src, task_size); 3979 3980 task = KMP_TASKDATA_TO_TASK(taskdata); 3981 3982 // Initialize new task (only specific fields not affected by memcpy) 3983 taskdata->td_task_id = KMP_GEN_TASK_ID(); 3984 if (task->shareds != NULL) { // need setup shareds pointer 3985 shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; 3986 task->shareds = &((char *)taskdata)[shareds_offset]; 3987 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 3988 0); 3989 } 3990 taskdata->td_alloc_thread = thread; 3991 taskdata->td_parent = parent_task; 3992 // task inherits the taskgroup from the parent task 3993 taskdata->td_taskgroup = parent_task->td_taskgroup; 3994 // tied task needs to initialize the td_last_tied at creation, 3995 // untied one does this when it is scheduled for execution 3996 if (taskdata->td_flags.tiedness == TASK_TIED) 3997 taskdata->td_last_tied = taskdata; 3998 3999 // Only need to keep track of child task counts if team parallel and tasking 4000 // not serialized 4001 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 4002 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 4003 if (parent_task->td_taskgroup) 4004 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 4005 // Only need to keep track of allocated child tasks for explicit tasks since 4006 // implicit not deallocated 4007 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) 4008 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 4009 } 4010 4011 KA_TRACE(20, 4012 ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n", 4013 thread, taskdata, taskdata->td_parent)); 4014 #if OMPT_SUPPORT 4015 if (UNLIKELY(ompt_enabled.enabled)) 4016 __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid); 4017 #endif 4018 return task; 4019 } 4020 4021 // Routine optionally generated by the compiler for setting the lastprivate flag 4022 // and calling needed constructors for private/firstprivate objects 4023 // (used to form taskloop tasks from pattern task) 4024 // Parameters: dest task, src task, lastprivate flag. 4025 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); 4026 4027 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); 4028 4029 // class to encapsulate manipulating loop bounds in a taskloop task. 4030 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting 4031 // the loop bound variables. 4032 class kmp_taskloop_bounds_t { 4033 kmp_task_t *task; 4034 const kmp_taskdata_t *taskdata; 4035 size_t lower_offset; 4036 size_t upper_offset; 4037 4038 public: 4039 kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) 4040 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), 4041 lower_offset((char *)lb - (char *)task), 4042 upper_offset((char *)ub - (char *)task) { 4043 KMP_DEBUG_ASSERT((char *)lb > (char *)_task); 4044 KMP_DEBUG_ASSERT((char *)ub > (char *)_task); 4045 } 4046 kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) 4047 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), 4048 lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} 4049 size_t get_lower_offset() const { return lower_offset; } 4050 size_t get_upper_offset() const { return upper_offset; } 4051 kmp_uint64 get_lb() const { 4052 kmp_int64 retval; 4053 #if defined(KMP_GOMP_COMPAT) 4054 // Intel task just returns the lower bound normally 4055 if (!taskdata->td_flags.native) { 4056 retval = *(kmp_int64 *)((char *)task + lower_offset); 4057 } else { 4058 // GOMP task has to take into account the sizeof(long) 4059 if (taskdata->td_size_loop_bounds == 4) { 4060 kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); 4061 retval = (kmp_int64)*lb; 4062 } else { 4063 kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); 4064 retval = (kmp_int64)*lb; 4065 } 4066 } 4067 #else 4068 retval = *(kmp_int64 *)((char *)task + lower_offset); 4069 #endif // defined(KMP_GOMP_COMPAT) 4070 return retval; 4071 } 4072 kmp_uint64 get_ub() const { 4073 kmp_int64 retval; 4074 #if defined(KMP_GOMP_COMPAT) 4075 // Intel task just returns the upper bound normally 4076 if (!taskdata->td_flags.native) { 4077 retval = *(kmp_int64 *)((char *)task + upper_offset); 4078 } else { 4079 // GOMP task has to take into account the sizeof(long) 4080 if (taskdata->td_size_loop_bounds == 4) { 4081 kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; 4082 retval = (kmp_int64)*ub; 4083 } else { 4084 kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; 4085 retval = (kmp_int64)*ub; 4086 } 4087 } 4088 #else 4089 retval = *(kmp_int64 *)((char *)task + upper_offset); 4090 #endif // defined(KMP_GOMP_COMPAT) 4091 return retval; 4092 } 4093 void set_lb(kmp_uint64 lb) { 4094 #if defined(KMP_GOMP_COMPAT) 4095 // Intel task just sets the lower bound normally 4096 if (!taskdata->td_flags.native) { 4097 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4098 } else { 4099 // GOMP task has to take into account the sizeof(long) 4100 if (taskdata->td_size_loop_bounds == 4) { 4101 kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); 4102 *lower = (kmp_uint32)lb; 4103 } else { 4104 kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); 4105 *lower = (kmp_uint64)lb; 4106 } 4107 } 4108 #else 4109 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4110 #endif // defined(KMP_GOMP_COMPAT) 4111 } 4112 void set_ub(kmp_uint64 ub) { 4113 #if defined(KMP_GOMP_COMPAT) 4114 // Intel task just sets the upper bound normally 4115 if (!taskdata->td_flags.native) { 4116 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4117 } else { 4118 // GOMP task has to take into account the sizeof(long) 4119 if (taskdata->td_size_loop_bounds == 4) { 4120 kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; 4121 *upper = (kmp_uint32)ub; 4122 } else { 4123 kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; 4124 *upper = (kmp_uint64)ub; 4125 } 4126 } 4127 #else 4128 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4129 #endif // defined(KMP_GOMP_COMPAT) 4130 } 4131 }; 4132 4133 // __kmp_taskloop_linear: Start tasks of the taskloop linearly 4134 // 4135 // loc Source location information 4136 // gtid Global thread ID 4137 // task Pattern task, exposes the loop iteration range 4138 // lb Pointer to loop lower bound in task structure 4139 // ub Pointer to loop upper bound in task structure 4140 // st Loop stride 4141 // ub_glob Global upper bound (used for lastprivate check) 4142 // num_tasks Number of tasks to execute 4143 // grainsize Number of loop iterations per task 4144 // extras Number of chunks with grainsize+1 iterations 4145 // last_chunk Reduction of grainsize for last task 4146 // tc Iterations count 4147 // task_dup Tasks duplication routine 4148 // codeptr_ra Return address for OMPT events 4149 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, 4150 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4151 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4152 kmp_uint64 grainsize, kmp_uint64 extras, 4153 kmp_int64 last_chunk, kmp_uint64 tc, 4154 #if OMPT_SUPPORT 4155 void *codeptr_ra, 4156 #endif 4157 void *task_dup) { 4158 KMP_COUNT_BLOCK(OMP_TASKLOOP); 4159 KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); 4160 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4161 // compiler provides global bounds here 4162 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4163 kmp_uint64 lower = task_bounds.get_lb(); 4164 kmp_uint64 upper = task_bounds.get_ub(); 4165 kmp_uint64 i; 4166 kmp_info_t *thread = __kmp_threads[gtid]; 4167 kmp_taskdata_t *current_task = thread->th.th_current_task; 4168 kmp_task_t *next_task; 4169 kmp_int32 lastpriv = 0; 4170 4171 KMP_DEBUG_ASSERT( 4172 tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras)); 4173 KMP_DEBUG_ASSERT(num_tasks > extras); 4174 KMP_DEBUG_ASSERT(num_tasks > 0); 4175 KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " 4176 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n", 4177 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper, 4178 ub_glob, st, task_dup)); 4179 4180 // Launch num_tasks tasks, assign grainsize iterations each task 4181 for (i = 0; i < num_tasks; ++i) { 4182 kmp_uint64 chunk_minus_1; 4183 if (extras == 0) { 4184 chunk_minus_1 = grainsize - 1; 4185 } else { 4186 chunk_minus_1 = grainsize; 4187 --extras; // first extras iterations get bigger chunk (grainsize+1) 4188 } 4189 upper = lower + st * chunk_minus_1; 4190 if (upper > *ub) { 4191 upper = *ub; 4192 } 4193 if (i == num_tasks - 1) { 4194 // schedule the last task, set lastprivate flag if needed 4195 if (st == 1) { // most common case 4196 KMP_DEBUG_ASSERT(upper == *ub); 4197 if (upper == ub_glob) 4198 lastpriv = 1; 4199 } else if (st > 0) { // positive loop stride 4200 KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); 4201 if ((kmp_uint64)st > ub_glob - upper) 4202 lastpriv = 1; 4203 } else { // negative loop stride 4204 KMP_DEBUG_ASSERT(upper + st < *ub); 4205 if (upper - ub_glob < (kmp_uint64)(-st)) 4206 lastpriv = 1; 4207 } 4208 } 4209 next_task = __kmp_task_dup_alloc(thread, task); // allocate new task 4210 kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); 4211 kmp_taskloop_bounds_t next_task_bounds = 4212 kmp_taskloop_bounds_t(next_task, task_bounds); 4213 4214 // adjust task-specific bounds 4215 next_task_bounds.set_lb(lower); 4216 if (next_taskdata->td_flags.native) { 4217 next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); 4218 } else { 4219 next_task_bounds.set_ub(upper); 4220 } 4221 if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, 4222 // etc. 4223 ptask_dup(next_task, task, lastpriv); 4224 KA_TRACE(40, 4225 ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " 4226 "upper %lld stride %lld, (offsets %p %p)\n", 4227 gtid, i, next_task, lower, upper, st, 4228 next_task_bounds.get_lower_offset(), 4229 next_task_bounds.get_upper_offset())); 4230 #if OMPT_SUPPORT 4231 __kmp_omp_taskloop_task(NULL, gtid, next_task, 4232 codeptr_ra); // schedule new task 4233 #else 4234 __kmp_omp_task(gtid, next_task, true); // schedule new task 4235 #endif 4236 lower = upper + st; // adjust lower bound for the next iteration 4237 } 4238 // free the pattern task and exit 4239 __kmp_task_start(gtid, task, current_task); // make internal bookkeeping 4240 // do not execute the pattern task, just do internal bookkeeping 4241 __kmp_task_finish<false>(gtid, task, current_task); 4242 } 4243 4244 // Structure to keep taskloop parameters for auxiliary task 4245 // kept in the shareds of the task structure. 4246 typedef struct __taskloop_params { 4247 kmp_task_t *task; 4248 kmp_uint64 *lb; 4249 kmp_uint64 *ub; 4250 void *task_dup; 4251 kmp_int64 st; 4252 kmp_uint64 ub_glob; 4253 kmp_uint64 num_tasks; 4254 kmp_uint64 grainsize; 4255 kmp_uint64 extras; 4256 kmp_int64 last_chunk; 4257 kmp_uint64 tc; 4258 kmp_uint64 num_t_min; 4259 #if OMPT_SUPPORT 4260 void *codeptr_ra; 4261 #endif 4262 } __taskloop_params_t; 4263 4264 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, 4265 kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, 4266 kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64, 4267 kmp_uint64, 4268 #if OMPT_SUPPORT 4269 void *, 4270 #endif 4271 void *); 4272 4273 // Execute part of the taskloop submitted as a task. 4274 int __kmp_taskloop_task(int gtid, void *ptask) { 4275 __taskloop_params_t *p = 4276 (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; 4277 kmp_task_t *task = p->task; 4278 kmp_uint64 *lb = p->lb; 4279 kmp_uint64 *ub = p->ub; 4280 void *task_dup = p->task_dup; 4281 // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4282 kmp_int64 st = p->st; 4283 kmp_uint64 ub_glob = p->ub_glob; 4284 kmp_uint64 num_tasks = p->num_tasks; 4285 kmp_uint64 grainsize = p->grainsize; 4286 kmp_uint64 extras = p->extras; 4287 kmp_int64 last_chunk = p->last_chunk; 4288 kmp_uint64 tc = p->tc; 4289 kmp_uint64 num_t_min = p->num_t_min; 4290 #if OMPT_SUPPORT 4291 void *codeptr_ra = p->codeptr_ra; 4292 #endif 4293 #if KMP_DEBUG 4294 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4295 KMP_DEBUG_ASSERT(task != NULL); 4296 KA_TRACE(20, 4297 ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" 4298 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4299 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4300 st, task_dup)); 4301 #endif 4302 KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); 4303 if (num_tasks > num_t_min) 4304 __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4305 grainsize, extras, last_chunk, tc, num_t_min, 4306 #if OMPT_SUPPORT 4307 codeptr_ra, 4308 #endif 4309 task_dup); 4310 else 4311 __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4312 grainsize, extras, last_chunk, tc, 4313 #if OMPT_SUPPORT 4314 codeptr_ra, 4315 #endif 4316 task_dup); 4317 4318 KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid)); 4319 return 0; 4320 } 4321 4322 // Schedule part of the taskloop as a task, 4323 // execute the rest of the taskloop. 4324 // 4325 // loc Source location information 4326 // gtid Global thread ID 4327 // task Pattern task, exposes the loop iteration range 4328 // lb Pointer to loop lower bound in task structure 4329 // ub Pointer to loop upper bound in task structure 4330 // st Loop stride 4331 // ub_glob Global upper bound (used for lastprivate check) 4332 // num_tasks Number of tasks to execute 4333 // grainsize Number of loop iterations per task 4334 // extras Number of chunks with grainsize+1 iterations 4335 // last_chunk Reduction of grainsize for last task 4336 // tc Iterations count 4337 // num_t_min Threshold to launch tasks recursively 4338 // task_dup Tasks duplication routine 4339 // codeptr_ra Return address for OMPT events 4340 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, 4341 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4342 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4343 kmp_uint64 grainsize, kmp_uint64 extras, 4344 kmp_int64 last_chunk, kmp_uint64 tc, 4345 kmp_uint64 num_t_min, 4346 #if OMPT_SUPPORT 4347 void *codeptr_ra, 4348 #endif 4349 void *task_dup) { 4350 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4351 KMP_DEBUG_ASSERT(task != NULL); 4352 KMP_DEBUG_ASSERT(num_tasks > num_t_min); 4353 KA_TRACE(20, 4354 ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" 4355 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4356 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4357 st, task_dup)); 4358 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4359 kmp_uint64 lower = *lb; 4360 kmp_info_t *thread = __kmp_threads[gtid]; 4361 // kmp_taskdata_t *current_task = thread->th.th_current_task; 4362 kmp_task_t *next_task; 4363 size_t lower_offset = 4364 (char *)lb - (char *)task; // remember offset of lb in the task structure 4365 size_t upper_offset = 4366 (char *)ub - (char *)task; // remember offset of ub in the task structure 4367 4368 KMP_DEBUG_ASSERT( 4369 tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras)); 4370 KMP_DEBUG_ASSERT(num_tasks > extras); 4371 KMP_DEBUG_ASSERT(num_tasks > 0); 4372 4373 // split the loop in two halves 4374 kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; 4375 kmp_int64 last_chunk0 = 0, last_chunk1 = 0; 4376 kmp_uint64 gr_size0 = grainsize; 4377 kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute 4378 kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task 4379 if (last_chunk < 0) { 4380 ext0 = ext1 = 0; 4381 last_chunk1 = last_chunk; 4382 tc0 = grainsize * n_tsk0; 4383 tc1 = tc - tc0; 4384 } else if (n_tsk0 <= extras) { 4385 gr_size0++; // integrate extras into grainsize 4386 ext0 = 0; // no extra iters in 1st half 4387 ext1 = extras - n_tsk0; // remaining extras 4388 tc0 = gr_size0 * n_tsk0; 4389 tc1 = tc - tc0; 4390 } else { // n_tsk0 > extras 4391 ext1 = 0; // no extra iters in 2nd half 4392 ext0 = extras; 4393 tc1 = grainsize * n_tsk1; 4394 tc0 = tc - tc1; 4395 } 4396 ub0 = lower + st * (tc0 - 1); 4397 lb1 = ub0 + st; 4398 4399 // create pattern task for 2nd half of the loop 4400 next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task 4401 // adjust lower bound (upper bound is not changed) for the 2nd half 4402 *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; 4403 if (ptask_dup != NULL) // construct firstprivates, etc. 4404 ptask_dup(next_task, task, 0); 4405 *ub = ub0; // adjust upper bound for the 1st half 4406 4407 // create auxiliary task for 2nd half of the loop 4408 // make sure new task has same parent task as the pattern task 4409 kmp_taskdata_t *current_task = thread->th.th_current_task; 4410 thread->th.th_current_task = taskdata->td_parent; 4411 kmp_task_t *new_task = 4412 __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *), 4413 sizeof(__taskloop_params_t), &__kmp_taskloop_task); 4414 // restore current task 4415 thread->th.th_current_task = current_task; 4416 __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; 4417 p->task = next_task; 4418 p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); 4419 p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); 4420 p->task_dup = task_dup; 4421 p->st = st; 4422 p->ub_glob = ub_glob; 4423 p->num_tasks = n_tsk1; 4424 p->grainsize = grainsize; 4425 p->extras = ext1; 4426 p->last_chunk = last_chunk1; 4427 p->tc = tc1; 4428 p->num_t_min = num_t_min; 4429 #if OMPT_SUPPORT 4430 p->codeptr_ra = codeptr_ra; 4431 #endif 4432 4433 #if OMPT_SUPPORT 4434 // schedule new task with correct return address for OMPT events 4435 __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); 4436 #else 4437 __kmp_omp_task(gtid, new_task, true); // schedule new task 4438 #endif 4439 4440 // execute the 1st half of current subrange 4441 if (n_tsk0 > num_t_min) 4442 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0, 4443 ext0, last_chunk0, tc0, num_t_min, 4444 #if OMPT_SUPPORT 4445 codeptr_ra, 4446 #endif 4447 task_dup); 4448 else 4449 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, 4450 gr_size0, ext0, last_chunk0, tc0, 4451 #if OMPT_SUPPORT 4452 codeptr_ra, 4453 #endif 4454 task_dup); 4455 4456 KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid)); 4457 } 4458 4459 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4460 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4461 int nogroup, int sched, kmp_uint64 grainsize, 4462 int modifier, void *task_dup) { 4463 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4464 KMP_DEBUG_ASSERT(task != NULL); 4465 if (nogroup == 0) { 4466 #if OMPT_SUPPORT && OMPT_OPTIONAL 4467 OMPT_STORE_RETURN_ADDRESS(gtid); 4468 #endif 4469 __kmpc_taskgroup(loc, gtid); 4470 } 4471 4472 // ========================================================================= 4473 // calculate loop parameters 4474 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4475 kmp_uint64 tc; 4476 // compiler provides global bounds here 4477 kmp_uint64 lower = task_bounds.get_lb(); 4478 kmp_uint64 upper = task_bounds.get_ub(); 4479 kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag 4480 kmp_uint64 num_tasks = 0, extras = 0; 4481 kmp_int64 last_chunk = 4482 0; // reduce grainsize of last task by last_chunk in strict mode 4483 kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; 4484 kmp_info_t *thread = __kmp_threads[gtid]; 4485 kmp_taskdata_t *current_task = thread->th.th_current_task; 4486 4487 KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " 4488 "grain %llu(%d, %d), dup %p\n", 4489 gtid, taskdata, lower, upper, st, grainsize, sched, modifier, 4490 task_dup)); 4491 4492 // compute trip count 4493 if (st == 1) { // most common case 4494 tc = upper - lower + 1; 4495 } else if (st < 0) { 4496 tc = (lower - upper) / (-st) + 1; 4497 } else { // st > 0 4498 tc = (upper - lower) / st + 1; 4499 } 4500 if (tc == 0) { 4501 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid)); 4502 // free the pattern task and exit 4503 __kmp_task_start(gtid, task, current_task); 4504 // do not execute anything for zero-trip loop 4505 __kmp_task_finish<false>(gtid, task, current_task); 4506 return; 4507 } 4508 4509 #if OMPT_SUPPORT && OMPT_OPTIONAL 4510 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 4511 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 4512 if (ompt_enabled.ompt_callback_work) { 4513 ompt_callbacks.ompt_callback(ompt_callback_work)( 4514 ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), 4515 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4516 } 4517 #endif 4518 4519 if (num_tasks_min == 0) 4520 // TODO: can we choose better default heuristic? 4521 num_tasks_min = 4522 KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); 4523 4524 // compute num_tasks/grainsize based on the input provided 4525 switch (sched) { 4526 case 0: // no schedule clause specified, we can choose the default 4527 // let's try to schedule (team_size*10) tasks 4528 grainsize = thread->th.th_team_nproc * 10; 4529 KMP_FALLTHROUGH(); 4530 case 2: // num_tasks provided 4531 if (grainsize > tc) { 4532 num_tasks = tc; // too big num_tasks requested, adjust values 4533 grainsize = 1; 4534 extras = 0; 4535 } else { 4536 num_tasks = grainsize; 4537 grainsize = tc / num_tasks; 4538 extras = tc % num_tasks; 4539 } 4540 break; 4541 case 1: // grainsize provided 4542 if (grainsize > tc) { 4543 num_tasks = 1; 4544 grainsize = tc; // too big grainsize requested, adjust values 4545 extras = 0; 4546 } else { 4547 if (modifier) { 4548 num_tasks = (tc + grainsize - 1) / grainsize; 4549 last_chunk = tc - (num_tasks * grainsize); 4550 extras = 0; 4551 } else { 4552 num_tasks = tc / grainsize; 4553 // adjust grainsize for balanced distribution of iterations 4554 grainsize = tc / num_tasks; 4555 extras = tc % num_tasks; 4556 } 4557 } 4558 break; 4559 default: 4560 KMP_ASSERT2(0, "unknown scheduling of taskloop"); 4561 } 4562 4563 KMP_DEBUG_ASSERT( 4564 tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras)); 4565 KMP_DEBUG_ASSERT(num_tasks > extras); 4566 KMP_DEBUG_ASSERT(num_tasks > 0); 4567 // ========================================================================= 4568 4569 // check if clause value first 4570 // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) 4571 if (if_val == 0) { // if(0) specified, mark task as serial 4572 taskdata->td_flags.task_serial = 1; 4573 taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied 4574 // always start serial tasks linearly 4575 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4576 grainsize, extras, last_chunk, tc, 4577 #if OMPT_SUPPORT 4578 OMPT_GET_RETURN_ADDRESS(0), 4579 #endif 4580 task_dup); 4581 // !taskdata->td_flags.native => currently force linear spawning of tasks 4582 // for GOMP_taskloop 4583 } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { 4584 KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" 4585 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 4586 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 4587 last_chunk)); 4588 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4589 grainsize, extras, last_chunk, tc, num_tasks_min, 4590 #if OMPT_SUPPORT 4591 OMPT_GET_RETURN_ADDRESS(0), 4592 #endif 4593 task_dup); 4594 } else { 4595 KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu" 4596 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 4597 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 4598 last_chunk)); 4599 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4600 grainsize, extras, last_chunk, tc, 4601 #if OMPT_SUPPORT 4602 OMPT_GET_RETURN_ADDRESS(0), 4603 #endif 4604 task_dup); 4605 } 4606 4607 #if OMPT_SUPPORT && OMPT_OPTIONAL 4608 if (ompt_enabled.ompt_callback_work) { 4609 ompt_callbacks.ompt_callback(ompt_callback_work)( 4610 ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), 4611 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4612 } 4613 #endif 4614 4615 if (nogroup == 0) { 4616 #if OMPT_SUPPORT && OMPT_OPTIONAL 4617 OMPT_STORE_RETURN_ADDRESS(gtid); 4618 #endif 4619 __kmpc_end_taskgroup(loc, gtid); 4620 } 4621 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid)); 4622 } 4623 4624 /*! 4625 @ingroup TASKING 4626 @param loc Source location information 4627 @param gtid Global thread ID 4628 @param task Task structure 4629 @param if_val Value of the if clause 4630 @param lb Pointer to loop lower bound in task structure 4631 @param ub Pointer to loop upper bound in task structure 4632 @param st Loop stride 4633 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 4634 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 4635 @param grainsize Schedule value if specified 4636 @param task_dup Tasks duplication routine 4637 4638 Execute the taskloop construct. 4639 */ 4640 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4641 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, 4642 int sched, kmp_uint64 grainsize, void *task_dup) { 4643 __kmp_assert_valid_gtid(gtid); 4644 KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid)); 4645 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 4646 0, task_dup); 4647 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid)); 4648 } 4649 4650 /*! 4651 @ingroup TASKING 4652 @param loc Source location information 4653 @param gtid Global thread ID 4654 @param task Task structure 4655 @param if_val Value of the if clause 4656 @param lb Pointer to loop lower bound in task structure 4657 @param ub Pointer to loop upper bound in task structure 4658 @param st Loop stride 4659 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 4660 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 4661 @param grainsize Schedule value if specified 4662 @param modifer Modifier 'strict' for sched, 1 if present, 0 otherwise 4663 @param task_dup Tasks duplication routine 4664 4665 Execute the taskloop construct. 4666 */ 4667 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4668 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4669 int nogroup, int sched, kmp_uint64 grainsize, 4670 int modifier, void *task_dup) { 4671 __kmp_assert_valid_gtid(gtid); 4672 KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid)); 4673 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 4674 modifier, task_dup); 4675 KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid)); 4676 } 4677