1 /*
2  * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_i18n.h"
15 #include "kmp_itt.h"
16 #include "kmp_stats.h"
17 #include "kmp_wait_release.h"
18 #include "kmp_taskdeps.h"
19 
20 #if OMPT_SUPPORT
21 #include "ompt-specific.h"
22 #endif
23 
24 #include "tsan_annotations.h"
25 
26 /* forward declaration */
27 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
28                                  kmp_info_t *this_thr);
29 static void __kmp_alloc_task_deque(kmp_info_t *thread,
30                                    kmp_thread_data_t *thread_data);
31 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
32                                            kmp_task_team_t *task_team);
33 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
34 
35 #ifdef BUILD_TIED_TASK_STACK
36 
37 //  __kmp_trace_task_stack: print the tied tasks from the task stack in order
38 //  from top do bottom
39 //
40 //  gtid: global thread identifier for thread containing stack
41 //  thread_data: thread data for task team thread containing stack
42 //  threshold: value above which the trace statement triggers
43 //  location: string identifying call site of this function (for trace)
44 static void __kmp_trace_task_stack(kmp_int32 gtid,
45                                    kmp_thread_data_t *thread_data,
46                                    int threshold, char *location) {
47   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
48   kmp_taskdata_t **stack_top = task_stack->ts_top;
49   kmp_int32 entries = task_stack->ts_entries;
50   kmp_taskdata_t *tied_task;
51 
52   KA_TRACE(
53       threshold,
54       ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
55        "first_block = %p, stack_top = %p \n",
56        location, gtid, entries, task_stack->ts_first_block, stack_top));
57 
58   KMP_DEBUG_ASSERT(stack_top != NULL);
59   KMP_DEBUG_ASSERT(entries > 0);
60 
61   while (entries != 0) {
62     KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
63     // fix up ts_top if we need to pop from previous block
64     if (entries & TASK_STACK_INDEX_MASK == 0) {
65       kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
66 
67       stack_block = stack_block->sb_prev;
68       stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
69     }
70 
71     // finish bookkeeping
72     stack_top--;
73     entries--;
74 
75     tied_task = *stack_top;
76 
77     KMP_DEBUG_ASSERT(tied_task != NULL);
78     KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
79 
80     KA_TRACE(threshold,
81              ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, "
82               "stack_top=%p, tied_task=%p\n",
83               location, gtid, entries, stack_top, tied_task));
84   }
85   KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
86 
87   KA_TRACE(threshold,
88            ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
89             location, gtid));
90 }
91 
92 //  __kmp_init_task_stack: initialize the task stack for the first time
93 //  after a thread_data structure is created.
94 //  It should not be necessary to do this again (assuming the stack works).
95 //
96 //  gtid: global thread identifier of calling thread
97 //  thread_data: thread data for task team thread containing stack
98 static void __kmp_init_task_stack(kmp_int32 gtid,
99                                   kmp_thread_data_t *thread_data) {
100   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
101   kmp_stack_block_t *first_block;
102 
103   // set up the first block of the stack
104   first_block = &task_stack->ts_first_block;
105   task_stack->ts_top = (kmp_taskdata_t **)first_block;
106   memset((void *)first_block, '\0',
107          TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
108 
109   // initialize the stack to be empty
110   task_stack->ts_entries = TASK_STACK_EMPTY;
111   first_block->sb_next = NULL;
112   first_block->sb_prev = NULL;
113 }
114 
115 //  __kmp_free_task_stack: free the task stack when thread_data is destroyed.
116 //
117 //  gtid: global thread identifier for calling thread
118 //  thread_data: thread info for thread containing stack
119 static void __kmp_free_task_stack(kmp_int32 gtid,
120                                   kmp_thread_data_t *thread_data) {
121   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
122   kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
123 
124   KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
125   // free from the second block of the stack
126   while (stack_block != NULL) {
127     kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
128 
129     stack_block->sb_next = NULL;
130     stack_block->sb_prev = NULL;
131     if (stack_block != &task_stack->ts_first_block) {
132       __kmp_thread_free(thread,
133                         stack_block); // free the block, if not the first
134     }
135     stack_block = next_block;
136   }
137   // initialize the stack to be empty
138   task_stack->ts_entries = 0;
139   task_stack->ts_top = NULL;
140 }
141 
142 //  __kmp_push_task_stack: Push the tied task onto the task stack.
143 //     Grow the stack if necessary by allocating another block.
144 //
145 //  gtid: global thread identifier for calling thread
146 //  thread: thread info for thread containing stack
147 //  tied_task: the task to push on the stack
148 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
149                                   kmp_taskdata_t *tied_task) {
150   // GEH - need to consider what to do if tt_threads_data not allocated yet
151   kmp_thread_data_t *thread_data =
152       &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
153   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
154 
155   if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
156     return; // Don't push anything on stack if team or team tasks are serialized
157   }
158 
159   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
160   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
161 
162   KA_TRACE(20,
163            ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
164             gtid, thread, tied_task));
165   // Store entry
166   *(task_stack->ts_top) = tied_task;
167 
168   // Do bookkeeping for next push
169   task_stack->ts_top++;
170   task_stack->ts_entries++;
171 
172   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
173     // Find beginning of this task block
174     kmp_stack_block_t *stack_block =
175         (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
176 
177     // Check if we already have a block
178     if (stack_block->sb_next !=
179         NULL) { // reset ts_top to beginning of next block
180       task_stack->ts_top = &stack_block->sb_next->sb_block[0];
181     } else { // Alloc new block and link it up
182       kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
183           thread, sizeof(kmp_stack_block_t));
184 
185       task_stack->ts_top = &new_block->sb_block[0];
186       stack_block->sb_next = new_block;
187       new_block->sb_prev = stack_block;
188       new_block->sb_next = NULL;
189 
190       KA_TRACE(
191           30,
192           ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
193            gtid, tied_task, new_block));
194     }
195   }
196   KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
197                 tied_task));
198 }
199 
200 //  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return
201 //  the task, just check to make sure it matches the ending task passed in.
202 //
203 //  gtid: global thread identifier for the calling thread
204 //  thread: thread info structure containing stack
205 //  tied_task: the task popped off the stack
206 //  ending_task: the task that is ending (should match popped task)
207 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
208                                  kmp_taskdata_t *ending_task) {
209   // GEH - need to consider what to do if tt_threads_data not allocated yet
210   kmp_thread_data_t *thread_data =
211       &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
212   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
213   kmp_taskdata_t *tied_task;
214 
215   if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
216     // Don't pop anything from stack if team or team tasks are serialized
217     return;
218   }
219 
220   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
221   KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
222 
223   KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
224                 thread));
225 
226   // fix up ts_top if we need to pop from previous block
227   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
228     kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
229 
230     stack_block = stack_block->sb_prev;
231     task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
232   }
233 
234   // finish bookkeeping
235   task_stack->ts_top--;
236   task_stack->ts_entries--;
237 
238   tied_task = *(task_stack->ts_top);
239 
240   KMP_DEBUG_ASSERT(tied_task != NULL);
241   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
242   KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
243 
244   KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
245                 tied_task));
246   return;
247 }
248 #endif /* BUILD_TIED_TASK_STACK */
249 
250 // returns 1 if new task is allowed to execute, 0 otherwise
251 // checks Task Scheduling constraint (if requested) and
252 // mutexinoutset dependencies if any
253 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
254                                   const kmp_taskdata_t *tasknew,
255                                   const kmp_taskdata_t *taskcurr) {
256   if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
257     // Check if the candidate obeys the Task Scheduling Constraints (TSC)
258     // only descendant of all deferred tied tasks can be scheduled, checking
259     // the last one is enough, as it in turn is the descendant of all others
260     kmp_taskdata_t *current = taskcurr->td_last_tied;
261     KMP_DEBUG_ASSERT(current != NULL);
262     // check if the task is not suspended on barrier
263     if (current->td_flags.tasktype == TASK_EXPLICIT ||
264         current->td_taskwait_thread > 0) { // <= 0 on barrier
265       kmp_int32 level = current->td_level;
266       kmp_taskdata_t *parent = tasknew->td_parent;
267       while (parent != current && parent->td_level > level) {
268         // check generation up to the level of the current task
269         parent = parent->td_parent;
270         KMP_DEBUG_ASSERT(parent != NULL);
271       }
272       if (parent != current)
273         return false;
274     }
275   }
276   // Check mutexinoutset dependencies, acquire locks
277   kmp_depnode_t *node = tasknew->td_depnode;
278   if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) {
279     for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
280       KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
281       if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
282         continue;
283       // could not get the lock, release previous locks
284       for (int j = i - 1; j >= 0; --j)
285         __kmp_release_lock(node->dn.mtx_locks[j], gtid);
286       return false;
287     }
288     // negative num_locks means all locks acquired successfully
289     node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
290   }
291   return true;
292 }
293 
294 // __kmp_realloc_task_deque:
295 // Re-allocates a task deque for a particular thread, copies the content from
296 // the old deque and adjusts the necessary data structures relating to the
297 // deque. This operation must be done with the deque_lock being held
298 static void __kmp_realloc_task_deque(kmp_info_t *thread,
299                                      kmp_thread_data_t *thread_data) {
300   kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
301   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size);
302   kmp_int32 new_size = 2 * size;
303 
304   KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
305                 "%d] for thread_data %p\n",
306                 __kmp_gtid_from_thread(thread), size, new_size, thread_data));
307 
308   kmp_taskdata_t **new_deque =
309       (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
310 
311   int i, j;
312   for (i = thread_data->td.td_deque_head, j = 0; j < size;
313        i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
314     new_deque[j] = thread_data->td.td_deque[i];
315 
316   __kmp_free(thread_data->td.td_deque);
317 
318   thread_data->td.td_deque_head = 0;
319   thread_data->td.td_deque_tail = size;
320   thread_data->td.td_deque = new_deque;
321   thread_data->td.td_deque_size = new_size;
322 }
323 
324 //  __kmp_push_task: Add a task to the thread's deque
325 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
326   kmp_info_t *thread = __kmp_threads[gtid];
327   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
328 
329   // We don't need to map to shadow gtid if it is already hidden helper thread
330   if (taskdata->td_flags.hidden_helper && !KMP_HIDDEN_HELPER_THREAD(gtid)) {
331     gtid = KMP_GTID_TO_SHADOW_GTID(gtid);
332     thread = __kmp_threads[gtid];
333   }
334 
335   kmp_task_team_t *task_team = thread->th.th_task_team;
336   kmp_int32 tid = __kmp_tid_from_gtid(gtid);
337   kmp_thread_data_t *thread_data;
338 
339   KA_TRACE(20,
340            ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
341 
342   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
343     // untied task needs to increment counter so that the task structure is not
344     // freed prematurely
345     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
346     KMP_DEBUG_USE_VAR(counter);
347     KA_TRACE(
348         20,
349         ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
350          gtid, counter, taskdata));
351   }
352 
353   // The first check avoids building task_team thread data if serialized
354   if (UNLIKELY(taskdata->td_flags.task_serial)) {
355     KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
356                   "TASK_NOT_PUSHED for task %p\n",
357                   gtid, taskdata));
358     return TASK_NOT_PUSHED;
359   }
360 
361   // Now that serialized tasks have returned, we can assume that we are not in
362   // immediate exec mode
363   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
364   if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) {
365     __kmp_enable_tasking(task_team, thread);
366   }
367   KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
368   KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
369 
370   // Find tasking deque specific to encountering thread
371   thread_data = &task_team->tt.tt_threads_data[tid];
372 
373   // No lock needed since only owner can allocate. If the task is hidden_helper,
374   // we don't need it either because we have initialized the dequeue for hidden
375   // helper thread data.
376   if (UNLIKELY(thread_data->td.td_deque == NULL)) {
377     __kmp_alloc_task_deque(thread, thread_data);
378   }
379 
380   int locked = 0;
381   // Check if deque is full
382   if (TCR_4(thread_data->td.td_deque_ntasks) >=
383       TASK_DEQUE_SIZE(thread_data->td)) {
384     if (__kmp_enable_task_throttling &&
385         __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
386                               thread->th.th_current_task)) {
387       KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
388                     "TASK_NOT_PUSHED for task %p\n",
389                     gtid, taskdata));
390       return TASK_NOT_PUSHED;
391     } else {
392       __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
393       locked = 1;
394       if (TCR_4(thread_data->td.td_deque_ntasks) >=
395           TASK_DEQUE_SIZE(thread_data->td)) {
396         // expand deque to push the task which is not allowed to execute
397         __kmp_realloc_task_deque(thread, thread_data);
398       }
399     }
400   }
401   // Lock the deque for the task push operation
402   if (!locked) {
403     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
404     // Need to recheck as we can get a proxy task from thread outside of OpenMP
405     if (TCR_4(thread_data->td.td_deque_ntasks) >=
406         TASK_DEQUE_SIZE(thread_data->td)) {
407       if (__kmp_enable_task_throttling &&
408           __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
409                                 thread->th.th_current_task)) {
410         __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
411         KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
412                       "returning TASK_NOT_PUSHED for task %p\n",
413                       gtid, taskdata));
414         return TASK_NOT_PUSHED;
415       } else {
416         // expand deque to push the task which is not allowed to execute
417         __kmp_realloc_task_deque(thread, thread_data);
418       }
419     }
420   }
421   // Must have room since no thread can add tasks but calling thread
422   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
423                    TASK_DEQUE_SIZE(thread_data->td));
424 
425   thread_data->td.td_deque[thread_data->td.td_deque_tail] =
426       taskdata; // Push taskdata
427   // Wrap index.
428   thread_data->td.td_deque_tail =
429       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
430   TCW_4(thread_data->td.td_deque_ntasks,
431         TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
432   KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
433   KMP_FSYNC_RELEASING(taskdata); // releasing child
434   KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
435                 "task=%p ntasks=%d head=%u tail=%u\n",
436                 gtid, taskdata, thread_data->td.td_deque_ntasks,
437                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
438 
439   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
440 
441   // Signal one worker thread to execute the task
442   if (taskdata->td_flags.hidden_helper) {
443     // Wake hidden helper threads up if they're sleeping
444     __kmp_hidden_helper_worker_thread_signal();
445   }
446 
447   return TASK_SUCCESSFULLY_PUSHED;
448 }
449 
450 // __kmp_pop_current_task_from_thread: set up current task from called thread
451 // when team ends
452 //
453 // this_thr: thread structure to set current_task in.
454 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
455   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
456                 "this_thread=%p, curtask=%p, "
457                 "curtask_parent=%p\n",
458                 0, this_thr, this_thr->th.th_current_task,
459                 this_thr->th.th_current_task->td_parent));
460 
461   this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
462 
463   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
464                 "this_thread=%p, curtask=%p, "
465                 "curtask_parent=%p\n",
466                 0, this_thr, this_thr->th.th_current_task,
467                 this_thr->th.th_current_task->td_parent));
468 }
469 
470 // __kmp_push_current_task_to_thread: set up current task in called thread for a
471 // new team
472 //
473 // this_thr: thread structure to set up
474 // team: team for implicit task data
475 // tid: thread within team to set up
476 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
477                                        int tid) {
478   // current task of the thread is a parent of the new just created implicit
479   // tasks of new team
480   KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
481                 "curtask=%p "
482                 "parent_task=%p\n",
483                 tid, this_thr, this_thr->th.th_current_task,
484                 team->t.t_implicit_task_taskdata[tid].td_parent));
485 
486   KMP_DEBUG_ASSERT(this_thr != NULL);
487 
488   if (tid == 0) {
489     if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
490       team->t.t_implicit_task_taskdata[0].td_parent =
491           this_thr->th.th_current_task;
492       this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
493     }
494   } else {
495     team->t.t_implicit_task_taskdata[tid].td_parent =
496         team->t.t_implicit_task_taskdata[0].td_parent;
497     this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
498   }
499 
500   KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
501                 "curtask=%p "
502                 "parent_task=%p\n",
503                 tid, this_thr, this_thr->th.th_current_task,
504                 team->t.t_implicit_task_taskdata[tid].td_parent));
505 }
506 
507 // __kmp_task_start: bookkeeping for a task starting execution
508 //
509 // GTID: global thread id of calling thread
510 // task: task starting execution
511 // current_task: task suspending
512 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
513                              kmp_taskdata_t *current_task) {
514   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
515   kmp_info_t *thread = __kmp_threads[gtid];
516 
517   KA_TRACE(10,
518            ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
519             gtid, taskdata, current_task));
520 
521   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
522 
523   // mark currently executing task as suspended
524   // TODO: GEH - make sure root team implicit task is initialized properly.
525   // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
526   current_task->td_flags.executing = 0;
527 
528 // Add task to stack if tied
529 #ifdef BUILD_TIED_TASK_STACK
530   if (taskdata->td_flags.tiedness == TASK_TIED) {
531     __kmp_push_task_stack(gtid, thread, taskdata);
532   }
533 #endif /* BUILD_TIED_TASK_STACK */
534 
535   // mark starting task as executing and as current task
536   thread->th.th_current_task = taskdata;
537 
538   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
539                    taskdata->td_flags.tiedness == TASK_UNTIED);
540   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
541                    taskdata->td_flags.tiedness == TASK_UNTIED);
542   taskdata->td_flags.started = 1;
543   taskdata->td_flags.executing = 1;
544   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
545   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
546 
547   // GEH TODO: shouldn't we pass some sort of location identifier here?
548   // APT: yes, we will pass location here.
549   // need to store current thread state (in a thread or taskdata structure)
550   // before setting work_state, otherwise wrong state is set after end of task
551 
552   KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
553 
554   return;
555 }
556 
557 #if OMPT_SUPPORT
558 //------------------------------------------------------------------------------
559 // __ompt_task_init:
560 //   Initialize OMPT fields maintained by a task. This will only be called after
561 //   ompt_start_tool, so we already know whether ompt is enabled or not.
562 
563 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
564   // The calls to __ompt_task_init already have the ompt_enabled condition.
565   task->ompt_task_info.task_data.value = 0;
566   task->ompt_task_info.frame.exit_frame = ompt_data_none;
567   task->ompt_task_info.frame.enter_frame = ompt_data_none;
568   task->ompt_task_info.frame.exit_frame_flags =
569       ompt_frame_runtime | ompt_frame_framepointer;
570   task->ompt_task_info.frame.enter_frame_flags =
571       ompt_frame_runtime | ompt_frame_framepointer;
572 }
573 
574 // __ompt_task_start:
575 //   Build and trigger task-begin event
576 static inline void __ompt_task_start(kmp_task_t *task,
577                                      kmp_taskdata_t *current_task,
578                                      kmp_int32 gtid) {
579   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
580   ompt_task_status_t status = ompt_task_switch;
581   if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
582     status = ompt_task_yield;
583     __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
584   }
585   /* let OMPT know that we're about to run this task */
586   if (ompt_enabled.ompt_callback_task_schedule) {
587     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
588         &(current_task->ompt_task_info.task_data), status,
589         &(taskdata->ompt_task_info.task_data));
590   }
591   taskdata->ompt_task_info.scheduling_parent = current_task;
592 }
593 
594 // __ompt_task_finish:
595 //   Build and trigger final task-schedule event
596 static inline void __ompt_task_finish(kmp_task_t *task,
597                                       kmp_taskdata_t *resumed_task,
598                                       ompt_task_status_t status) {
599   if (ompt_enabled.ompt_callback_task_schedule) {
600     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
601     if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
602         taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
603       status = ompt_task_cancel;
604     }
605 
606     /* let OMPT know that we're returning to the callee task */
607     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
608         &(taskdata->ompt_task_info.task_data), status,
609         (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL));
610   }
611 }
612 #endif
613 
614 template <bool ompt>
615 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
616                                                kmp_task_t *task,
617                                                void *frame_address,
618                                                void *return_address) {
619   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
620   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
621 
622   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
623                 "current_task=%p\n",
624                 gtid, loc_ref, taskdata, current_task));
625 
626   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
627     // untied task needs to increment counter so that the task structure is not
628     // freed prematurely
629     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
630     KMP_DEBUG_USE_VAR(counter);
631     KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
632                   "incremented for task %p\n",
633                   gtid, counter, taskdata));
634   }
635 
636   taskdata->td_flags.task_serial =
637       1; // Execute this task immediately, not deferred.
638   __kmp_task_start(gtid, task, current_task);
639 
640 #if OMPT_SUPPORT
641   if (ompt) {
642     if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
643       current_task->ompt_task_info.frame.enter_frame.ptr =
644           taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
645       current_task->ompt_task_info.frame.enter_frame_flags =
646           taskdata->ompt_task_info.frame.exit_frame_flags =
647               ompt_frame_application | ompt_frame_framepointer;
648     }
649     if (ompt_enabled.ompt_callback_task_create) {
650       ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
651       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
652           &(parent_info->task_data), &(parent_info->frame),
653           &(taskdata->ompt_task_info.task_data),
654           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
655           return_address);
656     }
657     __ompt_task_start(task, current_task, gtid);
658   }
659 #endif // OMPT_SUPPORT
660 
661   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
662                 loc_ref, taskdata));
663 }
664 
665 #if OMPT_SUPPORT
666 OMPT_NOINLINE
667 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
668                                            kmp_task_t *task,
669                                            void *frame_address,
670                                            void *return_address) {
671   __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
672                                            return_address);
673 }
674 #endif // OMPT_SUPPORT
675 
676 // __kmpc_omp_task_begin_if0: report that a given serialized task has started
677 // execution
678 //
679 // loc_ref: source location information; points to beginning of task block.
680 // gtid: global thread number.
681 // task: task thunk for the started task.
682 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
683                                kmp_task_t *task) {
684 #if OMPT_SUPPORT
685   if (UNLIKELY(ompt_enabled.enabled)) {
686     OMPT_STORE_RETURN_ADDRESS(gtid);
687     __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
688                                    OMPT_GET_FRAME_ADDRESS(1),
689                                    OMPT_LOAD_RETURN_ADDRESS(gtid));
690     return;
691   }
692 #endif
693   __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
694 }
695 
696 #ifdef TASK_UNUSED
697 // __kmpc_omp_task_begin: report that a given task has started execution
698 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
699 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
700   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
701 
702   KA_TRACE(
703       10,
704       ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
705        gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
706 
707   __kmp_task_start(gtid, task, current_task);
708 
709   KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
710                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
711   return;
712 }
713 #endif // TASK_UNUSED
714 
715 // __kmp_free_task: free the current task space and the space for shareds
716 //
717 // gtid: Global thread ID of calling thread
718 // taskdata: task to free
719 // thread: thread data structure of caller
720 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
721                             kmp_info_t *thread) {
722   KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
723                 taskdata));
724 
725   // Check to make sure all flags and counters have the correct values
726   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
727   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
728   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
729   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
730   KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
731                    taskdata->td_flags.task_serial == 1);
732   KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
733 
734   taskdata->td_flags.freed = 1;
735   ANNOTATE_HAPPENS_BEFORE(taskdata);
736 // deallocate the taskdata and shared variable blocks associated with this task
737 #if USE_FAST_MEMORY
738   __kmp_fast_free(thread, taskdata);
739 #else /* ! USE_FAST_MEMORY */
740   __kmp_thread_free(thread, taskdata);
741 #endif
742   KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
743 }
744 
745 // __kmp_free_task_and_ancestors: free the current task and ancestors without
746 // children
747 //
748 // gtid: Global thread ID of calling thread
749 // taskdata: task to free
750 // thread: thread data structure of caller
751 static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
752                                           kmp_taskdata_t *taskdata,
753                                           kmp_info_t *thread) {
754   // Proxy tasks must always be allowed to free their parents
755   // because they can be run in background even in serial mode.
756   kmp_int32 team_serial =
757       (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
758       !taskdata->td_flags.proxy;
759   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
760 
761   kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
762   KMP_DEBUG_ASSERT(children >= 0);
763 
764   // Now, go up the ancestor tree to see if any ancestors can now be freed.
765   while (children == 0) {
766     kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
767 
768     KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
769                   "and freeing itself\n",
770                   gtid, taskdata));
771 
772     // --- Deallocate my ancestor task ---
773     __kmp_free_task(gtid, taskdata, thread);
774 
775     taskdata = parent_taskdata;
776 
777     if (team_serial)
778       return;
779     // Stop checking ancestors at implicit task instead of walking up ancestor
780     // tree to avoid premature deallocation of ancestors.
781     if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
782       if (taskdata->td_dephash) { // do we need to cleanup dephash?
783         int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
784         kmp_tasking_flags_t flags_old = taskdata->td_flags;
785         if (children == 0 && flags_old.complete == 1) {
786           kmp_tasking_flags_t flags_new = flags_old;
787           flags_new.complete = 0;
788           if (KMP_COMPARE_AND_STORE_ACQ32(
789                   RCAST(kmp_int32 *, &taskdata->td_flags),
790                   *RCAST(kmp_int32 *, &flags_old),
791                   *RCAST(kmp_int32 *, &flags_new))) {
792             KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
793                            "dephash of implicit task %p\n",
794                            gtid, taskdata));
795             // cleanup dephash of finished implicit task
796             __kmp_dephash_free_entries(thread, taskdata->td_dephash);
797           }
798         }
799       }
800       return;
801     }
802     // Predecrement simulated by "- 1" calculation
803     children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
804     KMP_DEBUG_ASSERT(children >= 0);
805   }
806 
807   KA_TRACE(
808       20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
809            "not freeing it yet\n",
810            gtid, taskdata, children));
811 }
812 
813 // __kmp_task_finish: bookkeeping to do when a task finishes execution
814 //
815 // gtid: global thread ID for calling thread
816 // task: task to be finished
817 // resumed_task: task to be resumed.  (may be NULL if task is serialized)
818 //
819 // template<ompt>: effectively ompt_enabled.enabled!=0
820 // the version with ompt=false is inlined, allowing to optimize away all ompt
821 // code in this case
822 template <bool ompt>
823 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
824                               kmp_taskdata_t *resumed_task) {
825   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
826   kmp_info_t *thread = __kmp_threads[gtid];
827   kmp_task_team_t *task_team =
828       thread->th.th_task_team; // might be NULL for serial teams...
829   kmp_int32 children = 0;
830 
831   KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
832                 "task %p\n",
833                 gtid, taskdata, resumed_task));
834 
835   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
836 
837 // Pop task from stack if tied
838 #ifdef BUILD_TIED_TASK_STACK
839   if (taskdata->td_flags.tiedness == TASK_TIED) {
840     __kmp_pop_task_stack(gtid, thread, taskdata);
841   }
842 #endif /* BUILD_TIED_TASK_STACK */
843 
844   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
845     // untied task needs to check the counter so that the task structure is not
846     // freed prematurely
847     kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
848     KA_TRACE(
849         20,
850         ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
851          gtid, counter, taskdata));
852     if (counter > 0) {
853       // untied task is not done, to be continued possibly by other thread, do
854       // not free it now
855       if (resumed_task == NULL) {
856         KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
857         resumed_task = taskdata->td_parent; // In a serialized task, the resumed
858         // task is the parent
859       }
860       thread->th.th_current_task = resumed_task; // restore current_task
861       resumed_task->td_flags.executing = 1; // resume previous task
862       KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
863                     "resuming task %p\n",
864                     gtid, taskdata, resumed_task));
865       return;
866     }
867   }
868 
869   // bookkeeping for resuming task:
870   // GEH - note tasking_ser => task_serial
871   KMP_DEBUG_ASSERT(
872       (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
873       taskdata->td_flags.task_serial);
874   if (taskdata->td_flags.task_serial) {
875     if (resumed_task == NULL) {
876       resumed_task = taskdata->td_parent; // In a serialized task, the resumed
877       // task is the parent
878     }
879   } else {
880     KMP_DEBUG_ASSERT(resumed_task !=
881                      NULL); // verify that resumed task is passed as argument
882   }
883 
884   /* If the tasks' destructor thunk flag has been set, we need to invoke the
885      destructor thunk that has been generated by the compiler. The code is
886      placed here, since at this point other tasks might have been released
887      hence overlapping the destructor invocations with some other work in the
888      released tasks.  The OpenMP spec is not specific on when the destructors
889      are invoked, so we should be free to choose. */
890   if (UNLIKELY(taskdata->td_flags.destructors_thunk)) {
891     kmp_routine_entry_t destr_thunk = task->data1.destructors;
892     KMP_ASSERT(destr_thunk);
893     destr_thunk(gtid, task);
894   }
895 
896   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
897   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
898   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
899 
900   bool detach = false;
901   if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) {
902     if (taskdata->td_allow_completion_event.type ==
903         KMP_EVENT_ALLOW_COMPLETION) {
904       // event hasn't been fulfilled yet. Try to detach task.
905       __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
906       if (taskdata->td_allow_completion_event.type ==
907           KMP_EVENT_ALLOW_COMPLETION) {
908         // task finished execution
909         KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
910         taskdata->td_flags.executing = 0; // suspend the finishing task
911 
912 #if OMPT_SUPPORT
913         // For a detached task, which is not completed, we switch back
914         // the omp_fulfill_event signals completion
915         // locking is necessary to avoid a race with ompt_task_late_fulfill
916         if (ompt)
917           __ompt_task_finish(task, resumed_task, ompt_task_detach);
918 #endif
919 
920         // no access to taskdata after this point!
921         // __kmp_fulfill_event might free taskdata at any time from now
922 
923         taskdata->td_flags.proxy = TASK_PROXY; // proxify!
924         detach = true;
925       }
926       __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
927     }
928   }
929 
930   if (!detach) {
931     taskdata->td_flags.complete = 1; // mark the task as completed
932 
933 #if OMPT_SUPPORT
934     // This is not a detached task, we are done here
935     if (ompt)
936       __ompt_task_finish(task, resumed_task, ompt_task_complete);
937 #endif
938 
939     // Only need to keep track of count if team parallel and tasking not
940     // serialized, or task is detachable and event has already been fulfilled
941     if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) ||
942         taskdata->td_flags.detachable == TASK_DETACHABLE ||
943         taskdata->td_flags.hidden_helper) {
944       // Predecrement simulated by "- 1" calculation
945       children =
946           KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
947       KMP_DEBUG_ASSERT(children >= 0);
948       if (taskdata->td_taskgroup)
949         KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
950       __kmp_release_deps(gtid, taskdata);
951     } else if (task_team && task_team->tt.tt_found_proxy_tasks) {
952       // if we found proxy tasks there could exist a dependency chain
953       // with the proxy task as origin
954       __kmp_release_deps(gtid, taskdata);
955     }
956     // td_flags.executing must be marked as 0 after __kmp_release_deps has been
957     // called. Othertwise, if a task is executed immediately from the
958     // release_deps code, the flag will be reset to 1 again by this same
959     // function
960     KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
961     taskdata->td_flags.executing = 0; // suspend the finishing task
962   }
963 
964   KA_TRACE(
965       20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
966            gtid, taskdata, children));
967 
968   // Free this task and then ancestor tasks if they have no children.
969   // Restore th_current_task first as suggested by John:
970   // johnmc: if an asynchronous inquiry peers into the runtime system
971   // it doesn't see the freed task as the current task.
972   thread->th.th_current_task = resumed_task;
973   if (!detach)
974     __kmp_free_task_and_ancestors(gtid, taskdata, thread);
975 
976   // TODO: GEH - make sure root team implicit task is initialized properly.
977   // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
978   resumed_task->td_flags.executing = 1; // resume previous task
979 
980   KA_TRACE(
981       10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
982            gtid, taskdata, resumed_task));
983 
984   return;
985 }
986 
987 template <bool ompt>
988 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
989                                                   kmp_int32 gtid,
990                                                   kmp_task_t *task) {
991   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
992                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
993   KMP_DEBUG_ASSERT(gtid >= 0);
994   // this routine will provide task to resume
995   __kmp_task_finish<ompt>(gtid, task, NULL);
996 
997   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
998                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
999 
1000 #if OMPT_SUPPORT
1001   if (ompt) {
1002     ompt_frame_t *ompt_frame;
1003     __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
1004     ompt_frame->enter_frame = ompt_data_none;
1005     ompt_frame->enter_frame_flags =
1006         ompt_frame_runtime | ompt_frame_framepointer;
1007   }
1008 #endif
1009 
1010   return;
1011 }
1012 
1013 #if OMPT_SUPPORT
1014 OMPT_NOINLINE
1015 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
1016                                        kmp_task_t *task) {
1017   __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
1018 }
1019 #endif // OMPT_SUPPORT
1020 
1021 // __kmpc_omp_task_complete_if0: report that a task has completed execution
1022 //
1023 // loc_ref: source location information; points to end of task block.
1024 // gtid: global thread number.
1025 // task: task thunk for the completed task.
1026 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
1027                                   kmp_task_t *task) {
1028 #if OMPT_SUPPORT
1029   if (UNLIKELY(ompt_enabled.enabled)) {
1030     __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
1031     return;
1032   }
1033 #endif
1034   __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
1035 }
1036 
1037 #ifdef TASK_UNUSED
1038 // __kmpc_omp_task_complete: report that a task has completed execution
1039 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
1040 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
1041                               kmp_task_t *task) {
1042   KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
1043                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1044 
1045   __kmp_task_finish<false>(gtid, task,
1046                            NULL); // Not sure how to find task to resume
1047 
1048   KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
1049                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1050   return;
1051 }
1052 #endif // TASK_UNUSED
1053 
1054 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1055 // task for a given thread
1056 //
1057 // loc_ref:  reference to source location of parallel region
1058 // this_thr:  thread data structure corresponding to implicit task
1059 // team: team for this_thr
1060 // tid: thread id of given thread within team
1061 // set_curr_task: TRUE if need to push current task to thread
1062 // NOTE: Routine does not set up the implicit task ICVS.  This is assumed to
1063 // have already been done elsewhere.
1064 // TODO: Get better loc_ref.  Value passed in may be NULL
1065 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
1066                               kmp_team_t *team, int tid, int set_curr_task) {
1067   kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
1068 
1069   KF_TRACE(
1070       10,
1071       ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1072        tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
1073 
1074   task->td_task_id = KMP_GEN_TASK_ID();
1075   task->td_team = team;
1076   //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info
1077   //    in debugger)
1078   task->td_ident = loc_ref;
1079   task->td_taskwait_ident = NULL;
1080   task->td_taskwait_counter = 0;
1081   task->td_taskwait_thread = 0;
1082 
1083   task->td_flags.tiedness = TASK_TIED;
1084   task->td_flags.tasktype = TASK_IMPLICIT;
1085   task->td_flags.proxy = TASK_FULL;
1086 
1087   // All implicit tasks are executed immediately, not deferred
1088   task->td_flags.task_serial = 1;
1089   task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1090   task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1091 
1092   task->td_flags.started = 1;
1093   task->td_flags.executing = 1;
1094   task->td_flags.complete = 0;
1095   task->td_flags.freed = 0;
1096 
1097   task->td_depnode = NULL;
1098   task->td_last_tied = task;
1099   task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1100 
1101   if (set_curr_task) { // only do this init first time thread is created
1102     KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
1103     // Not used: don't need to deallocate implicit task
1104     KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
1105     task->td_taskgroup = NULL; // An implicit task does not have taskgroup
1106     task->td_dephash = NULL;
1107     __kmp_push_current_task_to_thread(this_thr, team, tid);
1108   } else {
1109     KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
1110     KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
1111   }
1112 
1113 #if OMPT_SUPPORT
1114   if (UNLIKELY(ompt_enabled.enabled))
1115     __ompt_task_init(task, tid);
1116 #endif
1117 
1118   KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
1119                 team, task));
1120 }
1121 
1122 // __kmp_finish_implicit_task: Release resources associated to implicit tasks
1123 // at the end of parallel regions. Some resources are kept for reuse in the next
1124 // parallel region.
1125 //
1126 // thread:  thread data structure corresponding to implicit task
1127 void __kmp_finish_implicit_task(kmp_info_t *thread) {
1128   kmp_taskdata_t *task = thread->th.th_current_task;
1129   if (task->td_dephash) {
1130     int children;
1131     task->td_flags.complete = 1;
1132     children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
1133     kmp_tasking_flags_t flags_old = task->td_flags;
1134     if (children == 0 && flags_old.complete == 1) {
1135       kmp_tasking_flags_t flags_new = flags_old;
1136       flags_new.complete = 0;
1137       if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
1138                                       *RCAST(kmp_int32 *, &flags_old),
1139                                       *RCAST(kmp_int32 *, &flags_new))) {
1140         KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1141                        "dephash of implicit task %p\n",
1142                        thread->th.th_info.ds.ds_gtid, task));
1143         __kmp_dephash_free_entries(thread, task->td_dephash);
1144       }
1145     }
1146   }
1147 }
1148 
1149 // __kmp_free_implicit_task: Release resources associated to implicit tasks
1150 // when these are destroyed regions
1151 //
1152 // thread:  thread data structure corresponding to implicit task
1153 void __kmp_free_implicit_task(kmp_info_t *thread) {
1154   kmp_taskdata_t *task = thread->th.th_current_task;
1155   if (task && task->td_dephash) {
1156     __kmp_dephash_free(thread, task->td_dephash);
1157     task->td_dephash = NULL;
1158   }
1159 }
1160 
1161 // Round up a size to a power of two specified by val: Used to insert padding
1162 // between structures co-allocated using a single malloc() call
1163 static size_t __kmp_round_up_to_val(size_t size, size_t val) {
1164   if (size & (val - 1)) {
1165     size &= ~(val - 1);
1166     if (size <= KMP_SIZE_T_MAX - val) {
1167       size += val; // Round up if there is no overflow.
1168     }
1169   }
1170   return size;
1171 } // __kmp_round_up_to_va
1172 
1173 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1174 //
1175 // loc_ref: source location information
1176 // gtid: global thread number.
1177 // flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1178 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1179 // sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including
1180 // private vars accessed in task.
1181 // sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed
1182 // in task.
1183 // task_entry: Pointer to task code entry point generated by compiler.
1184 // returns: a pointer to the allocated kmp_task_t structure (task).
1185 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1186                              kmp_tasking_flags_t *flags,
1187                              size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1188                              kmp_routine_entry_t task_entry) {
1189   kmp_task_t *task;
1190   kmp_taskdata_t *taskdata;
1191   kmp_info_t *thread = __kmp_threads[gtid];
1192   kmp_info_t *encountering_thread = thread;
1193   kmp_team_t *team = thread->th.th_team;
1194   kmp_taskdata_t *parent_task = thread->th.th_current_task;
1195   size_t shareds_offset;
1196 
1197   if (UNLIKELY(!TCR_4(__kmp_init_middle)))
1198     __kmp_middle_initialize();
1199 
1200   if (flags->hidden_helper) {
1201     if (__kmp_enable_hidden_helper) {
1202       if (!TCR_4(__kmp_init_hidden_helper))
1203         __kmp_hidden_helper_initialize();
1204 
1205       // For a hidden helper task encountered by a regular thread, we will push
1206       // the task to the (gtid%__kmp_hidden_helper_threads_num)-th hidden helper
1207       // thread.
1208       if (!KMP_HIDDEN_HELPER_THREAD(gtid)) {
1209         thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)];
1210         // We don't change the parent-child relation for hidden helper task as
1211         // we need that to do per-task-region synchronization.
1212       }
1213     } else {
1214       // If the hidden helper task is not enabled, reset the flag to FALSE.
1215       flags->hidden_helper = FALSE;
1216     }
1217   }
1218 
1219   KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1220                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1221                 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
1222                 sizeof_shareds, task_entry));
1223 
1224   KMP_DEBUG_ASSERT(parent_task);
1225   if (parent_task->td_flags.final) {
1226     if (flags->merged_if0) {
1227     }
1228     flags->final = 1;
1229   }
1230 
1231   if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
1232     // Untied task encountered causes the TSC algorithm to check entire deque of
1233     // the victim thread. If no untied task encountered, then checking the head
1234     // of the deque should be enough.
1235     KMP_CHECK_UPDATE(
1236         encountering_thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
1237   }
1238 
1239   // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1240   // the tasking setup
1241   // when that happens is too late.
1242   if (UNLIKELY(flags->proxy == TASK_PROXY ||
1243                flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) {
1244     if (flags->proxy == TASK_PROXY) {
1245       flags->tiedness = TASK_UNTIED;
1246       flags->merged_if0 = 1;
1247     }
1248     /* are we running in a sequential parallel or tskm_immediate_exec... we need
1249        tasking support enabled */
1250     if ((encountering_thread->th.th_task_team) == NULL) {
1251       /* This should only happen if the team is serialized
1252           setup a task team and propagate it to the thread */
1253       KMP_DEBUG_ASSERT(team->t.t_serialized);
1254       KA_TRACE(30,
1255                ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1256                 gtid));
1257       __kmp_task_team_setup(
1258           encountering_thread, team,
1259           1); // 1 indicates setup the current team regardless of nthreads
1260       encountering_thread->th.th_task_team =
1261           team->t.t_task_team[encountering_thread->th.th_task_state];
1262     }
1263     kmp_task_team_t *task_team = encountering_thread->th.th_task_team;
1264 
1265     /* tasking must be enabled now as the task might not be pushed */
1266     if (!KMP_TASKING_ENABLED(task_team)) {
1267       KA_TRACE(
1268           30,
1269           ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
1270       __kmp_enable_tasking(task_team, encountering_thread);
1271       kmp_int32 tid = encountering_thread->th.th_info.ds.ds_tid;
1272       kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
1273       // No lock needed since only owner can allocate
1274       if (thread_data->td.td_deque == NULL) {
1275         __kmp_alloc_task_deque(encountering_thread, thread_data);
1276       }
1277     }
1278 
1279     if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) &&
1280         task_team->tt.tt_found_proxy_tasks == FALSE)
1281       TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
1282     if (flags->hidden_helper &&
1283         task_team->tt.tt_hidden_helper_task_encountered == FALSE)
1284       TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE);
1285   }
1286 
1287   // Calculate shared structure offset including padding after kmp_task_t struct
1288   // to align pointers in shared struct
1289   shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
1290   shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
1291 
1292   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1293   KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
1294                 shareds_offset));
1295   KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
1296                 sizeof_shareds));
1297 
1298   // Avoid double allocation here by combining shareds with taskdata
1299 #if USE_FAST_MEMORY
1300   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(
1301       encountering_thread, shareds_offset + sizeof_shareds);
1302 #else /* ! USE_FAST_MEMORY */
1303   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(
1304       encountering_thread, shareds_offset + sizeof_shareds);
1305 #endif /* USE_FAST_MEMORY */
1306   ANNOTATE_HAPPENS_AFTER(taskdata);
1307 
1308   task = KMP_TASKDATA_TO_TASK(taskdata);
1309 
1310 // Make sure task & taskdata are aligned appropriately
1311 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
1312   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
1313   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
1314 #else
1315   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
1316   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
1317 #endif
1318   if (sizeof_shareds > 0) {
1319     // Avoid double allocation here by combining shareds with taskdata
1320     task->shareds = &((char *)taskdata)[shareds_offset];
1321     // Make sure shareds struct is aligned to pointer size
1322     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
1323                      0);
1324   } else {
1325     task->shareds = NULL;
1326   }
1327   task->routine = task_entry;
1328   task->part_id = 0; // AC: Always start with 0 part id
1329 
1330   taskdata->td_task_id = KMP_GEN_TASK_ID();
1331   taskdata->td_team = thread->th.th_team;
1332   taskdata->td_alloc_thread = encountering_thread;
1333   taskdata->td_parent = parent_task;
1334   taskdata->td_level = parent_task->td_level + 1; // increment nesting level
1335   KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
1336   taskdata->td_ident = loc_ref;
1337   taskdata->td_taskwait_ident = NULL;
1338   taskdata->td_taskwait_counter = 0;
1339   taskdata->td_taskwait_thread = 0;
1340   KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
1341   // avoid copying icvs for proxy tasks
1342   if (flags->proxy == TASK_FULL)
1343     copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
1344 
1345   taskdata->td_flags.tiedness = flags->tiedness;
1346   taskdata->td_flags.final = flags->final;
1347   taskdata->td_flags.merged_if0 = flags->merged_if0;
1348   taskdata->td_flags.destructors_thunk = flags->destructors_thunk;
1349   taskdata->td_flags.proxy = flags->proxy;
1350   taskdata->td_flags.detachable = flags->detachable;
1351   taskdata->td_flags.hidden_helper = flags->hidden_helper;
1352   taskdata->encountering_gtid = gtid;
1353   taskdata->td_task_team = thread->th.th_task_team;
1354   taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
1355   taskdata->td_flags.tasktype = TASK_EXPLICIT;
1356 
1357   // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1358   taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1359 
1360   // GEH - TODO: fix this to copy parent task's value of team_serial flag
1361   taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1362 
1363   // GEH - Note we serialize the task if the team is serialized to make sure
1364   // implicit parallel region tasks are not left until program termination to
1365   // execute. Also, it helps locality to execute immediately.
1366 
1367   taskdata->td_flags.task_serial =
1368       (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
1369        taskdata->td_flags.tasking_ser || flags->merged_if0);
1370 
1371   taskdata->td_flags.started = 0;
1372   taskdata->td_flags.executing = 0;
1373   taskdata->td_flags.complete = 0;
1374   taskdata->td_flags.freed = 0;
1375 
1376   taskdata->td_flags.native = flags->native;
1377 
1378   KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
1379   // start at one because counts current task and children
1380   KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
1381   taskdata->td_taskgroup =
1382       parent_task->td_taskgroup; // task inherits taskgroup from the parent task
1383   taskdata->td_dephash = NULL;
1384   taskdata->td_depnode = NULL;
1385   if (flags->tiedness == TASK_UNTIED)
1386     taskdata->td_last_tied = NULL; // will be set when the task is scheduled
1387   else
1388     taskdata->td_last_tied = taskdata;
1389   taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1390 #if OMPT_SUPPORT
1391   if (UNLIKELY(ompt_enabled.enabled))
1392     __ompt_task_init(taskdata, gtid);
1393 #endif
1394   // Only need to keep track of child task counts if team parallel and tasking
1395   // not serialized or if it is a proxy or detachable or hidden helper task
1396   if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE ||
1397       flags->hidden_helper ||
1398       !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
1399     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
1400     if (parent_task->td_taskgroup)
1401       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
1402     // Only need to keep track of allocated child tasks for explicit tasks since
1403     // implicit not deallocated
1404     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
1405       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
1406     }
1407   }
1408 
1409   if (flags->hidden_helper) {
1410     taskdata->td_flags.task_serial = FALSE;
1411     // Increment the number of hidden helper tasks to be executed
1412     KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks);
1413   }
1414 
1415   KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1416                 gtid, taskdata, taskdata->td_parent));
1417   ANNOTATE_HAPPENS_BEFORE(task);
1418 
1419   return task;
1420 }
1421 
1422 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1423                                   kmp_int32 flags, size_t sizeof_kmp_task_t,
1424                                   size_t sizeof_shareds,
1425                                   kmp_routine_entry_t task_entry) {
1426   kmp_task_t *retval;
1427   kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
1428   __kmp_assert_valid_gtid(gtid);
1429   input_flags->native = FALSE;
1430   // __kmp_task_alloc() sets up all other runtime flags
1431   KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1432                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1433                 gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied",
1434                 input_flags->proxy ? "proxy" : "",
1435                 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
1436                 sizeof_shareds, task_entry));
1437 
1438   retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
1439                             sizeof_shareds, task_entry);
1440 
1441   KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
1442 
1443   return retval;
1444 }
1445 
1446 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1447                                          kmp_int32 flags,
1448                                          size_t sizeof_kmp_task_t,
1449                                          size_t sizeof_shareds,
1450                                          kmp_routine_entry_t task_entry,
1451                                          kmp_int64 device_id) {
1452   if (__kmp_enable_hidden_helper) {
1453     auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags);
1454     input_flags.hidden_helper = TRUE;
1455   }
1456 
1457   return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
1458                                sizeof_shareds, task_entry);
1459 }
1460 
1461 /*!
1462 @ingroup TASKING
1463 @param loc_ref location of the original task directive
1464 @param gtid Global Thread ID of encountering thread
1465 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1466 task''
1467 @param naffins Number of affinity items
1468 @param affin_list List of affinity items
1469 @return Returns non-zero if registering affinity information was not successful.
1470  Returns 0 if registration was successful
1471 This entry registers the affinity information attached to a task with the task
1472 thunk structure kmp_taskdata_t.
1473 */
1474 kmp_int32
1475 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
1476                                   kmp_task_t *new_task, kmp_int32 naffins,
1477                                   kmp_task_affinity_info_t *affin_list) {
1478   return 0;
1479 }
1480 
1481 //  __kmp_invoke_task: invoke the specified task
1482 //
1483 // gtid: global thread ID of caller
1484 // task: the task to invoke
1485 // current_task: the task to resume after task invocation
1486 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
1487                               kmp_taskdata_t *current_task) {
1488   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1489   kmp_info_t *thread;
1490   int discard = 0 /* false */;
1491   KA_TRACE(
1492       30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1493            gtid, taskdata, current_task));
1494   KMP_DEBUG_ASSERT(task);
1495   if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY &&
1496                taskdata->td_flags.complete == 1)) {
1497     // This is a proxy task that was already completed but it needs to run
1498     // its bottom-half finish
1499     KA_TRACE(
1500         30,
1501         ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1502          gtid, taskdata));
1503 
1504     __kmp_bottom_half_finish_proxy(gtid, task);
1505 
1506     KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1507                   "proxy task %p, resuming task %p\n",
1508                   gtid, taskdata, current_task));
1509 
1510     return;
1511   }
1512 
1513 #if OMPT_SUPPORT
1514   // For untied tasks, the first task executed only calls __kmpc_omp_task and
1515   // does not execute code.
1516   ompt_thread_info_t oldInfo;
1517   if (UNLIKELY(ompt_enabled.enabled)) {
1518     // Store the threads states and restore them after the task
1519     thread = __kmp_threads[gtid];
1520     oldInfo = thread->th.ompt_thread_info;
1521     thread->th.ompt_thread_info.wait_id = 0;
1522     thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
1523                                             ? ompt_state_work_serial
1524                                             : ompt_state_work_parallel;
1525     taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1526   }
1527 #endif
1528 
1529   // Decreament the counter of hidden helper tasks to be executed
1530   if (taskdata->td_flags.hidden_helper) {
1531     // Hidden helper tasks can only be executed by hidden helper threads
1532     KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid));
1533     KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks);
1534   }
1535 
1536   // Proxy tasks are not handled by the runtime
1537   if (taskdata->td_flags.proxy != TASK_PROXY) {
1538     ANNOTATE_HAPPENS_AFTER(task);
1539     __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
1540   }
1541 
1542   // TODO: cancel tasks if the parallel region has also been cancelled
1543   // TODO: check if this sequence can be hoisted above __kmp_task_start
1544   // if cancellation has been enabled for this run ...
1545   if (UNLIKELY(__kmp_omp_cancellation)) {
1546     thread = __kmp_threads[gtid];
1547     kmp_team_t *this_team = thread->th.th_team;
1548     kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
1549     if ((taskgroup && taskgroup->cancel_request) ||
1550         (this_team->t.t_cancel_request == cancel_parallel)) {
1551 #if OMPT_SUPPORT && OMPT_OPTIONAL
1552       ompt_data_t *task_data;
1553       if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
1554         __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
1555         ompt_callbacks.ompt_callback(ompt_callback_cancel)(
1556             task_data,
1557             ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
1558                                                       : ompt_cancel_parallel) |
1559                 ompt_cancel_discarded_task,
1560             NULL);
1561       }
1562 #endif
1563       KMP_COUNT_BLOCK(TASK_cancelled);
1564       // this task belongs to a task group and we need to cancel it
1565       discard = 1 /* true */;
1566     }
1567   }
1568 
1569   // Invoke the task routine and pass in relevant data.
1570   // Thunks generated by gcc take a different argument list.
1571   if (!discard) {
1572     if (taskdata->td_flags.tiedness == TASK_UNTIED) {
1573       taskdata->td_last_tied = current_task->td_last_tied;
1574       KMP_DEBUG_ASSERT(taskdata->td_last_tied);
1575     }
1576 #if KMP_STATS_ENABLED
1577     KMP_COUNT_BLOCK(TASK_executed);
1578     switch (KMP_GET_THREAD_STATE()) {
1579     case FORK_JOIN_BARRIER:
1580       KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
1581       break;
1582     case PLAIN_BARRIER:
1583       KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
1584       break;
1585     case TASKYIELD:
1586       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
1587       break;
1588     case TASKWAIT:
1589       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
1590       break;
1591     case TASKGROUP:
1592       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
1593       break;
1594     default:
1595       KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
1596       break;
1597     }
1598 #endif // KMP_STATS_ENABLED
1599 
1600 // OMPT task begin
1601 #if OMPT_SUPPORT
1602     if (UNLIKELY(ompt_enabled.enabled))
1603       __ompt_task_start(task, current_task, gtid);
1604 #endif
1605 
1606 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1607     kmp_uint64 cur_time;
1608     kmp_int32 kmp_itt_count_task =
1609         __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
1610         current_task->td_flags.tasktype == TASK_IMPLICIT;
1611     if (kmp_itt_count_task) {
1612       thread = __kmp_threads[gtid];
1613       // Time outer level explicit task on barrier for adjusting imbalance time
1614       if (thread->th.th_bar_arrive_time)
1615         cur_time = __itt_get_timestamp();
1616       else
1617         kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
1618     }
1619     KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task)
1620 #endif
1621 
1622 #ifdef KMP_GOMP_COMPAT
1623     if (taskdata->td_flags.native) {
1624       ((void (*)(void *))(*(task->routine)))(task->shareds);
1625     } else
1626 #endif /* KMP_GOMP_COMPAT */
1627     {
1628       (*(task->routine))(gtid, task);
1629     }
1630     KMP_POP_PARTITIONED_TIMER();
1631 
1632 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1633     if (kmp_itt_count_task) {
1634       // Barrier imbalance - adjust arrive time with the task duration
1635       thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
1636     }
1637     KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed)
1638     KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent
1639 #endif
1640   }
1641 
1642   // Proxy tasks are not handled by the runtime
1643   if (taskdata->td_flags.proxy != TASK_PROXY) {
1644     ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent);
1645 #if OMPT_SUPPORT
1646     if (UNLIKELY(ompt_enabled.enabled)) {
1647       thread->th.ompt_thread_info = oldInfo;
1648       if (taskdata->td_flags.tiedness == TASK_TIED) {
1649         taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1650       }
1651       __kmp_task_finish<true>(gtid, task, current_task);
1652     } else
1653 #endif
1654       __kmp_task_finish<false>(gtid, task, current_task);
1655   }
1656 
1657   KA_TRACE(
1658       30,
1659       ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1660        gtid, taskdata, current_task));
1661   return;
1662 }
1663 
1664 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1665 //
1666 // loc_ref: location of original task pragma (ignored)
1667 // gtid: Global Thread ID of encountering thread
1668 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1669 // Returns:
1670 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1671 //    be resumed later.
1672 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1673 //    resumed later.
1674 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
1675                                 kmp_task_t *new_task) {
1676   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1677 
1678   KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
1679                 loc_ref, new_taskdata));
1680 
1681 #if OMPT_SUPPORT
1682   kmp_taskdata_t *parent;
1683   if (UNLIKELY(ompt_enabled.enabled)) {
1684     parent = new_taskdata->td_parent;
1685     if (ompt_enabled.ompt_callback_task_create) {
1686       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1687           &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
1688           &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
1689           OMPT_GET_RETURN_ADDRESS(0));
1690     }
1691   }
1692 #endif
1693 
1694   /* Should we execute the new task or queue it? For now, let's just always try
1695      to queue it.  If the queue fills up, then we'll execute it.  */
1696 
1697   if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1698   { // Execute this task immediately
1699     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1700     new_taskdata->td_flags.task_serial = 1;
1701     __kmp_invoke_task(gtid, new_task, current_task);
1702   }
1703 
1704   KA_TRACE(
1705       10,
1706       ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
1707        "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
1708        gtid, loc_ref, new_taskdata));
1709 
1710   ANNOTATE_HAPPENS_BEFORE(new_task);
1711 #if OMPT_SUPPORT
1712   if (UNLIKELY(ompt_enabled.enabled)) {
1713     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1714   }
1715 #endif
1716   return TASK_CURRENT_NOT_QUEUED;
1717 }
1718 
1719 // __kmp_omp_task: Schedule a non-thread-switchable task for execution
1720 //
1721 // gtid: Global Thread ID of encountering thread
1722 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
1723 // serialize_immediate: if TRUE then if the task is executed immediately its
1724 // execution will be serialized
1725 // Returns:
1726 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1727 //    be resumed later.
1728 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1729 //    resumed later.
1730 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
1731                          bool serialize_immediate) {
1732   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1733 
1734   /* Should we execute the new task or queue it? For now, let's just always try
1735      to queue it.  If the queue fills up, then we'll execute it.  */
1736   if (new_taskdata->td_flags.proxy == TASK_PROXY ||
1737       __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1738   { // Execute this task immediately
1739     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1740     if (serialize_immediate)
1741       new_taskdata->td_flags.task_serial = 1;
1742     __kmp_invoke_task(gtid, new_task, current_task);
1743   }
1744 
1745   ANNOTATE_HAPPENS_BEFORE(new_task);
1746   return TASK_CURRENT_NOT_QUEUED;
1747 }
1748 
1749 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
1750 // non-thread-switchable task from the parent thread only!
1751 //
1752 // loc_ref: location of original task pragma (ignored)
1753 // gtid: Global Thread ID of encountering thread
1754 // new_task: non-thread-switchable task thunk allocated by
1755 // __kmp_omp_task_alloc()
1756 // Returns:
1757 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1758 //    be resumed later.
1759 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1760 //    resumed later.
1761 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
1762                           kmp_task_t *new_task) {
1763   kmp_int32 res;
1764   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1765 
1766 #if KMP_DEBUG || OMPT_SUPPORT
1767   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1768 #endif
1769   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1770                 new_taskdata));
1771   __kmp_assert_valid_gtid(gtid);
1772 
1773 #if OMPT_SUPPORT
1774   kmp_taskdata_t *parent = NULL;
1775   if (UNLIKELY(ompt_enabled.enabled)) {
1776     if (!new_taskdata->td_flags.started) {
1777       OMPT_STORE_RETURN_ADDRESS(gtid);
1778       parent = new_taskdata->td_parent;
1779       if (!parent->ompt_task_info.frame.enter_frame.ptr) {
1780         parent->ompt_task_info.frame.enter_frame.ptr =
1781             OMPT_GET_FRAME_ADDRESS(0);
1782       }
1783       if (ompt_enabled.ompt_callback_task_create) {
1784         ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1785             &(parent->ompt_task_info.task_data),
1786             &(parent->ompt_task_info.frame),
1787             &(new_taskdata->ompt_task_info.task_data),
1788             ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1789             OMPT_LOAD_RETURN_ADDRESS(gtid));
1790       }
1791     } else {
1792       // We are scheduling the continuation of an UNTIED task.
1793       // Scheduling back to the parent task.
1794       __ompt_task_finish(new_task,
1795                          new_taskdata->ompt_task_info.scheduling_parent,
1796                          ompt_task_switch);
1797       new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1798     }
1799   }
1800 #endif
1801 
1802   res = __kmp_omp_task(gtid, new_task, true);
1803 
1804   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1805                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1806                 gtid, loc_ref, new_taskdata));
1807 #if OMPT_SUPPORT
1808   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1809     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1810   }
1811 #endif
1812   return res;
1813 }
1814 
1815 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
1816 // a taskloop task with the correct OMPT return address
1817 //
1818 // loc_ref: location of original task pragma (ignored)
1819 // gtid: Global Thread ID of encountering thread
1820 // new_task: non-thread-switchable task thunk allocated by
1821 // __kmp_omp_task_alloc()
1822 // codeptr_ra: return address for OMPT callback
1823 // Returns:
1824 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1825 //    be resumed later.
1826 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1827 //    resumed later.
1828 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
1829                                   kmp_task_t *new_task, void *codeptr_ra) {
1830   kmp_int32 res;
1831   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1832 
1833 #if KMP_DEBUG || OMPT_SUPPORT
1834   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1835 #endif
1836   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1837                 new_taskdata));
1838 
1839 #if OMPT_SUPPORT
1840   kmp_taskdata_t *parent = NULL;
1841   if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
1842     parent = new_taskdata->td_parent;
1843     if (!parent->ompt_task_info.frame.enter_frame.ptr)
1844       parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1845     if (ompt_enabled.ompt_callback_task_create) {
1846       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1847           &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
1848           &(new_taskdata->ompt_task_info.task_data),
1849           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1850           codeptr_ra);
1851     }
1852   }
1853 #endif
1854 
1855   res = __kmp_omp_task(gtid, new_task, true);
1856 
1857   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1858                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1859                 gtid, loc_ref, new_taskdata));
1860 #if OMPT_SUPPORT
1861   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1862     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1863   }
1864 #endif
1865   return res;
1866 }
1867 
1868 template <bool ompt>
1869 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
1870                                               void *frame_address,
1871                                               void *return_address) {
1872   kmp_taskdata_t *taskdata = nullptr;
1873   kmp_info_t *thread;
1874   int thread_finished = FALSE;
1875   KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
1876 
1877   KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
1878   KMP_DEBUG_ASSERT(gtid >= 0);
1879 
1880   if (__kmp_tasking_mode != tskm_immediate_exec) {
1881     thread = __kmp_threads[gtid];
1882     taskdata = thread->th.th_current_task;
1883 
1884 #if OMPT_SUPPORT && OMPT_OPTIONAL
1885     ompt_data_t *my_task_data;
1886     ompt_data_t *my_parallel_data;
1887 
1888     if (ompt) {
1889       my_task_data = &(taskdata->ompt_task_info.task_data);
1890       my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
1891 
1892       taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
1893 
1894       if (ompt_enabled.ompt_callback_sync_region) {
1895         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1896             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1897             my_task_data, return_address);
1898       }
1899 
1900       if (ompt_enabled.ompt_callback_sync_region_wait) {
1901         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1902             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1903             my_task_data, return_address);
1904       }
1905     }
1906 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1907 
1908 // Debugger: The taskwait is active. Store location and thread encountered the
1909 // taskwait.
1910 #if USE_ITT_BUILD
1911 // Note: These values are used by ITT events as well.
1912 #endif /* USE_ITT_BUILD */
1913     taskdata->td_taskwait_counter += 1;
1914     taskdata->td_taskwait_ident = loc_ref;
1915     taskdata->td_taskwait_thread = gtid + 1;
1916 
1917 #if USE_ITT_BUILD
1918     void *itt_sync_obj = NULL;
1919 #if USE_ITT_NOTIFY
1920     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
1921 #endif /* USE_ITT_NOTIFY */
1922 #endif /* USE_ITT_BUILD */
1923 
1924     bool must_wait =
1925         !taskdata->td_flags.team_serial && !taskdata->td_flags.final;
1926 
1927     must_wait = must_wait || (thread->th.th_task_team != NULL &&
1928                               thread->th.th_task_team->tt.tt_found_proxy_tasks);
1929     // If hidden helper thread is encountered, we must enable wait here.
1930     must_wait =
1931         must_wait ||
1932         (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL &&
1933          thread->th.th_task_team->tt.tt_hidden_helper_task_encountered);
1934 
1935     if (must_wait) {
1936       kmp_flag_32<false, false> flag(
1937           RCAST(std::atomic<kmp_uint32> *,
1938                 &(taskdata->td_incomplete_child_tasks)),
1939           0U);
1940       while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
1941         flag.execute_tasks(thread, gtid, FALSE,
1942                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
1943                            __kmp_task_stealing_constraint);
1944       }
1945     }
1946 #if USE_ITT_BUILD
1947     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
1948     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children
1949 #endif /* USE_ITT_BUILD */
1950 
1951     // Debugger:  The taskwait is completed. Location remains, but thread is
1952     // negated.
1953     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
1954 
1955 #if OMPT_SUPPORT && OMPT_OPTIONAL
1956     if (ompt) {
1957       if (ompt_enabled.ompt_callback_sync_region_wait) {
1958         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1959             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1960             my_task_data, return_address);
1961       }
1962       if (ompt_enabled.ompt_callback_sync_region) {
1963         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1964             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1965             my_task_data, return_address);
1966       }
1967       taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
1968     }
1969 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1970 
1971     ANNOTATE_HAPPENS_AFTER(taskdata);
1972   }
1973 
1974   KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
1975                 "returning TASK_CURRENT_NOT_QUEUED\n",
1976                 gtid, taskdata));
1977 
1978   return TASK_CURRENT_NOT_QUEUED;
1979 }
1980 
1981 #if OMPT_SUPPORT && OMPT_OPTIONAL
1982 OMPT_NOINLINE
1983 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
1984                                           void *frame_address,
1985                                           void *return_address) {
1986   return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
1987                                             return_address);
1988 }
1989 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1990 
1991 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
1992 // complete
1993 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
1994 #if OMPT_SUPPORT && OMPT_OPTIONAL
1995   if (UNLIKELY(ompt_enabled.enabled)) {
1996     OMPT_STORE_RETURN_ADDRESS(gtid);
1997     return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
1998                                     OMPT_LOAD_RETURN_ADDRESS(gtid));
1999   }
2000 #endif
2001   return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
2002 }
2003 
2004 // __kmpc_omp_taskyield: switch to a different task
2005 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
2006   kmp_taskdata_t *taskdata = NULL;
2007   kmp_info_t *thread;
2008   int thread_finished = FALSE;
2009 
2010   KMP_COUNT_BLOCK(OMP_TASKYIELD);
2011   KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
2012 
2013   KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
2014                 gtid, loc_ref, end_part));
2015   __kmp_assert_valid_gtid(gtid);
2016 
2017   if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
2018     thread = __kmp_threads[gtid];
2019     taskdata = thread->th.th_current_task;
2020 // Should we model this as a task wait or not?
2021 // Debugger: The taskwait is active. Store location and thread encountered the
2022 // taskwait.
2023 #if USE_ITT_BUILD
2024 // Note: These values are used by ITT events as well.
2025 #endif /* USE_ITT_BUILD */
2026     taskdata->td_taskwait_counter += 1;
2027     taskdata->td_taskwait_ident = loc_ref;
2028     taskdata->td_taskwait_thread = gtid + 1;
2029 
2030 #if USE_ITT_BUILD
2031     void *itt_sync_obj = NULL;
2032 #if USE_ITT_NOTIFY
2033     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2034 #endif /* USE_ITT_NOTIFY */
2035 #endif /* USE_ITT_BUILD */
2036     if (!taskdata->td_flags.team_serial) {
2037       kmp_task_team_t *task_team = thread->th.th_task_team;
2038       if (task_team != NULL) {
2039         if (KMP_TASKING_ENABLED(task_team)) {
2040 #if OMPT_SUPPORT
2041           if (UNLIKELY(ompt_enabled.enabled))
2042             thread->th.ompt_thread_info.ompt_task_yielded = 1;
2043 #endif
2044           __kmp_execute_tasks_32(
2045               thread, gtid, (kmp_flag_32<> *)NULL, FALSE,
2046               &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2047               __kmp_task_stealing_constraint);
2048 #if OMPT_SUPPORT
2049           if (UNLIKELY(ompt_enabled.enabled))
2050             thread->th.ompt_thread_info.ompt_task_yielded = 0;
2051 #endif
2052         }
2053       }
2054     }
2055 #if USE_ITT_BUILD
2056     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2057 #endif /* USE_ITT_BUILD */
2058 
2059     // Debugger:  The taskwait is completed. Location remains, but thread is
2060     // negated.
2061     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
2062   }
2063 
2064   KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
2065                 "returning TASK_CURRENT_NOT_QUEUED\n",
2066                 gtid, taskdata));
2067 
2068   return TASK_CURRENT_NOT_QUEUED;
2069 }
2070 
2071 // Task Reduction implementation
2072 //
2073 // Note: initial implementation didn't take into account the possibility
2074 // to specify omp_orig for initializer of the UDR (user defined reduction).
2075 // Corrected implementation takes into account the omp_orig object.
2076 // Compiler is free to use old implementation if omp_orig is not specified.
2077 
2078 /*!
2079 @ingroup BASIC_TYPES
2080 @{
2081 */
2082 
2083 /*!
2084 Flags for special info per task reduction item.
2085 */
2086 typedef struct kmp_taskred_flags {
2087   /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */
2088   unsigned lazy_priv : 1;
2089   unsigned reserved31 : 31;
2090 } kmp_taskred_flags_t;
2091 
2092 /*!
2093 Internal struct for reduction data item related info set up by compiler.
2094 */
2095 typedef struct kmp_task_red_input {
2096   void *reduce_shar; /**< shared between tasks item to reduce into */
2097   size_t reduce_size; /**< size of data item in bytes */
2098   // three compiler-generated routines (init, fini are optional):
2099   void *reduce_init; /**< data initialization routine (single parameter) */
2100   void *reduce_fini; /**< data finalization routine */
2101   void *reduce_comb; /**< data combiner routine */
2102   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2103 } kmp_task_red_input_t;
2104 
2105 /*!
2106 Internal struct for reduction data item related info saved by the library.
2107 */
2108 typedef struct kmp_taskred_data {
2109   void *reduce_shar; /**< shared between tasks item to reduce into */
2110   size_t reduce_size; /**< size of data item */
2111   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2112   void *reduce_priv; /**< array of thread specific items */
2113   void *reduce_pend; /**< end of private data for faster comparison op */
2114   // three compiler-generated routines (init, fini are optional):
2115   void *reduce_comb; /**< data combiner routine */
2116   void *reduce_init; /**< data initialization routine (two parameters) */
2117   void *reduce_fini; /**< data finalization routine */
2118   void *reduce_orig; /**< original item (can be used in UDR initializer) */
2119 } kmp_taskred_data_t;
2120 
2121 /*!
2122 Internal struct for reduction data item related info set up by compiler.
2123 
2124 New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2125 */
2126 typedef struct kmp_taskred_input {
2127   void *reduce_shar; /**< shared between tasks item to reduce into */
2128   void *reduce_orig; /**< original reduction item used for initialization */
2129   size_t reduce_size; /**< size of data item */
2130   // three compiler-generated routines (init, fini are optional):
2131   void *reduce_init; /**< data initialization routine (two parameters) */
2132   void *reduce_fini; /**< data finalization routine */
2133   void *reduce_comb; /**< data combiner routine */
2134   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2135 } kmp_taskred_input_t;
2136 /*!
2137 @}
2138 */
2139 
2140 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
2141 template <>
2142 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2143                                              kmp_task_red_input_t &src) {
2144   item.reduce_orig = NULL;
2145 }
2146 template <>
2147 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2148                                             kmp_taskred_input_t &src) {
2149   if (src.reduce_orig != NULL) {
2150     item.reduce_orig = src.reduce_orig;
2151   } else {
2152     item.reduce_orig = src.reduce_shar;
2153   } // non-NULL reduce_orig means new interface used
2154 }
2155 
2156 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j);
2157 template <>
2158 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2159                                            size_t offset) {
2160   ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
2161 }
2162 template <>
2163 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2164                                           size_t offset) {
2165   ((void (*)(void *, void *))item.reduce_init)(
2166       (char *)(item.reduce_priv) + offset, item.reduce_orig);
2167 }
2168 
2169 template <typename T>
2170 void *__kmp_task_reduction_init(int gtid, int num, T *data) {
2171   __kmp_assert_valid_gtid(gtid);
2172   kmp_info_t *thread = __kmp_threads[gtid];
2173   kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
2174   kmp_uint32 nth = thread->th.th_team_nproc;
2175   kmp_taskred_data_t *arr;
2176 
2177   // check input data just in case
2178   KMP_ASSERT(tg != NULL);
2179   KMP_ASSERT(data != NULL);
2180   KMP_ASSERT(num > 0);
2181   if (nth == 1) {
2182     KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2183                   gtid, tg));
2184     return (void *)tg;
2185   }
2186   KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2187                 gtid, tg, num));
2188   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2189       thread, num * sizeof(kmp_taskred_data_t));
2190   for (int i = 0; i < num; ++i) {
2191     size_t size = data[i].reduce_size - 1;
2192     // round the size up to cache line per thread-specific item
2193     size += CACHE_LINE - size % CACHE_LINE;
2194     KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
2195     arr[i].reduce_shar = data[i].reduce_shar;
2196     arr[i].reduce_size = size;
2197     arr[i].flags = data[i].flags;
2198     arr[i].reduce_comb = data[i].reduce_comb;
2199     arr[i].reduce_init = data[i].reduce_init;
2200     arr[i].reduce_fini = data[i].reduce_fini;
2201     __kmp_assign_orig<T>(arr[i], data[i]);
2202     if (!arr[i].flags.lazy_priv) {
2203       // allocate cache-line aligned block and fill it with zeros
2204       arr[i].reduce_priv = __kmp_allocate(nth * size);
2205       arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
2206       if (arr[i].reduce_init != NULL) {
2207         // initialize all thread-specific items
2208         for (size_t j = 0; j < nth; ++j) {
2209           __kmp_call_init<T>(arr[i], j * size);
2210         }
2211       }
2212     } else {
2213       // only allocate space for pointers now,
2214       // objects will be lazily allocated/initialized if/when requested
2215       // note that __kmp_allocate zeroes the allocated memory
2216       arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
2217     }
2218   }
2219   tg->reduce_data = (void *)arr;
2220   tg->reduce_num_data = num;
2221   return (void *)tg;
2222 }
2223 
2224 /*!
2225 @ingroup TASKING
2226 @param gtid      Global thread ID
2227 @param num       Number of data items to reduce
2228 @param data      Array of data for reduction
2229 @return The taskgroup identifier
2230 
2231 Initialize task reduction for the taskgroup.
2232 
2233 Note: this entry supposes the optional compiler-generated initializer routine
2234 has single parameter - pointer to object to be initialized. That means
2235 the reduction either does not use omp_orig object, or the omp_orig is accessible
2236 without help of the runtime library.
2237 */
2238 void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
2239   return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
2240 }
2241 
2242 /*!
2243 @ingroup TASKING
2244 @param gtid      Global thread ID
2245 @param num       Number of data items to reduce
2246 @param data      Array of data for reduction
2247 @return The taskgroup identifier
2248 
2249 Initialize task reduction for the taskgroup.
2250 
2251 Note: this entry supposes the optional compiler-generated initializer routine
2252 has two parameters, pointer to object to be initialized and pointer to omp_orig
2253 */
2254 void *__kmpc_taskred_init(int gtid, int num, void *data) {
2255   return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
2256 }
2257 
2258 // Copy task reduction data (except for shared pointers).
2259 template <typename T>
2260 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
2261                                     kmp_taskgroup_t *tg, void *reduce_data) {
2262   kmp_taskred_data_t *arr;
2263   KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2264                 " from data %p\n",
2265                 thr, tg, reduce_data));
2266   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2267       thr, num * sizeof(kmp_taskred_data_t));
2268   // threads will share private copies, thunk routines, sizes, flags, etc.:
2269   KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
2270   for (int i = 0; i < num; ++i) {
2271     arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
2272   }
2273   tg->reduce_data = (void *)arr;
2274   tg->reduce_num_data = num;
2275 }
2276 
2277 /*!
2278 @ingroup TASKING
2279 @param gtid    Global thread ID
2280 @param tskgrp  The taskgroup ID (optional)
2281 @param data    Shared location of the item
2282 @return The pointer to per-thread data
2283 
2284 Get thread-specific location of data item
2285 */
2286 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
2287   __kmp_assert_valid_gtid(gtid);
2288   kmp_info_t *thread = __kmp_threads[gtid];
2289   kmp_int32 nth = thread->th.th_team_nproc;
2290   if (nth == 1)
2291     return data; // nothing to do
2292 
2293   kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
2294   if (tg == NULL)
2295     tg = thread->th.th_current_task->td_taskgroup;
2296   KMP_ASSERT(tg != NULL);
2297   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
2298   kmp_int32 num = tg->reduce_num_data;
2299   kmp_int32 tid = thread->th.th_info.ds.ds_tid;
2300 
2301   KMP_ASSERT(data != NULL);
2302   while (tg != NULL) {
2303     for (int i = 0; i < num; ++i) {
2304       if (!arr[i].flags.lazy_priv) {
2305         if (data == arr[i].reduce_shar ||
2306             (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
2307           return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
2308       } else {
2309         // check shared location first
2310         void **p_priv = (void **)(arr[i].reduce_priv);
2311         if (data == arr[i].reduce_shar)
2312           goto found;
2313         // check if we get some thread specific location as parameter
2314         for (int j = 0; j < nth; ++j)
2315           if (data == p_priv[j])
2316             goto found;
2317         continue; // not found, continue search
2318       found:
2319         if (p_priv[tid] == NULL) {
2320           // allocate thread specific object lazily
2321           p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
2322           if (arr[i].reduce_init != NULL) {
2323             if (arr[i].reduce_orig != NULL) { // new interface
2324               ((void (*)(void *, void *))arr[i].reduce_init)(
2325                   p_priv[tid], arr[i].reduce_orig);
2326             } else { // old interface (single parameter)
2327               ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
2328             }
2329           }
2330         }
2331         return p_priv[tid];
2332       }
2333     }
2334     tg = tg->parent;
2335     arr = (kmp_taskred_data_t *)(tg->reduce_data);
2336     num = tg->reduce_num_data;
2337   }
2338   KMP_ASSERT2(0, "Unknown task reduction item");
2339   return NULL; // ERROR, this line never executed
2340 }
2341 
2342 // Finalize task reduction.
2343 // Called from __kmpc_end_taskgroup()
2344 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
2345   kmp_int32 nth = th->th.th_team_nproc;
2346   KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1
2347   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
2348   kmp_int32 num = tg->reduce_num_data;
2349   for (int i = 0; i < num; ++i) {
2350     void *sh_data = arr[i].reduce_shar;
2351     void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
2352     void (*f_comb)(void *, void *) =
2353         (void (*)(void *, void *))(arr[i].reduce_comb);
2354     if (!arr[i].flags.lazy_priv) {
2355       void *pr_data = arr[i].reduce_priv;
2356       size_t size = arr[i].reduce_size;
2357       for (int j = 0; j < nth; ++j) {
2358         void *priv_data = (char *)pr_data + j * size;
2359         f_comb(sh_data, priv_data); // combine results
2360         if (f_fini)
2361           f_fini(priv_data); // finalize if needed
2362       }
2363     } else {
2364       void **pr_data = (void **)(arr[i].reduce_priv);
2365       for (int j = 0; j < nth; ++j) {
2366         if (pr_data[j] != NULL) {
2367           f_comb(sh_data, pr_data[j]); // combine results
2368           if (f_fini)
2369             f_fini(pr_data[j]); // finalize if needed
2370           __kmp_free(pr_data[j]);
2371         }
2372       }
2373     }
2374     __kmp_free(arr[i].reduce_priv);
2375   }
2376   __kmp_thread_free(th, arr);
2377   tg->reduce_data = NULL;
2378   tg->reduce_num_data = 0;
2379 }
2380 
2381 // Cleanup task reduction data for parallel or worksharing,
2382 // do not touch task private data other threads still working with.
2383 // Called from __kmpc_end_taskgroup()
2384 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
2385   __kmp_thread_free(th, tg->reduce_data);
2386   tg->reduce_data = NULL;
2387   tg->reduce_num_data = 0;
2388 }
2389 
2390 template <typename T>
2391 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2392                                          int num, T *data) {
2393   __kmp_assert_valid_gtid(gtid);
2394   kmp_info_t *thr = __kmp_threads[gtid];
2395   kmp_int32 nth = thr->th.th_team_nproc;
2396   __kmpc_taskgroup(loc, gtid); // form new taskgroup first
2397   if (nth == 1) {
2398     KA_TRACE(10,
2399              ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2400               gtid, thr->th.th_current_task->td_taskgroup));
2401     return (void *)thr->th.th_current_task->td_taskgroup;
2402   }
2403   kmp_team_t *team = thr->th.th_team;
2404   void *reduce_data;
2405   kmp_taskgroup_t *tg;
2406   reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
2407   if (reduce_data == NULL &&
2408       __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
2409                                  (void *)1)) {
2410     // single thread enters this block to initialize common reduction data
2411     KMP_DEBUG_ASSERT(reduce_data == NULL);
2412     // first initialize own data, then make a copy other threads can use
2413     tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
2414     reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
2415     KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
2416     // fini counters should be 0 at this point
2417     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
2418     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
2419     KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
2420   } else {
2421     while (
2422         (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
2423         (void *)1) { // wait for task reduction initialization
2424       KMP_CPU_PAUSE();
2425     }
2426     KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
2427     tg = thr->th.th_current_task->td_taskgroup;
2428     __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
2429   }
2430   return tg;
2431 }
2432 
2433 /*!
2434 @ingroup TASKING
2435 @param loc       Source location info
2436 @param gtid      Global thread ID
2437 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2438 @param num       Number of data items to reduce
2439 @param data      Array of data for reduction
2440 @return The taskgroup identifier
2441 
2442 Initialize task reduction for a parallel or worksharing.
2443 
2444 Note: this entry supposes the optional compiler-generated initializer routine
2445 has single parameter - pointer to object to be initialized. That means
2446 the reduction either does not use omp_orig object, or the omp_orig is accessible
2447 without help of the runtime library.
2448 */
2449 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2450                                           int num, void *data) {
2451   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2452                                             (kmp_task_red_input_t *)data);
2453 }
2454 
2455 /*!
2456 @ingroup TASKING
2457 @param loc       Source location info
2458 @param gtid      Global thread ID
2459 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2460 @param num       Number of data items to reduce
2461 @param data      Array of data for reduction
2462 @return The taskgroup identifier
2463 
2464 Initialize task reduction for a parallel or worksharing.
2465 
2466 Note: this entry supposes the optional compiler-generated initializer routine
2467 has two parameters, pointer to object to be initialized and pointer to omp_orig
2468 */
2469 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
2470                                    void *data) {
2471   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2472                                             (kmp_taskred_input_t *)data);
2473 }
2474 
2475 /*!
2476 @ingroup TASKING
2477 @param loc       Source location info
2478 @param gtid      Global thread ID
2479 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2480 
2481 Finalize task reduction for a parallel or worksharing.
2482 */
2483 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
2484   __kmpc_end_taskgroup(loc, gtid);
2485 }
2486 
2487 // __kmpc_taskgroup: Start a new taskgroup
2488 void __kmpc_taskgroup(ident_t *loc, int gtid) {
2489   __kmp_assert_valid_gtid(gtid);
2490   kmp_info_t *thread = __kmp_threads[gtid];
2491   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2492   kmp_taskgroup_t *tg_new =
2493       (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
2494   KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
2495   KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
2496   KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
2497   tg_new->parent = taskdata->td_taskgroup;
2498   tg_new->reduce_data = NULL;
2499   tg_new->reduce_num_data = 0;
2500   taskdata->td_taskgroup = tg_new;
2501 
2502 #if OMPT_SUPPORT && OMPT_OPTIONAL
2503   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2504     void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2505     if (!codeptr)
2506       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2507     kmp_team_t *team = thread->th.th_team;
2508     ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
2509     // FIXME: I think this is wrong for lwt!
2510     ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
2511 
2512     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2513         ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2514         &(my_task_data), codeptr);
2515   }
2516 #endif
2517 }
2518 
2519 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2520 //                       and its descendants are complete
2521 void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
2522   __kmp_assert_valid_gtid(gtid);
2523   kmp_info_t *thread = __kmp_threads[gtid];
2524   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2525   kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
2526   int thread_finished = FALSE;
2527 
2528 #if OMPT_SUPPORT && OMPT_OPTIONAL
2529   kmp_team_t *team;
2530   ompt_data_t my_task_data;
2531   ompt_data_t my_parallel_data;
2532   void *codeptr = nullptr;
2533   if (UNLIKELY(ompt_enabled.enabled)) {
2534     team = thread->th.th_team;
2535     my_task_data = taskdata->ompt_task_info.task_data;
2536     // FIXME: I think this is wrong for lwt!
2537     my_parallel_data = team->t.ompt_team_info.parallel_data;
2538     codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2539     if (!codeptr)
2540       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2541   }
2542 #endif
2543 
2544   KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
2545   KMP_DEBUG_ASSERT(taskgroup != NULL);
2546   KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
2547 
2548   if (__kmp_tasking_mode != tskm_immediate_exec) {
2549     // mark task as waiting not on a barrier
2550     taskdata->td_taskwait_counter += 1;
2551     taskdata->td_taskwait_ident = loc;
2552     taskdata->td_taskwait_thread = gtid + 1;
2553 #if USE_ITT_BUILD
2554     // For ITT the taskgroup wait is similar to taskwait until we need to
2555     // distinguish them
2556     void *itt_sync_obj = NULL;
2557 #if USE_ITT_NOTIFY
2558     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2559 #endif /* USE_ITT_NOTIFY */
2560 #endif /* USE_ITT_BUILD */
2561 
2562 #if OMPT_SUPPORT && OMPT_OPTIONAL
2563     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2564       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2565           ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2566           &(my_task_data), codeptr);
2567     }
2568 #endif
2569 
2570     if (!taskdata->td_flags.team_serial ||
2571         (thread->th.th_task_team != NULL &&
2572          thread->th.th_task_team->tt.tt_found_proxy_tasks)) {
2573       kmp_flag_32<false, false> flag(
2574           RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U);
2575       while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
2576         flag.execute_tasks(thread, gtid, FALSE,
2577                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2578                            __kmp_task_stealing_constraint);
2579       }
2580     }
2581     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
2582 
2583 #if OMPT_SUPPORT && OMPT_OPTIONAL
2584     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2585       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2586           ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2587           &(my_task_data), codeptr);
2588     }
2589 #endif
2590 
2591 #if USE_ITT_BUILD
2592     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2593     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants
2594 #endif /* USE_ITT_BUILD */
2595   }
2596   KMP_DEBUG_ASSERT(taskgroup->count == 0);
2597 
2598   if (taskgroup->reduce_data != NULL) { // need to reduce?
2599     int cnt;
2600     void *reduce_data;
2601     kmp_team_t *t = thread->th.th_team;
2602     kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
2603     // check if <priv> data of the first reduction variable shared for the team
2604     void *priv0 = arr[0].reduce_priv;
2605     if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
2606         ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2607       // finishing task reduction on parallel
2608       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
2609       if (cnt == thread->th.th_team_nproc - 1) {
2610         // we are the last thread passing __kmpc_reduction_modifier_fini()
2611         // finalize task reduction:
2612         __kmp_task_reduction_fini(thread, taskgroup);
2613         // cleanup fields in the team structure:
2614         // TODO: is relaxed store enough here (whole barrier should follow)?
2615         __kmp_thread_free(thread, reduce_data);
2616         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
2617         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
2618       } else {
2619         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2620         // so do not finalize reduction, just clean own copy of the data
2621         __kmp_task_reduction_clean(thread, taskgroup);
2622       }
2623     } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
2624                    NULL &&
2625                ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2626       // finishing task reduction on worksharing
2627       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
2628       if (cnt == thread->th.th_team_nproc - 1) {
2629         // we are the last thread passing __kmpc_reduction_modifier_fini()
2630         __kmp_task_reduction_fini(thread, taskgroup);
2631         // cleanup fields in team structure:
2632         // TODO: is relaxed store enough here (whole barrier should follow)?
2633         __kmp_thread_free(thread, reduce_data);
2634         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
2635         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
2636       } else {
2637         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2638         // so do not finalize reduction, just clean own copy of the data
2639         __kmp_task_reduction_clean(thread, taskgroup);
2640       }
2641     } else {
2642       // finishing task reduction on taskgroup
2643       __kmp_task_reduction_fini(thread, taskgroup);
2644     }
2645   }
2646   // Restore parent taskgroup for the current task
2647   taskdata->td_taskgroup = taskgroup->parent;
2648   __kmp_thread_free(thread, taskgroup);
2649 
2650   KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
2651                 gtid, taskdata));
2652   ANNOTATE_HAPPENS_AFTER(taskdata);
2653 
2654 #if OMPT_SUPPORT && OMPT_OPTIONAL
2655   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2656     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2657         ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2658         &(my_task_data), codeptr);
2659   }
2660 #endif
2661 }
2662 
2663 // __kmp_remove_my_task: remove a task from my own deque
2664 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
2665                                         kmp_task_team_t *task_team,
2666                                         kmp_int32 is_constrained) {
2667   kmp_task_t *task;
2668   kmp_taskdata_t *taskdata;
2669   kmp_thread_data_t *thread_data;
2670   kmp_uint32 tail;
2671 
2672   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2673   KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
2674                    NULL); // Caller should check this condition
2675 
2676   thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
2677 
2678   KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
2679                 gtid, thread_data->td.td_deque_ntasks,
2680                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2681 
2682   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2683     KA_TRACE(10,
2684              ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
2685               "ntasks=%d head=%u tail=%u\n",
2686               gtid, thread_data->td.td_deque_ntasks,
2687               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2688     return NULL;
2689   }
2690 
2691   __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
2692 
2693   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2694     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2695     KA_TRACE(10,
2696              ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
2697               "ntasks=%d head=%u tail=%u\n",
2698               gtid, thread_data->td.td_deque_ntasks,
2699               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2700     return NULL;
2701   }
2702 
2703   tail = (thread_data->td.td_deque_tail - 1) &
2704          TASK_DEQUE_MASK(thread_data->td); // Wrap index.
2705   taskdata = thread_data->td.td_deque[tail];
2706 
2707   if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
2708                              thread->th.th_current_task)) {
2709     // The TSC does not allow to steal victim task
2710     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2711     KA_TRACE(10,
2712              ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
2713               "ntasks=%d head=%u tail=%u\n",
2714               gtid, thread_data->td.td_deque_ntasks,
2715               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2716     return NULL;
2717   }
2718 
2719   thread_data->td.td_deque_tail = tail;
2720   TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
2721 
2722   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2723 
2724   KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
2725                 "ntasks=%d head=%u tail=%u\n",
2726                 gtid, taskdata, thread_data->td.td_deque_ntasks,
2727                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2728 
2729   task = KMP_TASKDATA_TO_TASK(taskdata);
2730   return task;
2731 }
2732 
2733 // __kmp_steal_task: remove a task from another thread's deque
2734 // Assume that calling thread has already checked existence of
2735 // task_team thread_data before calling this routine.
2736 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
2737                                     kmp_task_team_t *task_team,
2738                                     std::atomic<kmp_int32> *unfinished_threads,
2739                                     int *thread_finished,
2740                                     kmp_int32 is_constrained) {
2741   kmp_task_t *task;
2742   kmp_taskdata_t *taskdata;
2743   kmp_taskdata_t *current;
2744   kmp_thread_data_t *victim_td, *threads_data;
2745   kmp_int32 target;
2746   kmp_int32 victim_tid;
2747 
2748   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2749 
2750   threads_data = task_team->tt.tt_threads_data;
2751   KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
2752 
2753   victim_tid = victim_thr->th.th_info.ds.ds_tid;
2754   victim_td = &threads_data[victim_tid];
2755 
2756   KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
2757                 "task_team=%p ntasks=%d head=%u tail=%u\n",
2758                 gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2759                 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2760                 victim_td->td.td_deque_tail));
2761 
2762   if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
2763     KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
2764                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2765                   gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2766                   victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2767                   victim_td->td.td_deque_tail));
2768     return NULL;
2769   }
2770 
2771   __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
2772 
2773   int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
2774   // Check again after we acquire the lock
2775   if (ntasks == 0) {
2776     __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2777     KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
2778                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2779                   gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2780                   victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2781     return NULL;
2782   }
2783 
2784   KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
2785   current = __kmp_threads[gtid]->th.th_current_task;
2786   taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
2787   if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2788     // Bump head pointer and Wrap.
2789     victim_td->td.td_deque_head =
2790         (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
2791   } else {
2792     if (!task_team->tt.tt_untied_task_encountered) {
2793       // The TSC does not allow to steal victim task
2794       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2795       KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
2796                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2797                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2798                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2799       return NULL;
2800     }
2801     int i;
2802     // walk through victim's deque trying to steal any task
2803     target = victim_td->td.td_deque_head;
2804     taskdata = NULL;
2805     for (i = 1; i < ntasks; ++i) {
2806       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2807       taskdata = victim_td->td.td_deque[target];
2808       if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2809         break; // found victim task
2810       } else {
2811         taskdata = NULL;
2812       }
2813     }
2814     if (taskdata == NULL) {
2815       // No appropriate candidate to steal found
2816       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2817       KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
2818                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2819                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2820                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2821       return NULL;
2822     }
2823     int prev = target;
2824     for (i = i + 1; i < ntasks; ++i) {
2825       // shift remaining tasks in the deque left by 1
2826       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2827       victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
2828       prev = target;
2829     }
2830     KMP_DEBUG_ASSERT(
2831         victim_td->td.td_deque_tail ==
2832         (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
2833     victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
2834   }
2835   if (*thread_finished) {
2836     // We need to un-mark this victim as a finished victim.  This must be done
2837     // before releasing the lock, or else other threads (starting with the
2838     // primary thread victim) might be prematurely released from the barrier!!!
2839     kmp_int32 count;
2840 
2841     count = KMP_ATOMIC_INC(unfinished_threads);
2842 
2843     KA_TRACE(
2844         20,
2845         ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
2846          gtid, count + 1, task_team));
2847 
2848     *thread_finished = FALSE;
2849   }
2850   TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
2851 
2852   __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2853 
2854   KMP_COUNT_BLOCK(TASK_stolen);
2855   KA_TRACE(10,
2856            ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
2857             "task_team=%p ntasks=%d head=%u tail=%u\n",
2858             gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
2859             ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2860 
2861   task = KMP_TASKDATA_TO_TASK(taskdata);
2862   return task;
2863 }
2864 
2865 // __kmp_execute_tasks_template: Choose and execute tasks until either the
2866 // condition is statisfied (return true) or there are none left (return false).
2867 //
2868 // final_spin is TRUE if this is the spin at the release barrier.
2869 // thread_finished indicates whether the thread is finished executing all
2870 // the tasks it has on its deque, and is at the release barrier.
2871 // spinner is the location on which to spin.
2872 // spinner == NULL means only execute a single task and return.
2873 // checker is the value to check to terminate the spin.
2874 template <class C>
2875 static inline int __kmp_execute_tasks_template(
2876     kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
2877     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
2878     kmp_int32 is_constrained) {
2879   kmp_task_team_t *task_team = thread->th.th_task_team;
2880   kmp_thread_data_t *threads_data;
2881   kmp_task_t *task;
2882   kmp_info_t *other_thread;
2883   kmp_taskdata_t *current_task = thread->th.th_current_task;
2884   std::atomic<kmp_int32> *unfinished_threads;
2885   kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
2886                       tid = thread->th.th_info.ds.ds_tid;
2887 
2888   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2889   KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
2890 
2891   if (task_team == NULL || current_task == NULL)
2892     return FALSE;
2893 
2894   KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
2895                 "*thread_finished=%d\n",
2896                 gtid, final_spin, *thread_finished));
2897 
2898   thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
2899   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
2900 
2901   KMP_DEBUG_ASSERT(threads_data != NULL);
2902 
2903   nthreads = task_team->tt.tt_nproc;
2904   unfinished_threads = &(task_team->tt.tt_unfinished_threads);
2905   KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks ||
2906                    task_team->tt.tt_hidden_helper_task_encountered);
2907   KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
2908 
2909   while (1) { // Outer loop keeps trying to find tasks in case of single thread
2910     // getting tasks from target constructs
2911     while (1) { // Inner loop to find a task and execute it
2912       task = NULL;
2913       if (use_own_tasks) { // check on own queue first
2914         task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
2915       }
2916       if ((task == NULL) && (nthreads > 1)) { // Steal a task
2917         int asleep = 1;
2918         use_own_tasks = 0;
2919         // Try to steal from the last place I stole from successfully.
2920         if (victim_tid == -2) { // haven't stolen anything yet
2921           victim_tid = threads_data[tid].td.td_deque_last_stolen;
2922           if (victim_tid !=
2923               -1) // if we have a last stolen from victim, get the thread
2924             other_thread = threads_data[victim_tid].td.td_thr;
2925         }
2926         if (victim_tid != -1) { // found last victim
2927           asleep = 0;
2928         } else if (!new_victim) { // no recent steals and we haven't already
2929           // used a new victim; select a random thread
2930           do { // Find a different thread to steal work from.
2931             // Pick a random thread. Initial plan was to cycle through all the
2932             // threads, and only return if we tried to steal from every thread,
2933             // and failed.  Arch says that's not such a great idea.
2934             victim_tid = __kmp_get_random(thread) % (nthreads - 1);
2935             if (victim_tid >= tid) {
2936               ++victim_tid; // Adjusts random distribution to exclude self
2937             }
2938             // Found a potential victim
2939             other_thread = threads_data[victim_tid].td.td_thr;
2940             // There is a slight chance that __kmp_enable_tasking() did not wake
2941             // up all threads waiting at the barrier.  If victim is sleeping,
2942             // then wake it up. Since we were going to pay the cache miss
2943             // penalty for referencing another thread's kmp_info_t struct
2944             // anyway,
2945             // the check shouldn't cost too much performance at this point. In
2946             // extra barrier mode, tasks do not sleep at the separate tasking
2947             // barrier, so this isn't a problem.
2948             asleep = 0;
2949             if ((__kmp_tasking_mode == tskm_task_teams) &&
2950                 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
2951                 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
2952                  NULL)) {
2953               asleep = 1;
2954               __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread),
2955                                         other_thread->th.th_sleep_loc);
2956               // A sleeping thread should not have any tasks on it's queue.
2957               // There is a slight possibility that it resumes, steals a task
2958               // from another thread, which spawns more tasks, all in the time
2959               // that it takes this thread to check => don't write an assertion
2960               // that the victim's queue is empty.  Try stealing from a
2961               // different thread.
2962             }
2963           } while (asleep);
2964         }
2965 
2966         if (!asleep) {
2967           // We have a victim to try to steal from
2968           task = __kmp_steal_task(other_thread, gtid, task_team,
2969                                   unfinished_threads, thread_finished,
2970                                   is_constrained);
2971         }
2972         if (task != NULL) { // set last stolen to victim
2973           if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
2974             threads_data[tid].td.td_deque_last_stolen = victim_tid;
2975             // The pre-refactored code did not try more than 1 successful new
2976             // vicitm, unless the last one generated more local tasks;
2977             // new_victim keeps track of this
2978             new_victim = 1;
2979           }
2980         } else { // No tasks found; unset last_stolen
2981           KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
2982           victim_tid = -2; // no successful victim found
2983         }
2984       }
2985 
2986       if (task == NULL)
2987         break; // break out of tasking loop
2988 
2989 // Found a task; execute it
2990 #if USE_ITT_BUILD && USE_ITT_NOTIFY
2991       if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
2992         if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
2993           // get the object reliably
2994           itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
2995         }
2996         __kmp_itt_task_starting(itt_sync_obj);
2997       }
2998 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
2999       __kmp_invoke_task(gtid, task, current_task);
3000 #if USE_ITT_BUILD
3001       if (itt_sync_obj != NULL)
3002         __kmp_itt_task_finished(itt_sync_obj);
3003 #endif /* USE_ITT_BUILD */
3004       // If this thread is only partway through the barrier and the condition is
3005       // met, then return now, so that the barrier gather/release pattern can
3006       // proceed. If this thread is in the last spin loop in the barrier,
3007       // waiting to be released, we know that the termination condition will not
3008       // be satisfied, so don't waste any cycles checking it.
3009       if (flag == NULL || (!final_spin && flag->done_check())) {
3010         KA_TRACE(
3011             15,
3012             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3013              gtid));
3014         return TRUE;
3015       }
3016       if (thread->th.th_task_team == NULL) {
3017         break;
3018       }
3019       KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
3020       // If execution of a stolen task results in more tasks being placed on our
3021       // run queue, reset use_own_tasks
3022       if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
3023         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
3024                       "other tasks, restart\n",
3025                       gtid));
3026         use_own_tasks = 1;
3027         new_victim = 0;
3028       }
3029     }
3030 
3031     // The task source has been exhausted. If in final spin loop of barrier,
3032     // check if termination condition is satisfied. The work queue may be empty
3033     // but there might be proxy tasks still executing.
3034     if (final_spin &&
3035         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0) {
3036       // First, decrement the #unfinished threads, if that has not already been
3037       // done.  This decrement might be to the spin location, and result in the
3038       // termination condition being satisfied.
3039       if (!*thread_finished) {
3040         kmp_int32 count;
3041 
3042         count = KMP_ATOMIC_DEC(unfinished_threads) - 1;
3043         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
3044                       "unfinished_threads to %d task_team=%p\n",
3045                       gtid, count, task_team));
3046         *thread_finished = TRUE;
3047       }
3048 
3049       // It is now unsafe to reference thread->th.th_team !!!
3050       // Decrementing task_team->tt.tt_unfinished_threads can allow the primary
3051       // thread to pass through the barrier, where it might reset each thread's
3052       // th.th_team field for the next parallel region. If we can steal more
3053       // work, we know that this has not happened yet.
3054       if (flag != NULL && flag->done_check()) {
3055         KA_TRACE(
3056             15,
3057             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3058              gtid));
3059         return TRUE;
3060       }
3061     }
3062 
3063     // If this thread's task team is NULL, primary thread has recognized that
3064     // there are no more tasks; bail out
3065     if (thread->th.th_task_team == NULL) {
3066       KA_TRACE(15,
3067                ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
3068       return FALSE;
3069     }
3070 
3071     // We could be getting tasks from target constructs; if this is the only
3072     // thread, keep trying to execute tasks from own queue
3073     if (nthreads == 1 &&
3074         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks))
3075       use_own_tasks = 1;
3076     else {
3077       KA_TRACE(15,
3078                ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
3079       return FALSE;
3080     }
3081   }
3082 }
3083 
3084 template <bool C, bool S>
3085 int __kmp_execute_tasks_32(
3086     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin,
3087     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3088     kmp_int32 is_constrained) {
3089   return __kmp_execute_tasks_template(
3090       thread, gtid, flag, final_spin,
3091       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3092 }
3093 
3094 template <bool C, bool S>
3095 int __kmp_execute_tasks_64(
3096     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin,
3097     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3098     kmp_int32 is_constrained) {
3099   return __kmp_execute_tasks_template(
3100       thread, gtid, flag, final_spin,
3101       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3102 }
3103 
3104 int __kmp_execute_tasks_oncore(
3105     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
3106     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3107     kmp_int32 is_constrained) {
3108   return __kmp_execute_tasks_template(
3109       thread, gtid, flag, final_spin,
3110       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3111 }
3112 
3113 template int
3114 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32,
3115                                      kmp_flag_32<false, false> *, int,
3116                                      int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3117 
3118 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32,
3119                                                  kmp_flag_64<false, true> *,
3120                                                  int,
3121                                                  int *USE_ITT_BUILD_ARG(void *),
3122                                                  kmp_int32);
3123 
3124 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32,
3125                                                  kmp_flag_64<true, false> *,
3126                                                  int,
3127                                                  int *USE_ITT_BUILD_ARG(void *),
3128                                                  kmp_int32);
3129 
3130 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3131 // next barrier so they can assist in executing enqueued tasks.
3132 // First thread in allocates the task team atomically.
3133 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
3134                                  kmp_info_t *this_thr) {
3135   kmp_thread_data_t *threads_data;
3136   int nthreads, i, is_init_thread;
3137 
3138   KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3139                 __kmp_gtid_from_thread(this_thr)));
3140 
3141   KMP_DEBUG_ASSERT(task_team != NULL);
3142   KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
3143 
3144   nthreads = task_team->tt.tt_nproc;
3145   KMP_DEBUG_ASSERT(nthreads > 0);
3146   KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
3147 
3148   // Allocate or increase the size of threads_data if necessary
3149   is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
3150 
3151   if (!is_init_thread) {
3152     // Some other thread already set up the array.
3153     KA_TRACE(
3154         20,
3155         ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3156          __kmp_gtid_from_thread(this_thr)));
3157     return;
3158   }
3159   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3160   KMP_DEBUG_ASSERT(threads_data != NULL);
3161 
3162   if (__kmp_tasking_mode == tskm_task_teams &&
3163       (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
3164     // Release any threads sleeping at the barrier, so that they can steal
3165     // tasks and execute them.  In extra barrier mode, tasks do not sleep
3166     // at the separate tasking barrier, so this isn't a problem.
3167     for (i = 0; i < nthreads; i++) {
3168       volatile void *sleep_loc;
3169       kmp_info_t *thread = threads_data[i].td.td_thr;
3170 
3171       if (i == this_thr->th.th_info.ds.ds_tid) {
3172         continue;
3173       }
3174       // Since we haven't locked the thread's suspend mutex lock at this
3175       // point, there is a small window where a thread might be putting
3176       // itself to sleep, but hasn't set the th_sleep_loc field yet.
3177       // To work around this, __kmp_execute_tasks_template() periodically checks
3178       // see if other threads are sleeping (using the same random mechanism that
3179       // is used for task stealing) and awakens them if they are.
3180       if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3181           NULL) {
3182         KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3183                       __kmp_gtid_from_thread(this_thr),
3184                       __kmp_gtid_from_thread(thread)));
3185         __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3186       } else {
3187         KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3188                       __kmp_gtid_from_thread(this_thr),
3189                       __kmp_gtid_from_thread(thread)));
3190       }
3191     }
3192   }
3193 
3194   KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3195                 __kmp_gtid_from_thread(this_thr)));
3196 }
3197 
3198 /* // TODO: Check the comment consistency
3199  * Utility routines for "task teams".  A task team (kmp_task_t) is kind of
3200  * like a shadow of the kmp_team_t data struct, with a different lifetime.
3201  * After a child * thread checks into a barrier and calls __kmp_release() from
3202  * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3203  * longer assume that the kmp_team_t structure is intact (at any moment, the
3204  * primary thread may exit the barrier code and free the team data structure,
3205  * and return the threads to the thread pool).
3206  *
3207  * This does not work with the tasking code, as the thread is still
3208  * expected to participate in the execution of any tasks that may have been
3209  * spawned my a member of the team, and the thread still needs access to all
3210  * to each thread in the team, so that it can steal work from it.
3211  *
3212  * Enter the existence of the kmp_task_team_t struct.  It employs a reference
3213  * counting mechanism, and is allocated by the primary thread before calling
3214  * __kmp_<barrier_kind>_release, and then is release by the last thread to
3215  * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes
3216  * of the kmp_task_team_t structs for consecutive barriers can overlap
3217  * (and will, unless the primary thread is the last thread to exit the barrier
3218  * release phase, which is not typical). The existence of such a struct is
3219  * useful outside the context of tasking.
3220  *
3221  * We currently use the existence of the threads array as an indicator that
3222  * tasks were spawned since the last barrier.  If the structure is to be
3223  * useful outside the context of tasking, then this will have to change, but
3224  * not setting the field minimizes the performance impact of tasking on
3225  * barriers, when no explicit tasks were spawned (pushed, actually).
3226  */
3227 
3228 static kmp_task_team_t *__kmp_free_task_teams =
3229     NULL; // Free list for task_team data structures
3230 // Lock for task team data structures
3231 kmp_bootstrap_lock_t __kmp_task_team_lock =
3232     KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
3233 
3234 // __kmp_alloc_task_deque:
3235 // Allocates a task deque for a particular thread, and initialize the necessary
3236 // data structures relating to the deque.  This only happens once per thread
3237 // per task team since task teams are recycled. No lock is needed during
3238 // allocation since each thread allocates its own deque.
3239 static void __kmp_alloc_task_deque(kmp_info_t *thread,
3240                                    kmp_thread_data_t *thread_data) {
3241   __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
3242   KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
3243 
3244   // Initialize last stolen task field to "none"
3245   thread_data->td.td_deque_last_stolen = -1;
3246 
3247   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
3248   KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
3249   KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
3250 
3251   KE_TRACE(
3252       10,
3253       ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3254        __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
3255   // Allocate space for task deque, and zero the deque
3256   // Cannot use __kmp_thread_calloc() because threads not around for
3257   // kmp_reap_task_team( ).
3258   thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
3259       INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
3260   thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
3261 }
3262 
3263 // __kmp_free_task_deque:
3264 // Deallocates a task deque for a particular thread. Happens at library
3265 // deallocation so don't need to reset all thread data fields.
3266 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
3267   if (thread_data->td.td_deque != NULL) {
3268     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3269     TCW_4(thread_data->td.td_deque_ntasks, 0);
3270     __kmp_free(thread_data->td.td_deque);
3271     thread_data->td.td_deque = NULL;
3272     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3273   }
3274 
3275 #ifdef BUILD_TIED_TASK_STACK
3276   // GEH: Figure out what to do here for td_susp_tied_tasks
3277   if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
3278     __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
3279   }
3280 #endif // BUILD_TIED_TASK_STACK
3281 }
3282 
3283 // __kmp_realloc_task_threads_data:
3284 // Allocates a threads_data array for a task team, either by allocating an
3285 // initial array or enlarging an existing array.  Only the first thread to get
3286 // the lock allocs or enlarges the array and re-initializes the array elements.
3287 // That thread returns "TRUE", the rest return "FALSE".
3288 // Assumes that the new array size is given by task_team -> tt.tt_nproc.
3289 // The current size is given by task_team -> tt.tt_max_threads.
3290 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
3291                                            kmp_task_team_t *task_team) {
3292   kmp_thread_data_t **threads_data_p;
3293   kmp_int32 nthreads, maxthreads;
3294   int is_init_thread = FALSE;
3295 
3296   if (TCR_4(task_team->tt.tt_found_tasks)) {
3297     // Already reallocated and initialized.
3298     return FALSE;
3299   }
3300 
3301   threads_data_p = &task_team->tt.tt_threads_data;
3302   nthreads = task_team->tt.tt_nproc;
3303   maxthreads = task_team->tt.tt_max_threads;
3304 
3305   // All threads must lock when they encounter the first task of the implicit
3306   // task region to make sure threads_data fields are (re)initialized before
3307   // used.
3308   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3309 
3310   if (!TCR_4(task_team->tt.tt_found_tasks)) {
3311     // first thread to enable tasking
3312     kmp_team_t *team = thread->th.th_team;
3313     int i;
3314 
3315     is_init_thread = TRUE;
3316     if (maxthreads < nthreads) {
3317 
3318       if (*threads_data_p != NULL) {
3319         kmp_thread_data_t *old_data = *threads_data_p;
3320         kmp_thread_data_t *new_data = NULL;
3321 
3322         KE_TRACE(
3323             10,
3324             ("__kmp_realloc_task_threads_data: T#%d reallocating "
3325              "threads data for task_team %p, new_size = %d, old_size = %d\n",
3326              __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
3327         // Reallocate threads_data to have more elements than current array
3328         // Cannot use __kmp_thread_realloc() because threads not around for
3329         // kmp_reap_task_team( ).  Note all new array entries are initialized
3330         // to zero by __kmp_allocate().
3331         new_data = (kmp_thread_data_t *)__kmp_allocate(
3332             nthreads * sizeof(kmp_thread_data_t));
3333         // copy old data to new data
3334         KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
3335                      (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
3336 
3337 #ifdef BUILD_TIED_TASK_STACK
3338         // GEH: Figure out if this is the right thing to do
3339         for (i = maxthreads; i < nthreads; i++) {
3340           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3341           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3342         }
3343 #endif // BUILD_TIED_TASK_STACK
3344        // Install the new data and free the old data
3345         (*threads_data_p) = new_data;
3346         __kmp_free(old_data);
3347       } else {
3348         KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3349                       "threads data for task_team %p, size = %d\n",
3350                       __kmp_gtid_from_thread(thread), task_team, nthreads));
3351         // Make the initial allocate for threads_data array, and zero entries
3352         // Cannot use __kmp_thread_calloc() because threads not around for
3353         // kmp_reap_task_team( ).
3354         ANNOTATE_IGNORE_WRITES_BEGIN();
3355         *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
3356             nthreads * sizeof(kmp_thread_data_t));
3357         ANNOTATE_IGNORE_WRITES_END();
3358 #ifdef BUILD_TIED_TASK_STACK
3359         // GEH: Figure out if this is the right thing to do
3360         for (i = 0; i < nthreads; i++) {
3361           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3362           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3363         }
3364 #endif // BUILD_TIED_TASK_STACK
3365       }
3366       task_team->tt.tt_max_threads = nthreads;
3367     } else {
3368       // If array has (more than) enough elements, go ahead and use it
3369       KMP_DEBUG_ASSERT(*threads_data_p != NULL);
3370     }
3371 
3372     // initialize threads_data pointers back to thread_info structures
3373     for (i = 0; i < nthreads; i++) {
3374       kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3375       thread_data->td.td_thr = team->t.t_threads[i];
3376 
3377       if (thread_data->td.td_deque_last_stolen >= nthreads) {
3378         // The last stolen field survives across teams / barrier, and the number
3379         // of threads may have changed.  It's possible (likely?) that a new
3380         // parallel region will exhibit the same behavior as previous region.
3381         thread_data->td.td_deque_last_stolen = -1;
3382       }
3383     }
3384 
3385     KMP_MB();
3386     TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
3387   }
3388 
3389   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3390   return is_init_thread;
3391 }
3392 
3393 // __kmp_free_task_threads_data:
3394 // Deallocates a threads_data array for a task team, including any attached
3395 // tasking deques.  Only occurs at library shutdown.
3396 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
3397   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3398   if (task_team->tt.tt_threads_data != NULL) {
3399     int i;
3400     for (i = 0; i < task_team->tt.tt_max_threads; i++) {
3401       __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
3402     }
3403     __kmp_free(task_team->tt.tt_threads_data);
3404     task_team->tt.tt_threads_data = NULL;
3405   }
3406   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3407 }
3408 
3409 // __kmp_allocate_task_team:
3410 // Allocates a task team associated with a specific team, taking it from
3411 // the global task team free list if possible.  Also initializes data
3412 // structures.
3413 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
3414                                                  kmp_team_t *team) {
3415   kmp_task_team_t *task_team = NULL;
3416   int nthreads;
3417 
3418   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3419                 (thread ? __kmp_gtid_from_thread(thread) : -1), team));
3420 
3421   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3422     // Take a task team from the task team pool
3423     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3424     if (__kmp_free_task_teams != NULL) {
3425       task_team = __kmp_free_task_teams;
3426       TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
3427       task_team->tt.tt_next = NULL;
3428     }
3429     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3430   }
3431 
3432   if (task_team == NULL) {
3433     KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3434                   "task team for team %p\n",
3435                   __kmp_gtid_from_thread(thread), team));
3436     // Allocate a new task team if one is not available. Cannot use
3437     // __kmp_thread_malloc because threads not around for kmp_reap_task_team.
3438     task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
3439     __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
3440 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
3441     // suppress race conditions detection on synchronization flags in debug mode
3442     // this helps to analyze library internals eliminating false positives
3443     __itt_suppress_mark_range(
3444         __itt_suppress_range, __itt_suppress_threading_errors,
3445         &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks));
3446     __itt_suppress_mark_range(__itt_suppress_range,
3447                               __itt_suppress_threading_errors,
3448                               CCAST(kmp_uint32 *, &task_team->tt.tt_active),
3449                               sizeof(task_team->tt.tt_active));
3450 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
3451     // Note: __kmp_allocate zeroes returned memory, othewise we would need:
3452     // task_team->tt.tt_threads_data = NULL;
3453     // task_team->tt.tt_max_threads = 0;
3454     // task_team->tt.tt_next = NULL;
3455   }
3456 
3457   TCW_4(task_team->tt.tt_found_tasks, FALSE);
3458   TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3459   task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
3460 
3461   KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
3462   TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3463   TCW_4(task_team->tt.tt_active, TRUE);
3464 
3465   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
3466                 "unfinished_threads init'd to %d\n",
3467                 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
3468                 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
3469   return task_team;
3470 }
3471 
3472 // __kmp_free_task_team:
3473 // Frees the task team associated with a specific thread, and adds it
3474 // to the global task team free list.
3475 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
3476   KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
3477                 thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
3478 
3479   // Put task team back on free list
3480   __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3481 
3482   KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
3483   task_team->tt.tt_next = __kmp_free_task_teams;
3484   TCW_PTR(__kmp_free_task_teams, task_team);
3485 
3486   __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3487 }
3488 
3489 // __kmp_reap_task_teams:
3490 // Free all the task teams on the task team free list.
3491 // Should only be done during library shutdown.
3492 // Cannot do anything that needs a thread structure or gtid since they are
3493 // already gone.
3494 void __kmp_reap_task_teams(void) {
3495   kmp_task_team_t *task_team;
3496 
3497   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3498     // Free all task_teams on the free list
3499     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3500     while ((task_team = __kmp_free_task_teams) != NULL) {
3501       __kmp_free_task_teams = task_team->tt.tt_next;
3502       task_team->tt.tt_next = NULL;
3503 
3504       // Free threads_data if necessary
3505       if (task_team->tt.tt_threads_data != NULL) {
3506         __kmp_free_task_threads_data(task_team);
3507       }
3508       __kmp_free(task_team);
3509     }
3510     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3511   }
3512 }
3513 
3514 // __kmp_wait_to_unref_task_teams:
3515 // Some threads could still be in the fork barrier release code, possibly
3516 // trying to steal tasks.  Wait for each thread to unreference its task team.
3517 void __kmp_wait_to_unref_task_teams(void) {
3518   kmp_info_t *thread;
3519   kmp_uint32 spins;
3520   int done;
3521 
3522   KMP_INIT_YIELD(spins);
3523 
3524   for (;;) {
3525     done = TRUE;
3526 
3527     // TODO: GEH - this may be is wrong because some sync would be necessary
3528     // in case threads are added to the pool during the traversal. Need to
3529     // verify that lock for thread pool is held when calling this routine.
3530     for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
3531          thread = thread->th.th_next_pool) {
3532 #if KMP_OS_WINDOWS
3533       DWORD exit_val;
3534 #endif
3535       if (TCR_PTR(thread->th.th_task_team) == NULL) {
3536         KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
3537                       __kmp_gtid_from_thread(thread)));
3538         continue;
3539       }
3540 #if KMP_OS_WINDOWS
3541       // TODO: GEH - add this check for Linux* OS / OS X* as well?
3542       if (!__kmp_is_thread_alive(thread, &exit_val)) {
3543         thread->th.th_task_team = NULL;
3544         continue;
3545       }
3546 #endif
3547 
3548       done = FALSE; // Because th_task_team pointer is not NULL for this thread
3549 
3550       KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
3551                     "unreference task_team\n",
3552                     __kmp_gtid_from_thread(thread)));
3553 
3554       if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
3555         volatile void *sleep_loc;
3556         // If the thread is sleeping, awaken it.
3557         if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3558             NULL) {
3559           KA_TRACE(
3560               10,
3561               ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
3562                __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
3563           __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3564         }
3565       }
3566     }
3567     if (done) {
3568       break;
3569     }
3570 
3571     // If oversubscribed or have waited a bit, yield.
3572     KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
3573   }
3574 }
3575 
3576 // __kmp_task_team_setup:  Create a task_team for the current team, but use
3577 // an already created, unused one if it already exists.
3578 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
3579   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3580 
3581   // If this task_team hasn't been created yet, allocate it. It will be used in
3582   // the region after the next.
3583   // If it exists, it is the current task team and shouldn't be touched yet as
3584   // it may still be in use.
3585   if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
3586       (always || team->t.t_nproc > 1)) {
3587     team->t.t_task_team[this_thr->th.th_task_state] =
3588         __kmp_allocate_task_team(this_thr, team);
3589     KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p"
3590                   " for team %d at parity=%d\n",
3591                   __kmp_gtid_from_thread(this_thr),
3592                   team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id,
3593                   this_thr->th.th_task_state));
3594   }
3595 
3596   // After threads exit the release, they will call sync, and then point to this
3597   // other task_team; make sure it is allocated and properly initialized. As
3598   // threads spin in the barrier release phase, they will continue to use the
3599   // previous task_team struct(above), until they receive the signal to stop
3600   // checking for tasks (they can't safely reference the kmp_team_t struct,
3601   // which could be reallocated by the primary thread). No task teams are formed
3602   // for serialized teams.
3603   if (team->t.t_nproc > 1) {
3604     int other_team = 1 - this_thr->th.th_task_state;
3605     KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2);
3606     if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
3607       team->t.t_task_team[other_team] =
3608           __kmp_allocate_task_team(this_thr, team);
3609       KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new "
3610                     "task_team %p for team %d at parity=%d\n",
3611                     __kmp_gtid_from_thread(this_thr),
3612                     team->t.t_task_team[other_team], team->t.t_id, other_team));
3613     } else { // Leave the old task team struct in place for the upcoming region;
3614       // adjust as needed
3615       kmp_task_team_t *task_team = team->t.t_task_team[other_team];
3616       if (!task_team->tt.tt_active ||
3617           team->t.t_nproc != task_team->tt.tt_nproc) {
3618         TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
3619         TCW_4(task_team->tt.tt_found_tasks, FALSE);
3620         TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3621         KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
3622                           team->t.t_nproc);
3623         TCW_4(task_team->tt.tt_active, TRUE);
3624       }
3625       // if team size has changed, the first thread to enable tasking will
3626       // realloc threads_data if necessary
3627       KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team "
3628                     "%p for team %d at parity=%d\n",
3629                     __kmp_gtid_from_thread(this_thr),
3630                     team->t.t_task_team[other_team], team->t.t_id, other_team));
3631     }
3632   }
3633 
3634   // For regular thread, task enabling should be called when the task is going
3635   // to be pushed to a dequeue. However, for the hidden helper thread, we need
3636   // it ahead of time so that some operations can be performed without race
3637   // condition.
3638   if (this_thr == __kmp_hidden_helper_main_thread) {
3639     for (int i = 0; i < 2; ++i) {
3640       kmp_task_team_t *task_team = team->t.t_task_team[i];
3641       if (KMP_TASKING_ENABLED(task_team)) {
3642         continue;
3643       }
3644       __kmp_enable_tasking(task_team, this_thr);
3645       for (int j = 0; j < task_team->tt.tt_nproc; ++j) {
3646         kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j];
3647         if (thread_data->td.td_deque == NULL) {
3648           __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data);
3649         }
3650       }
3651     }
3652   }
3653 }
3654 
3655 // __kmp_task_team_sync: Propagation of task team data from team to threads
3656 // which happens just after the release phase of a team barrier.  This may be
3657 // called by any thread, but only for teams with # threads > 1.
3658 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
3659   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3660 
3661   // Toggle the th_task_state field, to switch which task_team this thread
3662   // refers to
3663   this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state);
3664 
3665   // It is now safe to propagate the task team pointer from the team struct to
3666   // the current thread.
3667   TCW_PTR(this_thr->th.th_task_team,
3668           team->t.t_task_team[this_thr->th.th_task_state]);
3669   KA_TRACE(20,
3670            ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
3671             "%p from Team #%d (parity=%d)\n",
3672             __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
3673             team->t.t_id, this_thr->th.th_task_state));
3674 }
3675 
3676 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the
3677 // barrier gather phase. Only called by primary thread if #threads in team > 1
3678 // or if proxy tasks were created.
3679 //
3680 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
3681 // by passing in 0 optionally as the last argument. When wait is zero, primary
3682 // thread does not wait for unfinished_threads to reach 0.
3683 void __kmp_task_team_wait(
3684     kmp_info_t *this_thr,
3685     kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
3686   kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
3687 
3688   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3689   KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
3690 
3691   if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
3692     if (wait) {
3693       KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks "
3694                     "(for unfinished_threads to reach 0) on task_team = %p\n",
3695                     __kmp_gtid_from_thread(this_thr), task_team));
3696       // Worker threads may have dropped through to release phase, but could
3697       // still be executing tasks. Wait here for tasks to complete. To avoid
3698       // memory contention, only primary thread checks termination condition.
3699       kmp_flag_32<false, false> flag(
3700           RCAST(std::atomic<kmp_uint32> *,
3701                 &task_team->tt.tt_unfinished_threads),
3702           0U);
3703       flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
3704     }
3705     // Deactivate the old task team, so that the worker threads will stop
3706     // referencing it while spinning.
3707     KA_TRACE(
3708         20,
3709         ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: "
3710          "setting active to false, setting local and team's pointer to NULL\n",
3711          __kmp_gtid_from_thread(this_thr), task_team));
3712     KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
3713                      task_team->tt.tt_found_proxy_tasks == TRUE);
3714     TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3715     KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
3716     TCW_SYNC_4(task_team->tt.tt_active, FALSE);
3717     KMP_MB();
3718 
3719     TCW_PTR(this_thr->th.th_task_team, NULL);
3720   }
3721 }
3722 
3723 // __kmp_tasking_barrier:
3724 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier.
3725 // Internal function to execute all tasks prior to a regular barrier or a join
3726 // barrier. It is a full barrier itself, which unfortunately turns regular
3727 // barriers into double barriers and join barriers into 1 1/2 barriers.
3728 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
3729   std::atomic<kmp_uint32> *spin = RCAST(
3730       std::atomic<kmp_uint32> *,
3731       &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
3732   int flag = FALSE;
3733   KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
3734 
3735 #if USE_ITT_BUILD
3736   KMP_FSYNC_SPIN_INIT(spin, NULL);
3737 #endif /* USE_ITT_BUILD */
3738   kmp_flag_32<false, false> spin_flag(spin, 0U);
3739   while (!spin_flag.execute_tasks(thread, gtid, TRUE,
3740                                   &flag USE_ITT_BUILD_ARG(NULL), 0)) {
3741 #if USE_ITT_BUILD
3742     // TODO: What about itt_sync_obj??
3743     KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
3744 #endif /* USE_ITT_BUILD */
3745 
3746     if (TCR_4(__kmp_global.g.g_done)) {
3747       if (__kmp_global.g.g_abort)
3748         __kmp_abort_thread();
3749       break;
3750     }
3751     KMP_YIELD(TRUE);
3752   }
3753 #if USE_ITT_BUILD
3754   KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
3755 #endif /* USE_ITT_BUILD */
3756 }
3757 
3758 // __kmp_give_task puts a task into a given thread queue if:
3759 //  - the queue for that thread was created
3760 //  - there's space in that queue
3761 // Because of this, __kmp_push_task needs to check if there's space after
3762 // getting the lock
3763 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
3764                             kmp_int32 pass) {
3765   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
3766   kmp_task_team_t *task_team = taskdata->td_task_team;
3767 
3768   KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
3769                 taskdata, tid));
3770 
3771   // If task_team is NULL something went really bad...
3772   KMP_DEBUG_ASSERT(task_team != NULL);
3773 
3774   bool result = false;
3775   kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
3776 
3777   if (thread_data->td.td_deque == NULL) {
3778     // There's no queue in this thread, go find another one
3779     // We're guaranteed that at least one thread has a queue
3780     KA_TRACE(30,
3781              ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
3782               tid, taskdata));
3783     return result;
3784   }
3785 
3786   if (TCR_4(thread_data->td.td_deque_ntasks) >=
3787       TASK_DEQUE_SIZE(thread_data->td)) {
3788     KA_TRACE(
3789         30,
3790         ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
3791          taskdata, tid));
3792 
3793     // if this deque is bigger than the pass ratio give a chance to another
3794     // thread
3795     if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3796       return result;
3797 
3798     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3799     if (TCR_4(thread_data->td.td_deque_ntasks) >=
3800         TASK_DEQUE_SIZE(thread_data->td)) {
3801       // expand deque to push the task which is not allowed to execute
3802       __kmp_realloc_task_deque(thread, thread_data);
3803     }
3804 
3805   } else {
3806 
3807     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3808 
3809     if (TCR_4(thread_data->td.td_deque_ntasks) >=
3810         TASK_DEQUE_SIZE(thread_data->td)) {
3811       KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
3812                     "thread %d.\n",
3813                     taskdata, tid));
3814 
3815       // if this deque is bigger than the pass ratio give a chance to another
3816       // thread
3817       if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3818         goto release_and_exit;
3819 
3820       __kmp_realloc_task_deque(thread, thread_data);
3821     }
3822   }
3823 
3824   // lock is held here, and there is space in the deque
3825 
3826   thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
3827   // Wrap index.
3828   thread_data->td.td_deque_tail =
3829       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
3830   TCW_4(thread_data->td.td_deque_ntasks,
3831         TCR_4(thread_data->td.td_deque_ntasks) + 1);
3832 
3833   result = true;
3834   KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
3835                 taskdata, tid));
3836 
3837 release_and_exit:
3838   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3839 
3840   return result;
3841 }
3842 
3843 /* The finish of the proxy tasks is divided in two pieces:
3844     - the top half is the one that can be done from a thread outside the team
3845     - the bottom half must be run from a thread within the team
3846 
3847    In order to run the bottom half the task gets queued back into one of the
3848    threads of the team. Once the td_incomplete_child_task counter of the parent
3849    is decremented the threads can leave the barriers. So, the bottom half needs
3850    to be queued before the counter is decremented. The top half is therefore
3851    divided in two parts:
3852     - things that can be run before queuing the bottom half
3853     - things that must be run after queuing the bottom half
3854 
3855    This creates a second race as the bottom half can free the task before the
3856    second top half is executed. To avoid this we use the
3857    td_incomplete_child_task of the proxy task to synchronize the top and bottom
3858    half. */
3859 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3860   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
3861   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3862   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
3863   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
3864 
3865   taskdata->td_flags.complete = 1; // mark the task as completed
3866 
3867   if (taskdata->td_taskgroup)
3868     KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
3869 
3870   // Create an imaginary children for this task so the bottom half cannot
3871   // release the task before we have completed the second top half
3872   KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks);
3873 }
3874 
3875 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3876   kmp_int32 children = 0;
3877 
3878   // Predecrement simulated by "- 1" calculation
3879   children =
3880       KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
3881   KMP_DEBUG_ASSERT(children >= 0);
3882 
3883   // Remove the imaginary children
3884   KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks);
3885 }
3886 
3887 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
3888   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3889   kmp_info_t *thread = __kmp_threads[gtid];
3890 
3891   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3892   KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
3893                    1); // top half must run before bottom half
3894 
3895   // We need to wait to make sure the top half is finished
3896   // Spinning here should be ok as this should happen quickly
3897   while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0)
3898     ;
3899 
3900   __kmp_release_deps(gtid, taskdata);
3901   __kmp_free_task_and_ancestors(gtid, taskdata, thread);
3902 }
3903 
3904 /*!
3905 @ingroup TASKING
3906 @param gtid Global Thread ID of encountering thread
3907 @param ptask Task which execution is completed
3908 
3909 Execute the completion of a proxy task from a thread of that is part of the
3910 team. Run first and bottom halves directly.
3911 */
3912 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
3913   KMP_DEBUG_ASSERT(ptask != NULL);
3914   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3915   KA_TRACE(
3916       10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
3917            gtid, taskdata));
3918   __kmp_assert_valid_gtid(gtid);
3919   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3920 
3921   __kmp_first_top_half_finish_proxy(taskdata);
3922   __kmp_second_top_half_finish_proxy(taskdata);
3923   __kmp_bottom_half_finish_proxy(gtid, ptask);
3924 
3925   KA_TRACE(10,
3926            ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
3927             gtid, taskdata));
3928 }
3929 
3930 /*!
3931 @ingroup TASKING
3932 @param ptask Task which execution is completed
3933 
3934 Execute the completion of a proxy task from a thread that could not belong to
3935 the team.
3936 */
3937 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
3938   KMP_DEBUG_ASSERT(ptask != NULL);
3939   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3940 
3941   KA_TRACE(
3942       10,
3943       ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
3944        taskdata));
3945 
3946   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3947 
3948   __kmp_first_top_half_finish_proxy(taskdata);
3949 
3950   // Enqueue task to complete bottom half completion from a thread within the
3951   // corresponding team
3952   kmp_team_t *team = taskdata->td_team;
3953   kmp_int32 nthreads = team->t.t_nproc;
3954   kmp_info_t *thread;
3955 
3956   // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
3957   // but we cannot use __kmp_get_random here
3958   kmp_int32 start_k = 0;
3959   kmp_int32 pass = 1;
3960   kmp_int32 k = start_k;
3961 
3962   do {
3963     // For now we're just linearly trying to find a thread
3964     thread = team->t.t_threads[k];
3965     k = (k + 1) % nthreads;
3966 
3967     // we did a full pass through all the threads
3968     if (k == start_k)
3969       pass = pass << 1;
3970 
3971   } while (!__kmp_give_task(thread, k, ptask, pass));
3972 
3973   __kmp_second_top_half_finish_proxy(taskdata);
3974 
3975   KA_TRACE(
3976       10,
3977       ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
3978        taskdata));
3979 }
3980 
3981 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
3982                                                 kmp_task_t *task) {
3983   kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
3984   if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
3985     td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
3986     td->td_allow_completion_event.ed.task = task;
3987     __kmp_init_tas_lock(&td->td_allow_completion_event.lock);
3988   }
3989   return &td->td_allow_completion_event;
3990 }
3991 
3992 void __kmp_fulfill_event(kmp_event_t *event) {
3993   if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
3994     kmp_task_t *ptask = event->ed.task;
3995     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3996     bool detached = false;
3997     int gtid = __kmp_get_gtid();
3998 
3999     // The associated task might have completed or could be completing at this
4000     // point.
4001     // We need to take the lock to avoid races
4002     __kmp_acquire_tas_lock(&event->lock, gtid);
4003     if (taskdata->td_flags.proxy == TASK_PROXY) {
4004       detached = true;
4005     } else {
4006 #if OMPT_SUPPORT
4007       // The OMPT event must occur under mutual exclusion,
4008       // otherwise the tool might access ptask after free
4009       if (UNLIKELY(ompt_enabled.enabled))
4010         __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill);
4011 #endif
4012     }
4013     event->type = KMP_EVENT_UNINITIALIZED;
4014     __kmp_release_tas_lock(&event->lock, gtid);
4015 
4016     if (detached) {
4017 #if OMPT_SUPPORT
4018       // We free ptask afterwards and know the task is finished,
4019       // so locking is not necessary
4020       if (UNLIKELY(ompt_enabled.enabled))
4021         __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill);
4022 #endif
4023       // If the task detached complete the proxy task
4024       if (gtid >= 0) {
4025         kmp_team_t *team = taskdata->td_team;
4026         kmp_info_t *thread = __kmp_get_thread();
4027         if (thread->th.th_team == team) {
4028           __kmpc_proxy_task_completed(gtid, ptask);
4029           return;
4030         }
4031       }
4032 
4033       // fallback
4034       __kmpc_proxy_task_completed_ooo(ptask);
4035     }
4036   }
4037 }
4038 
4039 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
4040 // for taskloop
4041 //
4042 // thread:   allocating thread
4043 // task_src: pointer to source task to be duplicated
4044 // returns:  a pointer to the allocated kmp_task_t structure (task).
4045 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) {
4046   kmp_task_t *task;
4047   kmp_taskdata_t *taskdata;
4048   kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
4049   kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task
4050   size_t shareds_offset;
4051   size_t task_size;
4052 
4053   KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
4054                 task_src));
4055   KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
4056                    TASK_FULL); // it should not be proxy task
4057   KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
4058   task_size = taskdata_src->td_size_alloc;
4059 
4060   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
4061   KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
4062                 task_size));
4063 #if USE_FAST_MEMORY
4064   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
4065 #else
4066   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
4067 #endif /* USE_FAST_MEMORY */
4068   KMP_MEMCPY(taskdata, taskdata_src, task_size);
4069 
4070   task = KMP_TASKDATA_TO_TASK(taskdata);
4071 
4072   // Initialize new task (only specific fields not affected by memcpy)
4073   taskdata->td_task_id = KMP_GEN_TASK_ID();
4074   if (task->shareds != NULL) { // need setup shareds pointer
4075     shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
4076     task->shareds = &((char *)taskdata)[shareds_offset];
4077     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
4078                      0);
4079   }
4080   taskdata->td_alloc_thread = thread;
4081   taskdata->td_parent = parent_task;
4082   // task inherits the taskgroup from the parent task
4083   taskdata->td_taskgroup = parent_task->td_taskgroup;
4084   // tied task needs to initialize the td_last_tied at creation,
4085   // untied one does this when it is scheduled for execution
4086   if (taskdata->td_flags.tiedness == TASK_TIED)
4087     taskdata->td_last_tied = taskdata;
4088 
4089   // Only need to keep track of child task counts if team parallel and tasking
4090   // not serialized
4091   if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
4092     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
4093     if (parent_task->td_taskgroup)
4094       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
4095     // Only need to keep track of allocated child tasks for explicit tasks since
4096     // implicit not deallocated
4097     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
4098       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
4099   }
4100 
4101   KA_TRACE(20,
4102            ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
4103             thread, taskdata, taskdata->td_parent));
4104 #if OMPT_SUPPORT
4105   if (UNLIKELY(ompt_enabled.enabled))
4106     __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
4107 #endif
4108   return task;
4109 }
4110 
4111 // Routine optionally generated by the compiler for setting the lastprivate flag
4112 // and calling needed constructors for private/firstprivate objects
4113 // (used to form taskloop tasks from pattern task)
4114 // Parameters: dest task, src task, lastprivate flag.
4115 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
4116 
4117 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
4118 
4119 // class to encapsulate manipulating loop bounds in a taskloop task.
4120 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting
4121 // the loop bound variables.
4122 class kmp_taskloop_bounds_t {
4123   kmp_task_t *task;
4124   const kmp_taskdata_t *taskdata;
4125   size_t lower_offset;
4126   size_t upper_offset;
4127 
4128 public:
4129   kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
4130       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
4131         lower_offset((char *)lb - (char *)task),
4132         upper_offset((char *)ub - (char *)task) {
4133     KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
4134     KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
4135   }
4136   kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
4137       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
4138         lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
4139   size_t get_lower_offset() const { return lower_offset; }
4140   size_t get_upper_offset() const { return upper_offset; }
4141   kmp_uint64 get_lb() const {
4142     kmp_int64 retval;
4143 #if defined(KMP_GOMP_COMPAT)
4144     // Intel task just returns the lower bound normally
4145     if (!taskdata->td_flags.native) {
4146       retval = *(kmp_int64 *)((char *)task + lower_offset);
4147     } else {
4148       // GOMP task has to take into account the sizeof(long)
4149       if (taskdata->td_size_loop_bounds == 4) {
4150         kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
4151         retval = (kmp_int64)*lb;
4152       } else {
4153         kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
4154         retval = (kmp_int64)*lb;
4155       }
4156     }
4157 #else
4158     (void)taskdata;
4159     retval = *(kmp_int64 *)((char *)task + lower_offset);
4160 #endif // defined(KMP_GOMP_COMPAT)
4161     return retval;
4162   }
4163   kmp_uint64 get_ub() const {
4164     kmp_int64 retval;
4165 #if defined(KMP_GOMP_COMPAT)
4166     // Intel task just returns the upper bound normally
4167     if (!taskdata->td_flags.native) {
4168       retval = *(kmp_int64 *)((char *)task + upper_offset);
4169     } else {
4170       // GOMP task has to take into account the sizeof(long)
4171       if (taskdata->td_size_loop_bounds == 4) {
4172         kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
4173         retval = (kmp_int64)*ub;
4174       } else {
4175         kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
4176         retval = (kmp_int64)*ub;
4177       }
4178     }
4179 #else
4180     retval = *(kmp_int64 *)((char *)task + upper_offset);
4181 #endif // defined(KMP_GOMP_COMPAT)
4182     return retval;
4183   }
4184   void set_lb(kmp_uint64 lb) {
4185 #if defined(KMP_GOMP_COMPAT)
4186     // Intel task just sets the lower bound normally
4187     if (!taskdata->td_flags.native) {
4188       *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4189     } else {
4190       // GOMP task has to take into account the sizeof(long)
4191       if (taskdata->td_size_loop_bounds == 4) {
4192         kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
4193         *lower = (kmp_uint32)lb;
4194       } else {
4195         kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
4196         *lower = (kmp_uint64)lb;
4197       }
4198     }
4199 #else
4200     *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4201 #endif // defined(KMP_GOMP_COMPAT)
4202   }
4203   void set_ub(kmp_uint64 ub) {
4204 #if defined(KMP_GOMP_COMPAT)
4205     // Intel task just sets the upper bound normally
4206     if (!taskdata->td_flags.native) {
4207       *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4208     } else {
4209       // GOMP task has to take into account the sizeof(long)
4210       if (taskdata->td_size_loop_bounds == 4) {
4211         kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
4212         *upper = (kmp_uint32)ub;
4213       } else {
4214         kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
4215         *upper = (kmp_uint64)ub;
4216       }
4217     }
4218 #else
4219     *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4220 #endif // defined(KMP_GOMP_COMPAT)
4221   }
4222 };
4223 
4224 // __kmp_taskloop_linear: Start tasks of the taskloop linearly
4225 //
4226 // loc        Source location information
4227 // gtid       Global thread ID
4228 // task       Pattern task, exposes the loop iteration range
4229 // lb         Pointer to loop lower bound in task structure
4230 // ub         Pointer to loop upper bound in task structure
4231 // st         Loop stride
4232 // ub_glob    Global upper bound (used for lastprivate check)
4233 // num_tasks  Number of tasks to execute
4234 // grainsize  Number of loop iterations per task
4235 // extras     Number of chunks with grainsize+1 iterations
4236 // last_chunk Reduction of grainsize for last task
4237 // tc         Iterations count
4238 // task_dup   Tasks duplication routine
4239 // codeptr_ra Return address for OMPT events
4240 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
4241                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4242                            kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4243                            kmp_uint64 grainsize, kmp_uint64 extras,
4244                            kmp_int64 last_chunk, kmp_uint64 tc,
4245 #if OMPT_SUPPORT
4246                            void *codeptr_ra,
4247 #endif
4248                            void *task_dup) {
4249   KMP_COUNT_BLOCK(OMP_TASKLOOP);
4250   KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
4251   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4252   // compiler provides global bounds here
4253   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4254   kmp_uint64 lower = task_bounds.get_lb();
4255   kmp_uint64 upper = task_bounds.get_ub();
4256   kmp_uint64 i;
4257   kmp_info_t *thread = __kmp_threads[gtid];
4258   kmp_taskdata_t *current_task = thread->th.th_current_task;
4259   kmp_task_t *next_task;
4260   kmp_int32 lastpriv = 0;
4261 
4262   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4263                              (last_chunk < 0 ? last_chunk : extras));
4264   KMP_DEBUG_ASSERT(num_tasks > extras);
4265   KMP_DEBUG_ASSERT(num_tasks > 0);
4266   KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4267                 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4268                 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper,
4269                 ub_glob, st, task_dup));
4270 
4271   // Launch num_tasks tasks, assign grainsize iterations each task
4272   for (i = 0; i < num_tasks; ++i) {
4273     kmp_uint64 chunk_minus_1;
4274     if (extras == 0) {
4275       chunk_minus_1 = grainsize - 1;
4276     } else {
4277       chunk_minus_1 = grainsize;
4278       --extras; // first extras iterations get bigger chunk (grainsize+1)
4279     }
4280     upper = lower + st * chunk_minus_1;
4281     if (upper > *ub) {
4282       upper = *ub;
4283     }
4284     if (i == num_tasks - 1) {
4285       // schedule the last task, set lastprivate flag if needed
4286       if (st == 1) { // most common case
4287         KMP_DEBUG_ASSERT(upper == *ub);
4288         if (upper == ub_glob)
4289           lastpriv = 1;
4290       } else if (st > 0) { // positive loop stride
4291         KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
4292         if ((kmp_uint64)st > ub_glob - upper)
4293           lastpriv = 1;
4294       } else { // negative loop stride
4295         KMP_DEBUG_ASSERT(upper + st < *ub);
4296         if (upper - ub_glob < (kmp_uint64)(-st))
4297           lastpriv = 1;
4298       }
4299     }
4300     next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
4301     kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
4302     kmp_taskloop_bounds_t next_task_bounds =
4303         kmp_taskloop_bounds_t(next_task, task_bounds);
4304 
4305     // adjust task-specific bounds
4306     next_task_bounds.set_lb(lower);
4307     if (next_taskdata->td_flags.native) {
4308       next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
4309     } else {
4310       next_task_bounds.set_ub(upper);
4311     }
4312     if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates,
4313                            // etc.
4314       ptask_dup(next_task, task, lastpriv);
4315     KA_TRACE(40,
4316              ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4317               "upper %lld stride %lld, (offsets %p %p)\n",
4318               gtid, i, next_task, lower, upper, st,
4319               next_task_bounds.get_lower_offset(),
4320               next_task_bounds.get_upper_offset()));
4321 #if OMPT_SUPPORT
4322     __kmp_omp_taskloop_task(NULL, gtid, next_task,
4323                             codeptr_ra); // schedule new task
4324 #else
4325     __kmp_omp_task(gtid, next_task, true); // schedule new task
4326 #endif
4327     lower = upper + st; // adjust lower bound for the next iteration
4328   }
4329   // free the pattern task and exit
4330   __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
4331   // do not execute the pattern task, just do internal bookkeeping
4332   __kmp_task_finish<false>(gtid, task, current_task);
4333 }
4334 
4335 // Structure to keep taskloop parameters for auxiliary task
4336 // kept in the shareds of the task structure.
4337 typedef struct __taskloop_params {
4338   kmp_task_t *task;
4339   kmp_uint64 *lb;
4340   kmp_uint64 *ub;
4341   void *task_dup;
4342   kmp_int64 st;
4343   kmp_uint64 ub_glob;
4344   kmp_uint64 num_tasks;
4345   kmp_uint64 grainsize;
4346   kmp_uint64 extras;
4347   kmp_int64 last_chunk;
4348   kmp_uint64 tc;
4349   kmp_uint64 num_t_min;
4350 #if OMPT_SUPPORT
4351   void *codeptr_ra;
4352 #endif
4353 } __taskloop_params_t;
4354 
4355 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
4356                           kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
4357                           kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64,
4358                           kmp_uint64,
4359 #if OMPT_SUPPORT
4360                           void *,
4361 #endif
4362                           void *);
4363 
4364 // Execute part of the taskloop submitted as a task.
4365 int __kmp_taskloop_task(int gtid, void *ptask) {
4366   __taskloop_params_t *p =
4367       (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
4368   kmp_task_t *task = p->task;
4369   kmp_uint64 *lb = p->lb;
4370   kmp_uint64 *ub = p->ub;
4371   void *task_dup = p->task_dup;
4372   //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4373   kmp_int64 st = p->st;
4374   kmp_uint64 ub_glob = p->ub_glob;
4375   kmp_uint64 num_tasks = p->num_tasks;
4376   kmp_uint64 grainsize = p->grainsize;
4377   kmp_uint64 extras = p->extras;
4378   kmp_int64 last_chunk = p->last_chunk;
4379   kmp_uint64 tc = p->tc;
4380   kmp_uint64 num_t_min = p->num_t_min;
4381 #if OMPT_SUPPORT
4382   void *codeptr_ra = p->codeptr_ra;
4383 #endif
4384 #if KMP_DEBUG
4385   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4386   KMP_DEBUG_ASSERT(task != NULL);
4387   KA_TRACE(20,
4388            ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
4389             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4390             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4391             st, task_dup));
4392 #endif
4393   KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
4394   if (num_tasks > num_t_min)
4395     __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4396                          grainsize, extras, last_chunk, tc, num_t_min,
4397 #if OMPT_SUPPORT
4398                          codeptr_ra,
4399 #endif
4400                          task_dup);
4401   else
4402     __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4403                           grainsize, extras, last_chunk, tc,
4404 #if OMPT_SUPPORT
4405                           codeptr_ra,
4406 #endif
4407                           task_dup);
4408 
4409   KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
4410   return 0;
4411 }
4412 
4413 // Schedule part of the taskloop as a task,
4414 // execute the rest of the taskloop.
4415 //
4416 // loc        Source location information
4417 // gtid       Global thread ID
4418 // task       Pattern task, exposes the loop iteration range
4419 // lb         Pointer to loop lower bound in task structure
4420 // ub         Pointer to loop upper bound in task structure
4421 // st         Loop stride
4422 // ub_glob    Global upper bound (used for lastprivate check)
4423 // num_tasks  Number of tasks to execute
4424 // grainsize  Number of loop iterations per task
4425 // extras     Number of chunks with grainsize+1 iterations
4426 // last_chunk Reduction of grainsize for last task
4427 // tc         Iterations count
4428 // num_t_min  Threshold to launch tasks recursively
4429 // task_dup   Tasks duplication routine
4430 // codeptr_ra Return address for OMPT events
4431 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
4432                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4433                           kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4434                           kmp_uint64 grainsize, kmp_uint64 extras,
4435                           kmp_int64 last_chunk, kmp_uint64 tc,
4436                           kmp_uint64 num_t_min,
4437 #if OMPT_SUPPORT
4438                           void *codeptr_ra,
4439 #endif
4440                           void *task_dup) {
4441   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4442   KMP_DEBUG_ASSERT(task != NULL);
4443   KMP_DEBUG_ASSERT(num_tasks > num_t_min);
4444   KA_TRACE(20,
4445            ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
4446             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4447             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4448             st, task_dup));
4449   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4450   kmp_uint64 lower = *lb;
4451   kmp_info_t *thread = __kmp_threads[gtid];
4452   //  kmp_taskdata_t *current_task = thread->th.th_current_task;
4453   kmp_task_t *next_task;
4454   size_t lower_offset =
4455       (char *)lb - (char *)task; // remember offset of lb in the task structure
4456   size_t upper_offset =
4457       (char *)ub - (char *)task; // remember offset of ub in the task structure
4458 
4459   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4460                              (last_chunk < 0 ? last_chunk : extras));
4461   KMP_DEBUG_ASSERT(num_tasks > extras);
4462   KMP_DEBUG_ASSERT(num_tasks > 0);
4463 
4464   // split the loop in two halves
4465   kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
4466   kmp_int64 last_chunk0 = 0, last_chunk1 = 0;
4467   kmp_uint64 gr_size0 = grainsize;
4468   kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
4469   kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
4470   if (last_chunk < 0) {
4471     ext0 = ext1 = 0;
4472     last_chunk1 = last_chunk;
4473     tc0 = grainsize * n_tsk0;
4474     tc1 = tc - tc0;
4475   } else if (n_tsk0 <= extras) {
4476     gr_size0++; // integrate extras into grainsize
4477     ext0 = 0; // no extra iters in 1st half
4478     ext1 = extras - n_tsk0; // remaining extras
4479     tc0 = gr_size0 * n_tsk0;
4480     tc1 = tc - tc0;
4481   } else { // n_tsk0 > extras
4482     ext1 = 0; // no extra iters in 2nd half
4483     ext0 = extras;
4484     tc1 = grainsize * n_tsk1;
4485     tc0 = tc - tc1;
4486   }
4487   ub0 = lower + st * (tc0 - 1);
4488   lb1 = ub0 + st;
4489 
4490   // create pattern task for 2nd half of the loop
4491   next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
4492   // adjust lower bound (upper bound is not changed) for the 2nd half
4493   *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
4494   if (ptask_dup != NULL) // construct firstprivates, etc.
4495     ptask_dup(next_task, task, 0);
4496   *ub = ub0; // adjust upper bound for the 1st half
4497 
4498   // create auxiliary task for 2nd half of the loop
4499   // make sure new task has same parent task as the pattern task
4500   kmp_taskdata_t *current_task = thread->th.th_current_task;
4501   thread->th.th_current_task = taskdata->td_parent;
4502   kmp_task_t *new_task =
4503       __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
4504                             sizeof(__taskloop_params_t), &__kmp_taskloop_task);
4505   // restore current task
4506   thread->th.th_current_task = current_task;
4507   __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
4508   p->task = next_task;
4509   p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
4510   p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
4511   p->task_dup = task_dup;
4512   p->st = st;
4513   p->ub_glob = ub_glob;
4514   p->num_tasks = n_tsk1;
4515   p->grainsize = grainsize;
4516   p->extras = ext1;
4517   p->last_chunk = last_chunk1;
4518   p->tc = tc1;
4519   p->num_t_min = num_t_min;
4520 #if OMPT_SUPPORT
4521   p->codeptr_ra = codeptr_ra;
4522 #endif
4523 
4524 #if OMPT_SUPPORT
4525   // schedule new task with correct return address for OMPT events
4526   __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
4527 #else
4528   __kmp_omp_task(gtid, new_task, true); // schedule new task
4529 #endif
4530 
4531   // execute the 1st half of current subrange
4532   if (n_tsk0 > num_t_min)
4533     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
4534                          ext0, last_chunk0, tc0, num_t_min,
4535 #if OMPT_SUPPORT
4536                          codeptr_ra,
4537 #endif
4538                          task_dup);
4539   else
4540     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
4541                           gr_size0, ext0, last_chunk0, tc0,
4542 #if OMPT_SUPPORT
4543                           codeptr_ra,
4544 #endif
4545                           task_dup);
4546 
4547   KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid));
4548 }
4549 
4550 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4551                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4552                            int nogroup, int sched, kmp_uint64 grainsize,
4553                            int modifier, void *task_dup) {
4554   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4555   KMP_DEBUG_ASSERT(task != NULL);
4556   if (nogroup == 0) {
4557 #if OMPT_SUPPORT && OMPT_OPTIONAL
4558     OMPT_STORE_RETURN_ADDRESS(gtid);
4559 #endif
4560     __kmpc_taskgroup(loc, gtid);
4561   }
4562 
4563   // =========================================================================
4564   // calculate loop parameters
4565   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4566   kmp_uint64 tc;
4567   // compiler provides global bounds here
4568   kmp_uint64 lower = task_bounds.get_lb();
4569   kmp_uint64 upper = task_bounds.get_ub();
4570   kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
4571   kmp_uint64 num_tasks = 0, extras = 0;
4572   kmp_int64 last_chunk =
4573       0; // reduce grainsize of last task by last_chunk in strict mode
4574   kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
4575   kmp_info_t *thread = __kmp_threads[gtid];
4576   kmp_taskdata_t *current_task = thread->th.th_current_task;
4577 
4578   KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
4579                 "grain %llu(%d, %d), dup %p\n",
4580                 gtid, taskdata, lower, upper, st, grainsize, sched, modifier,
4581                 task_dup));
4582 
4583   // compute trip count
4584   if (st == 1) { // most common case
4585     tc = upper - lower + 1;
4586   } else if (st < 0) {
4587     tc = (lower - upper) / (-st) + 1;
4588   } else { // st > 0
4589     tc = (upper - lower) / st + 1;
4590   }
4591   if (tc == 0) {
4592     KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid));
4593     // free the pattern task and exit
4594     __kmp_task_start(gtid, task, current_task);
4595     // do not execute anything for zero-trip loop
4596     __kmp_task_finish<false>(gtid, task, current_task);
4597     return;
4598   }
4599 
4600 #if OMPT_SUPPORT && OMPT_OPTIONAL
4601   ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
4602   ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
4603   if (ompt_enabled.ompt_callback_work) {
4604     ompt_callbacks.ompt_callback(ompt_callback_work)(
4605         ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
4606         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4607   }
4608 #endif
4609 
4610   if (num_tasks_min == 0)
4611     // TODO: can we choose better default heuristic?
4612     num_tasks_min =
4613         KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
4614 
4615   // compute num_tasks/grainsize based on the input provided
4616   switch (sched) {
4617   case 0: // no schedule clause specified, we can choose the default
4618     // let's try to schedule (team_size*10) tasks
4619     grainsize = thread->th.th_team_nproc * 10;
4620     KMP_FALLTHROUGH();
4621   case 2: // num_tasks provided
4622     if (grainsize > tc) {
4623       num_tasks = tc; // too big num_tasks requested, adjust values
4624       grainsize = 1;
4625       extras = 0;
4626     } else {
4627       num_tasks = grainsize;
4628       grainsize = tc / num_tasks;
4629       extras = tc % num_tasks;
4630     }
4631     break;
4632   case 1: // grainsize provided
4633     if (grainsize > tc) {
4634       num_tasks = 1;
4635       grainsize = tc; // too big grainsize requested, adjust values
4636       extras = 0;
4637     } else {
4638       if (modifier) {
4639         num_tasks = (tc + grainsize - 1) / grainsize;
4640         last_chunk = tc - (num_tasks * grainsize);
4641         extras = 0;
4642       } else {
4643         num_tasks = tc / grainsize;
4644         // adjust grainsize for balanced distribution of iterations
4645         grainsize = tc / num_tasks;
4646         extras = tc % num_tasks;
4647       }
4648     }
4649     break;
4650   default:
4651     KMP_ASSERT2(0, "unknown scheduling of taskloop");
4652   }
4653 
4654   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4655                              (last_chunk < 0 ? last_chunk : extras));
4656   KMP_DEBUG_ASSERT(num_tasks > extras);
4657   KMP_DEBUG_ASSERT(num_tasks > 0);
4658   // =========================================================================
4659 
4660   // check if clause value first
4661   // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
4662   if (if_val == 0) { // if(0) specified, mark task as serial
4663     taskdata->td_flags.task_serial = 1;
4664     taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
4665     // always start serial tasks linearly
4666     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4667                           grainsize, extras, last_chunk, tc,
4668 #if OMPT_SUPPORT
4669                           OMPT_GET_RETURN_ADDRESS(0),
4670 #endif
4671                           task_dup);
4672     // !taskdata->td_flags.native => currently force linear spawning of tasks
4673     // for GOMP_taskloop
4674   } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
4675     KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
4676                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
4677                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
4678                   last_chunk));
4679     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4680                          grainsize, extras, last_chunk, tc, num_tasks_min,
4681 #if OMPT_SUPPORT
4682                          OMPT_GET_RETURN_ADDRESS(0),
4683 #endif
4684                          task_dup);
4685   } else {
4686     KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
4687                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
4688                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
4689                   last_chunk));
4690     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4691                           grainsize, extras, last_chunk, tc,
4692 #if OMPT_SUPPORT
4693                           OMPT_GET_RETURN_ADDRESS(0),
4694 #endif
4695                           task_dup);
4696   }
4697 
4698 #if OMPT_SUPPORT && OMPT_OPTIONAL
4699   if (ompt_enabled.ompt_callback_work) {
4700     ompt_callbacks.ompt_callback(ompt_callback_work)(
4701         ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
4702         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4703   }
4704 #endif
4705 
4706   if (nogroup == 0) {
4707 #if OMPT_SUPPORT && OMPT_OPTIONAL
4708     OMPT_STORE_RETURN_ADDRESS(gtid);
4709 #endif
4710     __kmpc_end_taskgroup(loc, gtid);
4711   }
4712   KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid));
4713 }
4714 
4715 /*!
4716 @ingroup TASKING
4717 @param loc       Source location information
4718 @param gtid      Global thread ID
4719 @param task      Task structure
4720 @param if_val    Value of the if clause
4721 @param lb        Pointer to loop lower bound in task structure
4722 @param ub        Pointer to loop upper bound in task structure
4723 @param st        Loop stride
4724 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
4725 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4726 @param grainsize Schedule value if specified
4727 @param task_dup  Tasks duplication routine
4728 
4729 Execute the taskloop construct.
4730 */
4731 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4732                      kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
4733                      int sched, kmp_uint64 grainsize, void *task_dup) {
4734   __kmp_assert_valid_gtid(gtid);
4735   KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid));
4736   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
4737                  0, task_dup);
4738   KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
4739 }
4740 
4741 /*!
4742 @ingroup TASKING
4743 @param loc       Source location information
4744 @param gtid      Global thread ID
4745 @param task      Task structure
4746 @param if_val    Value of the if clause
4747 @param lb        Pointer to loop lower bound in task structure
4748 @param ub        Pointer to loop upper bound in task structure
4749 @param st        Loop stride
4750 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
4751 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4752 @param grainsize Schedule value if specified
4753 @param modifer   Modifier 'strict' for sched, 1 if present, 0 otherwise
4754 @param task_dup  Tasks duplication routine
4755 
4756 Execute the taskloop construct.
4757 */
4758 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4759                        kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4760                        int nogroup, int sched, kmp_uint64 grainsize,
4761                        int modifier, void *task_dup) {
4762   __kmp_assert_valid_gtid(gtid);
4763   KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid));
4764   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
4765                  modifier, task_dup);
4766   KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid));
4767 }
4768