1 /** @file kmp_stats.cpp
2  * Statistics gathering and processing.
3  */
4 
5 
6 //===----------------------------------------------------------------------===//
7 //
8 //                     The LLVM Compiler Infrastructure
9 //
10 // This file is dual licensed under the MIT and the University of Illinois Open
11 // Source Licenses. See LICENSE.txt for details.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "kmp.h"
16 #include "kmp_str.h"
17 #include "kmp_lock.h"
18 #include "kmp_stats.h"
19 
20 #include <algorithm>
21 #include <sstream>
22 #include <iomanip>
23 #include <stdlib.h>                             // for atexit
24 #include <ctime>
25 
26 #define STRINGIZE2(x) #x
27 #define STRINGIZE(x) STRINGIZE2(x)
28 
29 #define expandName(name,flags,ignore)  {STRINGIZE(name),flags},
30 statInfo timeStat::timerInfo[] = {
31     KMP_FOREACH_TIMER(expandName,0)
32     {0,0}
33 };
34 const statInfo counter::counterInfo[] = {
35     KMP_FOREACH_COUNTER(expandName,0)
36     {0,0}
37 };
38 #undef expandName
39 
40 #define expandName(ignore1,ignore2,ignore3)  {0.0,0.0,0.0},
41 kmp_stats_output_module::rgb_color kmp_stats_output_module::timerColorInfo[] = {
42     KMP_FOREACH_TIMER(expandName,0)
43     {0.0,0.0,0.0}
44 };
45 #undef expandName
46 
47 const kmp_stats_output_module::rgb_color kmp_stats_output_module::globalColorArray[] = {
48     {1.0, 0.0, 0.0}, // red
49     {1.0, 0.6, 0.0}, // orange
50     {1.0, 1.0, 0.0}, // yellow
51     {0.0, 1.0, 0.0}, // green
52     {0.0, 0.0, 1.0}, // blue
53     {0.6, 0.2, 0.8}, // purple
54     {1.0, 0.0, 1.0}, // magenta
55     {0.0, 0.4, 0.2}, // dark green
56     {1.0, 1.0, 0.6}, // light yellow
57     {0.6, 0.4, 0.6}, // dirty purple
58     {0.0, 1.0, 1.0}, // cyan
59     {1.0, 0.4, 0.8}, // pink
60     {0.5, 0.5, 0.5}, // grey
61     {0.8, 0.7, 0.5}, // brown
62     {0.6, 0.6, 1.0}, // light blue
63     {1.0, 0.7, 0.5}, // peach
64     {0.8, 0.5, 1.0}, // lavender
65     {0.6, 0.0, 0.0}, // dark red
66     {0.7, 0.6, 0.0}, // gold
67     {0.0, 0.0, 0.0}  // black
68 };
69 
70 // Ensure that the atexit handler only runs once.
71 static uint32_t statsPrinted = 0;
72 
73 // output interface
74 static kmp_stats_output_module __kmp_stats_global_output;
75 
76 /* ****************************************************** */
77 /* ************* statistic member functions ************* */
78 
79 void statistic::addSample(double sample)
80 {
81     double delta = sample - meanVal;
82 
83     sampleCount = sampleCount + 1;
84     meanVal     = meanVal + delta/sampleCount;
85     m2          = m2 + delta*(sample - meanVal);
86 
87     minVal = std::min(minVal, sample);
88     maxVal = std::max(maxVal, sample);
89 }
90 
91 statistic & statistic::operator+= (const statistic & other)
92 {
93     if (sampleCount == 0)
94     {
95         *this = other;
96         return *this;
97     }
98 
99     uint64_t newSampleCount = sampleCount + other.sampleCount;
100     double dnsc  = double(newSampleCount);
101     double dsc   = double(sampleCount);
102     double dscBydnsc = dsc/dnsc;
103     double dosc  = double(other.sampleCount);
104     double delta = other.meanVal - meanVal;
105 
106     // Try to order these calculations to avoid overflows.
107     // If this were Fortran, then the compiler would not be able to re-order over brackets.
108     // In C++ it may be legal to do that (we certainly hope it doesn't, and CC+ Programming Language 2nd edition
109     // suggests it shouldn't, since it says that exploitation of associativity can only be made if the operation
110     // really is associative (which floating addition isn't...)).
111     meanVal     = meanVal*dscBydnsc + other.meanVal*(1-dscBydnsc);
112     m2          = m2 + other.m2 + dscBydnsc*dosc*delta*delta;
113     minVal      = std::min (minVal, other.minVal);
114     maxVal      = std::max (maxVal, other.maxVal);
115     sampleCount = newSampleCount;
116 
117 
118     return *this;
119 }
120 
121 void statistic::scale(double factor)
122 {
123     minVal = minVal*factor;
124     maxVal = maxVal*factor;
125     meanVal= meanVal*factor;
126     m2     = m2*factor*factor;
127     return;
128 }
129 
130 std::string statistic::format(char unit, bool total) const
131 {
132     std::string result = formatSI(sampleCount,9,' ');
133 
134     if (sampleCount == 0)
135     {
136         result = result + std::string(", ") + formatSI(0.0, 9, unit);
137         result = result + std::string(", ") + formatSI(0.0, 9, unit);
138         result = result + std::string(", ") + formatSI(0.0, 9, unit);
139         if (total)
140             result = result + std::string(", ") + formatSI(0.0, 9, unit);
141         result = result + std::string(", ") + formatSI(0.0, 9, unit);
142     }
143     else
144     {
145         result = result + std::string(", ") + formatSI(minVal,  9, unit);
146         result = result + std::string(", ") + formatSI(meanVal, 9, unit);
147         result = result + std::string(", ") + formatSI(maxVal,  9, unit);
148         if (total)
149             result = result + std::string(", ") + formatSI(meanVal*sampleCount, 9, unit);
150         result = result + std::string(", ") + formatSI(getSD(), 9, unit);
151     }
152     return result;
153 }
154 
155 /* ********************************************************** */
156 /* ************* explicitTimer member functions ************* */
157 
158 void explicitTimer::start(timer_e timerEnumValue) {
159     startTime = tsc_tick_count::now();
160     totalPauseTime = 0;
161     if(timeStat::logEvent(timerEnumValue)) {
162         __kmp_stats_thread_ptr->incrementNestValue();
163     }
164     return;
165 }
166 
167 void explicitTimer::stop(timer_e timerEnumValue) {
168     if (startTime.getValue() == 0)
169         return;
170 
171     tsc_tick_count finishTime = tsc_tick_count::now();
172 
173     //stat->addSample ((tsc_tick_count::now() - startTime).ticks());
174     stat->addSample(((finishTime - startTime) - totalPauseTime).ticks());
175 
176     if(timeStat::logEvent(timerEnumValue)) {
177         __kmp_stats_thread_ptr->push_event(startTime.getValue() - __kmp_stats_start_time.getValue(), finishTime.getValue() - __kmp_stats_start_time.getValue(), __kmp_stats_thread_ptr->getNestValue(), timerEnumValue);
178         __kmp_stats_thread_ptr->decrementNestValue();
179     }
180 
181     /* We accept the risk that we drop a sample because it really did start at t==0. */
182     startTime = 0;
183     return;
184 }
185 
186 /* ************************************************************** */
187 /* ************* partitionedTimers member functions ************* */
188 partitionedTimers::partitionedTimers() {
189     timer_stack.reserve(8);
190 }
191 
192 // add a timer to this collection of partitioned timers.
193 void partitionedTimers::add_timer(explicit_timer_e timer_index, explicitTimer* timer_pointer) {
194     KMP_DEBUG_ASSERT((int)timer_index < (int)EXPLICIT_TIMER_LAST+1);
195     timers[timer_index] = timer_pointer;
196 }
197 
198 // initialize the paritioned timers to an initial timer
199 void partitionedTimers::init(timerPair init_timer_pair) {
200     KMP_DEBUG_ASSERT(this->timer_stack.size() == 0);
201     timer_stack.push_back(init_timer_pair);
202     timers[init_timer_pair.get_index()]->start(init_timer_pair.get_timer());
203 }
204 
205 // stop/save the current timer, and start the new timer (timer_pair)
206 // There is a special condition where if the current timer is equal to
207 // the one you are trying to push, then it only manipulates the stack,
208 // and it won't stop/start the currently running timer.
209 void partitionedTimers::push(timerPair timer_pair) {
210     // get the current timer
211     // stop current timer
212     // push new timer
213     // start the new timer
214     KMP_DEBUG_ASSERT(this->timer_stack.size() > 0);
215     timerPair current_timer = timer_stack.back();
216     timer_stack.push_back(timer_pair);
217     if(current_timer != timer_pair) {
218         timers[current_timer.get_index()]->pause();
219         timers[timer_pair.get_index()]->start(timer_pair.get_timer());
220     }
221 }
222 
223 // stop/discard the current timer, and start the previously saved timer
224 void partitionedTimers::pop() {
225     // get the current timer
226     // stop current timer
227     // pop current timer
228     // get the new current timer and start it back up
229     KMP_DEBUG_ASSERT(this->timer_stack.size() > 1);
230     timerPair current_timer = timer_stack.back();
231     timer_stack.pop_back();
232     timerPair new_timer = timer_stack.back();
233     if(current_timer != new_timer) {
234         timers[current_timer.get_index()]->stop(current_timer.get_timer());
235         timers[new_timer.get_index()]->resume();
236     }
237 }
238 
239 // Wind up all the currently running timers.
240 // This pops off all the timers from the stack and clears the stack
241 // After this is called, init() must be run again to initialize the
242 // stack of timers
243 void partitionedTimers::windup() {
244     while(timer_stack.size() > 1) {
245         this->pop();
246     }
247     if(timer_stack.size() > 0) {
248         timerPair last_timer = timer_stack.back();
249         timer_stack.pop_back();
250         timers[last_timer.get_index()]->stop(last_timer.get_timer());
251     }
252 }
253 
254 /* ******************************************************************* */
255 /* ************* kmp_stats_event_vector member functions ************* */
256 
257 void kmp_stats_event_vector::deallocate() {
258     __kmp_free(events);
259     internal_size = 0;
260     allocated_size = 0;
261     events = NULL;
262 }
263 
264 // This function is for qsort() which requires the compare function to return
265 // either a negative number if event1 < event2, a positive number if event1 > event2
266 // or zero if event1 == event2.
267 // This sorts by start time (lowest to highest).
268 int compare_two_events(const void* event1, const void* event2) {
269     kmp_stats_event* ev1 = (kmp_stats_event*)event1;
270     kmp_stats_event* ev2 = (kmp_stats_event*)event2;
271 
272     if(ev1->getStart() < ev2->getStart()) return -1;
273     else if(ev1->getStart() > ev2->getStart()) return 1;
274     else return 0;
275 }
276 
277 void kmp_stats_event_vector::sort() {
278     qsort(events, internal_size, sizeof(kmp_stats_event), compare_two_events);
279 }
280 
281 /* *********************************************************** */
282 /* ************* kmp_stats_list member functions ************* */
283 
284 // returns a pointer to newly created stats node
285 kmp_stats_list* kmp_stats_list::push_back(int gtid) {
286     kmp_stats_list* newnode = (kmp_stats_list*)__kmp_allocate(sizeof(kmp_stats_list));
287     // placement new, only requires space and pointer and initializes (so __kmp_allocate instead of C++ new[] is used)
288     new (newnode) kmp_stats_list();
289     newnode->setGtid(gtid);
290     newnode->prev = this->prev;
291     newnode->next = this;
292     newnode->prev->next = newnode;
293     newnode->next->prev = newnode;
294     return newnode;
295 }
296 void kmp_stats_list::deallocate() {
297     kmp_stats_list* ptr = this->next;
298     kmp_stats_list* delptr = this->next;
299     while(ptr != this) {
300         delptr = ptr;
301         ptr=ptr->next;
302         // placement new means we have to explicitly call destructor.
303         delptr->_event_vector.deallocate();
304         delptr->~kmp_stats_list();
305         __kmp_free(delptr);
306     }
307 }
308 kmp_stats_list::iterator kmp_stats_list::begin() {
309     kmp_stats_list::iterator it;
310     it.ptr = this->next;
311     return it;
312 }
313 kmp_stats_list::iterator kmp_stats_list::end() {
314     kmp_stats_list::iterator it;
315     it.ptr = this;
316     return it;
317 }
318 int kmp_stats_list::size() {
319     int retval;
320     kmp_stats_list::iterator it;
321     for(retval=0, it=begin(); it!=end(); it++, retval++) {}
322     return retval;
323 }
324 
325 /* ********************************************************************* */
326 /* ************* kmp_stats_list::iterator member functions ************* */
327 
328 kmp_stats_list::iterator::iterator() : ptr(NULL) {}
329 kmp_stats_list::iterator::~iterator() {}
330 kmp_stats_list::iterator kmp_stats_list::iterator::operator++() {
331     this->ptr = this->ptr->next;
332     return *this;
333 }
334 kmp_stats_list::iterator kmp_stats_list::iterator::operator++(int dummy) {
335     this->ptr = this->ptr->next;
336     return *this;
337 }
338 kmp_stats_list::iterator kmp_stats_list::iterator::operator--() {
339     this->ptr = this->ptr->prev;
340     return *this;
341 }
342 kmp_stats_list::iterator kmp_stats_list::iterator::operator--(int dummy) {
343     this->ptr = this->ptr->prev;
344     return *this;
345 }
346 bool kmp_stats_list::iterator::operator!=(const kmp_stats_list::iterator & rhs) {
347    return this->ptr!=rhs.ptr;
348 }
349 bool kmp_stats_list::iterator::operator==(const kmp_stats_list::iterator & rhs) {
350    return this->ptr==rhs.ptr;
351 }
352 kmp_stats_list* kmp_stats_list::iterator::operator*() const {
353     return this->ptr;
354 }
355 
356 /* *************************************************************** */
357 /* *************  kmp_stats_output_module functions ************** */
358 
359 const char* kmp_stats_output_module::eventsFileName = NULL;
360 const char* kmp_stats_output_module::plotFileName   = NULL;
361 int kmp_stats_output_module::printPerThreadFlag       = 0;
362 int kmp_stats_output_module::printPerThreadEventsFlag = 0;
363 
364 // init() is called very near the beginning of execution time in the constructor of __kmp_stats_global_output
365 void kmp_stats_output_module::init()
366 {
367     char * statsFileName  = getenv("KMP_STATS_FILE");
368     eventsFileName        = getenv("KMP_STATS_EVENTS_FILE");
369     plotFileName          = getenv("KMP_STATS_PLOT_FILE");
370     char * threadStats    = getenv("KMP_STATS_THREADS");
371     char * threadEvents   = getenv("KMP_STATS_EVENTS");
372 
373     // set the stats output filenames based on environment variables and defaults
374     if(statsFileName) {
375         // append the process id to the output filename
376         // events.csv --> events-pid.csv
377         size_t index;
378         std::string baseFileName, pid, suffix;
379         std::stringstream ss;
380         outputFileName = std::string(statsFileName);
381         index = outputFileName.find_last_of('.');
382         if(index == std::string::npos) {
383             baseFileName = outputFileName;
384         } else {
385             baseFileName = outputFileName.substr(0, index);
386             suffix = outputFileName.substr(index);
387         }
388         ss << getpid();
389         pid = ss.str();
390         outputFileName = baseFileName + "-" + pid + suffix;
391     }
392     eventsFileName = eventsFileName ? eventsFileName : "events.dat";
393     plotFileName   = plotFileName   ? plotFileName   : "events.plt";
394 
395     // set the flags based on environment variables matching: true, on, 1, .true. , .t. , yes
396     printPerThreadFlag        = __kmp_str_match_true(threadStats);
397     printPerThreadEventsFlag  = __kmp_str_match_true(threadEvents);
398 
399     if(printPerThreadEventsFlag) {
400         // assigns a color to each timer for printing
401         setupEventColors();
402     } else {
403         // will clear flag so that no event will be logged
404         timeStat::clearEventFlags();
405     }
406 
407     return;
408 }
409 
410 void kmp_stats_output_module::setupEventColors() {
411     int i;
412     int globalColorIndex = 0;
413     int numGlobalColors = sizeof(globalColorArray) / sizeof(rgb_color);
414     for(i=0;i<TIMER_LAST;i++) {
415         if(timeStat::logEvent((timer_e)i)) {
416             timerColorInfo[i] = globalColorArray[globalColorIndex];
417             globalColorIndex = (globalColorIndex+1)%numGlobalColors;
418         }
419     }
420     return;
421 }
422 
423 void kmp_stats_output_module::printTimerStats(FILE *statsOut, statistic const * theStats, statistic const * totalStats)
424 {
425     fprintf (statsOut, "Timer,                      SampleCount,    Min,      Mean,       Max,     Total,        SD\n");
426     for (timer_e s = timer_e(0); s<TIMER_LAST; s = timer_e(s+1)) {
427         statistic const * stat = &theStats[s];
428         char tag = timeStat::noUnits(s) ? ' ' : 'T';
429 
430         fprintf (statsOut, "%-28s, %s\n", timeStat::name(s), stat->format(tag, true).c_str());
431     }
432     // Also print the Total_ versions of times.
433     for (timer_e s = timer_e(0); s<TIMER_LAST; s = timer_e(s+1)) {
434         char tag = timeStat::noUnits(s) ? ' ' : 'T';
435         if (totalStats && !timeStat::noTotal(s))
436             fprintf(statsOut, "Total_%-22s, %s\n", timeStat::name(s), totalStats[s].format(tag, true).c_str());
437     }
438 }
439 
440 void kmp_stats_output_module::printCounterStats(FILE *statsOut, statistic const * theStats)
441 {
442     fprintf (statsOut, "Counter,                 ThreadCount,    Min,      Mean,       Max,     Total,        SD\n");
443     for (int s = 0; s<COUNTER_LAST; s++) {
444         statistic const * stat = &theStats[s];
445         fprintf (statsOut, "%-25s, %s\n", counter::name(counter_e(s)), stat->format(' ', true).c_str());
446     }
447 }
448 
449 void kmp_stats_output_module::printCounters(FILE * statsOut, counter const * theCounters)
450 {
451     // We print all the counters even if they are zero.
452     // That makes it easier to slice them into a spreadsheet if you need to.
453     fprintf (statsOut, "\nCounter,                    Count\n");
454     for (int c = 0; c<COUNTER_LAST; c++) {
455         counter const * stat = &theCounters[c];
456         fprintf (statsOut, "%-25s, %s\n", counter::name(counter_e(c)), formatSI(stat->getValue(), 9, ' ').c_str());
457     }
458 }
459 
460 void kmp_stats_output_module::printEvents(FILE* eventsOut, kmp_stats_event_vector* theEvents, int gtid) {
461     // sort by start time before printing
462     theEvents->sort();
463     for (int i = 0; i < theEvents->size(); i++) {
464         kmp_stats_event ev = theEvents->at(i);
465         rgb_color color = getEventColor(ev.getTimerName());
466         fprintf(eventsOut, "%d %lu %lu %1.1f rgb(%1.1f,%1.1f,%1.1f) %s\n",
467                 gtid,
468                 ev.getStart(),
469                 ev.getStop(),
470                 1.2 - (ev.getNestLevel() * 0.2),
471                 color.r, color.g, color.b,
472                 timeStat::name(ev.getTimerName())
473                );
474     }
475     return;
476 }
477 
478 void kmp_stats_output_module::windupExplicitTimers()
479 {
480     // Wind up any explicit timers. We assume that it's fair at this point to just walk all the explcit timers in all threads
481     // and say "it's over".
482     // If the timer wasn't running, this won't record anything anyway.
483     kmp_stats_list::iterator it;
484     for(it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) {
485         kmp_stats_list* ptr = *it;
486         ptr->getPartitionedTimers()->windup();
487         for (int timer=0; timer<EXPLICIT_TIMER_LAST; timer++) {
488             ptr->getExplicitTimer(explicit_timer_e(timer))->stop((timer_e)timer);
489         }
490     }
491 }
492 
493 void kmp_stats_output_module::printPloticusFile() {
494     int i;
495     int size = __kmp_stats_list.size();
496     FILE* plotOut = fopen(plotFileName, "w+");
497 
498     fprintf(plotOut, "#proc page\n"
499                      "   pagesize: 15 10\n"
500                      "   scale: 1.0\n\n");
501 
502     fprintf(plotOut, "#proc getdata\n"
503                      "   file: %s\n\n",
504                      eventsFileName);
505 
506     fprintf(plotOut, "#proc areadef\n"
507                      "   title: OpenMP Sampling Timeline\n"
508                      "   titledetails: align=center size=16\n"
509                      "   rectangle: 1 1 13 9\n"
510                      "   xautorange: datafield=2,3\n"
511                      "   yautorange: -1 %d\n\n",
512                      size);
513 
514     fprintf(plotOut, "#proc xaxis\n"
515                      "   stubs: inc\n"
516                      "   stubdetails: size=12\n"
517                      "   label: Time (ticks)\n"
518                      "   labeldetails: size=14\n\n");
519 
520     fprintf(plotOut, "#proc yaxis\n"
521                      "   stubs: inc 1\n"
522                      "   stubrange: 0 %d\n"
523                      "   stubdetails: size=12\n"
524                      "   label: Thread #\n"
525                      "   labeldetails: size=14\n\n",
526                      size-1);
527 
528     fprintf(plotOut, "#proc bars\n"
529                      "   exactcolorfield: 5\n"
530                      "   axis: x\n"
531                      "   locfield: 1\n"
532                      "   segmentfields: 2 3\n"
533                      "   barwidthfield: 4\n\n");
534 
535     // create legend entries corresponding to the timer color
536     for(i=0;i<TIMER_LAST;i++) {
537         if(timeStat::logEvent((timer_e)i)) {
538             rgb_color c = getEventColor((timer_e)i);
539             fprintf(plotOut, "#proc legendentry\n"
540                              "   sampletype: color\n"
541                              "   label: %s\n"
542                              "   details: rgb(%1.1f,%1.1f,%1.1f)\n\n",
543                              timeStat::name((timer_e)i),
544                              c.r, c.g, c.b);
545 
546         }
547     }
548 
549     fprintf(plotOut, "#proc legend\n"
550                      "   format: down\n"
551                      "   location: max max\n\n");
552     fclose(plotOut);
553     return;
554 }
555 
556 /*
557  * Print some useful information about
558  *    * the date and time this experiment ran.
559  *    * the machine on which it ran.
560  * We output all of this as stylised comments, though we may decide to parse some of it.
561  */
562 void kmp_stats_output_module::printHeaderInfo(FILE * statsOut)
563 {
564     std::time_t now = std::time(0);
565     char buffer[40];
566     char hostName[80];
567 
568     std::strftime(&buffer[0], sizeof(buffer), "%c", std::localtime(&now));
569     fprintf (statsOut, "# Time of run: %s\n", &buffer[0]);
570     if (gethostname(&hostName[0], sizeof(hostName)) == 0)
571         fprintf (statsOut,"# Hostname: %s\n", &hostName[0]);
572 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
573     fprintf (statsOut, "# CPU:  %s\n", &__kmp_cpuinfo.name[0]);
574     fprintf (statsOut, "# Family: %d, Model: %d, Stepping: %d\n", __kmp_cpuinfo.family, __kmp_cpuinfo.model, __kmp_cpuinfo.stepping);
575     if (__kmp_cpuinfo.frequency == 0)
576         fprintf (statsOut, "# Nominal frequency: Unknown\n");
577     else
578         fprintf (statsOut, "# Nominal frequency: %sz\n", formatSI(double(__kmp_cpuinfo.frequency),9,'H').c_str());
579 #endif
580 }
581 
582 void kmp_stats_output_module::outputStats(const char* heading)
583 {
584     // Stop all the explicit timers in all threads
585     // Do this before declaring the local statistics because thay have constructors so will take time to create.
586     windupExplicitTimers();
587 
588     statistic allStats[TIMER_LAST];
589     statistic totalStats[TIMER_LAST];           /* Synthesized, cross threads versions of normal timer stats */
590     statistic allCounters[COUNTER_LAST];
591 
592     FILE * statsOut = !outputFileName.empty() ? fopen (outputFileName.c_str(), "a+") : stderr;
593     if (!statsOut)
594         statsOut = stderr;
595 
596     FILE * eventsOut;
597     if (eventPrintingEnabled()) {
598         eventsOut = fopen(eventsFileName, "w+");
599     }
600 
601     printHeaderInfo (statsOut);
602     fprintf(statsOut, "%s\n",heading);
603     // Accumulate across threads.
604     kmp_stats_list::iterator it;
605     for (it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) {
606         int t = (*it)->getGtid();
607         // Output per thread stats if requested.
608         if (printPerThreadFlag) {
609             fprintf (statsOut, "Thread %d\n", t);
610             printTimerStats (statsOut, (*it)->getTimers(), 0);
611             printCounters   (statsOut, (*it)->getCounters());
612             fprintf (statsOut,"\n");
613         }
614         // Output per thread events if requested.
615         if (eventPrintingEnabled()) {
616             kmp_stats_event_vector events = (*it)->getEventVector();
617             printEvents(eventsOut, &events, t);
618         }
619 
620         // Accumulate timers.
621         for (timer_e s = timer_e(0); s<TIMER_LAST; s = timer_e(s+1)) {
622             // See if we should ignore this timer when aggregating
623             if ((timeStat::masterOnly(s) && (t != 0)) || // Timer is only valid on the master and this thread is a worker
624                 (timeStat::workerOnly(s) && (t == 0))    // Timer is only valid on a worker and this thread is the master
625                )
626             {
627                 continue;
628             }
629 
630             statistic * threadStat = (*it)->getTimer(s);
631             allStats[s] += *threadStat;
632 
633             // Add Total stats for timers that are valid in more than one thread
634             if (!timeStat::noTotal(s))
635                 totalStats[s].addSample(threadStat->getTotal());
636         }
637 
638         // Accumulate counters.
639         for (counter_e c = counter_e(0); c<COUNTER_LAST; c = counter_e(c+1)) {
640             if (counter::masterOnly(c) && t != 0)
641                 continue;
642             allCounters[c].addSample ((*it)->getCounter(c)->getValue());
643         }
644     }
645 
646     if (eventPrintingEnabled()) {
647         printPloticusFile();
648         fclose(eventsOut);
649     }
650 
651     fprintf (statsOut, "Aggregate for all threads\n");
652     printTimerStats (statsOut, &allStats[0], &totalStats[0]);
653     fprintf (statsOut, "\n");
654     printCounterStats (statsOut, &allCounters[0]);
655 
656     if (statsOut != stderr)
657         fclose(statsOut);
658 }
659 
660 /* ************************************************** */
661 /* *************  exported C functions ************** */
662 
663 // no name mangling for these functions, we want the c files to be able to get at these functions
664 extern "C" {
665 
666 void __kmp_reset_stats()
667 {
668     kmp_stats_list::iterator it;
669     for(it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) {
670         timeStat * timers     = (*it)->getTimers();
671         counter * counters    = (*it)->getCounters();
672         explicitTimer * eTimers = (*it)->getExplicitTimers();
673 
674         for (int t = 0; t<TIMER_LAST; t++)
675             timers[t].reset();
676 
677         for (int c = 0; c<COUNTER_LAST; c++)
678             counters[c].reset();
679 
680         for (int t=0; t<EXPLICIT_TIMER_LAST; t++)
681             eTimers[t].reset();
682 
683         // reset the event vector so all previous events are "erased"
684         (*it)->resetEventVector();
685     }
686 }
687 
688 // This function will reset all stats and stop all threads' explicit timers if they haven't been stopped already.
689 void __kmp_output_stats(const char * heading)
690 {
691     __kmp_stats_global_output.outputStats(heading);
692     __kmp_reset_stats();
693 }
694 
695 void __kmp_accumulate_stats_at_exit(void)
696 {
697     // Only do this once.
698     if (KMP_XCHG_FIXED32(&statsPrinted, 1) != 0)
699         return;
700 
701     __kmp_output_stats("Statistics on exit");
702 }
703 
704 void __kmp_stats_init(void)
705 {
706 }
707 
708 } // extern "C"
709 
710