1 /** @file kmp_stats.cpp 2 * Statistics gathering and processing. 3 */ 4 5 6 //===----------------------------------------------------------------------===// 7 // 8 // The LLVM Compiler Infrastructure 9 // 10 // This file is dual licensed under the MIT and the University of Illinois Open 11 // Source Licenses. See LICENSE.txt for details. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "kmp.h" 16 #include "kmp_str.h" 17 #include "kmp_lock.h" 18 #include "kmp_stats.h" 19 20 #include <algorithm> 21 #include <sstream> 22 #include <iomanip> 23 #include <stdlib.h> // for atexit 24 #include <ctime> 25 26 #define STRINGIZE2(x) #x 27 #define STRINGIZE(x) STRINGIZE2(x) 28 29 #define expandName(name,flags,ignore) {STRINGIZE(name),flags}, 30 statInfo timeStat::timerInfo[] = { 31 KMP_FOREACH_TIMER(expandName,0) 32 {0,0} 33 }; 34 const statInfo counter::counterInfo[] = { 35 KMP_FOREACH_COUNTER(expandName,0) 36 {0,0} 37 }; 38 #undef expandName 39 40 #define expandName(ignore1,ignore2,ignore3) {0.0,0.0,0.0}, 41 kmp_stats_output_module::rgb_color kmp_stats_output_module::timerColorInfo[] = { 42 KMP_FOREACH_TIMER(expandName,0) 43 {0.0,0.0,0.0} 44 }; 45 #undef expandName 46 47 const kmp_stats_output_module::rgb_color kmp_stats_output_module::globalColorArray[] = { 48 {1.0, 0.0, 0.0}, // red 49 {1.0, 0.6, 0.0}, // orange 50 {1.0, 1.0, 0.0}, // yellow 51 {0.0, 1.0, 0.0}, // green 52 {0.0, 0.0, 1.0}, // blue 53 {0.6, 0.2, 0.8}, // purple 54 {1.0, 0.0, 1.0}, // magenta 55 {0.0, 0.4, 0.2}, // dark green 56 {1.0, 1.0, 0.6}, // light yellow 57 {0.6, 0.4, 0.6}, // dirty purple 58 {0.0, 1.0, 1.0}, // cyan 59 {1.0, 0.4, 0.8}, // pink 60 {0.5, 0.5, 0.5}, // grey 61 {0.8, 0.7, 0.5}, // brown 62 {0.6, 0.6, 1.0}, // light blue 63 {1.0, 0.7, 0.5}, // peach 64 {0.8, 0.5, 1.0}, // lavender 65 {0.6, 0.0, 0.0}, // dark red 66 {0.7, 0.6, 0.0}, // gold 67 {0.0, 0.0, 0.0} // black 68 }; 69 70 // Ensure that the atexit handler only runs once. 71 static uint32_t statsPrinted = 0; 72 73 // output interface 74 static kmp_stats_output_module __kmp_stats_global_output; 75 76 /* ****************************************************** */ 77 /* ************* statistic member functions ************* */ 78 79 void statistic::addSample(double sample) 80 { 81 double delta = sample - meanVal; 82 83 sampleCount = sampleCount + 1; 84 meanVal = meanVal + delta/sampleCount; 85 m2 = m2 + delta*(sample - meanVal); 86 87 minVal = std::min(minVal, sample); 88 maxVal = std::max(maxVal, sample); 89 } 90 91 statistic & statistic::operator+= (const statistic & other) 92 { 93 if (sampleCount == 0) 94 { 95 *this = other; 96 return *this; 97 } 98 99 uint64_t newSampleCount = sampleCount + other.sampleCount; 100 double dnsc = double(newSampleCount); 101 double dsc = double(sampleCount); 102 double dscBydnsc = dsc/dnsc; 103 double dosc = double(other.sampleCount); 104 double delta = other.meanVal - meanVal; 105 106 // Try to order these calculations to avoid overflows. 107 // If this were Fortran, then the compiler would not be able to re-order over brackets. 108 // In C++ it may be legal to do that (we certainly hope it doesn't, and CC+ Programming Language 2nd edition 109 // suggests it shouldn't, since it says that exploitation of associativity can only be made if the operation 110 // really is associative (which floating addition isn't...)). 111 meanVal = meanVal*dscBydnsc + other.meanVal*(1-dscBydnsc); 112 m2 = m2 + other.m2 + dscBydnsc*dosc*delta*delta; 113 minVal = std::min (minVal, other.minVal); 114 maxVal = std::max (maxVal, other.maxVal); 115 sampleCount = newSampleCount; 116 117 118 return *this; 119 } 120 121 void statistic::scale(double factor) 122 { 123 minVal = minVal*factor; 124 maxVal = maxVal*factor; 125 meanVal= meanVal*factor; 126 m2 = m2*factor*factor; 127 return; 128 } 129 130 std::string statistic::format(char unit, bool total) const 131 { 132 std::string result = formatSI(sampleCount,9,' '); 133 134 if (sampleCount == 0) 135 { 136 result = result + std::string(", ") + formatSI(0.0, 9, unit); 137 result = result + std::string(", ") + formatSI(0.0, 9, unit); 138 result = result + std::string(", ") + formatSI(0.0, 9, unit); 139 if (total) 140 result = result + std::string(", ") + formatSI(0.0, 9, unit); 141 result = result + std::string(", ") + formatSI(0.0, 9, unit); 142 } 143 else 144 { 145 result = result + std::string(", ") + formatSI(minVal, 9, unit); 146 result = result + std::string(", ") + formatSI(meanVal, 9, unit); 147 result = result + std::string(", ") + formatSI(maxVal, 9, unit); 148 if (total) 149 result = result + std::string(", ") + formatSI(meanVal*sampleCount, 9, unit); 150 result = result + std::string(", ") + formatSI(getSD(), 9, unit); 151 } 152 return result; 153 } 154 155 /* ********************************************************** */ 156 /* ************* explicitTimer member functions ************* */ 157 158 void explicitTimer::start(timer_e timerEnumValue) { 159 startTime = tsc_tick_count::now(); 160 totalPauseTime = 0; 161 if(timeStat::logEvent(timerEnumValue)) { 162 __kmp_stats_thread_ptr->incrementNestValue(); 163 } 164 return; 165 } 166 167 void explicitTimer::stop(timer_e timerEnumValue) { 168 if (startTime.getValue() == 0) 169 return; 170 171 tsc_tick_count finishTime = tsc_tick_count::now(); 172 173 //stat->addSample ((tsc_tick_count::now() - startTime).ticks()); 174 stat->addSample(((finishTime - startTime) - totalPauseTime).ticks()); 175 176 if(timeStat::logEvent(timerEnumValue)) { 177 __kmp_stats_thread_ptr->push_event(startTime.getValue() - __kmp_stats_start_time.getValue(), finishTime.getValue() - __kmp_stats_start_time.getValue(), __kmp_stats_thread_ptr->getNestValue(), timerEnumValue); 178 __kmp_stats_thread_ptr->decrementNestValue(); 179 } 180 181 /* We accept the risk that we drop a sample because it really did start at t==0. */ 182 startTime = 0; 183 return; 184 } 185 186 /* ************************************************************** */ 187 /* ************* partitionedTimers member functions ************* */ 188 partitionedTimers::partitionedTimers() { 189 timer_stack.reserve(8); 190 } 191 192 // add a timer to this collection of partitioned timers. 193 void partitionedTimers::add_timer(explicit_timer_e timer_index, explicitTimer* timer_pointer) { 194 KMP_DEBUG_ASSERT((int)timer_index < (int)EXPLICIT_TIMER_LAST+1); 195 timers[timer_index] = timer_pointer; 196 } 197 198 // initialize the paritioned timers to an initial timer 199 void partitionedTimers::init(timerPair init_timer_pair) { 200 KMP_DEBUG_ASSERT(this->timer_stack.size() == 0); 201 timer_stack.push_back(init_timer_pair); 202 timers[init_timer_pair.get_index()]->start(init_timer_pair.get_timer()); 203 } 204 205 // stop/save the current timer, and start the new timer (timer_pair) 206 // There is a special condition where if the current timer is equal to 207 // the one you are trying to push, then it only manipulates the stack, 208 // and it won't stop/start the currently running timer. 209 void partitionedTimers::push(timerPair timer_pair) { 210 // get the current timer 211 // stop current timer 212 // push new timer 213 // start the new timer 214 KMP_DEBUG_ASSERT(this->timer_stack.size() > 0); 215 timerPair current_timer = timer_stack.back(); 216 timer_stack.push_back(timer_pair); 217 if(current_timer != timer_pair) { 218 timers[current_timer.get_index()]->pause(); 219 timers[timer_pair.get_index()]->start(timer_pair.get_timer()); 220 } 221 } 222 223 // stop/discard the current timer, and start the previously saved timer 224 void partitionedTimers::pop() { 225 // get the current timer 226 // stop current timer 227 // pop current timer 228 // get the new current timer and start it back up 229 KMP_DEBUG_ASSERT(this->timer_stack.size() > 1); 230 timerPair current_timer = timer_stack.back(); 231 timer_stack.pop_back(); 232 timerPair new_timer = timer_stack.back(); 233 if(current_timer != new_timer) { 234 timers[current_timer.get_index()]->stop(current_timer.get_timer()); 235 timers[new_timer.get_index()]->resume(); 236 } 237 } 238 239 // Wind up all the currently running timers. 240 // This pops off all the timers from the stack and clears the stack 241 // After this is called, init() must be run again to initialize the 242 // stack of timers 243 void partitionedTimers::windup() { 244 while(timer_stack.size() > 1) { 245 this->pop(); 246 } 247 if(timer_stack.size() > 0) { 248 timerPair last_timer = timer_stack.back(); 249 timer_stack.pop_back(); 250 timers[last_timer.get_index()]->stop(last_timer.get_timer()); 251 } 252 } 253 254 /* ******************************************************************* */ 255 /* ************* kmp_stats_event_vector member functions ************* */ 256 257 void kmp_stats_event_vector::deallocate() { 258 __kmp_free(events); 259 internal_size = 0; 260 allocated_size = 0; 261 events = NULL; 262 } 263 264 // This function is for qsort() which requires the compare function to return 265 // either a negative number if event1 < event2, a positive number if event1 > event2 266 // or zero if event1 == event2. 267 // This sorts by start time (lowest to highest). 268 int compare_two_events(const void* event1, const void* event2) { 269 kmp_stats_event* ev1 = (kmp_stats_event*)event1; 270 kmp_stats_event* ev2 = (kmp_stats_event*)event2; 271 272 if(ev1->getStart() < ev2->getStart()) return -1; 273 else if(ev1->getStart() > ev2->getStart()) return 1; 274 else return 0; 275 } 276 277 void kmp_stats_event_vector::sort() { 278 qsort(events, internal_size, sizeof(kmp_stats_event), compare_two_events); 279 } 280 281 /* *********************************************************** */ 282 /* ************* kmp_stats_list member functions ************* */ 283 284 // returns a pointer to newly created stats node 285 kmp_stats_list* kmp_stats_list::push_back(int gtid) { 286 kmp_stats_list* newnode = (kmp_stats_list*)__kmp_allocate(sizeof(kmp_stats_list)); 287 // placement new, only requires space and pointer and initializes (so __kmp_allocate instead of C++ new[] is used) 288 new (newnode) kmp_stats_list(); 289 newnode->setGtid(gtid); 290 newnode->prev = this->prev; 291 newnode->next = this; 292 newnode->prev->next = newnode; 293 newnode->next->prev = newnode; 294 return newnode; 295 } 296 void kmp_stats_list::deallocate() { 297 kmp_stats_list* ptr = this->next; 298 kmp_stats_list* delptr = this->next; 299 while(ptr != this) { 300 delptr = ptr; 301 ptr=ptr->next; 302 // placement new means we have to explicitly call destructor. 303 delptr->_event_vector.deallocate(); 304 delptr->~kmp_stats_list(); 305 __kmp_free(delptr); 306 } 307 } 308 kmp_stats_list::iterator kmp_stats_list::begin() { 309 kmp_stats_list::iterator it; 310 it.ptr = this->next; 311 return it; 312 } 313 kmp_stats_list::iterator kmp_stats_list::end() { 314 kmp_stats_list::iterator it; 315 it.ptr = this; 316 return it; 317 } 318 int kmp_stats_list::size() { 319 int retval; 320 kmp_stats_list::iterator it; 321 for(retval=0, it=begin(); it!=end(); it++, retval++) {} 322 return retval; 323 } 324 325 /* ********************************************************************* */ 326 /* ************* kmp_stats_list::iterator member functions ************* */ 327 328 kmp_stats_list::iterator::iterator() : ptr(NULL) {} 329 kmp_stats_list::iterator::~iterator() {} 330 kmp_stats_list::iterator kmp_stats_list::iterator::operator++() { 331 this->ptr = this->ptr->next; 332 return *this; 333 } 334 kmp_stats_list::iterator kmp_stats_list::iterator::operator++(int dummy) { 335 this->ptr = this->ptr->next; 336 return *this; 337 } 338 kmp_stats_list::iterator kmp_stats_list::iterator::operator--() { 339 this->ptr = this->ptr->prev; 340 return *this; 341 } 342 kmp_stats_list::iterator kmp_stats_list::iterator::operator--(int dummy) { 343 this->ptr = this->ptr->prev; 344 return *this; 345 } 346 bool kmp_stats_list::iterator::operator!=(const kmp_stats_list::iterator & rhs) { 347 return this->ptr!=rhs.ptr; 348 } 349 bool kmp_stats_list::iterator::operator==(const kmp_stats_list::iterator & rhs) { 350 return this->ptr==rhs.ptr; 351 } 352 kmp_stats_list* kmp_stats_list::iterator::operator*() const { 353 return this->ptr; 354 } 355 356 /* *************************************************************** */ 357 /* ************* kmp_stats_output_module functions ************** */ 358 359 const char* kmp_stats_output_module::eventsFileName = NULL; 360 const char* kmp_stats_output_module::plotFileName = NULL; 361 int kmp_stats_output_module::printPerThreadFlag = 0; 362 int kmp_stats_output_module::printPerThreadEventsFlag = 0; 363 364 // init() is called very near the beginning of execution time in the constructor of __kmp_stats_global_output 365 void kmp_stats_output_module::init() 366 { 367 char * statsFileName = getenv("KMP_STATS_FILE"); 368 eventsFileName = getenv("KMP_STATS_EVENTS_FILE"); 369 plotFileName = getenv("KMP_STATS_PLOT_FILE"); 370 char * threadStats = getenv("KMP_STATS_THREADS"); 371 char * threadEvents = getenv("KMP_STATS_EVENTS"); 372 373 // set the stats output filenames based on environment variables and defaults 374 if(statsFileName) { 375 // append the process id to the output filename 376 // events.csv --> events-pid.csv 377 size_t index; 378 std::string baseFileName, pid, suffix; 379 std::stringstream ss; 380 outputFileName = std::string(statsFileName); 381 index = outputFileName.find_last_of('.'); 382 if(index == std::string::npos) { 383 baseFileName = outputFileName; 384 } else { 385 baseFileName = outputFileName.substr(0, index); 386 suffix = outputFileName.substr(index); 387 } 388 ss << getpid(); 389 pid = ss.str(); 390 outputFileName = baseFileName + "-" + pid + suffix; 391 } 392 eventsFileName = eventsFileName ? eventsFileName : "events.dat"; 393 plotFileName = plotFileName ? plotFileName : "events.plt"; 394 395 // set the flags based on environment variables matching: true, on, 1, .true. , .t. , yes 396 printPerThreadFlag = __kmp_str_match_true(threadStats); 397 printPerThreadEventsFlag = __kmp_str_match_true(threadEvents); 398 399 if(printPerThreadEventsFlag) { 400 // assigns a color to each timer for printing 401 setupEventColors(); 402 } else { 403 // will clear flag so that no event will be logged 404 timeStat::clearEventFlags(); 405 } 406 407 return; 408 } 409 410 void kmp_stats_output_module::setupEventColors() { 411 int i; 412 int globalColorIndex = 0; 413 int numGlobalColors = sizeof(globalColorArray) / sizeof(rgb_color); 414 for(i=0;i<TIMER_LAST;i++) { 415 if(timeStat::logEvent((timer_e)i)) { 416 timerColorInfo[i] = globalColorArray[globalColorIndex]; 417 globalColorIndex = (globalColorIndex+1)%numGlobalColors; 418 } 419 } 420 return; 421 } 422 423 void kmp_stats_output_module::printTimerStats(FILE *statsOut, statistic const * theStats, statistic const * totalStats) 424 { 425 fprintf (statsOut, "Timer, SampleCount, Min, Mean, Max, Total, SD\n"); 426 for (timer_e s = timer_e(0); s<TIMER_LAST; s = timer_e(s+1)) { 427 statistic const * stat = &theStats[s]; 428 char tag = timeStat::noUnits(s) ? ' ' : 'T'; 429 430 fprintf (statsOut, "%-28s, %s\n", timeStat::name(s), stat->format(tag, true).c_str()); 431 } 432 // Also print the Total_ versions of times. 433 for (timer_e s = timer_e(0); s<TIMER_LAST; s = timer_e(s+1)) { 434 char tag = timeStat::noUnits(s) ? ' ' : 'T'; 435 if (totalStats && !timeStat::noTotal(s)) 436 fprintf(statsOut, "Total_%-22s, %s\n", timeStat::name(s), totalStats[s].format(tag, true).c_str()); 437 } 438 } 439 440 void kmp_stats_output_module::printCounterStats(FILE *statsOut, statistic const * theStats) 441 { 442 fprintf (statsOut, "Counter, ThreadCount, Min, Mean, Max, Total, SD\n"); 443 for (int s = 0; s<COUNTER_LAST; s++) { 444 statistic const * stat = &theStats[s]; 445 fprintf (statsOut, "%-25s, %s\n", counter::name(counter_e(s)), stat->format(' ', true).c_str()); 446 } 447 } 448 449 void kmp_stats_output_module::printCounters(FILE * statsOut, counter const * theCounters) 450 { 451 // We print all the counters even if they are zero. 452 // That makes it easier to slice them into a spreadsheet if you need to. 453 fprintf (statsOut, "\nCounter, Count\n"); 454 for (int c = 0; c<COUNTER_LAST; c++) { 455 counter const * stat = &theCounters[c]; 456 fprintf (statsOut, "%-25s, %s\n", counter::name(counter_e(c)), formatSI(stat->getValue(), 9, ' ').c_str()); 457 } 458 } 459 460 void kmp_stats_output_module::printEvents(FILE* eventsOut, kmp_stats_event_vector* theEvents, int gtid) { 461 // sort by start time before printing 462 theEvents->sort(); 463 for (int i = 0; i < theEvents->size(); i++) { 464 kmp_stats_event ev = theEvents->at(i); 465 rgb_color color = getEventColor(ev.getTimerName()); 466 fprintf(eventsOut, "%d %lu %lu %1.1f rgb(%1.1f,%1.1f,%1.1f) %s\n", 467 gtid, 468 ev.getStart(), 469 ev.getStop(), 470 1.2 - (ev.getNestLevel() * 0.2), 471 color.r, color.g, color.b, 472 timeStat::name(ev.getTimerName()) 473 ); 474 } 475 return; 476 } 477 478 void kmp_stats_output_module::windupExplicitTimers() 479 { 480 // Wind up any explicit timers. We assume that it's fair at this point to just walk all the explcit timers in all threads 481 // and say "it's over". 482 // If the timer wasn't running, this won't record anything anyway. 483 kmp_stats_list::iterator it; 484 for(it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) { 485 kmp_stats_list* ptr = *it; 486 ptr->getPartitionedTimers()->windup(); 487 for (int timer=0; timer<EXPLICIT_TIMER_LAST; timer++) { 488 ptr->getExplicitTimer(explicit_timer_e(timer))->stop((timer_e)timer); 489 } 490 } 491 } 492 493 void kmp_stats_output_module::printPloticusFile() { 494 int i; 495 int size = __kmp_stats_list.size(); 496 FILE* plotOut = fopen(plotFileName, "w+"); 497 498 fprintf(plotOut, "#proc page\n" 499 " pagesize: 15 10\n" 500 " scale: 1.0\n\n"); 501 502 fprintf(plotOut, "#proc getdata\n" 503 " file: %s\n\n", 504 eventsFileName); 505 506 fprintf(plotOut, "#proc areadef\n" 507 " title: OpenMP Sampling Timeline\n" 508 " titledetails: align=center size=16\n" 509 " rectangle: 1 1 13 9\n" 510 " xautorange: datafield=2,3\n" 511 " yautorange: -1 %d\n\n", 512 size); 513 514 fprintf(plotOut, "#proc xaxis\n" 515 " stubs: inc\n" 516 " stubdetails: size=12\n" 517 " label: Time (ticks)\n" 518 " labeldetails: size=14\n\n"); 519 520 fprintf(plotOut, "#proc yaxis\n" 521 " stubs: inc 1\n" 522 " stubrange: 0 %d\n" 523 " stubdetails: size=12\n" 524 " label: Thread #\n" 525 " labeldetails: size=14\n\n", 526 size-1); 527 528 fprintf(plotOut, "#proc bars\n" 529 " exactcolorfield: 5\n" 530 " axis: x\n" 531 " locfield: 1\n" 532 " segmentfields: 2 3\n" 533 " barwidthfield: 4\n\n"); 534 535 // create legend entries corresponding to the timer color 536 for(i=0;i<TIMER_LAST;i++) { 537 if(timeStat::logEvent((timer_e)i)) { 538 rgb_color c = getEventColor((timer_e)i); 539 fprintf(plotOut, "#proc legendentry\n" 540 " sampletype: color\n" 541 " label: %s\n" 542 " details: rgb(%1.1f,%1.1f,%1.1f)\n\n", 543 timeStat::name((timer_e)i), 544 c.r, c.g, c.b); 545 546 } 547 } 548 549 fprintf(plotOut, "#proc legend\n" 550 " format: down\n" 551 " location: max max\n\n"); 552 fclose(plotOut); 553 return; 554 } 555 556 /* 557 * Print some useful information about 558 * * the date and time this experiment ran. 559 * * the machine on which it ran. 560 * We output all of this as stylised comments, though we may decide to parse some of it. 561 */ 562 void kmp_stats_output_module::printHeaderInfo(FILE * statsOut) 563 { 564 std::time_t now = std::time(0); 565 char buffer[40]; 566 char hostName[80]; 567 568 std::strftime(&buffer[0], sizeof(buffer), "%c", std::localtime(&now)); 569 fprintf (statsOut, "# Time of run: %s\n", &buffer[0]); 570 if (gethostname(&hostName[0], sizeof(hostName)) == 0) 571 fprintf (statsOut,"# Hostname: %s\n", &hostName[0]); 572 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 573 fprintf (statsOut, "# CPU: %s\n", &__kmp_cpuinfo.name[0]); 574 fprintf (statsOut, "# Family: %d, Model: %d, Stepping: %d\n", __kmp_cpuinfo.family, __kmp_cpuinfo.model, __kmp_cpuinfo.stepping); 575 if (__kmp_cpuinfo.frequency == 0) 576 fprintf (statsOut, "# Nominal frequency: Unknown\n"); 577 else 578 fprintf (statsOut, "# Nominal frequency: %sz\n", formatSI(double(__kmp_cpuinfo.frequency),9,'H').c_str()); 579 #endif 580 } 581 582 void kmp_stats_output_module::outputStats(const char* heading) 583 { 584 // Stop all the explicit timers in all threads 585 // Do this before declaring the local statistics because thay have constructors so will take time to create. 586 windupExplicitTimers(); 587 588 statistic allStats[TIMER_LAST]; 589 statistic totalStats[TIMER_LAST]; /* Synthesized, cross threads versions of normal timer stats */ 590 statistic allCounters[COUNTER_LAST]; 591 592 FILE * statsOut = !outputFileName.empty() ? fopen (outputFileName.c_str(), "a+") : stderr; 593 if (!statsOut) 594 statsOut = stderr; 595 596 FILE * eventsOut; 597 if (eventPrintingEnabled()) { 598 eventsOut = fopen(eventsFileName, "w+"); 599 } 600 601 printHeaderInfo (statsOut); 602 fprintf(statsOut, "%s\n",heading); 603 // Accumulate across threads. 604 kmp_stats_list::iterator it; 605 for (it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) { 606 int t = (*it)->getGtid(); 607 // Output per thread stats if requested. 608 if (printPerThreadFlag) { 609 fprintf (statsOut, "Thread %d\n", t); 610 printTimerStats (statsOut, (*it)->getTimers(), 0); 611 printCounters (statsOut, (*it)->getCounters()); 612 fprintf (statsOut,"\n"); 613 } 614 // Output per thread events if requested. 615 if (eventPrintingEnabled()) { 616 kmp_stats_event_vector events = (*it)->getEventVector(); 617 printEvents(eventsOut, &events, t); 618 } 619 620 // Accumulate timers. 621 for (timer_e s = timer_e(0); s<TIMER_LAST; s = timer_e(s+1)) { 622 // See if we should ignore this timer when aggregating 623 if ((timeStat::masterOnly(s) && (t != 0)) || // Timer is only valid on the master and this thread is a worker 624 (timeStat::workerOnly(s) && (t == 0)) // Timer is only valid on a worker and this thread is the master 625 ) 626 { 627 continue; 628 } 629 630 statistic * threadStat = (*it)->getTimer(s); 631 allStats[s] += *threadStat; 632 633 // Add Total stats for timers that are valid in more than one thread 634 if (!timeStat::noTotal(s)) 635 totalStats[s].addSample(threadStat->getTotal()); 636 } 637 638 // Accumulate counters. 639 for (counter_e c = counter_e(0); c<COUNTER_LAST; c = counter_e(c+1)) { 640 if (counter::masterOnly(c) && t != 0) 641 continue; 642 allCounters[c].addSample ((*it)->getCounter(c)->getValue()); 643 } 644 } 645 646 if (eventPrintingEnabled()) { 647 printPloticusFile(); 648 fclose(eventsOut); 649 } 650 651 fprintf (statsOut, "Aggregate for all threads\n"); 652 printTimerStats (statsOut, &allStats[0], &totalStats[0]); 653 fprintf (statsOut, "\n"); 654 printCounterStats (statsOut, &allCounters[0]); 655 656 if (statsOut != stderr) 657 fclose(statsOut); 658 } 659 660 /* ************************************************** */ 661 /* ************* exported C functions ************** */ 662 663 // no name mangling for these functions, we want the c files to be able to get at these functions 664 extern "C" { 665 666 void __kmp_reset_stats() 667 { 668 kmp_stats_list::iterator it; 669 for(it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) { 670 timeStat * timers = (*it)->getTimers(); 671 counter * counters = (*it)->getCounters(); 672 explicitTimer * eTimers = (*it)->getExplicitTimers(); 673 674 for (int t = 0; t<TIMER_LAST; t++) 675 timers[t].reset(); 676 677 for (int c = 0; c<COUNTER_LAST; c++) 678 counters[c].reset(); 679 680 for (int t=0; t<EXPLICIT_TIMER_LAST; t++) 681 eTimers[t].reset(); 682 683 // reset the event vector so all previous events are "erased" 684 (*it)->resetEventVector(); 685 } 686 } 687 688 // This function will reset all stats and stop all threads' explicit timers if they haven't been stopped already. 689 void __kmp_output_stats(const char * heading) 690 { 691 __kmp_stats_global_output.outputStats(heading); 692 __kmp_reset_stats(); 693 } 694 695 void __kmp_accumulate_stats_at_exit(void) 696 { 697 // Only do this once. 698 if (KMP_XCHG_FIXED32(&statsPrinted, 1) != 0) 699 return; 700 701 __kmp_output_stats("Statistics on exit"); 702 } 703 704 void __kmp_stats_init(void) 705 { 706 } 707 708 } // extern "C" 709 710