1 /** @file kmp_stats.cpp
2  * Statistics gathering and processing.
3  */
4 
5 
6 //===----------------------------------------------------------------------===//
7 //
8 //                     The LLVM Compiler Infrastructure
9 //
10 // This file is dual licensed under the MIT and the University of Illinois Open
11 // Source Licenses. See LICENSE.txt for details.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 
16 #if KMP_STATS_ENABLED
17 
18 #include "kmp.h"
19 #include "kmp_str.h"
20 #include "kmp_lock.h"
21 #include "kmp_stats.h"
22 
23 #include <algorithm>
24 #include <sstream>
25 #include <iomanip>
26 #include <stdlib.h>                             // for atexit
27 
28 #define STRINGIZE2(x) #x
29 #define STRINGIZE(x) STRINGIZE2(x)
30 
31 #define expandName(name,flags,ignore)  {STRINGIZE(name),flags},
32 statInfo timeStat::timerInfo[] = {
33     KMP_FOREACH_TIMER(expandName,0)
34     {0,0}
35 };
36 const statInfo counter::counterInfo[] = {
37     KMP_FOREACH_COUNTER(expandName,0)
38     {0,0}
39 };
40 #undef expandName
41 
42 #define expandName(ignore1,ignore2,ignore3)  {0.0,0.0,0.0},
43 kmp_stats_output_module::rgb_color kmp_stats_output_module::timerColorInfo[] = {
44     KMP_FOREACH_TIMER(expandName,0)
45     {0.0,0.0,0.0}
46 };
47 #undef expandName
48 
49 const kmp_stats_output_module::rgb_color kmp_stats_output_module::globalColorArray[] = {
50     {1.0, 0.0, 0.0}, // red
51     {1.0, 0.6, 0.0}, // orange
52     {1.0, 1.0, 0.0}, // yellow
53     {0.0, 1.0, 0.0}, // green
54     {0.0, 0.0, 1.0}, // blue
55     {0.6, 0.2, 0.8}, // purple
56     {1.0, 0.0, 1.0}, // magenta
57     {0.0, 0.4, 0.2}, // dark green
58     {1.0, 1.0, 0.6}, // light yellow
59     {0.6, 0.4, 0.6}, // dirty purple
60     {0.0, 1.0, 1.0}, // cyan
61     {1.0, 0.4, 0.8}, // pink
62     {0.5, 0.5, 0.5}, // grey
63     {0.8, 0.7, 0.5}, // brown
64     {0.6, 0.6, 1.0}, // light blue
65     {1.0, 0.7, 0.5}, // peach
66     {0.8, 0.5, 1.0}, // lavender
67     {0.6, 0.0, 0.0}, // dark red
68     {0.7, 0.6, 0.0}, // gold
69     {0.0, 0.0, 0.0}  // black
70 };
71 
72 // Ensure that the atexit handler only runs once.
73 static uint32_t statsPrinted = 0;
74 
75 // output interface
76 static kmp_stats_output_module __kmp_stats_global_output;
77 
78 /* ****************************************************** */
79 /* ************* statistic member functions ************* */
80 
81 void statistic::addSample(double sample)
82 {
83     double delta = sample - meanVal;
84 
85     sampleCount = sampleCount + 1;
86     meanVal     = meanVal + delta/sampleCount;
87     m2          = m2 + delta*(sample - meanVal);
88 
89     minVal = std::min(minVal, sample);
90     maxVal = std::max(maxVal, sample);
91 }
92 
93 statistic & statistic::operator+= (const statistic & other)
94 {
95     if (sampleCount == 0)
96     {
97         *this = other;
98         return *this;
99     }
100 
101     uint64_t newSampleCount = sampleCount + other.sampleCount;
102     double dnsc  = double(newSampleCount);
103     double dsc   = double(sampleCount);
104     double dscBydnsc = dsc/dnsc;
105     double dosc  = double(other.sampleCount);
106     double delta = other.meanVal - meanVal;
107 
108     // Try to order these calculations to avoid overflows.
109     // If this were Fortran, then the compiler would not be able to re-order over brackets.
110     // In C++ it may be legal to do that (we certainly hope it doesn't, and CC+ Programming Language 2nd edition
111     // suggests it shouldn't, since it says that exploitation of associativity can only be made if the operation
112     // really is associative (which floating addition isn't...)).
113     meanVal     = meanVal*dscBydnsc + other.meanVal*(1-dscBydnsc);
114     m2          = m2 + other.m2 + dscBydnsc*dosc*delta*delta;
115     minVal      = std::min (minVal, other.minVal);
116     maxVal      = std::max (maxVal, other.maxVal);
117     sampleCount = newSampleCount;
118 
119 
120     return *this;
121 }
122 
123 void statistic::scale(double factor)
124 {
125     minVal = minVal*factor;
126     maxVal = maxVal*factor;
127     meanVal= meanVal*factor;
128     m2     = m2*factor*factor;
129     return;
130 }
131 
132 std::string statistic::format(char unit, bool total) const
133 {
134     std::string result = formatSI(sampleCount,9,' ');
135 
136     result = result + std::string(", ") + formatSI(minVal,  9, unit);
137     result = result + std::string(", ") + formatSI(meanVal, 9, unit);
138     result = result + std::string(", ") + formatSI(maxVal,  9, unit);
139     if (total)
140         result = result + std::string(", ") + formatSI(meanVal*sampleCount, 9, unit);
141     result = result + std::string(", ") + formatSI(getSD(), 9, unit);
142 
143     return result;
144 }
145 
146 /* ********************************************************** */
147 /* ************* explicitTimer member functions ************* */
148 
149 void explicitTimer::start(timer_e timerEnumValue) {
150     startTime = tsc_tick_count::now();
151     if(timeStat::logEvent(timerEnumValue)) {
152         __kmp_stats_thread_ptr->incrementNestValue();
153     }
154     return;
155 }
156 
157 void explicitTimer::stop(timer_e timerEnumValue) {
158     if (startTime.getValue() == 0)
159         return;
160 
161     tsc_tick_count finishTime = tsc_tick_count::now();
162 
163     //stat->addSample ((tsc_tick_count::now() - startTime).ticks());
164     stat->addSample ((finishTime - startTime).ticks());
165 
166     if(timeStat::logEvent(timerEnumValue)) {
167         __kmp_stats_thread_ptr->push_event(startTime.getValue() - __kmp_stats_start_time.getValue(), finishTime.getValue() - __kmp_stats_start_time.getValue(), __kmp_stats_thread_ptr->getNestValue(), timerEnumValue);
168         __kmp_stats_thread_ptr->decrementNestValue();
169     }
170 
171     /* We accept the risk that we drop a sample because it really did start at t==0. */
172     startTime = 0;
173     return;
174 }
175 
176 /* ******************************************************************* */
177 /* ************* kmp_stats_event_vector member functions ************* */
178 
179 void kmp_stats_event_vector::deallocate() {
180     __kmp_free(events);
181     internal_size = 0;
182     allocated_size = 0;
183     events = NULL;
184 }
185 
186 // This function is for qsort() which requires the compare function to return
187 // either a negative number if event1 < event2, a positive number if event1 > event2
188 // or zero if event1 == event2.
189 // This sorts by start time (lowest to highest).
190 int compare_two_events(const void* event1, const void* event2) {
191     kmp_stats_event* ev1 = (kmp_stats_event*)event1;
192     kmp_stats_event* ev2 = (kmp_stats_event*)event2;
193 
194     if(ev1->getStart() < ev2->getStart()) return -1;
195     else if(ev1->getStart() > ev2->getStart()) return 1;
196     else return 0;
197 }
198 
199 void kmp_stats_event_vector::sort() {
200     qsort(events, internal_size, sizeof(kmp_stats_event), compare_two_events);
201 }
202 
203 /* *********************************************************** */
204 /* ************* kmp_stats_list member functions ************* */
205 
206 // returns a pointer to newly created stats node
207 kmp_stats_list* kmp_stats_list::push_back(int gtid) {
208     kmp_stats_list* newnode = (kmp_stats_list*)__kmp_allocate(sizeof(kmp_stats_list));
209     // placement new, only requires space and pointer and initializes (so __kmp_allocate instead of C++ new[] is used)
210     new (newnode) kmp_stats_list();
211     newnode->setGtid(gtid);
212     newnode->prev = this->prev;
213     newnode->next = this;
214     newnode->prev->next = newnode;
215     newnode->next->prev = newnode;
216     return newnode;
217 }
218 void kmp_stats_list::deallocate() {
219     kmp_stats_list* ptr = this->next;
220     kmp_stats_list* delptr = this->next;
221     while(ptr != this) {
222         delptr = ptr;
223         ptr=ptr->next;
224         // placement new means we have to explicitly call destructor.
225         delptr->_event_vector.deallocate();
226         delptr->~kmp_stats_list();
227         __kmp_free(delptr);
228     }
229 }
230 kmp_stats_list::iterator kmp_stats_list::begin() {
231     kmp_stats_list::iterator it;
232     it.ptr = this->next;
233     return it;
234 }
235 kmp_stats_list::iterator kmp_stats_list::end() {
236     kmp_stats_list::iterator it;
237     it.ptr = this;
238     return it;
239 }
240 int kmp_stats_list::size() {
241     int retval;
242     kmp_stats_list::iterator it;
243     for(retval=0, it=begin(); it!=end(); it++, retval++) {}
244     return retval;
245 }
246 
247 /* ********************************************************************* */
248 /* ************* kmp_stats_list::iterator member functions ************* */
249 
250 kmp_stats_list::iterator::iterator() : ptr(NULL) {}
251 kmp_stats_list::iterator::~iterator() {}
252 kmp_stats_list::iterator kmp_stats_list::iterator::operator++() {
253     this->ptr = this->ptr->next;
254     return *this;
255 }
256 kmp_stats_list::iterator kmp_stats_list::iterator::operator++(int dummy) {
257     this->ptr = this->ptr->next;
258     return *this;
259 }
260 kmp_stats_list::iterator kmp_stats_list::iterator::operator--() {
261     this->ptr = this->ptr->prev;
262     return *this;
263 }
264 kmp_stats_list::iterator kmp_stats_list::iterator::operator--(int dummy) {
265     this->ptr = this->ptr->prev;
266     return *this;
267 }
268 bool kmp_stats_list::iterator::operator!=(const kmp_stats_list::iterator & rhs) {
269    return this->ptr!=rhs.ptr;
270 }
271 bool kmp_stats_list::iterator::operator==(const kmp_stats_list::iterator & rhs) {
272    return this->ptr==rhs.ptr;
273 }
274 kmp_stats_list* kmp_stats_list::iterator::operator*() const {
275     return this->ptr;
276 }
277 
278 /* *************************************************************** */
279 /* *************  kmp_stats_output_module functions ************** */
280 
281 const char* kmp_stats_output_module::outputFileName = NULL;
282 const char* kmp_stats_output_module::eventsFileName = NULL;
283 const char* kmp_stats_output_module::plotFileName   = NULL;
284 int kmp_stats_output_module::printPerThreadFlag       = 0;
285 int kmp_stats_output_module::printPerThreadEventsFlag = 0;
286 
287 // init() is called very near the beginning of execution time in the constructor of __kmp_stats_global_output
288 void kmp_stats_output_module::init()
289 {
290     char * statsFileName  = getenv("KMP_STATS_FILE");
291     eventsFileName        = getenv("KMP_STATS_EVENTS_FILE");
292     plotFileName          = getenv("KMP_STATS_PLOT_FILE");
293     char * threadStats    = getenv("KMP_STATS_THREADS");
294     char * threadEvents   = getenv("KMP_STATS_EVENTS");
295 
296     // set the stats output filenames based on environment variables and defaults
297     outputFileName = statsFileName;
298     eventsFileName = eventsFileName ? eventsFileName : "events.dat";
299     plotFileName   = plotFileName   ? plotFileName   : "events.plt";
300 
301     // set the flags based on environment variables matching: true, on, 1, .true. , .t. , yes
302     printPerThreadFlag        = __kmp_str_match_true(threadStats);
303     printPerThreadEventsFlag  = __kmp_str_match_true(threadEvents);
304 
305     if(printPerThreadEventsFlag) {
306         // assigns a color to each timer for printing
307         setupEventColors();
308     } else {
309         // will clear flag so that no event will be logged
310         timeStat::clearEventFlags();
311     }
312 
313     return;
314 }
315 
316 void kmp_stats_output_module::setupEventColors() {
317     int i;
318     int globalColorIndex = 0;
319     int numGlobalColors = sizeof(globalColorArray) / sizeof(rgb_color);
320     for(i=0;i<TIMER_LAST;i++) {
321         if(timeStat::logEvent((timer_e)i)) {
322             timerColorInfo[i] = globalColorArray[globalColorIndex];
323             globalColorIndex = (globalColorIndex+1)%numGlobalColors;
324         }
325     }
326     return;
327 }
328 
329 void kmp_stats_output_module::printStats(FILE *statsOut, statistic const * theStats, bool areTimers)
330 {
331     if (areTimers)
332     {
333         // Check if we have useful timers, since we don't print zero value timers we need to avoid
334         // printing a header and then no data.
335         bool haveTimers = false;
336         for (int s = 0; s<TIMER_LAST; s++)
337         {
338             if (theStats[s].getCount() != 0)
339             {
340                 haveTimers = true;
341                 break;
342             }
343         }
344         if (!haveTimers)
345             return;
346     }
347 
348     // Print
349     const char * title = areTimers ? "Timer,                   SampleCount," : "Counter,                 ThreadCount,";
350     fprintf (statsOut, "%s    Min,      Mean,       Max,     Total,        SD\n", title);
351     if (areTimers) {
352         for (int s = 0; s<TIMER_LAST; s++) {
353             statistic const * stat = &theStats[s];
354             if (stat->getCount() != 0) {
355                 char tag = timeStat::noUnits(timer_e(s)) ? ' ' : 'T';
356                 fprintf (statsOut, "%-25s, %s\n", timeStat::name(timer_e(s)), stat->format(tag, true).c_str());
357             }
358         }
359     } else {   // Counters
360         for (int s = 0; s<COUNTER_LAST; s++) {
361             statistic const * stat = &theStats[s];
362             fprintf (statsOut, "%-25s, %s\n", counter::name(counter_e(s)), stat->format(' ', true).c_str());
363         }
364     }
365 }
366 
367 void kmp_stats_output_module::printCounters(FILE * statsOut, counter const * theCounters)
368 {
369     // We print all the counters even if they are zero.
370     // That makes it easier to slice them into a spreadsheet if you need to.
371     fprintf (statsOut, "\nCounter,                    Count\n");
372     for (int c = 0; c<COUNTER_LAST; c++) {
373         counter const * stat = &theCounters[c];
374         fprintf (statsOut, "%-25s, %s\n", counter::name(counter_e(c)), formatSI(stat->getValue(), 9, ' ').c_str());
375     }
376 }
377 
378 void kmp_stats_output_module::printEvents(FILE* eventsOut, kmp_stats_event_vector* theEvents, int gtid) {
379     // sort by start time before printing
380     theEvents->sort();
381     for (int i = 0; i < theEvents->size(); i++) {
382         kmp_stats_event ev = theEvents->at(i);
383         rgb_color color = getEventColor(ev.getTimerName());
384         fprintf(eventsOut, "%d %lu %lu %1.1f rgb(%1.1f,%1.1f,%1.1f) %s\n",
385                 gtid,
386                 ev.getStart(),
387                 ev.getStop(),
388                 1.2 - (ev.getNestLevel() * 0.2),
389                 color.r, color.g, color.b,
390                 timeStat::name(ev.getTimerName())
391                );
392     }
393     return;
394 }
395 
396 void kmp_stats_output_module::windupExplicitTimers()
397 {
398     // Wind up any explicit timers. We assume that it's fair at this point to just walk all the explcit timers in all threads
399     // and say "it's over".
400     // If the timer wasn't running, this won't record anything anyway.
401     kmp_stats_list::iterator it;
402     for(it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) {
403         for (int timer=0; timer<EXPLICIT_TIMER_LAST; timer++) {
404             (*it)->getExplicitTimer(explicit_timer_e(timer))->stop((timer_e)timer);
405         }
406     }
407 }
408 
409 void kmp_stats_output_module::printPloticusFile() {
410     int i;
411     int size = __kmp_stats_list.size();
412     FILE* plotOut = fopen(plotFileName, "w+");
413 
414     fprintf(plotOut, "#proc page\n"
415                      "   pagesize: 15 10\n"
416                      "   scale: 1.0\n\n");
417 
418     fprintf(plotOut, "#proc getdata\n"
419                      "   file: %s\n\n",
420                      eventsFileName);
421 
422     fprintf(plotOut, "#proc areadef\n"
423                      "   title: OpenMP Sampling Timeline\n"
424                      "   titledetails: align=center size=16\n"
425                      "   rectangle: 1 1 13 9\n"
426                      "   xautorange: datafield=2,3\n"
427                      "   yautorange: -1 %d\n\n",
428                      size);
429 
430     fprintf(plotOut, "#proc xaxis\n"
431                      "   stubs: inc\n"
432                      "   stubdetails: size=12\n"
433                      "   label: Time (ticks)\n"
434                      "   labeldetails: size=14\n\n");
435 
436     fprintf(plotOut, "#proc yaxis\n"
437                      "   stubs: inc 1\n"
438                      "   stubrange: 0 %d\n"
439                      "   stubdetails: size=12\n"
440                      "   label: Thread #\n"
441                      "   labeldetails: size=14\n\n",
442                      size-1);
443 
444     fprintf(plotOut, "#proc bars\n"
445                      "   exactcolorfield: 5\n"
446                      "   axis: x\n"
447                      "   locfield: 1\n"
448                      "   segmentfields: 2 3\n"
449                      "   barwidthfield: 4\n\n");
450 
451     // create legend entries corresponding to the timer color
452     for(i=0;i<TIMER_LAST;i++) {
453         if(timeStat::logEvent((timer_e)i)) {
454             rgb_color c = getEventColor((timer_e)i);
455             fprintf(plotOut, "#proc legendentry\n"
456                              "   sampletype: color\n"
457                              "   label: %s\n"
458                              "   details: rgb(%1.1f,%1.1f,%1.1f)\n\n",
459                              timeStat::name((timer_e)i),
460                              c.r, c.g, c.b);
461 
462         }
463     }
464 
465     fprintf(plotOut, "#proc legend\n"
466                      "   format: down\n"
467                      "   location: max max\n\n");
468     fclose(plotOut);
469     return;
470 }
471 
472 void kmp_stats_output_module::outputStats(const char* heading)
473 {
474     statistic allStats[TIMER_LAST];
475     statistic allCounters[COUNTER_LAST];
476 
477     // stop all the explicit timers for all threads
478     windupExplicitTimers();
479 
480     FILE * eventsOut;
481     FILE * statsOut = outputFileName ? fopen (outputFileName, "a+") : stderr;
482 
483     if (eventPrintingEnabled()) {
484         eventsOut = fopen(eventsFileName, "w+");
485     }
486 
487     if (!statsOut)
488         statsOut = stderr;
489 
490     fprintf(statsOut, "%s\n",heading);
491     // Accumulate across threads.
492     kmp_stats_list::iterator it;
493     for (it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) {
494         int t = (*it)->getGtid();
495         // Output per thread stats if requested.
496         if (perThreadPrintingEnabled()) {
497             fprintf (statsOut, "Thread %d\n", t);
498             printStats(statsOut, (*it)->getTimers(), true);
499             printCounters(statsOut, (*it)->getCounters());
500             fprintf(statsOut,"\n");
501         }
502         // Output per thread events if requested.
503         if (eventPrintingEnabled()) {
504             kmp_stats_event_vector events = (*it)->getEventVector();
505             printEvents(eventsOut, &events, t);
506         }
507 
508         for (int s = 0; s<TIMER_LAST; s++) {
509             // See if we should ignore this timer when aggregating
510             if ((timeStat::masterOnly(timer_e(s)) && (t != 0)) || // Timer is only valid on the master and this thread is a worker
511                 (timeStat::workerOnly(timer_e(s)) && (t == 0)) || // Timer is only valid on a worker and this thread is the master
512                 timeStat::synthesized(timer_e(s))                 // It's a synthesized stat, so there's no raw data for it.
513                )
514             {
515                 continue;
516             }
517 
518             statistic * threadStat = (*it)->getTimer(timer_e(s));
519             allStats[s] += *threadStat;
520         }
521 
522         // Special handling for synthesized statistics.
523         // These just have to be coded specially here for now.
524         // At present we only have one: the total parallel work done in each thread.
525         // The variance here makes it easy to see load imbalance over the whole program (though, of course,
526         // it's possible to have a code with awful load balance in every parallel region but perfect load
527         // balance oever the whole program.)
528         allStats[TIMER_Total_work].addSample ((*it)->getTimer(TIMER_OMP_work)->getTotal());
529 
530         // Time waiting for work (synthesized)
531         if ((t != 0) || !timeStat::workerOnly(timer_e(TIMER_OMP_await_work)))
532             allStats[TIMER_Total_await_work].addSample ((*it)->getTimer(TIMER_OMP_await_work)->getTotal());
533 
534         // Time in explicit barriers.
535         allStats[TIMER_Total_barrier].addSample ((*it)->getTimer(TIMER_OMP_barrier)->getTotal());
536 
537         for (int c = 0; c<COUNTER_LAST; c++) {
538             if (counter::masterOnly(counter_e(c)) && t != 0)
539                 continue;
540             allCounters[c].addSample ((*it)->getCounter(counter_e(c))->getValue());
541         }
542     }
543 
544     if (eventPrintingEnabled()) {
545         printPloticusFile();
546         fclose(eventsOut);
547     }
548 
549     fprintf (statsOut, "Aggregate for all threads\n");
550     printStats (statsOut, &allStats[0], true);
551     fprintf (statsOut, "\n");
552     printStats (statsOut, &allCounters[0], false);
553 
554     if (statsOut != stderr)
555         fclose(statsOut);
556 
557 }
558 
559 /* ************************************************** */
560 /* *************  exported C functions ************** */
561 
562 // no name mangling for these functions, we want the c files to be able to get at these functions
563 extern "C" {
564 
565 void __kmp_reset_stats()
566 {
567     kmp_stats_list::iterator it;
568     for(it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) {
569         timeStat * timers     = (*it)->getTimers();
570         counter * counters    = (*it)->getCounters();
571         explicitTimer * eTimers = (*it)->getExplicitTimers();
572 
573         for (int t = 0; t<TIMER_LAST; t++)
574             timers[t].reset();
575 
576         for (int c = 0; c<COUNTER_LAST; c++)
577             counters[c].reset();
578 
579         for (int t=0; t<EXPLICIT_TIMER_LAST; t++)
580             eTimers[t].reset();
581 
582         // reset the event vector so all previous events are "erased"
583         (*it)->resetEventVector();
584 
585         // May need to restart the explicit timers in thread zero?
586     }
587     KMP_START_EXPLICIT_TIMER(OMP_serial);
588     KMP_START_EXPLICIT_TIMER(OMP_start_end);
589 }
590 
591 // This function will reset all stats and stop all threads' explicit timers if they haven't been stopped already.
592 void __kmp_output_stats(const char * heading)
593 {
594     __kmp_stats_global_output.outputStats(heading);
595     __kmp_reset_stats();
596 }
597 
598 void __kmp_accumulate_stats_at_exit(void)
599 {
600     // Only do this once.
601     if (KMP_XCHG_FIXED32(&statsPrinted, 1) != 0)
602         return;
603 
604     __kmp_output_stats("Statistics on exit");
605     return;
606 }
607 
608 void __kmp_stats_init(void)
609 {
610     return;
611 }
612 
613 } // extern "C"
614 
615 #endif // KMP_STATS_ENABLED
616